1
|
Lu C, Shang J, Xie M, Zhu Y, Zhong J, He Y, Xiao Z, Chen W, Yang ZA, Tang X, Yin P, Chen J. Bufalin inhibits immune escape in metastatic colorectal cancer by regulating M2 macrophage polarization. Apoptosis 2025; 30:1467-1481. [PMID: 40186793 DOI: 10.1007/s10495-025-02107-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2025] [Indexed: 04/07/2025]
Abstract
The prognosis for patients with metastatic colorectal cancer (mCRC) remains poor primarily owing to immune escape caused by immunosuppressive tumor microenvironment (TME). M2 tumor-associated macrophages (TAMs) have been considered as a pivotal role in sustaining the immunosuppressive character in TME. Our previous studies have found that highly mCRC cells could promote M2 TAMs polarization, leading to the exhaustion of T cell antitumor immunity. Studies have reported that Bufalin (BU) could reverse the immunosuppressive TME via regulating TAMs polarization, but the mechanisms underlying remain elusive. In this study, we demonstrated that KLF4 secreted by highly mCRC cells not only promoted the polarization to M2 TAMs but also up-regulated the PD-L1 expression in TAMs, leading to suppressing cytotoxic T lymphocyte (CTL) function to facilitate tumor immune escape. Mechanistically, BU targeted the SRC-3 protein to reduce KLF4 release in highly mCRC cells to regulate the polarization of M2 TAMs and down-regulate PD-L1 expression in TAMs, resulting in reprogramming of the TME and enhancing the anti-tumor immunity. These results have also been validated in both subcutaneous tumor models and orthotopic tumor models. Overall, this research further elucidates the anti-tumor mechanism of BU for inhibiting immune escape in mCRC and facilitate exploitation of a new potential macrophage-based mCRC immunotherapeutic modality.
Collapse
Affiliation(s)
- Chang Lu
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
- Fifth Clinical Medical College, Anhui Medical University, Hefei, 230022, Anhui, China
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Jing Shang
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
- Department of Radiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Manli Xie
- Department of Medical Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Yuan Zhu
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Jiani Zhong
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
| | - Yujie He
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
| | - Zengyou Xiao
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
- Fifth Clinical Medical College, Anhui Medical University, Hefei, 230022, Anhui, China
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Wen Chen
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
- Fifth Clinical Medical College, Anhui Medical University, Hefei, 230022, Anhui, China
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Ze-An Yang
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
- Fifth Clinical Medical College, Anhui Medical University, Hefei, 230022, Anhui, China
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Xiaoxia Tang
- Department of Medical Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
| | - Peihao Yin
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
- Fifth Clinical Medical College, Anhui Medical University, Hefei, 230022, Anhui, China.
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Hefei, China.
- Department of General Surgery, Putuo People's Hospital, Tongji University School of Medicine, Shanghai, 200060, China.
- Shanghai Key Laboratory of Wearable Robotics and Human-Machine Interaction, Shanghai, China.
| | - Jinbao Chen
- Department of Medical Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
| |
Collapse
|
2
|
Geltz A, Geltz J, Kasprzak A. Regulation and Function of Tumor-Associated Macrophages (TAMs) in Colorectal Cancer (CRC): The Role of the SRIF System in Macrophage Regulation. Int J Mol Sci 2025; 26:5336. [PMID: 40508145 PMCID: PMC12155148 DOI: 10.3390/ijms26115336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2025] [Revised: 05/16/2025] [Accepted: 05/28/2025] [Indexed: 06/16/2025] Open
Abstract
Colorectal cancer (CRC) remains the leading cause of morbidity and mortality for both men and women worldwide. Tumor-associated macrophages (TAMs) are the most abundant immune cells in the tumor microenvironment (TME) of solid tumors, including CRC. These macrophages are found in the pro-inflammatory M1 and anti-inflammatory M2 forms, with the latter increasingly recognized for its tumor-promoting phenotypes. Many signaling molecules and pathways, including AMPK, EGFR, STAT3/6, mTOR, NF-κB, MAPK/ERK, and HIFs, are involved in regulating TAM polarization. Consequently, researchers are investigating several potential predictive and prognostic markers, and novel TAM-based therapeutic targets, especially in combination therapies for CRC. Macrophages of the gastrointestinal tract, including the normal colon and rectum, produce growth hormone-releasing inhibitory peptide/somatostatin (SRIF/SST) and five SST receptors (SSTRs, SST1-5). While the immunosuppressive function of the SRIF system is primarily known for various tissues, its role within CRC-associated TAMs remains underexplored. This review focuses on the following three aspects of TAMs: first, the role of macrophages in the normal colon and rectum within the broader context of macrophage biology; second, the various bioactive factors and signaling pathways associated with TAM function, along with potential strategies targeting TAMs in CRC; and third, the interaction between the SRIF system and macrophages in both normal tissues and the CRC microenvironment.
Collapse
Affiliation(s)
- Agnieszka Geltz
- Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecicki Street 6, 60-781 Poznan, Poland;
- Doctoral School, Poznan University of Medical Sciences, Bukowska Street 70, 60-812 Poznan, Poland;
| | - Jakub Geltz
- Doctoral School, Poznan University of Medical Sciences, Bukowska Street 70, 60-812 Poznan, Poland;
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna Street 27/33, 60-572 Poznan, Poland
| | - Aldona Kasprzak
- Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecicki Street 6, 60-781 Poznan, Poland;
| |
Collapse
|
3
|
Shi X, Askari Rizvi SF, Yang Y, Liu G. Emerging nanomedicines for macrophage-mediated cancer therapy. Biomaterials 2025; 316:123028. [PMID: 39693782 DOI: 10.1016/j.biomaterials.2024.123028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/22/2024] [Accepted: 12/13/2024] [Indexed: 12/20/2024]
Abstract
Tumor-associated macrophages (TAMs) contribute to tumor progression by promoting angiogenesis, remodeling the tumor extracellular matrix, inducing tumor invasion and metastasis, as well as immune evasion. Due to the high plasticity of TAMs, they can polarize into different phenotypes with distinct functions, which are primarily categorized as the pro-inflammatory, anti-tumor M1 type, and the anti-inflammatory, pro-tumor M2 type. Notably, anti-tumor macrophages not only directly phagocytize tumor cells, but also present tumor-specific antigens and activate adaptive immunity. Therefore, targeted regulation of TAMs to unleash their potential anti-tumor capabilities is crucial for improving the efficacy of cancer immunotherapy. Nanomedicine serves as a promising vehicle and can inherently interact with TAMs, hence, emerging as a new paradigm in cancer immunotherapy. Due to their controllable structures and properties, nanomedicines offer a plethora of advantages over conventional drugs, thus enhancing the balance between efficacy and toxicity. In this review, we provide an overview of the hallmarks of TAMs and discuss nanomedicines for targeting TAMs with a focus on inhibiting recruitment, depleting and reprogramming TAMs, enhancing phagocytosis, engineering macrophages, as well as targeting TAMs for tumor imaging. We also discuss the challenges and clinical potentials of nanomedicines for targeting TAMs, aiming to advance the exploitation of nanomedicine for cancer immunotherapy.
Collapse
Affiliation(s)
- Xueying Shi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular, Imaging and Translational Medicine, School of Public Health, Xiamen University, No. 4221 South Xiang'an Road, Xiang'an District, Xiamen, 361102, China
| | - Syed Faheem Askari Rizvi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular, Imaging and Translational Medicine, School of Public Health, Xiamen University, No. 4221 South Xiang'an Road, Xiang'an District, Xiamen, 361102, China; Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, 54000, Punjab, Pakistan
| | - Yinxian Yang
- School of Pharmaceutical Sciences, Xiamen University, No. 4221 South Xiang'an Road, Xiang'an District, Xiamen, 361102, China.
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular, Imaging and Translational Medicine, School of Public Health, Xiamen University, No. 4221 South Xiang'an Road, Xiang'an District, Xiamen, 361102, China.
| |
Collapse
|
4
|
Li Y, Lu W, Xia F, Deng Y, Jin X, Xuan Y, Wang Y, Shen L, Wan J, Zhang H, Li Y, Li X, Huang L, Zhang Z. SIRPα + CD209 + cell: a specialized antigen-presenting cell that contributes to anti-SIRPα/RT therapy in colorectal cancer. Cancer Immunol Immunother 2025; 74:167. [PMID: 40208335 PMCID: PMC11985876 DOI: 10.1007/s00262-025-04025-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/17/2025] [Indexed: 04/11/2025]
Abstract
OBJECTIVE Colorectal cancer (CRC) is a leading cause of cancer-related mortality, with a need for improved treatment strategies. Antigen-presenting cells (APCs) have emerged as important modulators of immune responses in the tumor microenvironment (TME). This study aimed to explore the role of these cells in CRC and their potential synergy with radiation therapy (RT). METHODS Single-cell sequencing was performed before and after neoadjuvant therapy (NAT) to identify changes in myeloid cells within the tumor microenvironment, which was compared with peripheral blood of the same patients. The effect of RT with/without immunotherapy on these cells was evaluated in vivo and in vitro. RESULTS Single-cell sequencing showed that SIRPα + CD209 + cells are specialized antigen-presenting cells which are found to decrease in the TME while increasing in the peripheral blood after NAT. In vitro study confirmed their resistance to RT with further upregulated SIRPα expression and enhanced antigen presentation capability induced by RT. Moreover, these cells are involved in the superior tumor control by combination of RT and anti-SIRPα treatment. CONCLUSION SIRPα + CD209 + APCs play a pivotal role in CRC immune modulation and show potential for synergy with RT. These cells could be a biomarker for antigen-presenting capacity, and enhancing their APC function could potentially improve RT/PD1 effectiveness by combination with anti-SIRPα in CRC.
Collapse
Affiliation(s)
- Yida Li
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Radiation Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Weiqing Lu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Radiation Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Fan Xia
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Radiation Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Yun Deng
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Radiation Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Xin Jin
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Radiation Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Yan Xuan
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Radiation Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Yaqi Wang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Radiation Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Lijun Shen
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Radiation Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Juefeng Wan
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Radiation Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Hui Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Radiation Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Yaqi Li
- Department of Radiation Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Xinxiang Li
- Department of Radiation Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Lili Huang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Radiation Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China.
| | - Zhen Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Radiation Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China.
| |
Collapse
|
5
|
Zhang Y, Zhou W, Ma Z, Chen Z, Li N, Zhu X, Yao Y. Depressive symptoms and immune depletion in Chinese patients with advanced hepatocellular carcinoma: a multicentre study on their correlation. Gen Psychiatr 2025; 38:e101822. [PMID: 40093035 PMCID: PMC11906977 DOI: 10.1136/gpsych-2024-101822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 02/17/2025] [Indexed: 03/19/2025] Open
Affiliation(s)
- Yan Zhang
- Department of Infectious Disease, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Wei Zhou
- Department of Infectious Disease, Huai'an Hospital of Huai'an City, Huai'an, Jiangsu, China
| | - Zhiping Ma
- Department of Infectious Disease, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zutao Chen
- Department of Infectious Disease, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Naiping Li
- The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaomin Zhu
- Suzhou Psychiatric Hospital, Soochow University Affiliated Guangji Hospital, Suzhou, Jiangsu, China
| | - Yunhai Yao
- Department of Infectious Disease, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
6
|
Meyer SP, Bauer R, Brüne B, Schmid T. The role of type I interferon signaling in myeloid anti-tumor immunity. Front Immunol 2025; 16:1547466. [PMID: 40098954 PMCID: PMC11911529 DOI: 10.3389/fimmu.2025.1547466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/14/2025] [Indexed: 03/19/2025] Open
Abstract
Tumors often arise in chronically inflamed, and thus immunologically highly active niches. While immune cells are able to recognize and remove transformed cells, tumors eventually escape the control of the immune system by shaping their immediate microenvironment. In this context, macrophages are of major importance, as they initially exert anti-tumor functions before they adopt a tumor-associated phenotype that instead inhibits anti-tumor immune responses and even allows for sustaining a smoldering inflammatory, growth promoting tumor microenvironment (TME). Type I interferons (IFNs) are well established modulators of inflammatory reactions. While they have been shown to directly inhibit tumor growth, there is accumulating evidence that they also play an important role in altering immune cell functions within the TME. In the present review, we focus on the impact of type I IFNs on anti-tumor responses, driven by monocytes and macrophages. Specifically, we will provide an overview of tumor-intrinsic factors, which impinge on IFN-stimulated gene (ISG) expression, like the presence of nucleic acids, metabolites, or hypoxia. We will further summarize the current understanding of the consequences of altered IFN responses on macrophage phenotypes, i.e., differentiation, polarization, and functions. For the latter, we will focus on macrophage-mediated tumor cell killing and phagocytosis, as well as on how macrophages affect their environment by secreting cytokines and directly interacting with immune cells. Finally, we will discuss how type I IFN responses in macrophages might affect and should be considered for current and future tumor therapies.
Collapse
Affiliation(s)
- Sofie Patrizia Meyer
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Rebekka Bauer
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology, Frankfurt, Germany
| | - Tobias Schmid
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany
| |
Collapse
|
7
|
Khizar H, Ali K, Wang J. From silent partners to potential therapeutic targets: macrophages in colorectal cancer. Cancer Immunol Immunother 2025; 74:121. [PMID: 39998578 PMCID: PMC11861851 DOI: 10.1007/s00262-025-03965-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/30/2025] [Indexed: 02/27/2025]
Abstract
Cancer cells grow and survive in the tumor microenvironment, which is a complicated process. As a key part of how colorectal cancer (CRC) progresses, tumor-associated macrophages (TAMs) exhibit a double role. Through angiogenesis, this TAM can promote the growth of cancers. Although being able to modify and adjust immune cells is a great advantage, these cells can also exhibit anti-cancer properties including direct killing of cancer cells, presenting antigens, and aiding T cell-mediated responses. The delicate regulatory mechanisms between the immune system and tumors are composed of a complex network of pathways regulated by several factors including hypoxia, metabolic reprogramming, cytokine/chemokine signaling, and cell interactions. Decoding and figuring out these complex systems become significant in building targeted treatment programs. Targeting TAMs in CRC involves disrupting chemokine signaling or adhesion molecules, reprogramming them to an anti-tumor phenotype using TLR agonists, CD40 agonists, or metabolic modulation, and selectively removing TAM subsets that promote tumor growth. Multi-drug resistance, the absence of an accurate biomarker, and drug non-specificity are also major problems. Combining macrophage-targeted therapies with chemotherapy and immunotherapy may revolutionize treatment. Macrophage studies will advance with new technology and multi-omics methodologies to help us understand CRC and build specific and efficient treatments.
Collapse
Affiliation(s)
- Hayat Khizar
- Department of Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Kamran Ali
- Department of Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Jianwei Wang
- Department of Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China.
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, 2nd Affiliated Hospital, Zhejiang University School of Medicine, Jiefang Road 88th, Hangzhou, 310009, China.
| |
Collapse
|
8
|
Wang W, Lin F, Shi S, Yu Y, Lin M, Lian W, Chen B, Qi X. Investigating the Role of Quercetin, an Active Ingredient in Bazhen Decoction, in Targeting CXCL8 to Inhibit Macrophage M2 Polarization and Reshape the Immunological Microenvironment of Colorectal Cancer. Chem Biol Drug Des 2025; 105:e70047. [PMID: 39821540 DOI: 10.1111/cbdd.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/19/2024] [Accepted: 01/04/2025] [Indexed: 01/19/2025]
Abstract
Bazhen Decoction (Eight Treasures Decoction) has demonstrated efficacy in the treatment of colorectal cancer (CRC), yet the active ingredients in it and the mechanisms underlying their anti-cancer properties are not well understood. Through network pharmacology, the effective components of Bazhen Decoction against CRC and their corresponding key genes were delineated. Molecular docking was executed to identify the active component targeting the key gene CXCL8, which led to the discovery of Quercetin. The cellular thermal shift assay method was then used to verify the binding interaction. CRC cells were treated with incremental concentrations of Quercetin, cell viability was evaluated by the Cell Counting Kit-8 assay to calculate the IC50, and apoptosis rates were determined by flow cytometry. Expression of the apoptosis-related proteins Bcl-2 and Cleaved caspase-3 was measured using western blot. The impact of Quercetin on macrophage polarization was studied by co-culturing the treated CRC cells with macrophages, assessing M1 and M2 macrophage distribution via flow cytometry, and quantifying cytokine levels (IL-6, IL-10, IL-12, and CXCL8) with enzyme-linked immunosorbent assay (ELISA). The active ingredient Quercetin from Bazhen Decoction exhibited a targeted binding affinity with the key gene CXCL8, which enabled it to inhibit the proliferation of CRC cells and induce cell apoptosis. The overexpression of CXCL8 was associated with the promotion of CRC malignancy, yet the presence of Quercetin could lessen the impact of CXCL8 overexpression on CRC cells. Moreover, the treatment with Quercetin leads to a diminished abundance of M2 macrophages and an increase in the levels of cytokines IL-6 and IL-12, while reducing the levels of IL-10 and CXCL8, which indicates that Quercetin has an inhibitory effect on macrophage M2 polarization. Quercetin, the active component in Bazhen Decoction that is known for anti-CRC effects, targets and inhibits CXCL8 to impede the malignant behaviors and the M2 polarization of macrophages. Thus, Quercetin may be utilized as an immunomodulatory agent in CRC treatment.
Collapse
Affiliation(s)
- Wenwu Wang
- Department of Oncology, The Third Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Fangfeng Lin
- Department of Oncology, The Third Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Shuping Shi
- Department of Oncology, The Third Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yunqiu Yu
- Department of Oncology, The Third Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Mengyan Lin
- Department of Oncology, The Third Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Wenliang Lian
- Department of Oncology, The Third Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Biyin Chen
- Department of Oncology, The Third Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiaoyan Qi
- Department of Oncology, Zibo Central Hospital, Zibo, China
| |
Collapse
|
9
|
Ma Y, Qian X, Yu Q, Dong Y, Wang J, Liu H, Xiao H. Inosine Prevents Colorectal Cancer Progression by Inducing M1 Phenotypic Polarization of Macrophages. Molecules 2024; 30:123. [PMID: 39795180 PMCID: PMC11721193 DOI: 10.3390/molecules30010123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/21/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Inosine (IS) is a naturally occurring metabolite of adenosine with potent immunomodulatory effects. This study investigates the immunomodulatory effects of inosine, particularly its ability to inhibit the development of colorectal cancer (CRC) cells CT26 through modulation of macrophage phenotypes. Aside from the already reported effects of inosine on T cells, in this study, in vitro experiments revealed that inosine could modulate macrophage phenotype. The effects of inosine on the M1/M2 macrophage polarization were investigated at the cellular level. Its role in regulating CRC proliferation and migration was further examined. In addition, a CT26 tumor mouse model was established to assess the mechanism of action of inosine by tumor weight measurement, immunohistochemistry, and immunofluorescence. Inosine significantly increased M1 macrophage markers CD86 and iNOS and enhanced the anti-tumor activity of M1 macrophages, effectively inhibiting CRC progression and metastasis potential. In vivo, inosine had significant tumor inhibitory activity. It also significantly reduced the expression of Ki-67 and promoted the polarization of M1 macrophages.
Collapse
Affiliation(s)
| | | | | | | | | | - Heng Liu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, National-Local Joint Engineering Research Center of Entomoceutics, College of Pharmacy, Dali University, Dali 671000, China; (Y.M.); (X.Q.)
| | - Huai Xiao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, National-Local Joint Engineering Research Center of Entomoceutics, College of Pharmacy, Dali University, Dali 671000, China; (Y.M.); (X.Q.)
| |
Collapse
|
10
|
Su W, Ling Y, Yang X, Wu Y, Xing C. Tumor microenvironment remodeling after neoadjuvant chemoradiotherapy in local advanced rectal cancer revealed by single-cell RNA sequencing. J Transl Med 2024; 22:1037. [PMID: 39558398 PMCID: PMC11575152 DOI: 10.1186/s12967-024-05747-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/08/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND The use of neoadjuvant chemoradiotherapy (neoCRT) followed by surgery has markedly enhanced the quality of survival in patients suffering from local advanced rectal cancer (LARC). Enhancing this treatment requires a deep understanding of its underlying mechanism. The heterogeneous nature of the tumor microenvironment (TME) significantly impacts therapeutic responses, presenting complex therapeutic challenges. METHODS In this comprehensive study, we explored the intricate cellular and molecular shifts within the TME of LARC after neoCRT administration. Using single-cell transcriptomic analysis, we meticulously examined 32,417 cells sourced from six samples, each representing different tumor regression grades (TRG: 0 versus 2). This detailed analysis enabled us to characterize the various cell subpopulations, encompassing epithelial cells, lymphocytes, myeloid cells, endothelial cells, and fibroblasts. Additionally, we identified their marker genes for deconvolution calculation in the READ cohort of the TCGA project. And we obtain their marker genes for deconvolution calculation in the READ cohort of the TCGA project. RESULTS Through cluster analysis and pathway comparisons of malignant tumor cells, we discerned that samples with poor tumor regression exhibit enhanced metabolic versatility and adaptability, enabling them to counteract the impacts of both radiotherapy and chemotherapy. Interestingly, within the TRG2 cohort, we observed a predominant immunosuppressive state in the TME, characterized by the activation of CD4 + regulatory T cells, maintained CD8 + T cell functionality, and a heightened M1 to M2 macrophage ratio. Moreover, the differing outcomes of neoCRT were reflected in the varying interaction dynamics between macrophages (M1 and M2) and CD4+/CD8 + T cells. Furthermore, our data reveal that neoCRT intricately modulates fibroblasts and endothelial cells, primarily through the extracellular matrix remodeling pathway, which orchestrates tumor angiogenesis. All changes were validated through immunofluorescence staining on intraoperative samples before and after treatment. To summarize, our investigation presents a comprehensive exploration of the cellular and molecular metamorphoses within the TME post-neoCRT. CONCLUSIONS By unveiling the sophisticated interaction between the multifaceted cells within the TME and their respective reactions to neoCRT, we establish a robust platform for ensuing future investigations. This study paves the way for novel therapeutic strategies that leverage these insights to bolster the efficacy of neoCRT in managing LARC.
Collapse
Affiliation(s)
- Wenzhao Su
- Department of Gastroenterology, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, Sanxiang Road 1055, Suzhou, CN, 215000, China
| | - Yuhang Ling
- Huzhou Key Laboratory of Translational Medicine, First People's Hospital of Huzhou, Huzhou, Zhejiang Province, CN, 313000, China
| | - Xiaodong Yang
- Department of Gastroenterology, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, Sanxiang Road 1055, Suzhou, CN, 215000, China
| | - Yong Wu
- Department of Gastroenterology, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, Sanxiang Road 1055, Suzhou, CN, 215000, China.
| | - Chungen Xing
- Department of Gastroenterology, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, Sanxiang Road 1055, Suzhou, CN, 215000, China.
| |
Collapse
|
11
|
Yuan W, Zhang J, Chen H, Zhuang Y, Zhou H, Li W, Qiu W, Zhou H. Natural compounds modulate the mechanism of action of tumour-associated macrophages against colorectal cancer: a review. J Cancer Res Clin Oncol 2024; 150:502. [PMID: 39546016 PMCID: PMC11568041 DOI: 10.1007/s00432-024-06022-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024]
Abstract
Colorectal cancer (CRC) exhibits a substantial morbidity and mortality rate, with its aetiology and pathogenesis remain elusive. It holds significant importance within the tumour microenvironment (TME) and exerts a crucial regulatory influence on tumorigenesis, progression, and metastasis. TAMs possess the capability to foster CRC pathogenesis, proliferation, invasion, and metastasis, as well as angiogenesis, immune evasion, and tumour resistance. Furthermore, TAMs can mediate the prognosis of CRC. In this paper, we review the mechanisms by which natural compounds target TAMs to exert anti-CRC effects from the perspective of the promotional effects of TAMs on CRC, mainly regulating the polarization of TAMs, reducing the infiltration and recruitment of TAMs, enhancing the phagocytosis of macrophages, and regulating the signalling pathways and cytokines, and discuss the potential value and therapeutic strategies of natural compounds-targeting the TAMs pathway in CRC clinical treatment.
Collapse
Affiliation(s)
- Weichen Yuan
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiexiang Zhang
- Urology Centre, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Surgery of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haibin Chen
- Science and Technology Department, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yupei Zhuang
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongli Zhou
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenting Li
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Wenli Qiu
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Hongguang Zhou
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
12
|
Fan Q, Fu ZW, Xu M, Lv F, Shi JS, Zeng QQ, Xiong DH. Research progress of tumor-associated macrophages in immune checkpoint inhibitor tolerance in colorectal cancer. World J Gastrointest Oncol 2024; 16:4064-4079. [DOI: 10.4251/wjgo.v16.i10.4064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/03/2024] [Accepted: 08/16/2024] [Indexed: 09/26/2024] Open
Abstract
The relevant mechanism of tumor-associated macrophages (TAMs) in the treatment of colorectal cancer patients with immune checkpoint inhibitors (ICIs) is discussed, and the application prospects of TAMs in reversing the treatment tolerance of ICIs are discussed to provide a reference for related studies. As a class of drugs widely used in clinical tumor immunotherapy, ICIs can act on regulatory molecules on cells that play an inhibitory role-immune checkpoints-and kill tumors in the form of an immune response by activating a variety of immune cells in the immune system. The sensitivity of patients with different types of colorectal cancer to ICI treatment varies greatly. The phenotype and function of TAMs in the colorectal cancer microenvironment are closely related to the efficacy of ICIs. ICIs can regulate the phenotypic function of TAMs, and TAMs can also affect the tolerance of colorectal cancer to ICI therapy. TAMs play an important role in ICI resistance, and making full use of this target as a therapeutic strategy is expected to improve the immunotherapy efficacy and prognosis of patients with colorectal cancer.
Collapse
Affiliation(s)
- Qi Fan
- Intestinal Center, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Zheng-Wei Fu
- Intestinal Center, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Ming Xu
- Intestinal Center, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Feng Lv
- Intestinal Center, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Jia-Song Shi
- Intestinal Center, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Qi-Qi Zeng
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
| | - De-Hai Xiong
- Intestinal Center, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| |
Collapse
|
13
|
Dariya B, Girish BP, Merchant N, Srilatha M, Nagaraju GP. Resveratrol: biology, metabolism, and detrimental role on the tumor microenvironment of colorectal cancer. Nutr Rev 2024; 82:1420-1436. [PMID: 37862428 DOI: 10.1093/nutrit/nuad133] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023] Open
Abstract
A substantial increase in colorectal cancer (CRC)-associated fatalities can be attributed to tumor recurrence and multidrug resistance. Traditional treatment options, including radio- and chemotherapy, also exhibit adverse side effects. Ancient treatment strategies that include phytochemicals like resveratrol are now widely encouraged as an alternative therapeutic option. Resveratrol is the natural polyphenolic stilbene in vegetables and fruits like grapes and apples. It inhibits CRC progression via targeting dysregulated cancer-promoting pathways, including PI3K/Akt/Kras, targeting transcription factors like NF-κB and STAT3, and an immunosuppressive tumor microenvironment. In addition, combination therapies for cancer include resveratrol as an adjuvant to decrease multidrug resistance that develops in CRC cells. The current review discusses the biology of resveratrol and explores different mechanisms of action of resveratrol in inhibiting CRC progression. Further, the detrimental role of resveratrol on the immunosuppressive tumor microenvironment of CRC has been discussed. This review illustrates clinical trials on resveratrol in different cancers, including resveratrol analogs, and their efficiency in promoting CRC inhibition.
Collapse
Affiliation(s)
- Begum Dariya
- Center for Drug Design, University of Minnesota, Minneapolis, Minnesota, USA
| | - Bala Prabhakar Girish
- Nanotechnology Laboratory, Institute of Frontier Technology, Acharya N.G. Ranga Agricultural University, Tirupati, Andhra Pradesh, India
| | - Neha Merchant
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Mundla Srilatha
- Department of Biotechnology, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, Alabama, USA
| |
Collapse
|
14
|
Sun M, Bai J, Wang H, Li M, Zhou L, Li S. Unraveling the relationship between anoikis-related genes and cancer-associated fibroblasts in liver hepatocellular carcinoma. Heliyon 2024; 10:e35306. [PMID: 39165997 PMCID: PMC11334810 DOI: 10.1016/j.heliyon.2024.e35306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/22/2024] Open
Abstract
This study intended to determine the molecular subtypes of liver hepatocellular carcinoma (LIHC) on the strength of anoikis-related genes (ARGs) and to assess their prognostic value and prospective relationship with immune cell infiltration and cancer-associated fibroblasts (CAFs). Univariate Cox regression analysis yielded 66 prognosis-related ARGs and classified LIHC into two distinct subtypes, with subtype A demonstrating overexpression of most prognosis-related ARGs and a significant survival disadvantage. Furthermore, a reliable prediction model was developed using ARGs to evaluate the risk of LIHC patients. This model served as an independent prognostic indicator and a quantitative tool for clinical prognostic prediction. Additionally, subtype-specific differences in immune cell infiltration were observed, and the risk score was potentially linked to immune-related characteristics. Moreover, the study identified a significant association between CAF score and LIHC prognosis, with a low CAF score indicating a favorable patient prognosis. In conclusion, this study reveals the molecular mechanisms underlying the development and progression of LIHC and identifies potential therapeutic targets for the disease.
Collapse
Affiliation(s)
- Meng Sun
- Department of Interventional Vascular Surgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Jiangtao Bai
- Department of Interventional Vascular Surgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Haisong Wang
- Department of Interventional Vascular Surgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Mei Li
- Department of Interventional Vascular Surgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Long Zhou
- Department of Interventional Vascular Surgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Shanfeng Li
- Department of Interventional Vascular Surgery, Affiliated Hospital of Hebei University, Baoding, China
| |
Collapse
|
15
|
Hadad S, Khalaji A, Sarmadian AJ, Sarmadian PJ, Janagard EM, Baradaran B. Tumor-associated macrophages derived exosomes; from pathogenesis to therapeutic opportunities. Int Immunopharmacol 2024; 136:112406. [PMID: 38850795 DOI: 10.1016/j.intimp.2024.112406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/19/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
Tumor-associated macrophages (TAMs) exert profound influences on cancer progression, orchestrating a dynamic interplay within the tumor microenvironment. Recent attention has focused on the role of TAM-derived exosomes, small extracellular vesicles containing bioactive molecules, in mediating this intricate communication. This review comprehensively synthesizes current knowledge, emphasizing the diverse functions of TAM-derived exosomes across various cancer types. The review delves into the impact of TAM-derived exosomes on fundamental cancer hallmarks, elucidating their involvement in promoting cancer cell proliferation, migration, invasion, and apoptosis evasion. By dissecting the molecular cargo encapsulated within these exosomes, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and proteins, the review uncovers key regulatory mechanisms governing these effects. Noteworthy miRNAs, such as miR-155, miR-196a-5p, and miR-221-3p, are highlighted for their pivotal roles in mediating TAM-derived exosomal communication and influencing downstream targets. Moreover, the review explores the impact of TAM-derived exosomes on the immune microenvironment, particularly their ability to modulate immune cell function and foster immune evasion. The discussion encompasses the regulation of programmed cell death ligand 1 (PD-L1) expression and subsequent impairment of CD8 + T cell activity, unraveling the immunosuppressive effects of TAM-derived exosomes. With an eye toward clinical implications, the review underscores the potential of TAM-derived exosomes as diagnostic markers and therapeutic targets. Their involvement in cancer progression, metastasis, and therapy resistance positions TAM-derived exosomes as key players in reshaping treatment strategies. Finally, the review outlines future directions, proposing avenues for targeted therapies aimed at disrupting TAM-derived exosomal functions and redefining the tumor microenvironment.
Collapse
Affiliation(s)
- Sara Hadad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirreza Khalaji
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
16
|
He T, Hu C, Li S, Fan Y, Xie F, Sun X, Jiang Q, Chen W, Jia Y, Li W. The role of CD8 + T-cells in colorectal cancer immunotherapy. Heliyon 2024; 10:e33144. [PMID: 39005910 PMCID: PMC11239598 DOI: 10.1016/j.heliyon.2024.e33144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/16/2024] Open
Abstract
Immunotherapy has been an advanced and effective approach to treating various types of solid tumors in recent years, and the most successful strategy is immune checkpoint inhibitors (ICIs), which have shown beneficial effects in patients with colorectal cancer (CRC). Drug resistance to ICIs is usually associated with CD8+ T-cells targeting tumor antigens; thus, CD8+ T-cells play an important role in immunotherapy. Unfortunately, Under continuous antigen stimulation, tumor microenvironment(TME), hypoxia and other problems it leads to insufficient infiltration of CD8+ T-cells, low efficacy and mechanism exhaustion, which have become obstacles to immunotherapy. Thus, this article describes the relationship between CRC and the immune system, focuses on the process of CD8+ T-cells production, activation, transport, killing, and exhaustion, and expounds on related mechanisms leading to CD8+ T-cells exhaustion. Finally, this article summarizes the latest strategies and methods in recent years, focusing on improving the infiltration, efficacy, and exhaustion of CD8+ T-cells, which may help to overcome the barriers to immunotherapy.
Collapse
Affiliation(s)
- Tao He
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou City, Sichuan Province, China
| | - Chencheng Hu
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou City, Sichuan Province, China
| | - Shichao Li
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou City, Sichuan Province, China
| | - Yao Fan
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou City, Sichuan Province, China
| | - Fei Xie
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou City, Sichuan Province, China
| | - Xin Sun
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou City, Sichuan Province, China
| | - Qingfeng Jiang
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou City, Sichuan Province, China
| | - Weidong Chen
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou City, Sichuan Province, China
| | - Yingtian Jia
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou City, Sichuan Province, China
| | - Wusheng Li
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou City, Sichuan Province, China
| |
Collapse
|
17
|
Feng Y, Lu J, Jiang J, Wang M, Guo K, Lin S. Berberine: Potential preventive and therapeutic strategies for human colorectal cancer. Cell Biochem Funct 2024; 42:e4033. [PMID: 38742849 DOI: 10.1002/cbf.4033] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/28/2024] [Accepted: 04/28/2024] [Indexed: 05/16/2024]
Abstract
Colorectal cancer (CRC) is a common digestive tract tumor, with incidences continuing to rise. Although modern medicine has extended the survival time of CRC patients, its adverse effects and the financial burden cannot be ignored. CRC is a multi-step process and can be caused by the disturbance of gut microbiome and chronic inflammation's stimulation. Additionally, the presence of precancerous lesions is also a risk factor for CRC. Consequently, scientists are increasingly interested in identifying multi-target, safe, and economical herbal medicine and natural products. This paper summarizes berberine's (BBR) regulatory mechanisms in the occurrence and development of CRC. The findings indicate that BBR regulates gut microbiome homeostasis and controls mucosal inflammation to prevent CRC. In the CRC stage, BBR inhibits cell proliferation, invasion, and metastasis, blocks the cell cycle, induces cell apoptosis, regulates cell metabolism, inhibits angiogenesis, and enhances chemosensitivity. BBR plays a role in the overall management of CRC. Therefore, using BBR as an adjunct to CRC prevention and treatment could become a future trend in oncology.
Collapse
Affiliation(s)
- Yuqian Feng
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jiamin Lu
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jing Jiang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Menglei Wang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Kaibo Guo
- Department of Oncology, Hangzhou First People's Hospital, Hangzhou, Zhejiang, China
| | - Shengyou Lin
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| |
Collapse
|
18
|
Lee JW, Ahn H, Yoo ID, Hong SP, Baek MJ, Kang DH, Lee SM. Relationship of FDG PET/CT imaging features with tumor immune microenvironment and prognosis in colorectal cancer: a retrospective study. Cancer Imaging 2024; 24:53. [PMID: 38627864 PMCID: PMC11020988 DOI: 10.1186/s40644-024-00698-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Imaging features of colorectal cancers on 2-deoxy-2-[18F]fluoro-d-glucose (FDG) positron emission tomography/computed tomography (PET/CT) have been considered to be affected by tumor characteristics and tumor immune microenvironment. However, the relationship between PET/CT imaging features and immune reactions in tumor tissue has not yet been fully evaluated. This study investigated the association of FDG PET/CT imaging features in the tumor, bone marrow, and spleen with immunohistochemical results of cancer tissue and recurrence-free survival (RFS) in patients with colorectal cancer. METHODS A total of 119 patients with colorectal cancer who underwent FDG PET/CT for staging work-up and received curative surgical resection were retrospectively enrolled. From PET/CT images, 10 first-order imaging features of primary tumors, including intensity of FDG uptake, volumetric metabolic parameters, and metabolic heterogeneity parameters, as well as FDG uptake in the bone marrow and spleen were measured. The degrees of CD4+, CD8+, and CD163 + cell infiltration and interleukin-6 (IL-6) and matrix metalloproteinase-11 (MMP-11) expression were graded through immunohistochemical analysis of surgical specimens. The relationship between FDG PET/CT imaging features and immunohistochemical results was assessed, and prognostic significance of PET/CT imaging features in predicting RFS was evaluated. RESULTS Correlation analysis with immunohistochemistry findings showed that the degrees of CD4 + and CD163 + cell infiltration and IL-6 and MMP-11 expression were correlated with cancer imaging features on PET/CT. Patients with enhanced inflammatory response in cancer tissue demonstrated increased FDG uptake, volumetric metabolic parameters, and metabolic heterogeneity. FDG uptake in the bone marrow and spleen was positively correlated with the degree of CD163 + cell infiltration and IL-6 expression, respectively. In multivariate survival analysis, the coefficient of variation of FDG uptake in the tumor (p = 0.019; hazard ratio, 0.484 for 0.10 increase) and spleen-to-liver uptake ratio (p = 0.020; hazard ratio, 24.901 for 1.0 increase) were significant independent predictors of RFS. CONCLUSIONS The metabolic heterogeneity of tumors and FDG uptake in the spleen were correlated with tumor immune microenvironment and showed prognostic significance in predicting RFS in patients with colorectal cancer.
Collapse
Affiliation(s)
- Jeong Won Lee
- Department of Nuclear Medicine, Soonchunhyang University Cheonan Hospital, 31 Suncheonhyang 6-gil, Dongnam- gu, 31151, Cheonan, Korea
| | - Hyein Ahn
- Department of Pathology, CHA Gangnam Medical Center, CHA University School of Medicine, 569 Nonhyon-ro, Gangnam-gu, 06135, Seoul, Korea
| | - Ik Dong Yoo
- Department of Nuclear Medicine, Soonchunhyang University Cheonan Hospital, 31 Suncheonhyang 6-gil, Dongnam- gu, 31151, Cheonan, Korea
| | - Sun-Pyo Hong
- Department of Nuclear Medicine, Soonchunhyang University Cheonan Hospital, 31 Suncheonhyang 6-gil, Dongnam- gu, 31151, Cheonan, Korea
| | - Moo-Jun Baek
- Department of Surgery, College of Medicine, Soonchunhyang University Cheonan Hospital, 31 Suncheonhyang 6- gil, Dongnam-gu, 31151, Cheonan, Korea
| | - Dong Hyun Kang
- Department of Colorectal surgery, College of Medicine, Soonchunhyang University Cheonan Hospital, 31 Suncheonhyang 6-gil, Dongnam-gu, 31151, Cheonan, Korea
| | - Sang Mi Lee
- Department of Nuclear Medicine, Soonchunhyang University Cheonan Hospital, 31 Suncheonhyang 6-gil, Dongnam- gu, 31151, Cheonan, Korea.
| |
Collapse
|
19
|
Bahreyni A, Mohamud Y, Luo H. Oncolytic virus-based combination therapy in breast cancer. Cancer Lett 2024; 585:216634. [PMID: 38309616 DOI: 10.1016/j.canlet.2024.216634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/03/2023] [Accepted: 01/07/2024] [Indexed: 02/05/2024]
Abstract
Breast cancer continues to pose significant challenges in the field of oncology, necessitating innovative treatment approaches. Among these, oncolytic viruses have emerged as a promising frontier in the battle against various types of cancer, including breast cancer. These viruses, often genetically modified, have the unique ability to selectively infect and destroy cancer cells while leaving healthy cells unharmed. Their efficacy in tumor eradication is not only owing to direct cell lysis but also relies on their capacity to activate the immune system, thereby eliciting a potent and sustained antitumor response. While oncolytic viruses represent a significant advancement in cancer treatment, the complexity and adaptability inherent to cancer require a diverse array of therapies. The concept of combining oncolytic viruses with other treatment modalities, such as chemotherapy, immunotherapy, and targeted therapies, has received significant attention. This synergistic approach capitalizes on the strengths of each therapy, thus creating a comprehensive strategy to tackle the heterogeneous and evolving nature of breast cancer. The purpose of this review is to provide an in-depth discussion of preclinical and clinical viro-based combination therapy in the context of breast cancer.
Collapse
Affiliation(s)
- Amirhossein Bahreyni
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada; Department of Pathology and Laboratory of Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Yasir Mohamud
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada; Department of Pathology and Laboratory of Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Honglin Luo
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada; Department of Pathology and Laboratory of Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada.
| |
Collapse
|
20
|
Fan Z, Cui Y, Chen L, Liu P, Duan W. 23-Hydroxybetulinic acid attenuates 5-fluorouracil resistance of colorectal cancer by modulating M2 macrophage polarization via STAT6 signaling. Cancer Immunol Immunother 2024; 73:83. [PMID: 38554148 PMCID: PMC10981607 DOI: 10.1007/s00262-024-03662-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 02/23/2024] [Indexed: 04/01/2024]
Abstract
Macrophage polarization is closely associated with the inflammatory processes involved in the development and chemoresistance of colorectal cancer (CRC). M2 macrophages, the predominant subtype of tumor-associated macrophages (TAMs) in a wide variety of malignancies, have been demonstrated to promote the resistance of CRC to multiple chemotherapeutic drugs, such as 5-fluorouracil (5-FU). In our study, we investigated the potential of 23-Hydroxybetulinic Acid (23-HBA), a significant active component of Pulsatilla chinensis (P. chinensis), to inhibit the polarization of M2 macrophages induced by IL-4. Our results showed that 23-HBA reduced the expression of M2 specific marker CD206, while downregulating the mRNA levels of M2 related genes (CD206, Arg1, IL-10, and CCL2). Additionally, 23-HBA effectively attenuated the inhibitory effects of the conditioned medium from M2 macrophages on apoptosis in colorectal cancer SW480 cells. Mechanistically, 23-HBA prevented the phosphorylation and nuclear translocation of the STAT6 protein, resulting in the inhibition of IL-10 release in M2 macrophages. Moreover, it interfered with the activation of the IL-10/STAT3/Bcl-2 signaling pathway in SW480 cells, ultimately reducing M2 macrophage-induced resistance to 5-FU. Importantly, depleting STAT6 expression in macrophages abolished the suppressive effect of 23-HBA on M2 macrophage polarization, while also eliminating its ability to decrease M2 macrophage-induced 5-FU resistance in cancer cells. Furthermore, 23-HBA significantly diminished the proportion of M2 macrophages in the tumor tissues of colorectal cancer mice, simultaneously enhancing the anti-cancer efficacy of 5-FU. The findings presented in this study highlight the capacity of 23-HBA to inhibit M2 macrophage polarization, a process that contributes to reduced 5-FU resistance in colorectal cancer.
Collapse
Affiliation(s)
- Zeping Fan
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330006, Jiangxi, China
- National Pharmaceutical Engineering Center for Solid Preparation of Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, Jiangxi, China
| | - Yaru Cui
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330006, Jiangxi, China
- National Pharmaceutical Engineering Center for Solid Preparation of Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, Jiangxi, China
- Key Laboratory for Evaluation on Anti-Tumor Effect of Chinese Medicine by Strengthening Body Resistance to Eliminate Pathogenic Factors, Nanchang, 330006, Jiangxi, China
| | - Lanying Chen
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330006, Jiangxi, China.
- National Pharmaceutical Engineering Center for Solid Preparation of Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, Jiangxi, China.
- Key Laboratory for Evaluation on Anti-Tumor Effect of Chinese Medicine by Strengthening Body Resistance to Eliminate Pathogenic Factors, Nanchang, 330006, Jiangxi, China.
| | - Peng Liu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330006, Jiangxi, China
- National Pharmaceutical Engineering Center for Solid Preparation of Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, Jiangxi, China
| | - Wenbin Duan
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330006, Jiangxi, China
- National Pharmaceutical Engineering Center for Solid Preparation of Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, Jiangxi, China
- Key Laboratory for Evaluation on Anti-Tumor Effect of Chinese Medicine by Strengthening Body Resistance to Eliminate Pathogenic Factors, Nanchang, 330006, Jiangxi, China
| |
Collapse
|
21
|
Chang J, Feng Q, Mao Y, Zhang Z, Xu Y, Chen Y, Zheng P, Lin S, Shen F, Zhang Z, Zhang Z, He G, Xu J, Wei Y. Siglec9 + tumor-associated macrophages predict prognosis and therapeutic vulnerability in patients with colon cancer. Int Immunopharmacol 2024; 130:111771. [PMID: 38430807 DOI: 10.1016/j.intimp.2024.111771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/09/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Siglec9 has been identified as an immune checkpoint molecule on tumor-associated macrophages (TAMs). Nevertheless, the expression profile and clinical significance of Siglec9 + TAMs in colon cancer (CC) are still not fully understood. METHODS Two clinical cohorts from distinct medical centers were retrospectively enrolled. Immunohistochemistry and immunofluorescence were conducted to evaluate the infiltration of immune cells. Single-cell RNA sequencing and flow cytometry were utilized to identify the impact of Siglec9 + TAMs on the tumor immune environment, which was subsequently validated through bioinformatics analysis of the TCGA database. Prognosis and the benefit of adjuvant chemotherapy (ACT) were also evaluated using Cox regression analysis and the Kaplan-Meier method. RESULTS High infiltration of Siglec9 + TAMs was associated with worse prognosis and better benefit from 6-month ACT. Siglec9 + TAMs contributed to immunoevasion by promoting the infiltration of immunosuppressive cells and the dysfunction process of CD8 + T cells. Additionally, high infiltration of Siglec9 + TAMs was associated with the mesenchymal-featured subtype and overexpression of the VEGF signaling pathway, which was validated by the strongest communication between Siglec9 + TAMs and vascular endothelial cells. CONCLUSIONS Siglec9 + TAMs may serve as a biomarker for prognosis and response to ACT in CC. Furthermore, the immunoevasive contexture and angiogenesis stimulated by Siglec9 + TAMs suggest potential treatment combinations for CC patients.
Collapse
Affiliation(s)
- Jiang Chang
- Colorectal Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Department of General Surgery, Huadong Hospital, Fudan University, Shanghai, China
| | - Qingyang Feng
- Colorectal Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Engineering Research Center of Colorectal Cancer Minimally Invasive, Shanghai, China
| | - Yihao Mao
- Colorectal Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhiyuan Zhang
- Colorectal Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuqiu Xu
- Colorectal Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yijiao Chen
- Colorectal Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Peng Zheng
- Colorectal Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Songbin Lin
- General Surgery Department, Zhongshan Hospital, Fudan University (Xiamen Branch), Xiamen, Fujian Province, China
| | - Feifan Shen
- Colorectal Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhuojian Zhang
- Colorectal Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ziqi Zhang
- Colorectal Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guodong He
- Colorectal Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Engineering Research Center of Colorectal Cancer Minimally Invasive, Shanghai, China.
| | - Jianmin Xu
- Colorectal Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Engineering Research Center of Colorectal Cancer Minimally Invasive, Shanghai, China.
| | - Ye Wei
- Colorectal Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Engineering Research Center of Colorectal Cancer Minimally Invasive, Shanghai, China; Department of General Surgery, Huadong Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
22
|
Wang H, Wang X, Zhang X, Xu W. The promising role of tumor-associated macrophages in the treatment of cancer. Drug Resist Updat 2024; 73:101041. [PMID: 38198845 DOI: 10.1016/j.drup.2023.101041] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/16/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024]
Abstract
Macrophages are important components of the immune system. Mature macrophages can be recruited to tumor microenvironment that affect tumor cell proliferation, invasion and metastasis, extracellular matrix remodeling, immune suppression, as well as chemotherapy resistance. Classically activated type I macrophages (M1) exhibited marked tumor killing and phagocytosis. Therefore, using macrophages for adoptive cell therapy has attracted attention and become one of the most effective strategies for cancer treatment. Through cytokines and/or chemokines, macrophage can inhibit myeloid cells recruitment, and activate anti-tumor and immune killing functions. Applying macrophages for anti-tumor delivery is one of the most promising approaches for cancer therapy. This review article introduces the role of macrophages in tumor development and drug resistance, and the possible clinical application of targeting macrophages for overcoming drug resistance and enhancing cancer therapeutics, as well as its challenges.
Collapse
Affiliation(s)
- Hongbin Wang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, PR China; Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin Medical University, PR China; Department of Surgical Oncology, Harbin Medical University Cancer Hospital, PR China.
| | - Xueying Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, PR China; Otolaryngology Major Disease Research Key Laboratory of Hunan Province, PR China
| | - Xin Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, PR China; Otolaryngology Major Disease Research Key Laboratory of Hunan Province, PR China
| | - Wanhai Xu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, PR China; Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin Medical University, PR China; Department of Urology, Harbin Medical University Cancer Hospital, PR China.
| |
Collapse
|
23
|
Zhang J, Dong Y, Di S, Xie S, Fan B, Gong T. Tumor associated macrophages in esophageal squamous carcinoma: Promising therapeutic implications. Biomed Pharmacother 2023; 167:115610. [PMID: 37783153 DOI: 10.1016/j.biopha.2023.115610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/18/2023] [Accepted: 09/27/2023] [Indexed: 10/04/2023] Open
Abstract
Esophageal squamous carcinoma (ESCC) is a prevalent and highly lethal malignant tumor, with a five-year survival rate of approximately 20 %. Tumor-associated macrophages (TAMs) are the most prominent immune cells in the tumor microenvironment (TME), comprising over 50 % of the tumor volume. TAMs can be polarized into two distinct phenotypes, M1-type and M2-type, through interactions with cancer cells. M2-type TAMs are more abundant than M1-type TAMs in the TME, contributing to tumor progression, such as tumor cell survival and the construction of an immunosuppressive environment. This review focuses on the role of TAMs in ESCC, including their polarization, impact on tumor proliferation, angiogenesis, invasion, migration, therapy resistance, and immunosuppression. In addition, we discuss the potential of targeting TAMs for clinical therapy in ESCC. A thorough comprehension of the molecular biology about TAMs is essential for the development of innovative therapeutic strategies to treat ESCC.
Collapse
Affiliation(s)
- Jiale Zhang
- Department of Thoracic Surgery, the Sixth Medical Center of PLA General Hospital, Beijing, China; Department of Thoracic Surgery, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yanxin Dong
- Department of Thoracic Surgery, the Sixth Medical Center of PLA General Hospital, Beijing, China; Department of Thoracic Surgery, School of Medicine, South China University of Technology, Guangzhou, China
| | - Shouyin Di
- Department of Thoracic Surgery, the Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Shun Xie
- Department of Thoracic Surgery, the Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Boshi Fan
- Department of Thoracic Surgery, the Sixth Medical Center of PLA General Hospital, Beijing, China.
| | - Taiqian Gong
- Department of Thoracic Surgery, the Sixth Medical Center of PLA General Hospital, Beijing, China.
| |
Collapse
|
24
|
Song J, Xiao T, Li M, Jia Q. Tumor-associated macrophages: Potential therapeutic targets and diagnostic markers in cancer. Pathol Res Pract 2023; 249:154739. [PMID: 37544129 DOI: 10.1016/j.prp.2023.154739] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Macrophages are plastic and functionally diverse, present in all tissues, and play a key role in organisms from development, homeostasis and repair, to immune responses to pathogens. They are central to many disease states and have emerged as important therapeutic targets for many diseases. Tumor-associated macrophages (TAMs) are the most abundant immune cells in the tumor microenvironment (TME) and are key factors influencing cancer progression, metastasis and tumor recurrence. TAMs can be derived from different sources and exert different pro- or anti-tumor effects based on the type, stage and immune composition of the tumor. TAMs are highly heterogeneous and diverse, and have multiple functional phenotypes. There is still a great deal of controversy regarding the relationship between TAMs and prognosis of cancer patients. In this review, we summarize the characteristics of common markers of TAMs as well as explore the prognostic role of TAMs in different cancers including lung, breast, gastric, colorectal, esophageal and ovarian cancers.
Collapse
Affiliation(s)
- Junyang Song
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Tian Xiao
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Mingyang Li
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China.
| | - Qingge Jia
- Department of Reproductive Medicine, Xi'an International Medical Center Hospital, Northwest University, Xi'an, China.
| |
Collapse
|
25
|
Ottaiano A, Ianniello M, Santorsola M, Ruggiero R, Sirica R, Sabbatino F, Perri F, Cascella M, Di Marzo M, Berretta M, Caraglia M, Nasti G, Savarese G. From Chaos to Opportunity: Decoding Cancer Heterogeneity for Enhanced Treatment Strategies. BIOLOGY 2023; 12:1183. [PMID: 37759584 PMCID: PMC10525472 DOI: 10.3390/biology12091183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023]
Abstract
Cancer manifests as a multifaceted disease, characterized by aberrant cellular proliferation, survival, migration, and invasion. Tumors exhibit variances across diverse dimensions, encompassing genetic, epigenetic, and transcriptional realms. This heterogeneity poses significant challenges in prognosis and treatment, affording tumors advantages through an increased propensity to accumulate mutations linked to immune system evasion and drug resistance. In this review, we offer insights into tumor heterogeneity as a crucial characteristic of cancer, exploring the difficulties associated with measuring and quantifying such heterogeneity from clinical and biological perspectives. By emphasizing the critical nature of understanding tumor heterogeneity, this work contributes to raising awareness about the importance of developing effective cancer therapies that target this distinct and elusive trait of cancer.
Collapse
Affiliation(s)
- Alessandro Ottaiano
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy; (M.S.); (F.P.); (M.C.); (M.D.M.); (G.N.)
| | - Monica Ianniello
- AMES, Centro Polidiagnostico Strumentale srl, Via Padre Carmine Fico 24, 80013 Casalnuovo Di Napoli, Italy; (M.I.); (R.R.); (R.S.); (G.S.)
| | - Mariachiara Santorsola
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy; (M.S.); (F.P.); (M.C.); (M.D.M.); (G.N.)
| | - Raffaella Ruggiero
- AMES, Centro Polidiagnostico Strumentale srl, Via Padre Carmine Fico 24, 80013 Casalnuovo Di Napoli, Italy; (M.I.); (R.R.); (R.S.); (G.S.)
| | - Roberto Sirica
- AMES, Centro Polidiagnostico Strumentale srl, Via Padre Carmine Fico 24, 80013 Casalnuovo Di Napoli, Italy; (M.I.); (R.R.); (R.S.); (G.S.)
| | - Francesco Sabbatino
- Oncology Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy;
| | - Francesco Perri
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy; (M.S.); (F.P.); (M.C.); (M.D.M.); (G.N.)
| | - Marco Cascella
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy; (M.S.); (F.P.); (M.C.); (M.D.M.); (G.N.)
| | - Massimiliano Di Marzo
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy; (M.S.); (F.P.); (M.C.); (M.D.M.); (G.N.)
| | - Massimiliano Berretta
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy;
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Via Luigi De Crecchio 7, 80138 Naples, Italy;
| | - Guglielmo Nasti
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy; (M.S.); (F.P.); (M.C.); (M.D.M.); (G.N.)
| | - Giovanni Savarese
- AMES, Centro Polidiagnostico Strumentale srl, Via Padre Carmine Fico 24, 80013 Casalnuovo Di Napoli, Italy; (M.I.); (R.R.); (R.S.); (G.S.)
| |
Collapse
|
26
|
Shakhpazyan N, Mikhaleva L, Bedzhanyan A, Gioeva Z, Sadykhov N, Mikhalev A, Atiakshin D, Buchwalow I, Tiemann M, Orekhov A. Cellular and Molecular Mechanisms of the Tumor Stroma in Colorectal Cancer: Insights into Disease Progression and Therapeutic Targets. Biomedicines 2023; 11:2361. [PMID: 37760801 PMCID: PMC10525158 DOI: 10.3390/biomedicines11092361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/31/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Colorectal cancer (CRC) is a major health burden worldwide and is the third most common type of cancer. The early detection and diagnosis of CRC is critical to improve patient outcomes. This review explores the intricate interplay between the tumor microenvironment, stromal interactions, and the progression and metastasis of colorectal cancer. The review begins by assessing the gut microbiome's influence on CRC development, emphasizing its association with gut-associated lymphoid tissue (GALT). The role of the Wnt signaling pathway in CRC tumor stroma is scrutinized, elucidating its impact on disease progression. Tumor budding, its effect on tumor stroma, and the implications for patient prognosis are investigated. The review also identifies conserved oncogenic signatures (COS) within CRC stroma and explores their potential as therapeutic targets. Lastly, the seed and soil hypothesis is employed to contextualize metastasis, accentuating the significance of both tumor cells and the surrounding stroma in metastatic propensity. This review highlights the intricate interdependence between CRC cells and their microenvironment, providing valuable insights into prospective therapeutic approaches targeting tumor-stroma interactions.
Collapse
Affiliation(s)
- Nikolay Shakhpazyan
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (N.S.); (L.M.); (Z.G.); (N.S.); (A.O.)
| | - Liudmila Mikhaleva
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (N.S.); (L.M.); (Z.G.); (N.S.); (A.O.)
| | - Arkady Bedzhanyan
- Department of Abdominal Surgery and Oncology II (Coloproctology and Uro-Gynecology), Petrovsky National Research Center of Surgery, 119435 Moscow, Russia;
| | - Zarina Gioeva
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (N.S.); (L.M.); (Z.G.); (N.S.); (A.O.)
| | - Nikolay Sadykhov
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (N.S.); (L.M.); (Z.G.); (N.S.); (A.O.)
| | - Alexander Mikhalev
- Department of Hospital Surgery No. 2, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | - Dmitri Atiakshin
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples’ Friendship University of Russia, 117198 Moscow, Russia;
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, 394036 Voronezh, Russia
| | - Igor Buchwalow
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples’ Friendship University of Russia, 117198 Moscow, Russia;
- Institute for Hematopathology, 22547 Hamburg, Germany;
| | | | - Alexander Orekhov
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (N.S.); (L.M.); (Z.G.); (N.S.); (A.O.)
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
- Institute for Atherosclerosis Research, 121096 Moscow, Russia
| |
Collapse
|
27
|
Zhou H, Su D, Chen Y, Zhang Y, Huang P. KCND2: A prognostic biomarker and regulator of immune function in gastric cancer. Cancer Med 2023; 12:16279-16294. [PMID: 37347147 PMCID: PMC10469724 DOI: 10.1002/cam4.6236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/10/2023] [Accepted: 05/14/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND Gastric cancer is a highly heterogeneous disease, which makes it challenging to develop effective targeted therapies. Although the potassium voltage-gated channel subfamily D (KCND) channels, particularly KCND2 (also known as Kv4.2), have found evidence of involvement in the occurrence and development of various cancers, there are still some limitations in our understanding of KCND2's roles in gastric cancer. METHODS We analyzed the correlation between KCND2 expression and clinical features as well as immune infiltration using the Cancer Genome Atlas (TCGA) database. Functional assays of KCND2 were conducted using Cell counting Kit-8 (CCK8), clone formation assay and cell cycle analysis. Additionally, immunofluorescence, flow cytometry and quantitative real-time polymerase chain reaction (qRT-PCR) techniques were used to investigate tumor proliferation and immune cell infiltration at different levels of KCND2 expression in vivo. RESULTS KCND2 was markedly elevated in gastric cancer and its expression appeared to link to different grades, T stages, and N stages. In addition, KCND2 was an independent predictor of prognosis, and its elevated levels in TCGA database revealed a more unfavorable prognosis for patients with gastric cancer. KCND2 strengthened the viability at the cellular level by boosting the proliferation of gastric cancer cells and reducing their death rate. Additionally, it also highlights that KCND2 the abilities of proliferating of gastric cancer cells by stimulating NF-κB both in cell and animal levels. In addition, the findings provided proof that in animal levels, KCND2 might regulate the immune system by associating with promoting M2 macrophages, which are known to play critical roles in cancer progression. Mechanistically, KCND2 was found to lead to the infiltration of M2 macrophages through activation of NF-κB, ultimately promoting the advancement of gastric cancer. CONCLUSION Overall, these findings suggest that KCND2 is likely to be available as an underlying therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Hongying Zhou
- SuZhou Medical College of Soochow UniversitySuzhouJiangsu ProvinceChina
- Department of Medical Oncology, Cancer CenterZhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College)HangzhouZhejiangChina
| | - Dan Su
- Department of Clinical MedicineHangzhou Medical CollegeHangzhouZhejiangChina
| | - Yun Chen
- Department of Medical Oncology, Cancer CenterZhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College)HangzhouZhejiangChina
| | - Yiwen Zhang
- Department of Pharmacy, Center for Clinical Pharmacy, Cancer CenterZhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College)HangzhouZhejiangChina
| | - Ping Huang
- Department of Pharmacy, Center for Clinical Pharmacy, Cancer CenterZhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College)HangzhouZhejiangChina
| |
Collapse
|
28
|
Giacomelli M, Monti M, Pezzola DC, Lonardi S, Bugatti M, Missale F, Cioncada R, Melocchi L, Giustini V, Villanacci V, Baronchelli C, Manenti S, Imberti L, Giurisato E, Vermi W. Immuno-Contexture and Immune Checkpoint Molecule Expression in Mismatch Repair Proficient Colorectal Carcinoma. Cancers (Basel) 2023; 15:3097. [PMID: 37370706 DOI: 10.3390/cancers15123097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Colorectal carcinoma (CRC) represents a lethal disease with heterogeneous outcomes. Only patients with mismatch repair (MMR) deficient CRC showing microsatellite instability and hyper-mutated tumors can obtain clinical benefits from current immune checkpoint blockades; on the other hand, immune- or target-based therapeutic strategies are very limited for subjects with mismatch repair proficient CRC (CRCpMMR). Here, we report a comprehensive typing of immune infiltrating cells in CRCpMMR. We also tested the expression and interferon-γ-modulation of PD-L1/CD274. Relevant findings were subsequently validated by immunohistochemistry on fixed materials. CRCpMMR contain a significantly increased fraction of CD163+ macrophages (TAMs) expressing TREM2 and CD66+ neutrophils (TANs) together with decrease in CD4-CD8-CD3+ double negative T lymphocytes (DNTs); no differences were revealed by the analysis of conventional and plasmacytoid dendritic cell populations. A fraction of tumor-infiltrating T-cells displays an exhausted phenotype, co-expressing PD-1 and TIM-3. Remarkably, expression of PD-L1 on fresh tumor cells and TAMs was undetectable even after in vitro stimulation with interferon-γ. These findings confirm the immune suppressive microenvironment of CRCpMMR characterized by dense infiltration of TAMs, occurrence of TANs, lack of DNTs, T-cell exhaustion, and interferon-γ unresponsiveness by host and tumor cells. Appropriate bypass strategies should consider these combinations of immune escape mechanisms in CRCpMMR.
Collapse
Affiliation(s)
- Mauro Giacomelli
- Department of Pathology, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Matilde Monti
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Diego Cesare Pezzola
- Department of Surgery, Surgery Division II, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Silvia Lonardi
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Mattia Bugatti
- Department of Pathology, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Francesco Missale
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
- Department of Head & Neck Oncology & Surgery Otorhinolaryngology, Antoni Van Leeuwenhoek-Nederlands Kanker Instituut, 1066 CX Amsterdam, The Netherlands
| | - Rossella Cioncada
- Department of Pathology, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Laura Melocchi
- Department of Pathology, Fondazione Poliambulanza, 25124 Brescia, Italy
| | - Viviana Giustini
- CREA Laboratory, AIL Center for Hemato-Oncologic Research, Diagnostic Department, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Vincenzo Villanacci
- Department of Pathology, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Carla Baronchelli
- Department of Pathology, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Stefania Manenti
- Department of Pathology, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Luisa Imberti
- Section of Microbiology, University of Brescia, 25123 Brescia, Italy
| | - Emanuele Giurisato
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK
| | - William Vermi
- Department of Pathology, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
- Department of Pathology and Immunology, School of Medicine, Washington University, Saint Louis, MO 63130, USA
| |
Collapse
|
29
|
Zhang M, Li X, Zhang Q, Yang J, Liu G. Roles of macrophages on ulcerative colitis and colitis-associated colorectal cancer. Front Immunol 2023; 14:1103617. [PMID: 37006260 PMCID: PMC10062481 DOI: 10.3389/fimmu.2023.1103617] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Colitis-associated colorectal cancer is the most serious complication of ulcerative colitis. Long-term chronic inflammation increases the incidence of CAC in UC patients. Compared with sporadic colorectal cancer, CAC means multiple lesions, worse pathological type and worse prognosis. Macrophage is a kind of innate immune cell, which play an important role both in inflammatory response and tumor immunity. Macrophages are polarized into two phenotypes under different conditions: M1 and M2. In UC, enhanced macrophage infiltration produces a large number of inflammatory cytokines, which promote tumorigenesis of UC. M1 polarization has an anti-tumor effect after CAC formation, whereas M2 polarization promotes tumor growth. M2 polarization plays a tumor-promoting role. Some drugs have been shown to that prevent and treat CAC effectively by targeting macrophages.
Collapse
|