1
|
Yamagishi A, Yonemochi N, Kimura A, Takenoya F, Shioda S, Waddington JL, Ikeda H. AMP-activated protein kinase in the amygdala and hippocampus contributes to enhanced fear memory in diabetic mice. Br J Pharmacol 2024; 181:5028-5040. [PMID: 39295124 DOI: 10.1111/bph.17338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/01/2024] [Accepted: 07/23/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND AND PURPOSE Diabetic patients have an increased risk of psychiatric disorders. Because hyperglycaemia increases L-lactate in the brain and L-lactate inhibits AMP-activated protein kinase (AMPK), this study investigated the role of L-lactate and AMPK in strengthened fear memory, a model for human psychiatric disorders, in diabetic mice. EXPERIMENTAL APPROACH The diabetic model was mice injected with streptozotocin. Fear memory was measured using the conditioned fear test with low (0.45 mA) or high (0.50 mA) foot shock to cause low and high freezing, respectively. Protein levels of AMPK and phosphorylated AMPK (pAMPK) were measured by western blotting and immunohistochemistry. KEY RESULTS At 0.45 mA, the AMPK inhibitor dorsomorphin increased freezing, which was inhibited by the AMPK activator acadesine. In contrast, at 0.50 mA, acadesine decreased freezing, which was inhibited by dorsomorphin. In diabetic mice, pAMPK was decreased in the amygdala and hippocampus. Diabetic mice showed increased freezing at 0.45 mA, which was inhibited by acadesine. In the amygdala and hippocampus, L-lactate was increased in diabetic mice and injection of L-lactate into non-diabetic mice increased freezing at 0.45 mA. In addition, L-lactate decreased pAMPK in the hippocampus, but not the amygdala, and increase in freezing induced by L-lactate was inhibited by acadesine. Dorsomorphin-induced increase in freezing was inhibited by the AMPA receptor antagonist NBQX. CONCLUSIONS AND INTERPRETATION In diabetic mice, L-lactate is increased in the amygdala and hippocampus, possibly through hyperglycaemia, which strengthens fear memory through inhibition of AMPK and activation of glutamatergic function.
Collapse
Affiliation(s)
- Aimi Yamagishi
- Department of Pathophysiology and Therapeutics, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | - Naomi Yonemochi
- Department of Pathophysiology and Therapeutics, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | - Ai Kimura
- Global Research Center for Innovative Life Science, Peptide Drug Innovation, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | - Fumiko Takenoya
- Department of Sport Sciences, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | - Seiji Shioda
- Global Research Center for Innovative Life Science, Peptide Drug Innovation, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | - John L Waddington
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Hiroko Ikeda
- Department of Pathophysiology and Therapeutics, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| |
Collapse
|
2
|
Parate SS, Upadhyay SS, S A, Karthikkeyan G, Pervaje R, Abhinand CS, Modi PK, Prasad TSK. Comparative Metabolomics and Network Pharmacology Analysis Reveal Shared Neuroprotective Mechanisms of Bacopa monnieri (L.) Wettst and Centella asiatica (L.) Urb. Mol Neurobiol 2024; 61:10956-10978. [PMID: 38814535 DOI: 10.1007/s12035-024-04223-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 05/03/2024] [Indexed: 05/31/2024]
Abstract
Bacopa monnieri (L.) Wettst and Centella asiatica (L.) Urb., two nootropics, are recognized in Indian Ayurvedic texts. Studies have attempted to understand their action as memory enhancers and neuroprotectants, but many molecular aspects remain unknown. We propose that Bacopa monnieri (L.) Wettst and Centella asiatica (L.) Urb. share common neuroprotective mechanisms. Mass spectrometry-based untargeted metabolomics and network pharmacology approach were used to identify potential protein targets for the metabolites from each extract. Phytochemical analyses and cell culture validation studies were also used to assess apoptosis and ROS activity using aqueous extracts prepared from both herbal powders. Further, docking studies were also performed using the LibDock protocol. Untargeted metabolomics and network pharmacology approach unveiled 2751 shared metabolites and 3439 and 2928 non-redundant metabolites from Bacopa monnieri and Centella asiatica extracts, respectively, suggesting a potential common neuroprotective mechanism among these extracts. Protein-target prediction highlighted 92.4% similarity among the proteins interacting with metabolites for these extracts. Among them, kinases mapped to MAPK, mTOR, and PI3K-AKT signaling pathways represented a predominant population. Our results highlight a significant similarity in the metabolome of Bacopa monnieri (L.) Wettst and Centella asiatica (L.) Urb., and their potential protein targets may be attributed to their common neuroprotective functions.
Collapse
Affiliation(s)
- Sakshi Sanjay Parate
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Shubham Sukerndeo Upadhyay
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Amrutha S
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Gayathree Karthikkeyan
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | | | - Chandran S Abhinand
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Prashant Kumar Modi
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India.
| | | |
Collapse
|
3
|
Li L, Sun J, Chen F, Xiong L, She L, Hao T, Zeng Y, Li L, Wang W, Zhao X, Liang G. Pedunculoside alleviates cognitive deficits and neuronal cell apoptosis by activating the AMPK signaling cascade. Chin Med 2024; 19:163. [PMID: 39574131 PMCID: PMC11583384 DOI: 10.1186/s13020-024-01033-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/07/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Mitochondrial dysfunction emerges as an early pathological hallmark of Alzheimer's disease (AD). The reduction in mitochondrial membrane potential and the elevation of reactive oxygen species (ROS) production are pivotal in the initiation of neuronal cell apoptosis. Pedunculoside(Ped), a novel triterpene saponin derived from the dried barks of Ilex rotunda Thunb, exhibits a potent anti-inflammatory effect. In the course of drug screening, we discovered that Ped offers significant protection against apoptosis induced by Aβ1-42. Nevertheless, the role and mechanism of Ped in AD are yet to be elucidated. METHODS Oxidative stress was evaluated by measuring mitochondrial membrane potential and intracellular ROS production. The expression of proteins associated with apoptosis was determined using western blot analysis and flow cytometry. In vivo, the pathological characteristics of AD were investigated through Western blot and tissue immunofluorescence techniques. Cognitive function was assessed using the Morris Water Maze and Novel Object Recognition tests. RESULTS We demonstrated that Ped decreased apoptosis in PC12 cells, reduced the generation of intracellular ROS, and restored mitochondrial membrane potential. Mechanistically, we found that the protective effect of Ped against Aβ-induced neurotoxicity was associated with activation of the AMPK/GSK-3β/Nrf2 signaling pathway. In vivo, Ped alleviated memory deficits and inhibited neuronal apoptosis, inflammation, and oxidative stress in the hippocampus of 3 × Tg AD mice, along with the activation of the AMPK signaling pathway. CONCLUSION The findings indicate that Ped exerts its neuroprotective effects against oxidative stress and apoptosis through the AMPK signaling cascade. The results demonstrate that Ped is a potential candidate for the treatment of AD.
Collapse
Affiliation(s)
- Liwei Li
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Jinfeng Sun
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin, 133002, People's Republic of China
| | - Fan Chen
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Li Xiong
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Lingyu She
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin, 133002, People's Republic of China
| | - Tang Hao
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Yuqing Zeng
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Luyao Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, 325035, Zhejiang, China
| | - Wei Wang
- Affiliated Yongkang First People's Hospital, Hangzhou Medical College, Yongkang, 321399, Zhejiang, China
| | - Xia Zhao
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 311399, Zhejiang, China.
| | - Guang Liang
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 311399, Zhejiang, China.
| |
Collapse
|
4
|
Gilbert KF, Amontree M, Deasy S, Ma J, Conant K. Pramipexole, a D3 receptor agonist, increases cortical gamma power and biochemical correlates of cortical excitation; implications for mood disorders. Eur J Neurosci 2024; 60:6490-6508. [PMID: 39410873 DOI: 10.1111/ejn.16570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024]
Abstract
Major depressive disorder (MDD) has been associated with deficits in working memory as well as underlying gamma oscillation power. Consistent with this, overall reductions in cortical excitation have also been described with MDD. In previous work, we have demonstrated that the monoamine reuptake inhibitor venlafaxine increases gamma oscillation power in ex vivo hippocampal slices and that this is associated with concomitant increases in pyramidal arbour and reduced levels of plasticity-restricting perineuronal nets (PNNs). In the present study, we have examined the effects of chronic treatment with pramipexole (PPX), a D3 dopamine receptor agonist, for its effects on gamma oscillation power as measured by in vivo electroencephalography (EEG) recordings in female BALB/c and C57Bl6 mice. We observe a modest but significant increase in 20-50 Hz gamma power with PPX in both strains. Additionally, biochemical analysis of prefrontal cortex lysates from PPX-treated BALB/c mice shows a number of changes that could contribute to, or follow from, increased pyramidal excitability and/or gamma power. PPX-associated changes include reduced levels of specific PNN components as well as tissue inhibitor of matrix metalloproteases-1 (TIMP-1), which inhibits long-term potentiation of synaptic transmission. Consistent with its effects on gamma power, PNN proteins and TIMP-1, chronic PPX treatment also improves working memory and reduces anhedonia. Together these results add to an emerging literature linking extracellular matrix and/or gamma oscillation power to both mood and cognition.
Collapse
Affiliation(s)
- Karli F Gilbert
- Interdisciplinary Program in Neuroscience, Georgetown University School of Medicine (GUMC), Washington, D.C., USA
| | - Matthew Amontree
- Interdisciplinary Program in Neuroscience, Georgetown University School of Medicine (GUMC), Washington, D.C., USA
| | | | - Junfeng Ma
- Department of Oncology, GUMC, Washington, D.C., USA
| | - Katherine Conant
- Interdisciplinary Program in Neuroscience, Georgetown University School of Medicine (GUMC), Washington, D.C., USA
- Department of Neuroscience, GUMC, Washington, D.C., USA
| |
Collapse
|
5
|
Lee CT, Bell M, Bonilla-Quintana M, Rangamani P. Biophysical Modeling of Synaptic Plasticity. Annu Rev Biophys 2024; 53:397-426. [PMID: 38382115 DOI: 10.1146/annurev-biophys-072123-124954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Dendritic spines are small, bulbous compartments that function as postsynaptic sites and undergo intense biochemical and biophysical activity. The role of the myriad signaling pathways that are implicated in synaptic plasticity is well studied. A recent abundance of quantitative experimental data has made the events associated with synaptic plasticity amenable to quantitative biophysical modeling. Spines are also fascinating biophysical computational units because spine geometry, signal transduction, and mechanics work in a complex feedback loop to tune synaptic plasticity. In this sense, ideas from modeling cell motility can inspire us to develop multiscale approaches for predictive modeling of synaptic plasticity. In this article, we review the key steps in postsynaptic plasticity with a specific focus on the impact of spine geometry on signaling, cytoskeleton rearrangement, and membrane mechanics. We summarize the main experimental observations and highlight how theory and computation can aid our understanding of these complex processes.
Collapse
Affiliation(s)
- Christopher T Lee
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, USA;
| | - Miriam Bell
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, USA;
| | - Mayte Bonilla-Quintana
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, USA;
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, USA;
| |
Collapse
|
6
|
Zheng Y, Zhang X, Zhang R, Wang Z, Gan J, Gao Q, Yang L, Xu P, Jiang X. Inflammatory signaling pathways in the treatment of Alzheimer's disease with inhibitors, natural products and metabolites (Review). Int J Mol Med 2023; 52:111. [PMID: 37800614 PMCID: PMC10558228 DOI: 10.3892/ijmm.2023.5314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/11/2023] [Indexed: 10/07/2023] Open
Abstract
The intricate nature of Alzheimer's disease (AD) pathogenesis poses a persistent obstacle to drug development. In recent times, neuroinflammation has emerged as a crucial pathogenic mechanism of AD, and the targeting of inflammation has become a viable approach for the prevention and management of AD. The present study conducted a comprehensive review of the literature between October 2012 and October 2022, identifying a total of 96 references, encompassing 91 distinct pharmaceuticals that have been investigated for their potential impact on AD by inhibiting neuroinflammation. Research has shown that pharmaceuticals have the potential to ameliorate AD by reducing neuroinflammation mainly through regulating inflammatory signaling pathways such as NF‑κB, MAPK, NLRP3, PPARs, STAT3, CREB, PI3K/Akt, Nrf2 and their respective signaling pathways. Among them, tanshinone IIA has been extensively studied for its anti‑inflammatory effects, which have shown significant pharmacological properties and can be applied clinically. Thus, it may hold promise as an effective drug for the treatment of AD. The present review elucidated the inflammatory signaling pathways of pharmaceuticals that have been investigated for their therapeutic efficacy in AD and elucidates their underlying mechanisms. This underscores the auspicious potential of pharmaceuticals in ameliorating AD by impeding neuroinflammation.
Collapse
Affiliation(s)
| | | | - Ruifeng Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Ziyu Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Jiali Gan
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Qing Gao
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Lin Yang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Pengjuan Xu
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Xijuan Jiang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| |
Collapse
|
7
|
Kaiser J, Nay K, Horne CR, McAloon LM, Fuller OK, Muller AG, Whyte DG, Means AR, Walder K, Berk M, Hannan AJ, Murphy JM, Febbraio MA, Gundlach AL, Scott JW. CaMKK2 as an emerging treatment target for bipolar disorder. Mol Psychiatry 2023; 28:4500-4511. [PMID: 37730845 PMCID: PMC10914626 DOI: 10.1038/s41380-023-02260-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 09/22/2023]
Abstract
Current pharmacological treatments for bipolar disorder are inadequate and based on serendipitously discovered drugs often with limited efficacy, burdensome side-effects, and unclear mechanisms of action. Advances in drug development for the treatment of bipolar disorder remain incremental and have come largely from repurposing drugs used for other psychiatric conditions, a strategy that has failed to find truly revolutionary therapies, as it does not target the mood instability that characterises the condition. The lack of therapeutic innovation in the bipolar disorder field is largely due to a poor understanding of the underlying disease mechanisms and the consequent absence of validated drug targets. A compelling new treatment target is the Ca2+-calmodulin dependent protein kinase kinase-2 (CaMKK2) enzyme. CaMKK2 is highly enriched in brain neurons and regulates energy metabolism and neuronal processes that underpin higher order functions such as long-term memory, mood, and other affective functions. Loss-of-function polymorphisms and a rare missense mutation in human CAMKK2 are associated with bipolar disorder, and genetic deletion of Camkk2 in mice causes bipolar-like behaviours similar to those in patients. Furthermore, these behaviours are ameliorated by lithium, which increases CaMKK2 activity. In this review, we discuss multiple convergent lines of evidence that support targeting of CaMKK2 as a new treatment strategy for bipolar disorder.
Collapse
Affiliation(s)
- Jacqueline Kaiser
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, 3052, Australia
- St Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia
- School of Behavioural and Health Sciences, Australian Catholic University, Fitzroy, VIC, 3065, Australia
| | - Kevin Nay
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, 3052, Australia
| | - Christopher R Horne
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Luke M McAloon
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, 3052, Australia
- St Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia
- School of Behavioural and Health Sciences, Australian Catholic University, Fitzroy, VIC, 3065, Australia
| | - Oliver K Fuller
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, 3052, Australia
| | - Abbey G Muller
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, 3052, Australia
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, 3052, Australia
| | - Douglas G Whyte
- School of Behavioural and Health Sciences, Australian Catholic University, Fitzroy, VIC, 3065, Australia
| | - Anthony R Means
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ken Walder
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, 3220, Australia
| | - Michael Berk
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, 3220, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, 3052, Australia
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Anthony J Hannan
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - James M Murphy
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, 3052, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Mark A Febbraio
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, 3052, Australia
| | - Andrew L Gundlach
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, 3052, Australia
- St Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - John W Scott
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, 3052, Australia.
- St Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia.
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
8
|
Leung A, Rangamani P. Computational modeling of AMPK and mTOR crosstalk in glutamatergic synapse calcium signaling. NPJ Syst Biol Appl 2023; 9:34. [PMID: 37460570 DOI: 10.1038/s41540-023-00295-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/29/2023] [Indexed: 07/20/2023] Open
Abstract
Neuronal energy consumption is vital for information processing and memory formation in synapses. The brain consists of just 2% of the human body's mass, but consumes almost 20% of the body's energy budget. Most of this energy is attributed to active transport in ion signaling, with calcium being the canonical second messenger of synaptic transmission. Here, we develop a computational model of synaptic signaling resulting in the activation of two protein kinases critical in metabolic regulation and cell fate, AMP-Activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) and investigate the effect of glutamate stimulus frequency on their dynamics. Our model predicts that frequencies of glutamate stimulus over 10 Hz perturb AMPK and mTOR oscillations at higher magnitudes by up to 36% and change the area under curve (AUC) by 5%. This dynamic difference in AMPK and mTOR activation trajectories potentially differentiates high frequency stimulus bursts from basal neuronal signaling leading to a downstream change in synaptic plasticity. Further, we also investigate the crosstalk between insulin receptor and calcium signaling on AMPK and mTOR activation and predict that the pathways demonstrate multistability dependent on strength of insulin signaling and metabolic consumption rate. Our predictions have implications for improving our understanding of neuronal metabolism, synaptic pruning, and synaptic plasticity.
Collapse
Affiliation(s)
- A Leung
- Chemical Engineering Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - P Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
9
|
Li S, Sheng ZH. Oligodendrocyte-derived transcellular signaling regulates axonal energy metabolism. Curr Opin Neurobiol 2023; 80:102722. [PMID: 37028201 PMCID: PMC10225329 DOI: 10.1016/j.conb.2023.102722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 04/08/2023]
Abstract
The unique morphology and functionality of central nervous system (CNS) neurons necessitate specialized mechanisms to maintain energy metabolism throughout long axons and extensive terminals. Oligodendrocytes (OLs) enwrap CNS axons with myelin sheaths in a multilamellar fashion. Apart from their well-established function in action potential propagation, OLs also provide intercellular metabolic support to axons by transferring energy metabolites and delivering exosomes consisting of proteins, lipids, and RNAs. OL-derived metabolic support is crucial for the maintenance of axonal integrity; its dysfunction has emerged as an important player in neurological disorders that are associated with axonal energy deficits and degeneration. In this review, we discuss recent advances in how these transcellular signaling pathways maintain axonal energy metabolism in health and neurological disorders.
Collapse
Affiliation(s)
- Sunan Li
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA. https://twitter.com/@sunan_li
| | - Zu-Hang Sheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA.
| |
Collapse
|
10
|
Reddy I, Yadav Y, Dey CS. Cellular and Molecular Regulation of Exercise-A Neuronal Perspective. Cell Mol Neurobiol 2023; 43:1551-1571. [PMID: 35986789 PMCID: PMC11412429 DOI: 10.1007/s10571-022-01272-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022]
Abstract
The beneficial effects of exercise on the proper functioning of the body have been firmly established. Multi-systemic metabolic regulation of exercise is the consequence of multitudinous changes that occur at the cellular level. The exercise responsome comprises all molecular entities including exerkines, miRNA species, growth factors, signaling proteins that are elevated and activated by physical exercise. Exerkines are secretory molecules released by organs such as skeletal muscle, adipose tissue, liver, and gut as a function of acute/chronic exercise. Exerkines such as FNDC5/irisin, Cathepsin B, Adiponectin, and IL-6 circulate through the bloodstream, cross the blood-brain barrier, and modulate the expression of important signaling molecules such as AMPK, SIRT1, PGC1α, BDNF, IGF-1, and VEGF which further contribute to improved energy metabolism, glucose homeostasis, insulin sensitivity, neurogenesis, synaptic plasticity, and overall well-being of the body and brain. These molecules are also responsible for neuroprotective adaptations that exercise confers on the brain and potentially ameliorate neurodegeneration. This review aims to detail important cellular and molecular species that directly or indirectly mediate exercise-induced benefits in the body, with an emphasis on the central nervous system.
Collapse
Affiliation(s)
- Ishitha Reddy
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Yamini Yadav
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Chinmoy Sankar Dey
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India.
| |
Collapse
|
11
|
Huang KH, Tsai YF, Lee CB, Gau SY, Tsai TH, Chung NJ, Lee CY. The Correlation between Metformin Use and Incident Dementia in Patients with New-Onset Diabetes Mellitus: A Population-Based Study. J Pers Med 2023; 13:jpm13050738. [PMID: 37240908 DOI: 10.3390/jpm13050738] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
The evidence of metformin's effect on dementia is conflicting. This study investigates the association between metformin use and the risk of dementia among patients with diabetes mellitus (DM). This study included patients with new-onset DM between 2002 and 2013. We divided the patients into patients who used metformin and patients who did not. Two models were used to assess metformin use: the cumulative defined daily dose (cDDD) of metformin use and the intensity of metformin use. This study with 3-year and 5-year follow-ups investigated the risk of dementia among patients with DM who used metformin. At the 3-year follow-up, patients who received cDDD < 300 had an odds ratio (OR) of developing dementia of 0.92 (95% confidence interval [CI] = 0.89-0.96); patients who used metformin at intensities <10 and 10-25 DDD/month had ORs of 0.92 (95% CI: 0.87-0.97) and 0.92 (95% CI: 0.85-1.00), respectively. Metformin use at cDDD 300-500 (OR = 0.80, 95% CI = 0.56-1.15) or >500 (OR = 1.48, 95% CI = 0.48-4.60) or at an intensity >25 DDD/month (OR = 0.84, 95% CI = 0.60-1.18) were not associated with an incident of dementia. There were similar results at the 5-year follow-up. Patients with a low intensity of metformin use had a lower risk of dementia. However, higher doses of metformin with higher intensity exhibited no protective role in dementia. Prospective clinical trials are warranted to evaluate the actual underlying mechanisms between metformin dosage and the risk of dementia.
Collapse
Affiliation(s)
- Kuang-Hua Huang
- Department of Health Services Administration, China Medical University, Taichung 406040, Taiwan
| | - Ya-Fang Tsai
- Department of Health Policy and Management, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Chiachi Bonnie Lee
- Department of Health Services Administration, China Medical University, Taichung 406040, Taiwan
| | - Shuo-Yan Gau
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Tung-Han Tsai
- Department of Health Services Administration, China Medical University, Taichung 406040, Taiwan
| | - Ning-Jen Chung
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Chien-Ying Lee
- Department of Pharmacology, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| |
Collapse
|
12
|
Panes J, Nguyen TKO, Gao H, Christensen TA, Stojakovic A, Trushin S, Salisbury JL, Fuentealba J, Trushina E. Partial Inhibition of Complex I Restores Mitochondrial Morphology and Mitochondria-ER Communication in Hippocampus of APP/PS1 Mice. Cells 2023; 12:1111. [PMID: 37190020 PMCID: PMC10137328 DOI: 10.3390/cells12081111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 05/17/2023] Open
Abstract
Alzheimer's disease (AD) has no cure. Earlier, we showed that partial inhibition of mitochondrial complex I (MCI) with the small molecule CP2 induces an adaptive stress response, activating multiple neuroprotective mechanisms. Chronic treatment reduced inflammation, Aβ and pTau accumulation, improved synaptic and mitochondrial functions, and blocked neurodegeneration in symptomatic APP/PS1 mice, a translational model of AD. Here, using serial block-face scanning electron microscopy (SBFSEM) and three-dimensional (3D) EM reconstructions combined with Western blot analysis and next-generation RNA sequencing, we demonstrate that CP2 treatment also restores mitochondrial morphology and mitochondria-endoplasmic reticulum (ER) communication, reducing ER and unfolded protein response (UPR) stress in the APP/PS1 mouse brain. Using 3D EM volume reconstructions, we show that in the hippocampus of APP/PS1 mice, dendritic mitochondria primarily exist as mitochondria-on-a-string (MOAS). Compared to other morphological phenotypes, MOAS have extensive interaction with the ER membranes, forming multiple mitochondria-ER contact sites (MERCS) known to facilitate abnormal lipid and calcium homeostasis, accumulation of Aβ and pTau, abnormal mitochondrial dynamics, and apoptosis. CP2 treatment reduced MOAS formation, consistent with improved energy homeostasis in the brain, with concomitant reductions in MERCS, ER/UPR stress, and improved lipid homeostasis. These data provide novel information on the MOAS-ER interaction in AD and additional support for the further development of partial MCI inhibitors as a disease-modifying strategy for AD.
Collapse
Affiliation(s)
- Jessica Panes
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology, Universidad de Concepcion, Concepción 4030000, Chile
| | | | - Huanyao Gao
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Trace A. Christensen
- Microscopy and Cell Analysis Core Facility, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Sergey Trushin
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jeffrey L. Salisbury
- Microscopy and Cell Analysis Core Facility, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jorge Fuentealba
- Department of Physiology, Universidad de Concepcion, Concepción 4030000, Chile
- Centro de Investigaciones Avanzadas en Biomedicina (CIAB-UdeC), Universidad de Concepción, Concepción 4030000, Chile
| | - Eugenia Trushina
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
13
|
Loss of brain energy metabolism control as a driver for memory impairment upon insulin resistance. Biochem Soc Trans 2023; 51:287-301. [PMID: 36606696 DOI: 10.1042/bst20220789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023]
Abstract
The pathophysiological mechanisms intersecting metabolic and neurodegenerative disorders include insulin resistance, which has a strong involvement of environmental factors. Besides central regulation of whole-body homeostasis, insulin in the central nervous system controls molecular signalling that is critical for cognitive performance, namely signalling through pathways that modulate synaptic transmission and plasticity, and metabolism in neurons and astrocytes. This review provides an overview on how insulin signalling in the brain might regulate brain energy metabolism, and further identified molecular mechanisms by which brain insulin resistance might impair synaptic fuelling, and lead to cognitive deterioration.
Collapse
|
14
|
Tena-Morraja P, Riqué-Pujol G, Müller-Sánchez C, Reina M, Martínez-Estrada OM, Soriano FX. Synaptic Activity Regulates Mitochondrial Iron Metabolism to Enhance Neuronal Bioenergetics. Int J Mol Sci 2023; 24:ijms24020922. [PMID: 36674431 PMCID: PMC9864932 DOI: 10.3390/ijms24020922] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
Synaptic activity is the main energy-consuming process in the central nervous system. We are beginning to understand how energy is supplied and used during synaptic activity by neurons. However, the long-term metabolic adaptations associated with a previous episode of synaptic activity are not well understood. Herein, we show that an episode of synaptic activity increases mitochondrial bioenergetics beyond the duration of the synaptic activity by transcriptionally inducing the expression of iron metabolism genes with the consequent enhancement of cellular and mitochondrial iron uptake. Iron is a necessary component of the electron transport chain complexes, and its chelation or knockdown of mitochondrial iron transporter Mfrn1 blocks the activity-mediated bioenergetics boost. We found that Mfrn1 expression is regulated by the well-known regulator of synaptic plasticity CREB, suggesting the coordinated expression of synaptic plasticity programs with those required to meet the associated increase in energetic demands.
Collapse
Affiliation(s)
- Paula Tena-Morraja
- Celltec-UB, Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Institut de Neurociències (UBNeuro), Universitat de Barcelona (UB), 08035 Barcelona, Spain
| | - Guillem Riqué-Pujol
- Celltec-UB, Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Institut de Neurociències (UBNeuro), Universitat de Barcelona (UB), 08035 Barcelona, Spain
| | - Claudia Müller-Sánchez
- Celltec-UB, Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Manuel Reina
- Celltec-UB, Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Ofelia M. Martínez-Estrada
- Celltec-UB, Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Institut de Biomedicina (IBUB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Francesc X. Soriano
- Celltec-UB, Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Institut de Neurociències (UBNeuro), Universitat de Barcelona (UB), 08035 Barcelona, Spain
- Correspondence:
| |
Collapse
|
15
|
Tourmente M, Sansegundo E, Rial E, Roldan ERS. Bioenergetic changes in response to sperm capacitation and two-way metabolic compensation in a new murine model. Cell Mol Life Sci 2023; 80:11. [PMID: 36534181 PMCID: PMC9763147 DOI: 10.1007/s00018-022-04652-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/29/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022]
Abstract
The acquisition of fertilizing ability by mammalian spermatozoa, known as "capacitation," includes processes that depend on particular metabolic pathways. This has led to the hypothesis that ATP demands might differ between capacitated and non-capacitated cells. Mouse sperm can produce ATP via OXPHOS and aerobic glycolysis, an advantageous characteristic considering that these cells have to function in the complex and variable environment of the female reproductive tract. Nonetheless, despite evidence showing that both metabolic pathways play a role in events associated with mouse sperm capacitation, there is contradictory evidence regarding changes promoted by capacitation in this species. In addition, the vast majority of studies regarding murine sperm metabolism use Mus musculus laboratory strains as model, thus neglecting the wide diversity of sperm traits of other species of Mus. Focus on closely related species with distinct evolutionary histories, which may be the result of different selective pressures, could shed light on diversity of metabolic processes. Here, we analyzed variations in sperm bioenergetics associated with capacitation in spermatozoa of the steppe mouse, Mus spicilegus, a species with high sperm performance. Furthermore, we compared sperm metabolic traits of this species with similar traits previously characterized in M. musculus. We found that the metabolism of M. spicilegus sperm responded to capacitation in a manner similar to that of M. musculus sperm. However, M. spicilegus sperm showed distinct metabolic features, including the ability to perform cross-pathway metabolic compensation in response to either respiratory or glycolytic inhibition, thus revealing a delicate fine-tuning of its metabolic capacities.
Collapse
Affiliation(s)
- Maximiliano Tourmente
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain.
- Centro de Biología Celular y Molecular, Facultad de Ciencias Exactas, Físicas y Naturales (FCEFyN - UNC), Universidad Nacional de Córdoba, Córdoba, Argentina.
- Instituto de Investigaciones Biológicas y Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (IIByT - CONICET, UNC), Córdoba, Argentina.
| | - Ester Sansegundo
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Eduardo Rial
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Eduardo R S Roldan
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain.
| |
Collapse
|
16
|
Murtaj V, Penati S, Belloli S, Foti M, Coliva A, Papagna A, Gotti C, Toninelli E, Chiaffarelli R, Mantero S, Pucci S, Matteoli M, Malosio ML, Moresco RM. Brain sex-dependent alterations after prolonged high fat diet exposure in mice. Commun Biol 2022; 5:1276. [PMID: 36414721 PMCID: PMC9681749 DOI: 10.1038/s42003-022-04214-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 11/02/2022] [Indexed: 11/23/2022] Open
Abstract
We examined effects of exposing female and male mice for 33 weeks to 45% or 60% high fat diet (HFD). Males fed with either diet were more vulnerable than females, displaying higher and faster increase in body weight and more elevated cholesterol and liver enzymes levels. Higher glucose metabolism was revealed by PET in the olfactory bulbs of both sexes. However, males also displayed altered anterior cortex and cerebellum metabolism, accompanied by a more prominent brain inflammation relative to females. Although both sexes displayed reduced transcripts of neuronal and synaptic genes in anterior cortex, only males had decreased protein levels of AMPA and NMDA receptors. Oppositely, to anterior cortex, cerebellum of HFD-exposed mice displayed hypometabolism and transcriptional up-regulation of neuronal and synaptic genes. These results indicate that male brain is more susceptible to metabolic changes induced by HFD and that the anterior cortex versus cerebellum display inverse susceptibility to HFD.
Collapse
Affiliation(s)
- Valentina Murtaj
- grid.7563.70000 0001 2174 1754PhD Program in Neuroscience, University of Milano-Bicocca, Monza (MB), Italy ,grid.18887.3e0000000417581884Department of Nuclear Medicine, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy ,grid.18887.3e0000000417581884Present Address: Neuroimmunology Unit, Institute of Experimental Neurology, IRCCS San Raffaele Hospital and Vita Salute San Raffaele University, Milan, Italy, 20132 Milan, Italy
| | - Silvia Penati
- Institute of Neuroscience, National Research Council of Italy (CNR) c/o Humanitas Mirasole S.p.A, Via Manzoni 56, 20089 Rozzano (MI), Italy ,grid.417728.f0000 0004 1756 8807Laboratory of Pharmacology and Brain Pathology, Neuro Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano (MI), Italy ,grid.4367.60000 0001 2355 7002Present Address: Department of Pathology and Immunology, Washington Univerisity School of Medicine, St. Louis, MO 63110 USA
| | - Sara Belloli
- grid.18887.3e0000000417581884Department of Nuclear Medicine, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy ,grid.428490.30000 0004 1789 9809Institute of Molecular Bioimaging and Physiology, CNR, 20090 Segrate (MI), Italy
| | - Maria Foti
- grid.7563.70000 0001 2174 1754Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza (MB), Italy
| | - Angela Coliva
- grid.18887.3e0000000417581884Department of Nuclear Medicine, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Angela Papagna
- grid.7563.70000 0001 2174 1754Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza (MB), Italy
| | - Cecilia Gotti
- grid.5326.20000 0001 1940 4177Institute of Neuroscience, National Research Council of Italy (CNR) c/o Università di Milano-Bicocca, Via R. Follereau 3, 20854 Vedano al Lambro (MB), Italy
| | - Elisa Toninelli
- grid.18887.3e0000000417581884Department of Nuclear Medicine, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Remy Chiaffarelli
- grid.18887.3e0000000417581884Department of Nuclear Medicine, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy ,grid.7563.70000 0001 2174 1754Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza (MB), Italy ,grid.10392.390000 0001 2190 1447Present Address: Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - Stefano Mantero
- grid.5326.20000 0001 1940 4177Institute for Genetic and Biomedical Research, National Research Council of Italy (CNR) c/o Humanitas Mirasole S.p.A, Via Manzoni 56, 20089 Rozzano (MI), Italy ,grid.5326.20000 0001 1940 4177Present Address: DCSR, National Research Council of Italy (CNR), Via A. Corti 12, 20133 Milan, Italy
| | - Susanna Pucci
- grid.5326.20000 0001 1940 4177Institute of Neuroscience, National Research Council of Italy (CNR) c/o Università di Milano-Bicocca, Via R. Follereau 3, 20854 Vedano al Lambro (MB), Italy
| | - Michela Matteoli
- Institute of Neuroscience, National Research Council of Italy (CNR) c/o Humanitas Mirasole S.p.A, Via Manzoni 56, 20089 Rozzano (MI), Italy ,grid.417728.f0000 0004 1756 8807Laboratory of Pharmacology and Brain Pathology, Neuro Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano (MI), Italy
| | - Maria Luisa Malosio
- Institute of Neuroscience, National Research Council of Italy (CNR) c/o Humanitas Mirasole S.p.A, Via Manzoni 56, 20089 Rozzano (MI), Italy ,grid.417728.f0000 0004 1756 8807Laboratory of Pharmacology and Brain Pathology, Neuro Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano (MI), Italy
| | - Rosa Maria Moresco
- grid.18887.3e0000000417581884Department of Nuclear Medicine, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy ,grid.428490.30000 0004 1789 9809Institute of Molecular Bioimaging and Physiology, CNR, 20090 Segrate (MI), Italy ,grid.7563.70000 0001 2174 1754Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza (MB), Italy
| |
Collapse
|
17
|
Hees JT, Harbauer AB. Metabolic Regulation of Mitochondrial Protein Biogenesis from a Neuronal Perspective. Biomolecules 2022; 12:1595. [PMID: 36358945 PMCID: PMC9687362 DOI: 10.3390/biom12111595] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 09/29/2023] Open
Abstract
Neurons critically depend on mitochondria for ATP production and Ca2+ buffering. They are highly compartmentalized cells and therefore a finely tuned mitochondrial network constantly adapting to the local requirements is necessary. For neuronal maintenance, old or damaged mitochondria need to be degraded, while the functional mitochondrial pool needs to be replenished with freshly synthesized components. Mitochondrial biogenesis is known to be primarily regulated via the PGC-1α-NRF1/2-TFAM pathway at the transcriptional level. However, while transcriptional regulation of mitochondrial genes can change the global mitochondrial content in neurons, it does not explain how a morphologically complex cell such as a neuron adapts to local differences in mitochondrial demand. In this review, we discuss regulatory mechanisms controlling mitochondrial biogenesis thereby making a case for differential regulation at the transcriptional and translational level. In neurons, additional regulation can occur due to the axonal localization of mRNAs encoding mitochondrial proteins. Hitchhiking of mRNAs on organelles including mitochondria as well as contact site formation between mitochondria and endolysosomes are required for local mitochondrial biogenesis in axons linking defects in any of these organelles to the mitochondrial dysfunction seen in various neurological disorders.
Collapse
Affiliation(s)
- Jara Tabitha Hees
- TUM Medical Graduate Center, Technical University of Munich, 81675 Munich, Germany
- Max Planck Institute for Biological Intelligence, in Foundation, 82152 Planegg-Martinsried, Germany
| | - Angelika Bettina Harbauer
- Max Planck Institute for Biological Intelligence, in Foundation, 82152 Planegg-Martinsried, Germany
- Institute of Neuronal Cell Biology, Technical University of Munich, 80802 Munich, Germany
- Munich Cluster for Systems Neurology, 81377 Munich, Germany
| |
Collapse
|
18
|
Machado AG, Silva Silveira AC, Peres AM, de Sá Couto-Pereira N, Trindade AA, Lúcio JA, Lampert C, August PM, Schild Lobo PM, Jorge RO, Matté C, Moreira JC, Dalmaz C, Krolow R. Olive oil-rich diet during pregnancy/lactation attenuated the early life stress effects on depressive-like behavior and altered energy metabolism in the dorsal hippocampus in a sex-specific manner. Nutr Neurosci 2022; 25:2033-2050. [PMID: 34030611 DOI: 10.1080/1028415x.2021.1929766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
METHODS and results: Pregnant Wistar rats received diets enriched in soybean oil (SO) or OO during gestation/lactation. At birth, litters were subdivided into MS or intact groups. After weaning, the pups received standard chow until adulthood, when they were subjected to behavioral tasks. At PND90 biochemical analyses were performed. Maternal OO-enriched diet prevented MS-induced higher weight gain, and decreased MS-induced anhedonic behavior. Increased latency to immobility and shorter immobility time were observed in the maternal OO-enrich diet groups. Maternal OO-enrich diet groups also presented reduced reactive oxygen species and increased activity of antioxidant enzymes. In addition, this diet showed sex-specific effects, by decreasing mitochondrial mass and potential, reducing AMPK activation, and increasing synaptophysin and PSD-95 immunocontent in the DH of male rats. Early stress, on the other hand, decreased production of free radicals and decreased levels of SIRT1 in the DH of male rats. In females, OO prevented the anhedonic behavior induced by MS. CONCLUSIONS Maternal OO-enrich diet attenuated MS-induced depressive behavior in both sexes. In addition, it affected energy metabolism in the DH of male rats, favored synaptic plasticity, and contributed to reducing pathophysiological conditions.
Collapse
Affiliation(s)
| | | | - Ariadni Mesquita Peres
- PPG Ciências Biológicas: Bioquímica/Departamento de Bioquímica, ICBS, UFRGS, Porto Alegre, Brazil
| | | | | | - Joelma Alves Lúcio
- PPG Ciências Biológicas: Bioquímica/Departamento de Bioquímica, ICBS, UFRGS, Porto Alegre, Brazil
| | - Carine Lampert
- PPG Ciências Biológicas: Bioquímica/Departamento de Bioquímica, ICBS, UFRGS, Porto Alegre, Brazil
| | - Pauline Maciel August
- PPG Ciências Biológicas: Bioquímica/Departamento de Bioquímica, ICBS, UFRGS, Porto Alegre, Brazil
| | | | | | - Cristiane Matté
- PPG Ciências Biológicas: Bioquímica/Departamento de Bioquímica, ICBS, UFRGS, Porto Alegre, Brazil
| | - José Cláudio Moreira
- PPG Ciências Biológicas: Bioquímica/Departamento de Bioquímica, ICBS, UFRGS, Porto Alegre, Brazil
| | - Carla Dalmaz
- PPG Ciências Biológicas: Bioquímica/Departamento de Bioquímica, ICBS, UFRGS, Porto Alegre, Brazil.,PPG Neurociências, ICBS, UFRGS, Porto Alegre, Brazil
| | - Rachel Krolow
- PPG Ciências Biológicas: Bioquímica/Departamento de Bioquímica, ICBS, UFRGS, Porto Alegre, Brazil
| |
Collapse
|
19
|
Harnessing conserved signaling and metabolic pathways to enhance the maturation of functional engineered tissues. NPJ Regen Med 2022; 7:44. [PMID: 36057642 PMCID: PMC9440900 DOI: 10.1038/s41536-022-00246-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/05/2022] [Indexed: 11/08/2022] Open
Abstract
The development of induced-pluripotent stem cell (iPSC)-derived cell types offers promise for basic science, drug testing, disease modeling, personalized medicine, and translatable cell therapies across many tissue types. However, in practice many iPSC-derived cells have presented as immature in physiological function, and despite efforts to recapitulate adult maturity, most have yet to meet the necessary benchmarks for the intended tissues. Here, we summarize the available state of knowledge surrounding the physiological mechanisms underlying cell maturation in several key tissues. Common signaling consolidators, as well as potential synergies between critical signaling pathways are explored. Finally, current practices in physiologically relevant tissue engineering and experimental design are critically examined, with the goal of integrating greater decision paradigms and frameworks towards achieving efficient maturation strategies, which in turn may produce higher-valued iPSC-derived tissues.
Collapse
|
20
|
Tourmente M, Sansegundo E, Rial E, Roldan ERS. Capacitation promotes a shift in energy metabolism in murine sperm. Front Cell Dev Biol 2022; 10:950979. [PMID: 36081906 PMCID: PMC9445201 DOI: 10.3389/fcell.2022.950979] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
In mammals, sperm acquire fertilization ability after a series of physiological and biochemical changes, collectively known as capacitation, that occur inside the female reproductive tract. In addition to other requirements, sperm bioenergetic metabolism has been identified as a fundamental component in the acquisition of capacitation. Mammalian sperm produce ATP through two main metabolic processes, oxidative phosphorylation (OXPHOS) and aerobic glycolysis that are localized to two different flagellar compartments, the midpiece, and the principal piece, respectively. In mouse sperm, the occurrence of many events associated with capacitation relies on the activity of these two energy-producing pathways, leading to the hypothesis that some of these events may impose changes in sperm energetic demands. In the present study, we used extracellular flux analysis to evaluate changes in glycolytic and respiratory parameters of murine sperm that occur as a consequence of capacitation. Furthermore, we examined whether these variations affect sperm ATP sustainability. Our results show that capacitation promotes a shift in the usage ratio of the two main metabolic pathways, from oxidative to glycolytic. However, this metabolic rewiring does not seem to affect the rate at which the sperm consume ATP. We conclude that the probable function of the metabolic switch is to increase the ATP supply in the distal flagellar regions, thus sustaining the energetic demands that arise from capacitation.
Collapse
Affiliation(s)
- Maximiliano Tourmente
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
- Centro de Biología Celular y Molecular, Facultad de Ciencias Exactas, Físicas y Naturales (FCEFyN—UNC), Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Investigaciones Biológicas y Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (IIByT—CONICET, UNC), Córdoba, Argentina
- *Correspondence: Maximiliano Tourmente, ; Eduardo R. S. Roldan,
| | - Ester Sansegundo
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Eduardo Rial
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Eduardo R. S. Roldan
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
- *Correspondence: Maximiliano Tourmente, ; Eduardo R. S. Roldan,
| |
Collapse
|
21
|
Lee A, Kondapalli C, Virga DM, Lewis TL, Koo SY, Ashok A, Mairet-Coello G, Herzig S, Foretz M, Viollet B, Shaw R, Sproul A, Polleux F. Aβ42 oligomers trigger synaptic loss through CAMKK2-AMPK-dependent effectors coordinating mitochondrial fission and mitophagy. Nat Commun 2022; 13:4444. [PMID: 35915085 PMCID: PMC9343354 DOI: 10.1038/s41467-022-32130-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/18/2022] [Indexed: 12/23/2022] Open
Abstract
During the early stages of Alzheimer's disease (AD) in both mouse models and human patients, soluble forms of Amyloid-β 1-42 oligomers (Aβ42o) trigger loss of excitatory synapses (synaptotoxicity) in cortical and hippocampal pyramidal neurons (PNs) prior to the formation of insoluble amyloid plaques. In a transgenic AD mouse model, we observed a spatially restricted structural remodeling of mitochondria in the apical tufts of CA1 PNs dendrites corresponding to the dendritic domain where the earliest synaptic loss is detected in vivo. We also observed AMPK over-activation as well as increased fragmentation and loss of mitochondrial biomass in Ngn2-induced neurons derived from a new APPSwe/Swe knockin human ES cell line. We demonstrate that Aβ42o-dependent over-activation of the CAMKK2-AMPK kinase dyad mediates synaptic loss through coordinated phosphorylation of MFF-dependent mitochondrial fission and ULK2-dependent mitophagy. Our results uncover a unifying stress-response pathway causally linking Aβ42o-dependent structural remodeling of dendritic mitochondria to synaptic loss.
Collapse
Affiliation(s)
- Annie Lee
- Department of Neuroscience, Columbia University Medical Center New York, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, New York, NY, USA
- The Integrated Graduate Program in Cellular, Molecular, and Biomedical Studies, Columbia University Medical Center, New York, NY, USA
| | - Chandana Kondapalli
- Department of Neuroscience, Columbia University Medical Center New York, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, New York, NY, USA
| | - Daniel M Virga
- Department of Neuroscience, Columbia University Medical Center New York, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, New York, NY, USA
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Tommy L Lewis
- Department of Neuroscience, Columbia University Medical Center New York, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, New York, NY, USA
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - So Yeon Koo
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
| | - Archana Ashok
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
| | | | - Sebastien Herzig
- Molecular & Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Marc Foretz
- Institut Cochin, Université de Paris, CNRS, INSERM, Paris, France
| | - Benoit Viollet
- Institut Cochin, Université de Paris, CNRS, INSERM, Paris, France
| | - Reuben Shaw
- Molecular & Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Andrew Sproul
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Franck Polleux
- Department of Neuroscience, Columbia University Medical Center New York, New York, NY, USA.
- Mortimer B. Zuckerman Mind Brain Behavior Institute, New York, NY, USA.
- Kavli Institute for Brain Sciences, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
22
|
Yang AJT, Mohammad A, Tsiani E, Necakov A, MacPherson REK. Chronic AMPK Activation Reduces the Expression and Alters Distribution of Synaptic Proteins in Neuronal SH-SY5Y Cells. Cells 2022; 11:cells11152354. [PMID: 35954198 PMCID: PMC9367429 DOI: 10.3390/cells11152354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Neuronal growth and synaptic function are dependent on precise protein production and turnover at the synapse. AMPK-activated protein kinase (AMPK) represents a metabolic node involved in energy sensing and in regulating synaptic protein homeostasis. However, there is ambiguity surrounding the role of AMPK in regulating neuronal growth and health. This study examined the effect of chronic AMPK activation on markers of synaptic function and growth. Retinoic-acid-differentiated SH-SY5Y human neuroblastoma cells were treated with A-769662 (100 nM) or Compound C (30 nM) for 1, 3, or 5 days before AMPK, mTORC1, and markers for synapse function were examined. Cell morphology, neuronal marker content, and location were quantified after 5 days of treatment. AMPK phosphorylation was maintained throughout all 5 days of treatment with A-769662 and resulted in chronic mTORC1 inhibition. Lower total, soma, and neuritic neuronal marker contents were observed following 5 d of AMPK activation. Neurite protein abundance and distribution was lower following 5 days of A-769662 treatment. Our data suggest that chronic AMPK activation impacts synaptic protein content and reduces neurite protein abundance and distribution. These results highlight a distinct role that metabolism plays on markers of synapse health and function.
Collapse
Affiliation(s)
- Alex J. T. Yang
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; (A.J.T.Y.); (A.M.); (E.T.)
| | - Ahmad Mohammad
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; (A.J.T.Y.); (A.M.); (E.T.)
| | - Evangelia Tsiani
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; (A.J.T.Y.); (A.M.); (E.T.)
| | - Aleksandar Necakov
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada;
- Centre for Neuroscience, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Rebecca E. K. MacPherson
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; (A.J.T.Y.); (A.M.); (E.T.)
- Centre for Neuroscience, Brock University, St. Catharines, ON L2S 3A1, Canada
- Correspondence:
| |
Collapse
|
23
|
Cheng XT, Huang N, Sheng ZH. Programming axonal mitochondrial maintenance and bioenergetics in neurodegeneration and regeneration. Neuron 2022; 110:1899-1923. [PMID: 35429433 PMCID: PMC9233091 DOI: 10.1016/j.neuron.2022.03.015] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/04/2022] [Accepted: 03/10/2022] [Indexed: 12/11/2022]
Abstract
Mitochondria generate ATP essential for neuronal growth, function, and regeneration. Due to their polarized structures, neurons face exceptional challenges to deliver mitochondria to and maintain energy homeostasis throughout long axons and terminal branches where energy is in high demand. Chronic mitochondrial dysfunction accompanied by bioenergetic failure is a pathological hallmark of major neurodegenerative diseases. Brain injury triggers acute mitochondrial damage and a local energy crisis that accelerates neuron death. Thus, mitochondrial maintenance defects and axonal energy deficits emerge as central problems in neurodegenerative disorders and brain injury. Recent studies have started to uncover the intrinsic mechanisms that neurons adopt to maintain (or reprogram) axonal mitochondrial density and integrity, and their bioenergetic capacity, upon sensing energy stress. In this review, we discuss recent advances in how neurons maintain a healthy pool of axonal mitochondria, as well as potential therapeutic strategies that target bioenergetic restoration to power neuronal survival, function, and regeneration.
Collapse
Affiliation(s)
- Xiu-Tang Cheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA
| | - Ning Huang
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA
| | - Zu-Hang Sheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA.
| |
Collapse
|
24
|
Vora M, Mondal A, Jia D, Gaddipati P, Akel M, Gilleran J, Roberge J, Rongo C, Langenfeld J. Bone morphogenetic protein signaling regulation of AMPK and PI3K in lung cancer cells and C. elegans. Cell Biosci 2022; 12:76. [PMID: 35641992 PMCID: PMC9153151 DOI: 10.1186/s13578-022-00817-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 05/17/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Bone morphogenetic protein (BMP) is a phylogenetically conserved signaling pathway required for development that is aberrantly expressed in several age-related diseases including cancer, Alzheimer's disease, obesity, and cardiovascular disease. Aberrant BMP signaling in mice leads to obesity, suggesting it may alter normal metabolism. The role of BMP signaling regulating cancer metabolism is not known. METHODS To examine BMP regulation of metabolism, C. elegans harboring BMP gain-of-function (gof) and loss-of-function (lof) mutations were examined for changes in activity of catabolic and anabolic metabolism utilizing Western blot analysis and fluorescent reporters. AMP activated kinase (AMPK) gof and lof mutants were used to examine AMPK regulation of BMP signaling. H1299 (LKB1 wild-type), A549 (LKB1 lof), and A549-LKB1 (LKB1 restored) lung cancer cell lines were used to study BMP regulation of catabolic and anabolic metabolism. Studies were done using recombinant BMP ligands to activate BMP signaling, and BMP receptor specific inhibitors and siRNA to inhibit signaling. RESULTS BMP signaling in both C. elegans and cancer cells is responsive to nutrient conditions. In both C. elegans and lung cancer cell lines BMP suppressed AMPK, the master regulator of catabolism, while activating PI3K, a regulator of anabolism. In lung cancer cells, inhibition of BMP signaling by siRNA or small molecules increased AMPK activity, and this increase was mediated by activation of LKB1. BMP2 ligand suppressed AMPK activation during starvation. BMP2 ligand decreased expression of TCA cycle intermediates and non-essential amino acids in H1299 cells. Furthermore, we show that BMP activation of PI3K is mediated through BMP type II receptor. We also observed feedback signaling, as AMPK suppressed BMP signaling, whereas PI3K increased BMP signaling. CONCLUSION These studies show that BMP signaling suppresses catabolic metabolism and stimulates anabolic metabolism. We identified feedback mechanisms where catabolic induced signaling mediated by AMPK negatively regulates BMP signaling, whereas anabolic signaling produces a positive feedback regulation of BMP signing through Akt. These mechanisms were conserved in both lung cancer cells and C. elegans. These studies suggest that aberrant BMP signaling causes dysregulation of metabolism that is a potential mechanism by which BMP promotes survival of cancer cells.
Collapse
Affiliation(s)
- Mehul Vora
- Department of Genetics, The Waksman Institute, Rutgers the State University of NJ, Piscataway, NJ, 08854, USA
| | - Arindam Mondal
- Department of Surgery, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08903, USA
| | - Dongxuan Jia
- Department of Surgery, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08903, USA
| | - Pranya Gaddipati
- Department of Genetics, The Waksman Institute, Rutgers the State University of NJ, Piscataway, NJ, 08854, USA
| | - Moumen Akel
- Rutgers University, Piscataway, NJ, 08854, USA
| | - John Gilleran
- Molecular Design and Synthesis, RUBRIC, Office for Research, Rutgers Translational Science, Rutgers University, Piscataway, NJ, 08854, USA
| | - Jacques Roberge
- Molecular Design and Synthesis, RUBRIC, Office for Research, Rutgers Translational Science, Rutgers University, Piscataway, NJ, 08854, USA
| | - Christopher Rongo
- Department of Genetics, The Waksman Institute, Rutgers the State University of NJ, Piscataway, NJ, 08854, USA
| | - John Langenfeld
- Department of Surgery, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08903, USA.
| |
Collapse
|
25
|
Huang KH, Chang YL, Gau SY, Tsai TH, Lee CY. Dose-Response Association of Metformin with Parkinson's Disease Odds in Type 2 Diabetes Mellitus. Pharmaceutics 2022; 14:946. [PMID: 35631532 PMCID: PMC9147745 DOI: 10.3390/pharmaceutics14050946] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 11/17/2022] Open
Abstract
Background. Studies have demonstrated that patients with diabetes mellitus who receive metformin have a lower risk of developing Parkinson’s disease (PD). However, studies have also suggested that metformin may increase the risk of PD. In this study, we investigated whether metformin use was associated with the risk of PD in type 2 diabetes mellitus (T2DM). Methods. In this population-based cross-sectional study, patients with T2DM diagnosed between 2001 and 2018 were enrolled. We categorized these patients as metformin users or nonusers. Participants below 50 years old were excluded. Two models were employed to evaluate the associations of metformin exposure and use intensity with PD after 3 and 5 years of follow-up. Results. Patients with T2DM who received <300 cumulative defined daily doses (cDDD) of metformin and those with metformin use intensity of <10 DDD/month had respective odds ratios (ORs) for PD of 0.88 (95% confidence interval [CI] = 0.83−0.94) and 0.87 (95% CI = 0.81−0.93) in a 3-year follow-up. In a 5-year follow-up, such patients had respective ORs for PD of 0.94 (95% CI = 0.90−0.98) and 0.93 (95% CI = 0.89−0.98). Patients with T2DM who received ≥300 cDDD of metformin or used metformin with intensity of ≥10 DDD/month experienced no neuroprotective effects after 3 or 5 years. Conclusions. Metformin was associated with PD odds in T2DM in a dose−response association manner. Patients who received low dosage and intensity of metformin use were associated with lower odds of PD, while higher dosage and intensity of metformin use had no neuroprotective effect.
Collapse
Affiliation(s)
- Kuang-Hua Huang
- Department of Health Services Administration, China Medical University, Taichung 40402, Taiwan; (K.-H.H.); (T.-H.T.)
| | - Ya-Lan Chang
- Department of Pharmacology, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd., Taichung 40201, Taiwan;
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Shuo-Yan Gau
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
| | - Tung-Han Tsai
- Department of Health Services Administration, China Medical University, Taichung 40402, Taiwan; (K.-H.H.); (T.-H.T.)
| | - Chien-Ying Lee
- Department of Pharmacology, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd., Taichung 40201, Taiwan;
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| |
Collapse
|
26
|
Formolo DA, Cheng T, Yu J, Kranz GS, Yau SY. Central Adiponectin Signaling – A Metabolic Regulator in Support of Brain Plasticity. Brain Plast 2022; 8:79-96. [DOI: 10.3233/bpl-220138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2022] [Indexed: 12/18/2022] Open
Abstract
Brain plasticity and metabolism are tightly connected by a constant influx of peripheral glucose to the central nervous system in order to meet the high metabolic demands imposed by neuronal activity. Metabolic disturbances highly affect neuronal plasticity, which underlies the prevalent comorbidity between metabolic disorders, cognitive impairment, and mood dysfunction. Effective pro-cognitive and neuropsychiatric interventions, therefore, should consider the metabolic aspect of brain plasticity to achieve high effectiveness. The adipocyte-secreted hormone, adiponectin, is a metabolic regulator that crosses the blood-brain barrier and modulates neuronal activity in several brain regions, where it exerts neurotrophic and neuroprotective properties. Moreover, adiponectin has been shown to improve neuronal metabolism in different animal models, including obesity, diabetes, and Alzheimer’s disease. Here, we aim at linking the adiponectin’s neurotrophic and neuroprotective properties with its main role as a metabolic regulator and to summarize the possible mechanisms of action on improving brain plasticity via its role in regulating the intracellular energetic activity. Such properties suggest adiponectin signaling as a potential target to counteract the central metabolic disturbances and impaired neuronal plasticity underlying many neuropsychiatric disorders.
Collapse
Affiliation(s)
- Douglas A. Formolo
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University3Institute of future foods
- Research Institute for Smart Ageing (RISA), Hong Kong Polytechnic University
| | - Tong Cheng
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University3Institute of future foods
- Research Institute for Smart Ageing (RISA), Hong Kong Polytechnic University
| | - Jiasui Yu
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University3Institute of future foods
- Research Institute for Smart Ageing (RISA), Hong Kong Polytechnic University
| | - Georg S. Kranz
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| | - Suk-Yu Yau
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University3Institute of future foods
- Research Institute for Smart Ageing (RISA), Hong Kong Polytechnic University
| |
Collapse
|
27
|
Dastidar SG, Nair D. A Ribosomal Perspective on Neuronal Local Protein Synthesis. Front Mol Neurosci 2022; 15:823135. [PMID: 35283723 PMCID: PMC8904363 DOI: 10.3389/fnmol.2022.823135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/17/2022] [Indexed: 11/15/2022] Open
Abstract
Continued mRNA translation and protein production are critical for various neuronal functions. In addition to the precise sorting of proteins from cell soma to distant locations, protein synthesis allows a dynamic remodeling of the local proteome in a spatially variable manner. This spatial heterogeneity of protein synthesis is shaped by several factors such as injury, guidance cues, developmental cues, neuromodulators, and synaptic activity. In matured neurons, thousands of synapses are non-uniformly distributed throughout the dendritic arbor. At any given moment, the activity of individual synapses varies over a wide range, giving rise to the variability in protein synthesis. While past studies have primarily focused on the translation factors or the identity of translated mRNAs to explain the source of this variation, the role of ribosomes in this regard continues to remain unclear. Here, we discuss how several stochastic mechanisms modulate ribosomal functions, contributing to the variability in neuronal protein expression. Also, we point out several underexplored factors such as local ion concentration, availability of tRNA or ATP during translation, and molecular composition and organization of a compartment that can influence protein synthesis and its variability in neurons.
Collapse
|
28
|
Eacret D, Noreck J, Blendy J. Adenosine Monophosphate-activated Protein Kinase (AMPK) in serotonin neurons mediates select behaviors during protracted withdrawal from morphine in mice. Behav Brain Res 2022; 419:113688. [PMID: 34843742 PMCID: PMC8688336 DOI: 10.1016/j.bbr.2021.113688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/11/2021] [Accepted: 11/23/2021] [Indexed: 01/02/2023]
Abstract
Serotonin neurotransmission has been implicated in behavior deficits that occur during protracted withdrawal from opioids. In addition, studies have highlighted multiple pathways whereby serotonin (5-HT) modulates energy homeostasis, however the underlying metabolic effects of opioid withdrawal have not been investigated. A key metabolic regulator that senses the energy status of the cell and regulates fuel availability is Adenosine Monophosphate-activated Protein Kinase (AMPK). To investigate the interaction between cellular metabolism and serotonin in modulating protracted abstinence from morphine, we depleted AMPK in serotonin neurons. Morphine exposure via drinking water generates dependence in these mice, and both wildtype and serotonergic AMPK knockout mice consume similar amounts of morphine with no changes in body weight. Serotonergic AMPK contributes to baseline differences in open field and social interaction behaviors and blocks abstinence induced reductions in immobility following morphine withdrawal in the tail suspension test. Lastly, morphine locomotor sensitization is blunted in mice lacking AMPK in serotonin neurons. Taken together, our results suggest serotonergic AMPK mediates both baseline and protracted morphine withdrawal-induced behaviors.
Collapse
Affiliation(s)
- D. Eacret
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - J. Noreck
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - J.A. Blendy
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA,Corresponding author , Phone: (215) 898-0730, Fax: (215) 573-2236
| |
Collapse
|
29
|
Belén Sanz-Martos A, Fernández-Felipe J, Merino B, Cano V, Ruiz-Gayo M, Del Olmo N. Butyric Acid Precursor Tributyrin Modulates Hippocampal Synaptic Plasticity and Prevents Spatial Memory Deficits: Role of PPARγ and AMPK. Int J Neuropsychopharmacol 2022; 25:498-511. [PMID: 35152284 PMCID: PMC9211015 DOI: 10.1093/ijnp/pyac015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/31/2022] [Accepted: 02/10/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Short chain fatty acids (SCFA), such as butyric acid (BA), derived from the intestinal fermentation of dietary fiber and contained in dairy products, are gaining interest in relation to their possible beneficial effects on neuropsychological disorders. METHODS C57BL/6J male mice were used to investigate the effect of tributyrin (TB), a prodrug of BA, on hippocampus (HIP)-dependent spatial memory, HIP synaptic transmission and plasticity mechanisms, and the expression of genes and proteins relevant to HIP glutamatergic transmission. RESULTS Ex vivo studies, carried out in HIP slices, revealed that TB can transform early-LTP into late-LTP (l-LTP) and to rescue LTP-inhibition induced by scopolamine. The facilitation of l-LTP induced by TB was blocked both by GW9662 (a PPARγ antagonist) and C-Compound (an AMPK inhibitor), suggesting the involvement of both PPARγ and AMPK on TB effects. Moreover, 48-hour intake of a diet containing 1% TB prevented, in adolescent but not in adult mice, scopolamine-induced impairment of HIP-dependent spatial memory. In the adolescent HIP, TB upregulated gene expression levels of Pparg, leptin, and adiponectin receptors, and that of the glutamate receptor subunits AMPA-2, NMDA-1, NMDA-2A, and NMDA-2B. CONCLUSIONS Our study shows that TB has a positive influence on LTP and HIP-dependent spatial memory, which suggests that BA may have beneficial effects on memory.
Collapse
Affiliation(s)
- Ana Belén Sanz-Martos
- Department of Health and Pharmaceutical Sciences, School of Pharmacy, Universidad CEU-San Pablo, CEU Universities, Madrid, Spain
| | - Jesús Fernández-Felipe
- Department of Health and Pharmaceutical Sciences, School of Pharmacy, Universidad CEU-San Pablo, CEU Universities, Madrid, Spain
| | - Beatriz Merino
- Department of Health and Pharmaceutical Sciences, School of Pharmacy, Universidad CEU-San Pablo, CEU Universities, Madrid, Spain
| | - Victoria Cano
- Department of Health and Pharmaceutical Sciences, School of Pharmacy, Universidad CEU-San Pablo, CEU Universities, Madrid, Spain
| | | | - Nuria Del Olmo
- Correspondence: Nuria Del Olmo, PhD, Department of Psychobiology, School of Psychology, National University for Distance Education (UNED), C/ Juan del Rosal 10, 28040 Madrid, Spain ()
| |
Collapse
|
30
|
Energy matters: presynaptic metabolism and the maintenance of synaptic transmission. Nat Rev Neurosci 2021; 23:4-22. [PMID: 34782781 DOI: 10.1038/s41583-021-00535-8] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2021] [Indexed: 12/14/2022]
Abstract
Synaptic activity imposes large energy demands that are met by local adenosine triphosphate (ATP) synthesis through glycolysis and mitochondrial oxidative phosphorylation. ATP drives action potentials, supports synapse assembly and remodelling, and fuels synaptic vesicle filling and recycling, thus sustaining synaptic transmission. Given their polarized morphological features - including long axons and extensive branching in their terminal regions - neurons face exceptional challenges in maintaining presynaptic energy homeostasis, particularly during intensive synaptic activity. Recent studies have started to uncover the mechanisms and signalling pathways involved in activity-dependent and energy-sensitive regulation of presynaptic energetics, or 'synaptoenergetics'. These conceptual advances have established the energetic regulation of synaptic efficacy and plasticity as an exciting research field that is relevant to a range of neurological disorders associated with bioenergetic failure and synaptic dysfunction.
Collapse
|
31
|
Yang JH, Choi HP, Niu W, Azadzoi KM. Cellular Stress and Molecular Responses in Bladder Ischemia. Int J Mol Sci 2021; 22:ijms222111862. [PMID: 34769293 PMCID: PMC8584445 DOI: 10.3390/ijms222111862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022] Open
Abstract
The concept of bladder ischemia as a contributing factor to detrusor overactivity and lower urinary tract symptoms (LUTS) is evolving. Bladder ischemia as a consequence of pelvic arterial atherosclerosis was first documented in experimental models and later in elderly patients with LUTS. It was shown that early-stage moderate ischemia produces detrusor overactivity, while prolonged severe ischemia provokes changes consistent with detrusor underactivity. Recent studies imply a central role of cellular energy sensors, cellular stress sensors, and stress response molecules in bladder responses to ischemia. The cellular energy sensor adenosine monophosphate-activated protein kinase was shown to play a role in detrusor overactivity and neurodegeneration in bladder ischemia. The cellular stress sensors apoptosis signal-regulating kinase 1 and caspase-3 along with heat shock proteins were characterized as important contributing factors to smooth muscle structural modifications and apoptotic responses in bladder ischemia. Downstream pathways seem to involve hypoxia-inducible factor, transforming growth factor beta, vascular endothelial growth factor, and nerve growth factor. Molecular responses to bladder ischemia were associated with differential protein expression, the accumulation of non-coded amino acids, and post-translational modifications of contractile proteins and stress response molecules. Further insight into cellular stress responses in bladder ischemia may provide novel diagnostic and therapeutic targets against LUTS.
Collapse
Affiliation(s)
- Jing-Hua Yang
- Department of Surgery, Boston University School of Medicine, Boston, MA 02118, USA;
- Proteomics Laboratory, VA Boston Healthcare System, Boston, MA 02130, USA;
| | - Han-Pil Choi
- Proteomics Laboratory, VA Boston Healthcare System, Boston, MA 02130, USA;
| | - Wanting Niu
- Research Section, VA Boston Healthcare System, Boston, MA 02130, USA;
| | - Kazem M. Azadzoi
- Departments of Urology and Pathology, VA Boston Healthcare System and Boston University School of Medicine, Boston, MA 02130, USA
- Correspondence: ; Tel.: +1-(857)-364-5602
| |
Collapse
|
32
|
He J, Yamamoto M, Sumiyama K, Konagaya Y, Terai K, Matsuda M, Sato S. Two-photon AMPK and ATP imaging reveals the bias between rods and cones in glycolysis utility. FASEB J 2021; 35:e21880. [PMID: 34449091 DOI: 10.1096/fj.202101121r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/08/2021] [Accepted: 08/11/2021] [Indexed: 12/15/2022]
Abstract
In vertebrates, retinal rod and cone photoreceptor cells rely significantly on glycolysis. Lactate released from photoreceptor cells fuels neighboring retinal pigment epithelium cells and Müller glial cells through oxidative phosphorylation. To understand this highly heterogeneous metabolic environment around photoreceptor cells, single-cell analysis is needed. Here, we visualized cellular AMP-activated protein kinase (AMPK) activity and ATP levels in the retina by two-photon microscopy. Transgenic mice expressing a hyBRET-AMPK biosensor were used for measuring the AMPK activity. GO-ATeam2 transgenic mice were used for measuring the ATP level. Temporal metabolic responses were successfully detected in the live retinal explants upon drug perfusion. A glycolysis inhibitor, 2-deoxy-d-glucose (2-DG), activated AMPK and reduced ATP. These effects were clearly stronger in rods than in cones. Notably, rod AMPK and ATP started to recover at 30 min from the onset of 2-DG perfusion. Consistent with these findings, ex vivo electroretinogram recordings showed a transient slowdown in rod dim flash responses during a 60-min 2-DG perfusion, whereas cone responses were not affected. Based on these results, we propose that cones surrounded by highly glycolytic rods become less dependent on glycolysis, and rods also become less dependent on glycolysis within 60 min upon the glycolysis inhibition.
Collapse
Affiliation(s)
- Jiazhou He
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Masamichi Yamamoto
- Department of Research Promotion and Management, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Kenta Sumiyama
- Laboratory for Mouse Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
| | - Yumi Konagaya
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Kenta Terai
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Michiyuki Matsuda
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.,Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan
| | - Shinya Sato
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
33
|
Liu YJ, Chern Y. Contribution of Energy Dysfunction to Impaired Protein Translation in Neurodegenerative Diseases. Front Cell Neurosci 2021; 15:668500. [PMID: 34393724 PMCID: PMC8355359 DOI: 10.3389/fncel.2021.668500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/09/2021] [Indexed: 12/14/2022] Open
Abstract
Impaired energy homeostasis and aberrant translational control have independently been implicated in the pathogenesis of neurodegenerative diseases. AMP kinase (AMPK), regulated by the ratio of cellular AMP and ATP, is a major gatekeeper for cellular energy homeostasis. Abnormal regulation of AMPK has been reported in several neurodegenerative diseases, including Alzheimer’s disease (AD) and amyotrophic lateral sclerosis (ALS). Most importantly, AMPK activation is known to suppress the translational machinery by inhibiting the mechanistic target of rapamycin complex 1 (mTORC1), activating translational regulators, and phosphorylating nuclear transporter factors. In this review, we describe recent findings on the emerging role of protein translation impairment caused by energy dysregulation in neurodegenerative diseases.
Collapse
Affiliation(s)
- Yu-Ju Liu
- Division of Neuroscience, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yijuang Chern
- Division of Neuroscience, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
34
|
Santangelo R, Giuffrida ML, Satriano C, Tomasello MF, Zimbone S, Copani A. β-amyloid monomers drive up neuronal aerobic glycolysis in response to energy stressors. Aging (Albany NY) 2021; 13:18033-18050. [PMID: 34290150 PMCID: PMC8351713 DOI: 10.18632/aging.203330] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/09/2021] [Indexed: 12/15/2022]
Abstract
Research on cerebral glucose metabolism has shown that the aging brain experiences a fall of aerobic glycolysis, and that the age-related loss of aerobic glycolysis may accelerate Alzheimer’s disease pathology. In the healthy brain, aerobic glycolysis, namely the use of glucose outside oxidative phosphorylation, may cover energy demand and increase neuronal resilience to stressors at once. Currently, the drivers of aerobic glycolysis in neurons are unknown. We previously demonstrated that synthetic monomers of β-amyloid protein (Aβ) enhance glucose uptake in neurons, and that endogenous Aβ is required for depolarization-induced glucose uptake in cultured neurons. In this work, we show that cultured cortical neurons increased aerobic glycolysis in response to the inhibition of oxidative phosphorylation by oligomycin or to a kainate pulse. Such an increase was prevented by blocking the endogenous Aβ tone and re-established by the exogenous addition of synthetic Aβ monomers. The activity of mitochondria-bound hexokinase-1 appeared to be necessary for monomers-stimulated aerobic glycolysis during oxidative phosphorylation blockade or kainate excitation. Our data suggest that, through Aβ release, neurons coordinate glucose uptake with aerobic glycolysis in response to metabolic stressors. The implications of this new finding are that the age-related drop in aerobic glycolysis and the susceptibility to Alzheimer’s disease could be linked to factors interfering with release and functions of Aβ monomers.
Collapse
Affiliation(s)
- Rosa Santangelo
- Department of Drug and Health Sciences, University of Catania, Catania 95125, Italy
| | - Maria Laura Giuffrida
- Institute of Crystallography, National Council of Research, Catania Unit, Catania 95126, Italy
| | - Cristina Satriano
- Department of Chemical Sciences, University of Catania, Catania 95125, Italy
| | | | - Stefania Zimbone
- Institute of Crystallography, National Council of Research, Catania Unit, Catania 95126, Italy
| | - Agata Copani
- Department of Drug and Health Sciences, University of Catania, Catania 95125, Italy.,Institute of Crystallography, National Council of Research, Catania Unit, Catania 95126, Italy
| |
Collapse
|
35
|
Yang JH, Niu W, Li Y, Azadzoi KM. Impairment of AMPK-α2 augments detrusor contractions in bladder ischemia. Investig Clin Urol 2021; 62:600-609. [PMID: 34387036 PMCID: PMC8421994 DOI: 10.4111/icu.20210095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/03/2021] [Accepted: 05/20/2021] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Ischemia disrupts cellular energy homeostasis. Adenosine monophosphate-activated protein kinase alpha-2 (AMPK-α2) is a subunit of AMPK that senses cellular energy deprivation and signals metabolic stress. Our goal was to examine the expression levels and functional role of AMPK-α2 in bladder ischemia. MATERIALS AND METHODS Iliac artery atherosclerosis and bladder ischemia were engendered in apolipoprotein E knockout rats by partial arterial endothelial denudation using a balloon catheter. After eight weeks, total and phosphorylated AMPK-α2 expression was analyzed by western blotting. Structural integrity of AMPK-α2 protein was assessed by Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS). Functional role of AMPK-α2 was examined by treating animals with the AMPK activator 5-aminoimidazole-4-carboxamide-1-beta-D ribofuranoside (AICAR). Tissue contractility was measured in the organ bath and bladder nerve density was examined by immunostaining. RESULTS Total AMPK-α2 expression increased in bladder ischemia, while phosphorylated AMPK-α2 was significantly downregulated. LC-MS/MS suggested post-translational modification of AMPK-α2 functional domains including phosphorylation sites, suggesting accumulation of catalytically inactive AMPK-α2 in bladder ischemia. Treatment of rats with AICAR diminished the force of overactive detrusor contractions and increased bladder capacity but did not have a significant effect on the frequency of bladder contractions. AICAR diminished contractile reactivity of ischemic tissues in the organ bath and prevented loss of nerve fibers in bladder ischemia. CONCLUSIONS Ischemia induces post-translational modification of AMPK-α2 protein. Impairment of AMPK-α2 may contribute to overactive detrusor contractions and loss of nerve fibers in bladder ischemia. AMPK activators may have therapeutic potential against detrusor overactivity and neurodegeneration in bladder conditions involving ischemia.
Collapse
Affiliation(s)
- Jing-Hua Yang
- Department of Surgery, Boston University School of Medicine, Boston, MA, USA
| | - Wanting Niu
- Research Section, VA Boston Healthcare System, Boston, MA, USA
| | - Yedan Li
- Research Section, VA Boston Healthcare System, Boston, MA, USA
| | - Kazem M Azadzoi
- Department of Urology, VA Boston Healthcare System, Boston University School of Medicine, Boston, MA, USA.,Department of Pathology,VA Boston Healthcare System, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
36
|
AMPK-Regulated Astrocytic Lactate Shuttle Plays a Non-Cell-Autonomous Role in Neuronal Survival. Cell Rep 2021; 32:108092. [PMID: 32877674 PMCID: PMC7531170 DOI: 10.1016/j.celrep.2020.108092] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 07/01/2020] [Accepted: 08/07/2020] [Indexed: 12/18/2022] Open
Abstract
Lactate is used as an energy source by producer cells or shuttled to neighboring cells and tissues. Both glucose and lactate fulfill the bioenergetic demand of neurons, the latter imported from astrocytes. The contribution of astrocytic lactate to neuronal bioenergetics and the mechanisms of astrocytic lactate production are incompletely understood. Through in vivo1H magnetic resonance spectroscopy, 13C glucose mass spectroscopy, and electroencephalographic and molecular studies, here we show that the energy sensor AMP activated protein kinase (AMPK) regulates neuronal survival in a non-cell-autonomous manner. Ampk-null mice are deficient in brain lactate and are seizure prone. Ampk deletion in astroglia, but not neurons, causes neuronal loss in both mammalian and fly brains. Mechanistically, astrocytic AMPK phosphorylated and destabilized thioredoxin-interacting protein (TXNIP), enabling expression and surface translocation of the glucose transporter GLUT1, glucose uptake, and lactate production. Ampk loss in astrocytes causes TXNIP hyperstability, GLUT1 misregulation, inadequate glucose metabolism, and neuronal loss. Muraleedharan et al. demonstrate that AMPK is required for astrocytic glycolysis, lactate production, and lactate shuttle as an energy source to neurons such that AMPK loss in glia causes non-cell-autonomous neuronal loss in the mammalian and fly brain.
Collapse
|
37
|
Nikbakhtzadeh M, Shaerzadeh F, Ashabi G. Highlighting the protective or degenerative role of AMPK activators in dementia experimental models. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 20:786-801. [PMID: 34042039 DOI: 10.2174/1871527320666210526160214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 11/02/2020] [Accepted: 12/21/2020] [Indexed: 11/22/2022]
Abstract
AMP-activated protein kinase (AMPK) is a serine/threonine kinase and a driving or deterrent factor in the development of neurodegenerative diseases and dementia. AMPK affects intracellular proteins like the mammalian target of rapamycin (mTOR). Peroxisome proliferator-activated receptor-γ coactivator 1-α (among others) contributes to a wide range of intracellular activities based on its downstream molecules such as energy balancing (ATP synthesis), extracellular inflammation, cell growth, and neuronal cell death (such as apoptosis, necrosis, and necroptosis). Several studies have looked at the dual role of AMPK in neurodegenerative diseases such as Parkinson's disease (PD), Alzheimer's disease (AD), and Huntington disease (HD) but the exact effect of this enzyme on dementia, stroke, and motor neuron dysfunction disorders has not been elucidated yet. In this article, we review current research on the effects of AMPK on the brain to give an overview of the relationship. More specifically, we review the neuroprotective or neurodegenerative effects of AMPK or AMPK activators like metformin, resveratrol, and 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside on neurological diseases and dementia, which exert through the intracellular molecules involved in neuronal survival or death.
Collapse
Affiliation(s)
- Marjan Nikbakhtzadeh
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Shaerzadeh
- Department of Neuroscience, University of Florida College of Medicine and McKnight Brain Institute, Gainesville, United States
| | - Ghorbangol Ashabi
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
Gao H, Tripathi U, Trushin S, Okromelidze L, Pichurin NP, Wei L, Zhuang Y, Wang L, Trushina E. A genome-wide association study in human lymphoblastoid cells supports safety of mitochondrial complex I inhibitor. Mitochondrion 2021; 58:83-94. [PMID: 33610756 PMCID: PMC8743030 DOI: 10.1016/j.mito.2021.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/08/2021] [Indexed: 01/12/2023]
Abstract
Novel therapeutic strategies for Alzheimer's disease (AD) are of the greatest priority given the consistent failure of recent clinical trials focused on Aβ or pTau. Earlier, we demonstrated that mild mitochondrial complex I inhibitor CP2 blocks neurodegeneration and cognitive decline in multiple mouse models of AD. To evaluate the safety of CP2 in humans, we performed a genome-wide association study (GWAS) using 196 lymphoblastoid cell lines and identified 11 SNP loci and 64 mRNA expression probe sets that potentially associate with CP2 susceptibility. Using primary mouse neurons and pharmacokinetic study, we show that CP2 is generally safe at a therapeutic dose.
Collapse
Affiliation(s)
- Huanyao Gao
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Utkarsh Tripathi
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Sergey Trushin
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Lela Okromelidze
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Nicholas P Pichurin
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Lixuan Wei
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Yongxian Zhuang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Eugenia Trushina
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA; Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA.
| |
Collapse
|
39
|
Resveratrol, Metabolic Dysregulation, and Alzheimer's Disease: Considerations for Neurogenerative Disease. Int J Mol Sci 2021; 22:ijms22094628. [PMID: 33924876 PMCID: PMC8125227 DOI: 10.3390/ijms22094628] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD) has traditionally been discussed as a disease where serious cognitive decline is a result of Aβ-plaque accumulation, tau tangle formation, and neurodegeneration. Recently, it has been shown that metabolic dysregulation observed with insulin resistance and type-2 diabetes actively contributes to the progression of AD. One of the pathologies linking metabolic disease to AD is the release of inflammatory cytokines that contribute to the development of brain neuroinflammation and mitochondrial dysfunction, ultimately resulting in amyloid-beta peptide production and accumulation. Improving these metabolic impairments has been shown to be effective at reducing AD progression and improving cognitive function. The polyphenol resveratrol (RSV) improves peripheral metabolic disorders and may provide similar benefits centrally in the brain. RSV reduces inflammatory cytokine release, improves mitochondrial energetic function, and improves Aβ-peptide clearance by activating SIRT1 and AMPK. RSV has also been linked to improved cognitive function; however, the mechanisms of action are less defined. However, there is evidence to suggest that chronic RSV-driven AMPK activation may be detrimental to synaptic function and growth, which would directly impact cognition. This review will discuss the benefits and adverse effects of RSV on the brain, highlighting the major signaling pathways and some of the gaps surrounding the use of RSV as a treatment for AD.
Collapse
|
40
|
Casas M, Fadó R, Domínguez JL, Roig A, Kaku M, Chohnan S, Solé M, Unzeta M, Miñano-Molina AJ, Rodríguez-Álvarez J, Dickson EJ, Casals N. Sensing of nutrients by CPT1C controls SAC1 activity to regulate AMPA receptor trafficking. J Cell Biol 2021; 219:152088. [PMID: 32931550 PMCID: PMC7659714 DOI: 10.1083/jcb.201912045] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/21/2020] [Accepted: 06/18/2020] [Indexed: 12/21/2022] Open
Abstract
Carnitine palmitoyltransferase 1C (CPT1C) is a sensor of malonyl-CoA and is located in the ER of neurons. AMPA receptors (AMPARs) mediate fast excitatory neurotransmission in the brain and play a key role in synaptic plasticity. In the present study, we demonstrate across different metabolic stress conditions that modulate malonyl-CoA levels in cortical neurons that CPT1C regulates the trafficking of the major AMPAR subunit, GluA1, through the phosphatidyl-inositol-4-phosphate (PI(4)P) phosphatase SAC1. In normal conditions, CPT1C down-regulates SAC1 catalytic activity, allowing efficient GluA1 trafficking to the plasma membrane. However, under low malonyl-CoA levels, such as during glucose depletion, CPT1C-dependent inhibition of SAC1 is released, facilitating SAC1’s translocation to ER-TGN contact sites to decrease TGN PI(4)P pools and trigger GluA1 retention at the TGN. Results reveal that GluA1 trafficking is regulated by CPT1C sensing of malonyl-CoA and provide the first report of a SAC1 inhibitor. Moreover, they shed light on how nutrients can affect synaptic function and cognition.
Collapse
Affiliation(s)
- Maria Casas
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain
| | - Rut Fadó
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain
| | - José Luis Domínguez
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain
| | - Aina Roig
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain
| | - Moena Kaku
- Department of Food and Life Science, Ibaraki University College of Agriculture, Ami, Ibaraki, Japan
| | - Shigeru Chohnan
- Department of Food and Life Science, Ibaraki University College of Agriculture, Ami, Ibaraki, Japan
| | - Montse Solé
- Biochemistry and Molecular Biology Department, Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Mercedes Unzeta
- Biochemistry and Molecular Biology Department, Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Alfredo Jesús Miñano-Molina
- Biochemistry and Molecular Biology Department, Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - José Rodríguez-Álvarez
- Biochemistry and Molecular Biology Department, Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain.,Department of Neuroscience, Albert Einstein College of Medicine, New York, NY
| | - Eamonn James Dickson
- Department of Physiology and Membrane Biology, University of California, School of Medicine, Davis, CA
| | - Núria Casals
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
41
|
Stojakovic A, Trushin S, Sheu A, Khalili L, Chang SY, Li X, Christensen T, Salisbury JL, Geroux RE, Gateno B, Flannery PJ, Dehankar M, Funk CC, Wilkins J, Stepanova A, O'Hagan T, Galkin A, Nesbitt J, Zhu X, Tripathi U, Macura S, Tchkonia T, Pirtskhalava T, Kirkland JL, Kudgus RA, Schoon RA, Reid JM, Yamazaki Y, Kanekiyo T, Zhang S, Nemutlu E, Dzeja P, Jaspersen A, Kwon YIC, Lee MK, Trushina E. Partial inhibition of mitochondrial complex I ameliorates Alzheimer's disease pathology and cognition in APP/PS1 female mice. Commun Biol 2021; 4:61. [PMID: 33420340 PMCID: PMC7794523 DOI: 10.1038/s42003-020-01584-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 12/08/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's Disease (AD) is a devastating neurodegenerative disorder without a cure. Here we show that mitochondrial respiratory chain complex I is an important small molecule druggable target in AD. Partial inhibition of complex I triggers the AMP-activated protein kinase-dependent signaling network leading to neuroprotection in symptomatic APP/PS1 female mice, a translational model of AD. Treatment of symptomatic APP/PS1 mice with complex I inhibitor improved energy homeostasis, synaptic activity, long-term potentiation, dendritic spine maturation, cognitive function and proteostasis, and reduced oxidative stress and inflammation in brain and periphery, ultimately blocking the ongoing neurodegeneration. Therapeutic efficacy in vivo was monitored using translational biomarkers FDG-PET, 31P NMR, and metabolomics. Cross-validation of the mouse and the human transcriptomic data from the NIH Accelerating Medicines Partnership-AD database demonstrated that pathways improved by the treatment in APP/PS1 mice, including the immune system response and neurotransmission, represent mechanisms essential for therapeutic efficacy in AD patients.
Collapse
Affiliation(s)
- Andrea Stojakovic
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Sergey Trushin
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Anthony Sheu
- Institute for Translational Neuroscience, University of Minnesota Twin Cities, 2101 6th Street SE, Minneapolis, MN, 55455, USA
| | - Layla Khalili
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Su-Youne Chang
- Department of Neurologic Surgery, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Xing Li
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Trace Christensen
- Microscopy and Cell Analysis Core, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Jeffrey L Salisbury
- Microscopy and Cell Analysis Core, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Rachel E Geroux
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Benjamin Gateno
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Padraig J Flannery
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Mrunal Dehankar
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Cory C Funk
- Institute for Systems Biology, Seattle, WA, 98109-5263, USA
| | - Jordan Wilkins
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Anna Stepanova
- Division of Neonatology, Department of Pediatrics, Columbia University, 116th St & Broadway, New York, NY, 10027, USA
| | - Tara O'Hagan
- Division of Neonatology, Department of Pediatrics, Columbia University, 116th St & Broadway, New York, NY, 10027, USA
| | - Alexander Galkin
- Division of Neonatology, Department of Pediatrics, Columbia University, 116th St & Broadway, New York, NY, 10027, USA
| | - Jarred Nesbitt
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Xiujuan Zhu
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Utkarsh Tripathi
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Slobodan Macura
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Tamar Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Tamar Pirtskhalava
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Rachel A Kudgus
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Renee A Schoon
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Joel M Reid
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Yu Yamazaki
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Song Zhang
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Emirhan Nemutlu
- Faculty of Pharmacy, Department of Analytical Chemistry, Hacettepe University, Sihhiye, Ankara, 06100, Turkey
| | - Petras Dzeja
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Adam Jaspersen
- Microscopy and Cell Analysis Core, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Ye In Christopher Kwon
- Institute for Translational Neuroscience, University of Minnesota Twin Cities, 2101 6th Street SE, Minneapolis, MN, 55455, USA
| | - Michael K Lee
- Institute for Translational Neuroscience, University of Minnesota Twin Cities, 2101 6th Street SE, Minneapolis, MN, 55455, USA
| | - Eugenia Trushina
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA.
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA.
| |
Collapse
|
42
|
Sun C, Liu M, Liu J, Zhang T, Zhang L, Li H, Luo Z. ShenmaYizhi Decoction Improves the Mitochondrial Structure in the Brain and Ameliorates Cognitive Impairment in VCI Rats via the AMPK/UCP2 Signaling Pathway. Neuropsychiatr Dis Treat 2021; 17:1937-1951. [PMID: 34168453 PMCID: PMC8218872 DOI: 10.2147/ndt.s302355] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/27/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND ShenmaYizhi decoction (SMYZD) is an effective prescription of traditional Chinese medicine used to treat vascular dementia (VD). Modern research methods have identified its active ingredients clearly as gastrodin, ferulic acid, ginsenosides, and β-sitosterol. Chronic cerebral hypoperfusion is a driving factor or risk factor for VD, which leads to the disturbance of mitochondrial structure and function. PURPOSE To observe whether SMYZD improves cognitive impairment by improving mitochondrial structure and function. METHODS Forty adult rats with vascular cognitive impairment (VCI) caused by the bilateral ligation of common carotid arteries were divided into four groups randomly, including the model group, donepezil group, and low-dose and high-dose SMYZD groups, with 10 rats in each group. Additionally, a sham group was established with 10 rats as the control group. The treatment groups were administered donepezil and two different dosages of SMYZD. The donepezil group was administered 0.45 mg/kg/d donepezil, and the SMYZ-L group was administered 2.97 g/kg/d SMYZ, which were equivalent to the clinical dosage. The SMYZ-H group was administered 11.88 g/kg/d SMYZ, which is 4 times higher than the clinically equivalent dosage. A sham-operated group was used as the control group and administered an equal volume of distilled water. The rats were treated by gavage for 8 consecutive weeks. Morris water maze (MWM) test was performed to evaluate the learning and memory ability. The mitochondria of brain tissue were extracted from brain for further test. Mitochondrial morphology and the signal path of AMPK/PPARα/PGC-1α/UCP2 in mitochondria were detected. RESULTS With the SMYZD intervention, behavioral performance of rats and pathological changes of mitochondria of brain tissue were significantly improved. In the serum, SOD, GSH-Px, and GSH activities were increased, and the MDA content was decreased. Moreover, the AMPK, PPARα, PGC-1α, UCP2, and ATP5A mRNA and protein expression levels were also reversed by SMYZD. CONCLUSION SMYZD may provide a potential therapeutic strategy via activating the AMPK/PPARα/PGC-1α/UCP2 signal pathway to improve mitochondrial structure and energy metabolism thereby alleviate vascular cognitive impairment.
Collapse
Affiliation(s)
- Chengcheng Sun
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, People's Republic of China
| | - Meixia Liu
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, People's Republic of China
| | - Jiangang Liu
- Department of Cardiovascular, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, People's Republic of China
| | - Tingting Zhang
- Department of Geriatrics, College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, ShanDong Province, People's Republic of China
| | - Lei Zhang
- Department of Emergency, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, People's Republic of China
| | - Hao Li
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, People's Republic of China
| | - Zenggang Luo
- Medical Administration Office, Beijing Administration of Traditional Chinese Medicine, Beijing, 100053, People's Republic of China
| |
Collapse
|
43
|
CCL5 promotion of bioenergy metabolism is crucial for hippocampal synapse complex and memory formation. Mol Psychiatry 2021; 26:6451-6468. [PMID: 33931731 PMCID: PMC8760051 DOI: 10.1038/s41380-021-01103-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 03/10/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022]
Abstract
Glucoregulatory efficiency and ATP production are key regulators for neuronal plasticity and memory formation. Besides its chemotactic and neuroinflammatory functions, the CC chemokine--CCL5 displays neurotrophic activity. We found impaired learning-memory and cognition in CCL5-knockout mice at 4 months of age correlated with reduced hippocampal long-term potentiation and impaired synapse structure. Re-expressing CCL5 in knockout mouse hippocampus restored synaptic protein expression, neuronal connectivity and cognitive function. Using metabolomics coupled with FDG-PET imaging and seahorse analysis, we found that CCL5 participates in hippocampal fructose and mannose degradation, glycolysis, gluconeogenesis as well as glutamate and purine metabolism. CCL5 additionally supports mitochondrial structural integrity, purine synthesis, ATP generation, and subsequent aerobic glucose metabolism. Overexpressing CCL5 in WT mice also enhanced memory-cognition performance as well as hippocampal neuronal activity and connectivity through promotion of de novo purine and glutamate metabolism. Thus, CCL5 actions on glucose aerobic metabolism are critical for mitochondrial function which contribute to hippocampal spine and synapse formation, improving learning and memory.
Collapse
|
44
|
Jee SC, Lee KM, Kim M, Lee YJ, Kim S, Park JO, Sung JS. Neuroprotective Effect of Cudrania tricuspidata Fruit Extracts on Scopolamine-Induced Learning and Memory Impairment. Int J Mol Sci 2020; 21:ijms21239202. [PMID: 33276674 PMCID: PMC7730846 DOI: 10.3390/ijms21239202] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 11/16/2022] Open
Abstract
Cudrania tricuspidata has diverse biological activities, such as antioxidant, anti-inflammatory, anticancer, and neuroprotective effects. This study investigated the protective effects of C. tricuspidata fruit extracts (CTFE) against scopolamine (SCO)-induced neuron impairment. The neuroprotective effects of CTFE on SCO-induced memory dysfunction were confirmed in mice using the Barnes maze test. The results showed that co-treatment of SCO and CTFE increased the stay time in the target zone compared with SCO treatment alone. Similarly, the results obtained by the fear conditioning test revealed that SCO-CTFE co-treatment induced the freezing action time under both the contextual fear condition and the cued fear condition compared with SCO treatment alone. Moreover, we showed that CTFE reduced the SCO-induced acetylcholinesterase (AChE) activity, thereby increasing the acetylcholine concentration in mice hippocampal tissues. Consistent with the improvement of memory and recognition function in vivo, our in vitro results showed that CTFE induced cAMP response element binding protein (CREB) and extracellular regulated kinase 1/2 (ERK1/2) activity in PC12 cells and reduced SCO-induced AChE activity. In addition, the microarray results of the hippocampal tissue support our data showing that CTFE affects gene expressions associated with neurogenesis and neuronal cell differentiation markers such as spp1 and klk6. Overall, CTFE exerts a neuroprotective effect via regulation of the CREB and ERK1/2 signaling pathways and could be a therapeutic candidate for neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jung-Suk Sung
- Correspondence: ; Tel.: +82-31-961-5132; Fax: +82-31-961-5108
| |
Collapse
|
45
|
Fadó R, Rodríguez-Rodríguez R, Casals N. The return of malonyl-CoA to the brain: Cognition and other stories. Prog Lipid Res 2020; 81:101071. [PMID: 33186641 DOI: 10.1016/j.plipres.2020.101071] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/11/2022]
Abstract
Nutrients, hormones and the energy sensor AMP-activated protein kinase (AMPK) tightly regulate the intracellular levels of the metabolic intermediary malonyl-CoA, which is a precursor of fatty acid synthesis and a negative regulator of fatty acid oxidation. In the brain, the involvement of malonyl-CoA in the control of food intake and energy homeostasis has been known for decades. However, recent data uncover a new role in cognition and brain development. The sensing of malonyl-CoA by carnitine palmitoyltransferase 1 (CPT1) proteins regulates a variety of functions, such as the fate of neuronal stem cell precursors, the motility of lysosomes in developing axons, the trafficking of glutamate receptors to the neuron surface (necessary for proper synaptic function) and the metabolic coupling between astrocytes and neurons. We discuss the relevance of those recent findings evidencing how nutrients and metabolic disorders impact cognition. We also enumerate all nutritional and hormonal conditions that are known to regulate malonyl-CoA levels in the brain, reflect on protein malonylation as a new post-translational modification, and give a reasoned vision of the opportunities and challenges that future research in the field could address.
Collapse
Affiliation(s)
- Rut Fadó
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, E-08195 Sant Cugat del Vallès, Spain; Institut de Neurociències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Cerdanyola del Vallès, Spain.
| | - Rosalía Rodríguez-Rodríguez
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, E-08195 Sant Cugat del Vallès, Spain.
| | - Núria Casals
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, E-08195 Sant Cugat del Vallès, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain.
| |
Collapse
|
46
|
Metformin Enhances Excitatory Synaptic Transmission onto Hippocampal CA1 Pyramidal Neurons. Brain Sci 2020; 10:brainsci10100706. [PMID: 33020379 PMCID: PMC7601223 DOI: 10.3390/brainsci10100706] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/25/2020] [Accepted: 10/01/2020] [Indexed: 02/07/2023] Open
Abstract
Metformin (Met) is a first-line drug for type 2 diabetes mellitus (T2DM). Numerous studies have shown that Met exerts beneficial effects on a variety of neurological disorders, including Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD). However, it is still largely unclear how Met acts on neurons. Here, by treating acute hippocampal slices with Met (1 μM and 10 μM) and recording synaptic transmission as well as neuronal excitability of CA1 pyramidal neurons, we found that Met treatments significantly increased the frequency of miniature excitatory postsynaptic currents (mEPSCs), but not amplitude. Neither frequency nor amplitude of miniature inhibitory postsynaptic currents (mIPSCs) were changed with Met treatments. Analysis of paired-pulse ratios (PPR) demonstrates that enhanced presynaptic glutamate release from terminals innervating CA1 hippocampal pyramidal neurons, while excitability of CA1 pyramidal neurons was not altered. Our results suggest that Met preferentially increases glutamatergic rather than GABAergic transmission in hippocampal CA1, providing a new insight on how Met acts on neurons.
Collapse
|
47
|
Joo YH, Kim YK, Choi IG, Kim HJ, Son YD, Kim HK, Cumming P, Kim JH. In vivo glucose metabolism and glutamate levels in mGluR5 knockout mice: a multimodal neuroimaging study using [ 18F]FDG microPET and MRS. EJNMMI Res 2020; 10:116. [PMID: 33006705 PMCID: PMC7532251 DOI: 10.1186/s13550-020-00716-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/24/2020] [Indexed: 12/21/2022] Open
Abstract
Background Perturbed functional coupling between the metabotropic glutamate receptor-5 (mGluR5) and N-methyl-d-aspartate (NMDA) receptor-mediated excitatory glutamatergic neurotransmission may contribute to the pathophysiology of psychiatric disorders such as schizophrenia. We aimed to establish the functional interaction between mGluR5 and NMDA receptors in brain of mice with genetic ablation of the mGluR5. Methods We first measured the brain glutamate levels with magnetic resonance spectroscopy (MRS) in mGluR5 knockout (KO) and wild-type (WT) mice. Then, we assessed brain glucose metabolism with [18F]fluorodeoxyglucose ([18F]FDG) positron emission tomography before and after the acute administration of an NMDA antagonist, MK-801 (0.5 mg/kg), in the same mGluR5 KO and WT mice. Results Between-group comparisons showed no significant differences in [18F]FDG standardized uptake values (SUVs) in brain of mGluR5 KO and WT mice at baseline, but widespread reductions in mGluR5 KO mice compared to WT mice after MK-801 administration (p < 0.05). The baseline glutamate levels did not differ significantly between the two groups. However, there were significant negative correlations between baseline prefrontal glutamate levels and regional [18F]FDG SUVs in mGluR5 KO mice (p < 0.05), but no such correlations in WT mice. Fisher’s Z-transformation analysis revealed significant between-group differences in these correlations (p < 0.05). Conclusions This is the first multimodal neuroimaging study in mGluR5 KO mice and the first report on the association between cerebral glucose metabolism and glutamate levels in living rodents. The results indicate that mGluR5 KO mice respond to NMDA antagonism with reduced cerebral glucose metabolism, suggesting that mGluR5 transmission normally moderates the net effects of NMDA receptor antagonism on neuronal activity. The negative correlation between glutamate levels and glucose metabolism in mGluR5 KO mice at baseline may suggest an unmasking of an inhibitory component of the glutamatergic regulation of neuronal energy metabolism.
Collapse
Affiliation(s)
- Yo-Han Joo
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea
| | - Yun-Kwan Kim
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea
| | - In-Gyu Choi
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea
| | - Hyeon-Jin Kim
- Department of Biomedical Sciences, Seoul National University, Seoul, Republic of Korea.,Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Young-Don Son
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea.,Department of Biomedical Engineering, College of Health Science, Gachon University, Incheon, Republic of Korea.,Gachon Advanced Institute for Health Science and Technology, Graduate School, Gachon University, Incheon, South Korea
| | - Hang-Keun Kim
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea.,Department of Biomedical Engineering, College of Health Science, Gachon University, Incheon, Republic of Korea.,Gachon Advanced Institute for Health Science and Technology, Graduate School, Gachon University, Incheon, South Korea
| | - Paul Cumming
- Institute of Nuclear Medicine, Inselspital, Bern University, Bern, Switzerland.,School of Psychology and Counselling, Queensland University of Technology, Brisbane, Australia
| | - Jong-Hoon Kim
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea. .,Gachon Advanced Institute for Health Science and Technology, Graduate School, Gachon University, Incheon, South Korea. .,Department of Psychiatry, Research Center for Psychiatry and Behavioral Sciences, Neuroscience Research Institute, Gachon University College of Medicine, Gil Medical Center, Gachon University, 1198 Guwol-dong, Namdong-gu, Incheon, 405-760, South Korea.
| |
Collapse
|
48
|
Li S, Xiong GJ, Huang N, Sheng ZH. The cross-talk of energy sensing and mitochondrial anchoring sustains synaptic efficacy by maintaining presynaptic metabolism. Nat Metab 2020; 2:1077-1095. [PMID: 33020662 PMCID: PMC7572785 DOI: 10.1038/s42255-020-00289-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 09/02/2020] [Indexed: 01/12/2023]
Abstract
Mitochondria supply ATP essential for synaptic transmission. Neurons face exceptional challenges in maintaining energy homoeostasis at synapses. Regulation of mitochondrial trafficking and anchoring is critical for neurons to meet increased energy consumption during sustained synaptic activity. However, mechanisms recruiting and retaining presynaptic mitochondria in sensing synaptic ATP levels remain elusive. Here we reveal an energy signalling axis that controls presynaptic mitochondrial maintenance. Activity-induced presynaptic energy deficits can be rescued by recruiting mitochondria through the AMP-activated protein kinase (AMPK)-p21-activated kinase (PAK) energy signalling pathway. Synaptic activity induces AMPK activation within axonal compartments and AMPK-PAK signalling triggers phosphorylation of myosin VI, which drives mitochondrial recruitment and syntaphilin-mediated anchoring on presynaptic filamentous actin. This pathway maintains presynaptic energy supply and calcium clearance during intensive synaptic activity. Disrupting this signalling cross-talk triggers local energy deficits and intracellular calcium build-up, leading to impaired synaptic efficacy during trains of stimulation and reduced recovery from synaptic depression after prolonged synaptic activity. Our study reveals a mechanistic cross-talk between energy sensing and mitochondria anchoring to maintain presynaptic metabolism, thus fine-tuning short-term synaptic plasticity and prolonged synaptic efficacy.
Collapse
Affiliation(s)
- Sunan Li
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, USA
| | - Gui-Jing Xiong
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, USA
| | - Ning Huang
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, USA
| | - Zu-Hang Sheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
49
|
Wang CM, Zhang YF, Lin ZQ, Cai YF, Fu XY, Lin ZH. Pre-extinction activation of hippocampal AMPK prevents fear renewal in mice. Pharmacol Res 2020; 161:105099. [PMID: 32739427 DOI: 10.1016/j.phrs.2020.105099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/08/2020] [Accepted: 07/23/2020] [Indexed: 01/10/2023]
Abstract
As a type of fear relapse, fear renewal compromises the efficacy of fear extinction, which serves as the laboratory analog of exposure therapy (a therapeutic strategy for anxiety disorders). Interventions aiming to prevent fear renewal would thus benefit exposure therapy. To date, it remains unknown whether central adenosine monophosphate (AMP)-activated protein kinase (AMPK) activation could produce inhibitory effects on fear renewal. Here, using pharmacological approach and virus-mediated gene overexpression technique, we demonstrated that activation of AMPK in dorsal hippocampus shortly before fear extinction training completely abolished subsequent fear renewal in male mice without affecting other types of fear relapse, including spontaneous recovery of fear and fear reinstatement. Furthermore, we also found that metformin, a first-line antidiabetic drug, was capable of preventing fear renewal in male mice by stimulating AMPK in dorsal hippocampus. Collectively, our study provides insight into the role of hippocampal AMPK in regulation of fear renewal and indicates that increasing activity of hippocampal AMPK can prevent fear renewal, thus enhancing the potency of exposure therapy.
Collapse
Affiliation(s)
- Can-Ming Wang
- Department of Pharmacy, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, China.
| | - Yi-Fan Zhang
- Department of Pharmacy, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, China
| | - Zhi-Qiang Lin
- Department of Pharmacy, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, China
| | - Yi-Feng Cai
- Department of Pharmacy, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, China
| | - Xin-Yang Fu
- Department of Pharmacy, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, China
| | - Zhi-Hang Lin
- Department of Pharmacy, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, China.
| |
Collapse
|
50
|
Ghosh Dastidar S, Das Sharma S, Chakraborty S, Chattarji S, Bhattacharya A, Muddashetty RS. Distinct regulation of bioenergetics and translation by group I mGluR and NMDAR. EMBO Rep 2020; 21:e48037. [PMID: 32351028 PMCID: PMC7271334 DOI: 10.15252/embr.201948037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/12/2020] [Accepted: 03/27/2020] [Indexed: 12/11/2022] Open
Abstract
Neuronal activity is responsible for the high energy consumption in the brain. However, the cellular mechanisms draining ATP upon the arrival of a stimulus are yet to be explored systematically at the post-synapse. Here, we provide evidence that a significant fraction of ATP is consumed upon glutamate stimulation to energize mGluR-induced protein synthesis. We find that both mGluR and NMDAR alter protein synthesis and ATP consumption with distinct kinetics at the synaptic-dendritic compartments. While mGluR activation leads to a rapid and sustained reduction in neuronal ATP levels, NMDAR activation has no immediate impact on the same. ATP consumption correlates inversely with the kinetics of protein synthesis for both receptors. We observe a persistent elevation in protein synthesis within 5 minutes of mGluR activation and a robust inhibition of the same within 2 minutes of NMDAR activation, assessed by the phosphorylation status of eEF2 and metabolic labeling. However, a delayed protein synthesis-dependent ATP expenditure ensues after 15 minutes of NMDAR stimulation. We identify a central role for AMPK in the correlation between protein synthesis and ATP consumption. AMPK is dephosphorylated and inhibited upon mGluR activation, while it is phosphorylated upon NMDAR activation. Perturbing AMPK activity disrupts receptor-specific modulations of eEF2 phosphorylation and protein synthesis. Our observations, therefore, demonstrate that the regulation of the AMPK-eEF2 signaling axis by glutamate receptors alters neuronal protein synthesis and bioenergetics.
Collapse
Affiliation(s)
- Sudhriti Ghosh Dastidar
- Institute for Stem Cell Sciences and Regenerative MedicineBangaloreIndia
- Manipal Academy of Higher EducationManipalIndia
| | - Shreya Das Sharma
- Institute for Stem Cell Sciences and Regenerative MedicineBangaloreIndia
- The University of Trans‐Disciplinary Health Sciences and TechnologyBangaloreIndia
| | - Sumita Chakraborty
- Institute for Stem Cell Sciences and Regenerative MedicineBangaloreIndia
| | - Sumantra Chattarji
- Institute for Stem Cell Sciences and Regenerative MedicineBangaloreIndia
- National Center for Biological SciencesBangaloreIndia
| | - Aditi Bhattacharya
- Institute for Stem Cell Sciences and Regenerative MedicineBangaloreIndia
| | - Ravi S Muddashetty
- Institute for Stem Cell Sciences and Regenerative MedicineBangaloreIndia
| |
Collapse
|