1
|
Borkosky SS, Peralta-Martínez R, Armella-Sierra A, Esperante SA, Lizárraga L, García-Pardo J, Ventura S, Sánchez IE, de Prat-Gay G. Experimental kinetic mechanism of P53 condensation-amyloid aggregation. Biophys J 2025:S0006-3495(25)00236-X. [PMID: 40221836 DOI: 10.1016/j.bpj.2025.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/03/2025] [Accepted: 04/09/2025] [Indexed: 04/15/2025] Open
Abstract
The tumor suppressor p53 modulates the transcription of a variety of genes, constituting a protective barrier against anomalous cellular proliferation. High-frequency "hotspot" mutations result in loss of function by the formation of amyloid-like aggregates that correlate with cancerous progression. We show that full-length p53 undergoes spontaneous homotypic condensation at submicromolar concentrations and in the absence of crowders to yield dynamic coacervates that are stoichiometrically dissolved by DNA. These coacervates fuse and evolve into hydrogel-like clusters with strong thioflavin T binding capacity, which further evolve into fibrillar species with a clearcut branching growth pattern. The amyloid-like coacervates can be rescued by the human papillomavirus master regulator E2 protein to yield large regular droplets. Furthermore, we kinetically dissected an overall condensation mechanism, which consists of a nucleation-growth process by the sequential addition of p53 tetramers, leading to discretely sized and monodisperse early condensates followed by coalescence into bead-like coacervates that slowly evolve to the fibrillar species. Our results suggest strong similarities to condensation-to-amyloid transitions observed in neurological aggregopathies. Mechanistic insights uncover novel key early and intermediate stages of condensation that can be targeted for p53 rescuing drug discovery.
Collapse
Affiliation(s)
- Silvia S Borkosky
- Laboratorio de Estructura-Función e Ingeniería de Proteínas, Fundación Instituto Leloir- Instituto de Investigaciones Bioquímicas de Buenos Aires (IIB-BA), Buenos Aires, Argentina
| | - Ramón Peralta-Martínez
- Laboratorio de Estructura-Función e Ingeniería de Proteínas, Fundación Instituto Leloir- Instituto de Investigaciones Bioquímicas de Buenos Aires (IIB-BA), Buenos Aires, Argentina
| | - Alicia Armella-Sierra
- Laboratorio de Estructura-Función e Ingeniería de Proteínas, Fundación Instituto Leloir- Instituto de Investigaciones Bioquímicas de Buenos Aires (IIB-BA), Buenos Aires, Argentina
| | - Sebastián A Esperante
- Centro de Rediseño de Proteínas (CRIP), CONICET, 25 de Mayo y Francia (1650), Universidad Nacional de San Martin (UNSAM), Buenos Aires, Argentina
| | - Leonardo Lizárraga
- Centro de Investigaciones en Bionanociencias (CIBION), Buenos Aires, Argentina
| | - Javier García-Pardo
- Institut de Biotecnologia i de Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ignacio E Sánchez
- Laboratorio de Fisiología de Proteínas, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN)-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gonzalo de Prat-Gay
- Laboratorio de Estructura-Función e Ingeniería de Proteínas, Fundación Instituto Leloir- Instituto de Investigaciones Bioquímicas de Buenos Aires (IIB-BA), Buenos Aires, Argentina.
| |
Collapse
|
2
|
Yang DS, Tilson A, Sherman MB, Varadarajan N, Vekilov PG. Mesoscopic p53-rich clusters represent a new class of protein condensates. BIOPHYSICS REVIEWS 2025; 6:011308. [PMID: 40124402 PMCID: PMC11928095 DOI: 10.1063/5.0243722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 02/24/2025] [Indexed: 03/25/2025]
Abstract
The protein p53 is an important tumor suppressor, which transforms, after mutation, into a potent cancer promotor. Both mutant and wild-type p53 form amyloid fibrils, and fibrillization is considered one of the pathways of the mutants' oncogenicity. p53 incorporates structured domains, essential to its function, and extensive disordered regions. Here, we address the roles of the ordered (where the vast majority of oncogenic mutations localize) and disordered (implicated in aggregation and condensation of numerous other proteins) domains in p53 aggregation. We show that in the cytosol of model breast cancer cells, the mutant p53 R248Q reproducibly forms fluid aggregates with narrow size distribution centered at approximately 40 nm. Similar aggregates were observed in experiments with purified p53 R248Q, which identified the aggregates as mesoscopic protein-rich clusters, a unique protein condensate. Direct TEM imaging demonstrates that the mesoscopic clusters host and facilitate the nucleation of amyloid fibrils. We show that in solutions of stand-alone ordered domain of WT p53 clusters form and support fibril nucleation, whereas the disordered N-terminus domain forms common dense liquid and no fibrils. These results highlight two unique features of the mesoscopic protein-rich clusters: their role in amyloid fibrillization that may have implications for the oncogenicity of p53 mutants and the defining role of the ordered protein domains in their formation. In a broader context, these findings demonstrate that mutations in the DBD domain, which underlie the loss of cancer-protective transcription function, are also responsible for fibrillization and, thus, the gain of oncogenic function of p53 mutants.
Collapse
Affiliation(s)
- David S. Yang
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, 4226 M.L. King Blvd., Houston, Texas 77204-4004, USA
| | - Alexander Tilson
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, 4226 M.L. King Blvd., Houston, Texas 77204-4004, USA
| | - Michael B. Sherman
- Department of Biochemistry and Molecular Biology and Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1055, USA
| | - Navin Varadarajan
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, 4226 M.L. King Blvd., Houston, Texas 77204-4004, USA
| | | |
Collapse
|
3
|
Miao J, Chong S. Roles of intrinsically disordered protein regions in transcriptional regulation and genome organization. Curr Opin Genet Dev 2025; 90:102285. [PMID: 39631290 DOI: 10.1016/j.gde.2024.102285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/31/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024]
Abstract
Eukaryotic transcription is a complex process regulated by transcription factors (TFs), coactivators, and RNA polymerase machineries, many of which contain sizable intrinsically disordered regions (IDRs). Many TFs activate transcription through multivalent IDR-IDR interactions. Optimal levels of such multivalent interactions associated with appropriate IDR concentrations, interaction strengths, or interaction valencies are required for effective transcriptional activation. The interaction selectivity of IDRs is crucial for the precise regulation of transcription, and this selectivity is dependent on the IDR sequences. Furthermore, IDRs modulate gene expression by bringing chromatin sites together to form transcriptionally active chromatin hubs. Mutations in IDRs may cause dysregulation of their multivalent interactions, contributing to diseases, including cancers and neurodegenerative disorders. Understanding the effects of IDR-related mutations on transcription control and genome organization opens new opportunities for developing targeted therapeutic strategies. In this review, we discuss recent reports documenting important functions of IDRs in transcriptional regulation and their implications for human health and disease.
Collapse
Affiliation(s)
- Jiapei Miao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Shasha Chong
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
4
|
Datta D, Navalkar A, Sakunthala A, Paul A, Patel K, Masurkar S, Gadhe L, Manna S, Bhattacharyya A, Sengupta S, Poudyal M, Devi J, Sawner AS, Kadu P, Shaw R, Pandey S, Mukherjee S, Gahlot N, Sengupta K, Maji SK. Nucleo-cytoplasmic environment modulates spatiotemporal p53 phase separation. SCIENCE ADVANCES 2024; 10:eads0427. [PMID: 39661689 PMCID: PMC11633762 DOI: 10.1126/sciadv.ads0427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/07/2024] [Indexed: 12/13/2024]
Abstract
Liquid-liquid phase separation of various transcription factors into biomolecular condensates plays an essential role in gene regulation. Here, using cellular models and in vitro studies, we show the spatiotemporal formation and material properties of p53 condensates that might dictate its function. In particular, p53 forms liquid-like condensates in the nucleus of cells, which can bind to DNA and perform transcriptional activity. However, cancer-associated mutations promote misfolding and partially rigidify the p53 condensates with impaired DNA binding ability. Irrespective of wild-type and mutant forms, the partitioning of p53 into cytoplasm leads to the condensate formation, which subsequently undergoes rapid solidification. In vitro studies show that abundant nuclear components such as RNA and nonspecific DNA promote multicomponent phase separation of the p53 core domain and maintain their liquid-like property, whereas specific DNA promotes its dissolution into tetrameric functional p53. This work provides mechanistic insights into how the life cycle and DNA binding properties of p53 might be regulated by phase separation.
Collapse
Affiliation(s)
- Debalina Datta
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Ambuja Navalkar
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Arunima Sakunthala
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
- Sunita Sanghi Centre of Aging and Neurodegenerative Diseases, IIT Bombay, Powai, Mumbai 400076, India
| | - Ajoy Paul
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Komal Patel
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
- Sunita Sanghi Centre of Aging and Neurodegenerative Diseases, IIT Bombay, Powai, Mumbai 400076, India
| | - Shalaka Masurkar
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Laxmikant Gadhe
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
- Sunita Sanghi Centre of Aging and Neurodegenerative Diseases, IIT Bombay, Powai, Mumbai 400076, India
| | - Shouvik Manna
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Arpita Bhattacharyya
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Shinjinee Sengupta
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Manisha Poudyal
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Jyoti Devi
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Ajay Singh Sawner
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Pradeep Kadu
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Ranjit Shaw
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Satyaprakash Pandey
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Semanti Mukherjee
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Nitisha Gahlot
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Kundan Sengupta
- Chromosome Biology Lab, Indian Institute of Science Education and Research, Pune, India
| | - Samir K. Maji
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
- Sunita Sanghi Centre of Aging and Neurodegenerative Diseases, IIT Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
5
|
Petronilho EC, de Andrade GC, de Sousa GDS, Almeida FP, Mota MF, Gomes AVDS, Pinheiro CHS, da Silva MC, Arruda HRS, Marques MA, Vieira TCRG, de Oliveira GAP, Silva JL. Oncogenic p53 triggers amyloid aggregation of p63 and p73 liquid droplets. Commun Chem 2024; 7:207. [PMID: 39284933 PMCID: PMC11405828 DOI: 10.1038/s42004-024-01289-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/29/2024] [Indexed: 09/20/2024] Open
Abstract
P53 Phase separation is crucial towards amyloid aggregation and p63 and p73 have enhanced expression in tumors. This study examines the phase behaviors of p53, p63, and p73. Here we show that unlike the DNA-binding domain of p53 (p53C), the p63C and p73C undergo phase separation, but do not form amyloids under physiological temperatures. Wild-type and mutant p53C form droplets at 4°C and aggregates at 37 °C with amyloid properties. Mutant p53C promotes amyloid-like states in p63C and p73C, recruiting them into membraneless organelles. Amyloid conversion is supported by thioflavin T and Congo red binding, increased light scattering, and circular dichroism. Full-length mutant p53 and p63C (or p73C) co-transfection shows reduced fluorescence recovery after photobleaching. Heparin inhibits the prion-like aggregation of p63C and p73C induced by p53C. These findings highlight the role of p53 in initiating amyloid aggregation in p63 and p73, opening avenues for targeting prion-like conversion in cancer therapy.
Collapse
Affiliation(s)
- Elaine C Petronilho
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Guilherme C de Andrade
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Gileno Dos S de Sousa
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Fernando P Almeida
- National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Michelle F Mota
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ana Vitória Dos S Gomes
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Carlos Henrique S Pinheiro
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Mylena C da Silva
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Hiam R S Arruda
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Mayra A Marques
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Tuane C R G Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Guilherme A P de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Jerson L Silva
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
- National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
6
|
Yerragunta M, Tiwari A, Chakrabarti R, Rimer JD, Kahr B, Vekilov PG. A dual growth mode unique for organic crystals relies on mesoscopic liquid precursors. Commun Chem 2024; 7:190. [PMID: 39198705 PMCID: PMC11358147 DOI: 10.1038/s42004-024-01275-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
Organic solvents host the synthesis of high-value crystals used as pharmaceuticals and optical devices, among other applications. A knowledge gap persists on how replacing the hydrogen bonds and polar attraction that dominate aqueous environments with the weaker van der Waals forces affects the growth mechanism, including its defining feature, whether crystals grow classically or nonclassically. Here we demonstrate a rare dual growth mode of etioporphyrin I crystals, enabled by liquid precursors that associate with crystal surfaces to generate stacks of layers, which then grow laterally by incorporating solute molecules. Our findings reveal the precursors as mesoscopic solute-rich clusters, a unique phase favored by weak bonds such as those between organic solutes. The lateral spreading of the precursor-initiated stacks of layers crucially relies on abundant solute supply directly from the solution, bypassing diffusion along the crystal surface; the direct incorporation pathway may, again, be unique to organic solvents. Clusters that evolve to amorphous particles do not seamlessly integrate into crystal lattices. Crystals growing fast and mostly nonclassically at high supersaturations are not excessively strained. Our findings demonstrate that the weak interactions typical of organic systems promote nonclassical growth modes by supporting liquid precursors and enabling the spreading of multilayer stacks.
Collapse
Affiliation(s)
- Manasa Yerragunta
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, 4226 Martin Luther King Blvd., Houston, TX, 77204-4004, USA
- Welch Center for Advanced Bioactive Materials Crystallization, University of Houston, 4226 M.L. King Blvd., Houston, TX, 77204-4004, USA
| | - Akash Tiwari
- Department of Chemistry, Molecular Design Institute, New York University, New York, NY, 10003, USA
| | - Rajshree Chakrabarti
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, 4226 Martin Luther King Blvd., Houston, TX, 77204-4004, USA
| | - Jeffrey D Rimer
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, 4226 Martin Luther King Blvd., Houston, TX, 77204-4004, USA
- Welch Center for Advanced Bioactive Materials Crystallization, University of Houston, 4226 M.L. King Blvd., Houston, TX, 77204-4004, USA
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Houston, TX, 77204-5003, USA
| | - Bart Kahr
- Department of Chemistry, Molecular Design Institute, New York University, New York, NY, 10003, USA
| | - Peter G Vekilov
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, 4226 Martin Luther King Blvd., Houston, TX, 77204-4004, USA.
- Welch Center for Advanced Bioactive Materials Crystallization, University of Houston, 4226 M.L. King Blvd., Houston, TX, 77204-4004, USA.
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Houston, TX, 77204-5003, USA.
| |
Collapse
|
7
|
Yu Y, Liu Q, Zeng J, Tan Y, Tang Y, Wei G. Multiscale simulations reveal the driving forces of p53C phase separation accelerated by oncogenic mutations. Chem Sci 2024; 15:12806-12818. [PMID: 39148776 PMCID: PMC11323318 DOI: 10.1039/d4sc03645j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/07/2024] [Indexed: 08/17/2024] Open
Abstract
Liquid-Liquid phase separation (LLPS) of p53 to form liquid condensates has been implicated in cellular functions and dysfunctions. The p53 condensates may serve as amyloid fibril precursors to initiate p53 aggregation, which is associated with oncogenic gain-of-function and various human cancers. M237I and R249S mutations located in p53 core domain (p53C) have been detected respectively in glioblastomas and hepatocellular carcinoma. Interestingly, these p53C mutants can also undergo LLPS and liquid-to-solid phase transition, which are faster than wild type p53C. However, the underlying molecular basis governing the accelerated LLPS and liquid-to-solid transition of p53C remain poorly understood. Herein, we explore the M237I/R249S mutation-induced structural alterations and phase separation behavior of p53C by employing multiscale molecular dynamics simulations. All-atom simulations revealed conformational disruptions in the zinc-binding domain of the M237I mutant and in both loop3 and zinc-binding domain of the R249S mutant. The two mutations enhance hydrophobic exposure of those regions and attenuate intramolecular interactions, which may hasten the LLPS and aggregation of p53C. Martini 3 coarse-grained simulations demonstrated spontaneous phase separation of p53C and accelerated effects of M237I/R249S mutations on the phase separation of p53C. Importantly, we find that the regions with enhanced intermolecular interactions observed in coarse-grained simulations coincide with the disrupted regions with weakened intramolecular interactions observed in all-atom simulations, indicating that M237I/R249S mutation-induced local structural disruptions expedite the LLPS of p53C. This study unveils the molecular mechanisms underlying the two cancer-associated mutation-accelerated LLPS and aggregation of p53C, providing avenues for anticancer therapy by targeting the phase separation process.
Collapse
Affiliation(s)
- Yawei Yu
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University Shanghai 200438 People's Republic of China
| | - Qian Liu
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University Shanghai 200438 People's Republic of China
| | - Jiyuan Zeng
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University Shanghai 200438 People's Republic of China
| | - Yuan Tan
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University Shanghai 200438 People's Republic of China
| | - Yiming Tang
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University Shanghai 200438 People's Republic of China
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University Shanghai 200438 People's Republic of China
| |
Collapse
|
8
|
Niu F, Hu X, Ritzoulis C, Tu W, Zhao X, Xia Y, Lu Y, Yin J, Pan W. Does arginine aggregate formation in aqueous solutions follow a two-step mechanism? Phys Chem Chem Phys 2024; 26:21240-21248. [PMID: 39073462 DOI: 10.1039/d4cp02119c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The formation of aggregates was studied in arginine aqueous solutions using light scattering. The main driving force for aggregate formation is hydrogen bonding between the arginine (Arg) amino acids, which is partially verified using density functional theory calculations. The measurement of energy loss during this process, coupled with Cryo-EM morphology data, indicates that these aggregates are in the solid state. The aggregation occurs in two steps, with a liquid intermediate stage. The investigation of the effect of pH and solute concentration on aggregate formation for other amino acid aqueous solutions verifies that aggregate formation is amino-acid specific, while small-sized clusters formed by weak interactions lead to large-sized aggregation. The water structure around amino acid molecules sheds light on the prediction of their aggregate formation. Homochirality is observed in the aggregates; its existence sheds light on the origin of protein homochirality.
Collapse
Affiliation(s)
- Fuge Niu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
| | - Xinyu Hu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
| | - Christos Ritzoulis
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
- Department of Food Science and Technology, International Hellenic University, Thessaloniki 57400, Greece
| | - Weiwei Tu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
| | - Xurui Zhao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yuanzhi Xia
- College of Chemistry and Materials Engineering, Wenzhou University, Chashan University town, Wenzhou, 325035, China
| | - Yinghua Lu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Junfeng Yin
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Weichun Pan
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
| |
Collapse
|
9
|
Wang F, Zhang Y. Physiology and pharmacological targeting of phase separation. J Biomed Sci 2024; 31:11. [PMID: 38245749 PMCID: PMC10800077 DOI: 10.1186/s12929-024-00993-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024] Open
Abstract
Liquid-liquid phase separation (LLPS) in biology describes a process by which proteins form membraneless condensates within a cellular compartment when conditions are met, including the concentration and posttranslational modifications of the protein components, the condition of the aqueous solution (pH, ionic strength, pressure, and temperature), and the existence of assisting factors (such as RNAs or other proteins). In these supramolecular liquid droplet-like inclusion bodies, molecules are held together through weak intermolecular and/or intramolecular interactions. With the aid of LLPS, cells can assemble functional sub-units within a given cellular compartment by enriching or excluding specific factors, modulating cellular function, and rapidly responding to environmental or physiological cues. Hence, LLPS is emerging as an important means to regulate biology and physiology. Yet, excessive inclusion body formation by, for instance, higher-than-normal concentrations or mutant forms of the protein components could result in the conversion from dynamic liquid condensates into more rigid gel- or solid-like aggregates, leading to the disruption of the organelle's function followed by the development of human disorders like neurodegenerative diseases. In summary, well-controlled formation and de-formation of LLPS is critical for normal biology and physiology from single cells to individual organisms, whereas abnormal LLPS is involved in the pathophysiology of human diseases. In turn, targeting these aggregates or their formation represents a promising approach in treating diseases driven by abnormal LLPS including those neurodegenerative diseases that lack effective therapies.
Collapse
Affiliation(s)
- Fangfang Wang
- Department of Pharmacology, School of Medicine, Case Comprehensive Cancer Center, Case Western Reserve University, 2109 Adelbert Road, W309A, Cleveland, OH, 44106, USA
| | - Youwei Zhang
- Department of Pharmacology, School of Medicine, Case Comprehensive Cancer Center, Case Western Reserve University, 2109 Adelbert Road, W309A, Cleveland, OH, 44106, USA.
| |
Collapse
|
10
|
Poudyal M, Patel K, Gadhe L, Sawner AS, Kadu P, Datta D, Mukherjee S, Ray S, Navalkar A, Maiti S, Chatterjee D, Devi J, Bera R, Gahlot N, Joseph J, Padinhateeri R, Maji SK. Intermolecular interactions underlie protein/peptide phase separation irrespective of sequence and structure at crowded milieu. Nat Commun 2023; 14:6199. [PMID: 37794023 PMCID: PMC10550955 DOI: 10.1038/s41467-023-41864-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 09/21/2023] [Indexed: 10/06/2023] Open
Abstract
Liquid-liquid phase separation (LLPS) has emerged as a crucial biological phenomenon underlying the sequestration of macromolecules (such as proteins and nucleic acids) into membraneless organelles in cells. Unstructured and intrinsically disordered domains are known to facilitate multivalent interactions driving protein LLPS. We hypothesized that LLPS could be an intrinsic property of proteins/polypeptides but with distinct phase regimes irrespective of their sequence and structure. To examine this, we studied many (a total of 23) proteins/polypeptides with different structures and sequences for LLPS study in the presence and absence of molecular crowder, polyethylene glycol (PEG-8000). We showed that all proteins and even highly charged polypeptides (under study) can undergo liquid condensate formation, however with different phase regimes and intermolecular interactions. We further demonstrated that electrostatic, hydrophobic, and H-bonding or a combination of such intermolecular interactions plays a crucial role in individual protein/peptide LLPS.
Collapse
Affiliation(s)
- Manisha Poudyal
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Komal Patel
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
- Sunita Sanghi Centre of Aging and Neurodegenerative Diseases, IIT Bombay, Powai, Mumbai, 400076, India
| | - Laxmikant Gadhe
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Ajay Singh Sawner
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Pradeep Kadu
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Debalina Datta
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Semanti Mukherjee
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Soumik Ray
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Ambuja Navalkar
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Siddhartha Maiti
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
- Department of Bioengineering, VIT Bhopal University, Bhopal-Indore Highway, Kothrikalan, Sehore, Madhya Pradesh, 466114, India
| | - Debdeep Chatterjee
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Jyoti Devi
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Riya Bera
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Nitisha Gahlot
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Jennifer Joseph
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Ranjith Padinhateeri
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Samir K Maji
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India.
- Sunita Sanghi Centre of Aging and Neurodegenerative Diseases, IIT Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|
11
|
Toledo PL, Gianotti AR, Vazquez DS, Ermácora MR. Protein nanocondensates: the next frontier. Biophys Rev 2023; 15:515-530. [PMID: 37681092 PMCID: PMC10480383 DOI: 10.1007/s12551-023-01105-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/21/2023] [Indexed: 09/09/2023] Open
Abstract
Over the past decade, myriads of studies have highlighted the central role of protein condensation in subcellular compartmentalization and spatiotemporal organization of biological processes. Conceptually, protein condensation stands at the highest level in protein structure hierarchy, accounting for the assembly of bodies ranging from thousands to billions of molecules and for densities ranging from dense liquids to solid materials. In size, protein condensates range from nanocondensates of hundreds of nanometers (mesoscopic clusters) to phase-separated micron-sized condensates. In this review, we focus on protein nanocondensation, a process that can occur in subsaturated solutions and can nucleate dense liquid phases, crystals, amorphous aggregates, and fibers. We discuss the nanocondensation of proteins in the light of general physical principles and examine the biophysical properties of several outstanding examples of nanocondensation. We conclude that protein nanocondensation cannot be fully explained by the conceptual framework of micron-scale biomolecular condensation. The evolution of nanocondensates through changes in density and order is currently under intense investigation, and this should lead to the development of a general theoretical framework, capable of encompassing the full range of sizes and densities found in protein condensates.
Collapse
Affiliation(s)
- Pamela L. Toledo
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, 1876, Bernal, Buenos Aires, Argentina
- Grupo de Biología Estructural y Biotecnología, IMBICE, CONICET, Universidad Nacional de Quilmes, Bernal, Argentina
| | - Alejo R. Gianotti
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, 1876, Bernal, Buenos Aires, Argentina
- Grupo de Biología Estructural y Biotecnología, IMBICE, CONICET, Universidad Nacional de Quilmes, Bernal, Argentina
| | - Diego S. Vazquez
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, 1876, Bernal, Buenos Aires, Argentina
- Grupo de Biología Estructural y Biotecnología, IMBICE, CONICET, Universidad Nacional de Quilmes, Bernal, Argentina
| | - Mario R. Ermácora
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, 1876, Bernal, Buenos Aires, Argentina
- Grupo de Biología Estructural y Biotecnología, IMBICE, CONICET, Universidad Nacional de Quilmes, Bernal, Argentina
| |
Collapse
|
12
|
Silva JL, Foguel D, Ferreira VF, Vieira TCRG, Marques MA, Ferretti GDS, Outeiro TF, Cordeiro Y, de Oliveira GAP. Targeting Biomolecular Condensation and Protein Aggregation against Cancer. Chem Rev 2023. [PMID: 37379327 DOI: 10.1021/acs.chemrev.3c00131] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Biomolecular condensates, membrane-less entities arising from liquid-liquid phase separation, hold dichotomous roles in health and disease. Alongside their physiological functions, these condensates can transition to a solid phase, producing amyloid-like structures implicated in degenerative diseases and cancer. This review thoroughly examines the dual nature of biomolecular condensates, spotlighting their role in cancer, particularly concerning the p53 tumor suppressor. Given that over half of the malignant tumors possess mutations in the TP53 gene, this topic carries profound implications for future cancer treatment strategies. Notably, p53 not only misfolds but also forms biomolecular condensates and aggregates analogous to other protein-based amyloids, thus significantly influencing cancer progression through loss-of-function, negative dominance, and gain-of-function pathways. The exact molecular mechanisms underpinning the gain-of-function in mutant p53 remain elusive. However, cofactors like nucleic acids and glycosaminoglycans are known to be critical players in this intersection between diseases. Importantly, we reveal that molecules capable of inhibiting mutant p53 aggregation can curtail tumor proliferation and migration. Hence, targeting phase transitions to solid-like amorphous and amyloid-like states of mutant p53 offers a promising direction for innovative cancer diagnostics and therapeutics.
Collapse
Affiliation(s)
- Jerson L Silva
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Debora Foguel
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Vitor F Ferreira
- Faculty of Pharmacy, Fluminense Federal University (UFF), Rio de Janeiro, RJ 21941-902, Brazil
| | - Tuane C R G Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Mayra A Marques
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Giulia D S Ferretti
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center, 37075 Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne NE2 4HH, U.K
- Scientific employee with an honorary contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 37075 Göttingen, Germany
| | - Yraima Cordeiro
- Faculty of Pharmacy, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Guilherme A P de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| |
Collapse
|
13
|
Shil S, Tsuruta M, Kawauchi K, Miyoshi D. Biomolecular Liquid-Liquid Phase Separation for Biotechnology. BIOTECH 2023; 12:26. [PMID: 37092470 PMCID: PMC10123627 DOI: 10.3390/biotech12020026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
The liquid-liquid phase separation (LLPS) of biomolecules induces condensed assemblies called liquid droplets or membrane-less organelles. In contrast to organelles with lipid membrane barriers, the liquid droplets induced by LLPS do not have distinct barriers (lipid bilayer). Biomolecular LLPS in cells has attracted considerable attention in broad research fields from cellular biology to soft matter physics. The physical and chemical properties of LLPS exert a variety of functions in living cells: activating and deactivating biomolecules involving enzymes; controlling the localization, condensation, and concentration of biomolecules; the filtration and purification of biomolecules; and sensing environmental factors for fast, adaptive, and reversible responses. The versatility of LLPS plays an essential role in various biological processes, such as controlling the central dogma and the onset mechanism of pathological diseases. Moreover, biomolecular LLPS could be critical for developing new biotechnologies such as the condensation, purification, and activation of a series of biomolecules. In this review article, we introduce some fundamental aspects and recent progress of biomolecular LLPS in living cells and test tubes. Then, we discuss applications of biomolecular LLPS toward biotechnologies.
Collapse
Affiliation(s)
| | | | | | - Daisuke Miyoshi
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Hyogo, Japan
| |
Collapse
|
14
|
Sun X, Chintakunta PK, Badachhape AA, Bhavane R, Lee H, Yang DS, Starosolski Z, Ghaghada KB, Vekilov PG, Annapragada AV, Tanifum EA. Rational Design of a Self-Assembling High Performance Organic Nanofluorophore for Intraoperative NIR-II Image-Guided Tumor Resection of Oral Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206435. [PMID: 36721029 PMCID: PMC10074073 DOI: 10.1002/advs.202206435] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 12/30/2022] [Indexed: 06/18/2023]
Abstract
The first line of treatment for most solid tumors is surgical resection of the primary tumor with adequate negative margins. Incomplete tumor resections with positive margins account for over 75% of local recurrences and the development of distant metastases. In cases of oral cavity squamous cell carcinoma (OSCC), the rate of successful tumor removal with adequate margins is just 50-75%. Advanced real-time imaging methods that improve the detection of tumor margins can help improve success rates,overall safety, and reduce the cost. Fluorescence imaging in the second near-infrared (NIR-II) window has the potential to revolutionize the field due to its high spatial resolution, low background signal, and deep tissue penetration properties, but NIR-II dyes with adequate in vivo performance and safety profiles are scarce. A novel NIR-II fluorophore, XW-03-66, with a fluorescence quantum yield (QY) of 6.0% in aqueous media is reported. XW-03-66 self-assembles into nanoparticles (≈80 nm) and has a systemic circulation half-life (t1/2 ) of 11.3 h. In mouse models of human papillomavirus (HPV)+ and HPV- OSCC, XW-03-66 outperformed indocyanine green (ICG), a clinically available NIR dye, and enabled intraoperative NIR-II image-guided resection of the tumor and adjacent draining lymph node with negative margins. In vitro and in vivo toxicity assessments revealed minimal safety concerns for in vivo applications.
Collapse
Affiliation(s)
- Xianwei Sun
- Department of RadiologyBaylor College of MedicineHoustonTX77030USA
| | - Praveen Kumar Chintakunta
- Department of RadiologyBaylor College of MedicineHoustonTX77030USA
- Present address:
Sai Life Sciences LtdTurakapallyTelanganaIndia
| | | | - Rohan Bhavane
- Department of RadiologyBaylor College of MedicineHoustonTX77030USA
- Department of RadiologyTexas Children's HospitalHoustonTX77030USA
| | - Huan‐Jui Lee
- Department of Chemical and Biomolecular EngineeringUniversity of HoustonHoustonTX77204USA
| | - David S. Yang
- Department of Chemical and Biomolecular EngineeringUniversity of HoustonHoustonTX77204USA
| | - Zbigniew Starosolski
- Department of RadiologyBaylor College of MedicineHoustonTX77030USA
- Department of RadiologyTexas Children's HospitalHoustonTX77030USA
| | - Ketan B. Ghaghada
- Department of RadiologyBaylor College of MedicineHoustonTX77030USA
- Department of RadiologyTexas Children's HospitalHoustonTX77030USA
| | - Peter G. Vekilov
- Department of Chemical and Biomolecular EngineeringUniversity of HoustonHoustonTX77204USA
- Department of ChemistryUniversity of HoustonHoustonTX77204USA
| | - Ananth V. Annapragada
- Department of RadiologyBaylor College of MedicineHoustonTX77030USA
- Department of RadiologyTexas Children's HospitalHoustonTX77030USA
| | - Eric A. Tanifum
- Department of RadiologyBaylor College of MedicineHoustonTX77030USA
- Department of RadiologyTexas Children's HospitalHoustonTX77030USA
| |
Collapse
|
15
|
Chen Q, Wu Y, Dai Z, Zhang Z, Yang X. Phosphorylation and specific DNA improved the incorporation ability of p53 into functional condensates. Int J Biol Macromol 2023; 230:123221. [PMID: 36634798 DOI: 10.1016/j.ijbiomac.2023.123221] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/26/2022] [Accepted: 01/07/2023] [Indexed: 01/11/2023]
Abstract
The transcription factor p53 acted as a critical tumor suppressor by activating the expression of various target genes to regulate diverse cellular responses. The phosphorylation of p53 influenced the binding of p53 to promotor-specific DNA and the choice of cell fate. In this study, we found that full-length wild-type p53 and pol II CTD could form heterotypic phase separation condensates in vitro. The heterotypic condensates of p53 and pol II CTD were mediated by electrostatic and hydrophobic interactions between pol II CTD and multiple domains of p53. The mobility of heterotypic p53 and pol II CTD droplets was significantly higher than that of p53 droplet. The phosphorylation promoted p53 to be recruited into pol II CTD droplets and transcription condensates. The specific DNA could further enhance the incorporation ability of p53 into functional condensates. Therefore, we proposed that the p53 droplet might be in a mediate state, the mutations resulting in p53 mutants with gain-of-function impelled the aggregate of p53, while the phosphorylation promoted p53 to be recruited into functional condensates as a client molecule to exert its function. This study might provide insights into the regulation mechanism that the phosphorylation and nuclei acid affected the phase behavior of p53.
Collapse
Affiliation(s)
- Qunyang Chen
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong Province 510006, PR China
| | - Yiping Wu
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong Province 510006, PR China
| | - Zhuojun Dai
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong Province 510006, PR China
| | - Zhuqing Zhang
- College of life sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiaorong Yang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong Province 510006, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China.
| |
Collapse
|
16
|
Löffler T, Krüger A, Zirak P, Winterhalder MJ, Müller AL, Fischbach A, Mangerich A, Zumbusch A. Influence of chain length and branching on poly(ADP-ribose)-protein interactions. Nucleic Acids Res 2023; 51:536-552. [PMID: 36625274 PMCID: PMC9881148 DOI: 10.1093/nar/gkac1235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/16/2022] [Accepted: 12/10/2022] [Indexed: 01/11/2023] Open
Abstract
Hundreds of proteins interact with poly(ADP-ribose) (PAR) via multiple PAR interaction motifs, thereby regulating their physico-chemical properties, sub-cellular localizations, enzymatic activities, or protein stability. Here, we present a targeted approach based on fluorescence correlation spectroscopy (FCS) to characterize potential structure-specific interactions of PAR molecules of defined chain length and branching with three prime PAR-binding proteins, the tumor suppressor protein p53, histone H1, and the histone chaperone APLF. Our study reveals complex and structure-specific PAR-protein interactions. Quantitative Kd values were determined and binding affinities for all three proteins were shown to be in the nanomolar range. We report PAR chain length dependent binding of p53 and H1, yet chain length independent binding of APLF. For all three PAR binders, we found a preference for linear over hyperbranched PAR. Importantly, protein- and PAR-structure-specific binding modes were revealed. Thus, while the H1-PAR interaction occurred largely on a bi-molecular 1:1 basis, p53-and potentially also APLF-can form complex multivalent PAR-protein structures. In conclusion, our study gives detailed and quantitative insight into PAR-protein interactions in a solution-based setting at near physiological buffer conditions. The results support the notion of protein and PAR-structure-specific binding modes that have evolved to fit the purpose of the respective biochemical functions and biological contexts.
Collapse
Affiliation(s)
| | | | - Peyman Zirak
- Department of Chemistry, Universität Konstanz, Konstanz D-78457, Germany
| | | | - Anna-Lena Müller
- Department of Chemistry, Universität Konstanz, Konstanz D-78457, Germany
| | - Arthur Fischbach
- Department of Biology, Universität Konstanz, Konstanz D-78457, Germany
| | - Aswin Mangerich
- To whom correspondence should be addressed. Tel: +49 33200 88 5301;
| | - Andreas Zumbusch
- Correspondence may also be addressed to Andreas Zumbusch. Tel: +49 7531 882027;
| |
Collapse
|
17
|
The chameleonic behavior of p53 in health and disease: the transition from a client to an aberrant condensate scaffold in cancer. Essays Biochem 2022; 66:1023-1033. [DOI: 10.1042/ebc20220064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/10/2022]
Abstract
Abstract
In 1972, the Weber statement, “The multiplicity of interactions and the variety of effects that follow from them show that multimer proteins are unlikely to be limited to a minimal number of allowed conformations,” first addressed the dynamic nature of proteins. This idea serves as a foundation for understanding why several macromolecules, such as p53, exhibit the properties of a molecular chameleon. Functionally competent states comprise a myriad of p53 three-dimensional arrangements depending on the stimuli. For instance, the interaction of p53 with nuclear components could induce liquid–liquid phase separation (LLPS) and the formation of membraneless organelles. The functional or deleterious role of p53 in liquid droplets is still unclear. Functional aspects display p53 interconverting between droplets and tetramer with its functional abilities maintained. In contrast, the aberrant phase separation is likely to fuel the aggregation path, usually associated with the onset and progression of age-related neurodegenerative diseases and cancer. Here, we gathered the most relevant aspects that lead p53 to phase separation and the resulting structural effects, attempting to understand p53’s functional and disease-relevant processes. Aberrant phase separation and aggregation of mutant p53 have become important therapeutic targets against cancer.
Collapse
|
18
|
Mafimoghaddam S, Xu Y, Sherman MB, Orlova EV, Karki P, Orman MA, Vekilov PG. Suppression of amyloid-β fibril growth by drug-engineered polymorph transformation. J Biol Chem 2022; 298:102662. [PMID: 36334629 PMCID: PMC9720346 DOI: 10.1016/j.jbc.2022.102662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Fibrillization of the protein amyloid β is assumed to trigger Alzheimer's pathology. Approaches that target amyloid plaques, however, have garnered limited clinical success, and their failures may relate to the scarce understanding of the impact of potential drugs on the intertwined stages of fibrillization. Here, we demonstrate that bexarotene, a T-cell lymphoma medication with known antiamyloid activity both in vitro and in vivo, suppresses amyloid fibrillization by promoting an alternative fibril structure. We employ time-resolved in situ atomic force microscopy to quantify the kinetics of growth of individual fibrils and supplement it with structure characterization by cryo-EM. We show that fibrils with structure engineered by the drug nucleate and grow substantially slower than "normal" fibrils; remarkably, growth remains stunted even in drug-free solutions. We find that the suppression of fibril growth by bexarotene is not because of the drug binding to the fibril tips or to the peptides in the solution. Kinetic analyses attribute the slow growth of drug-enforced fibril polymorph to the distinctive dynamics of peptide chain association to their tips. As an additional benefit, the bexarotene fibrils kill primary rat hippocampal neurons less efficiently than normal fibrils. In conclusion, the suggested drug-driven polymorph transformation presents a mode of action to irreversibly suppress toxic aggregates not only in Alzheimer's but also potentially in myriad diverse pathologies that originate with protein condensation.
Collapse
Affiliation(s)
- Sima Mafimoghaddam
- William A. Brookshire Department of Chemical & Biomolecular Engineering, University of Houston, Houston, Texas, USA
| | - Yuechuan Xu
- William A. Brookshire Department of Chemical & Biomolecular Engineering, University of Houston, Houston, Texas, USA
| | - Michael B. Sherman
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Elena V. Orlova
- Department of Biological Sciences, Institute for Structural and Molecular Biology, Birkbeck University of London, London, UK
| | - Prashant Karki
- William A. Brookshire Department of Chemical & Biomolecular Engineering, University of Houston, Houston, Texas, USA
| | - Mehmet A. Orman
- William A. Brookshire Department of Chemical & Biomolecular Engineering, University of Houston, Houston, Texas, USA
| | - Peter G. Vekilov
- William A. Brookshire Department of Chemical & Biomolecular Engineering, University of Houston, Houston, Texas, USA,Department of Chemistry, University of Houston, Houston, Texas, USA,For correspondence: Peter G. Vekilov
| |
Collapse
|
19
|
Huang Y, Wang J, Wang N, Li X, Ji X, Yang J, Zhou L, Wang T, Huang X, Hao H. Molecular mechanism of liquid–liquid phase separation in preparation process of crystalline materials. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Vazquez DS, Toledo PL, Gianotti AR, Ermácora MR. Protein conformation and biomolecular condensates. Curr Res Struct Biol 2022; 4:285-307. [PMID: 36164646 PMCID: PMC9508354 DOI: 10.1016/j.crstbi.2022.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 10/27/2022] Open
Abstract
Protein conformation and cell compartmentalization are fundamental concepts and subjects of vast scientific endeavors. In the last two decades, we have witnessed exciting advances that unveiled the conjunction of these concepts. An avalanche of studies highlighted the central role of biomolecular condensates in membraneless subcellular compartmentalization that permits the spatiotemporal organization and regulation of myriads of simultaneous biochemical reactions and macromolecular interactions. These studies have also shown that biomolecular condensation, driven by multivalent intermolecular interactions, is mediated by order-disorder transitions of protein conformation and by protein domain architecture. Conceptually, protein condensation is a distinct level in protein conformational landscape in which collective folding of large collections of molecules takes place. Biomolecular condensates arise by the physical process of phase separation and comprise a variety of bodies ranging from membraneless organelles to liquid condensates to solid-like conglomerates, spanning lengths from mesoscopic clusters (nanometers) to micrometer-sized objects. In this review, we summarize and discuss recent work on the assembly, composition, conformation, material properties, thermodynamics, regulation, and functions of these bodies. We also review the conceptual framework for future studies on the conformational dynamics of condensed proteins in the regulation of cellular processes.
Collapse
Affiliation(s)
- Diego S. Vazquez
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes and Grupo de Biología Estructural y Biotecnología, IMBICE, CONICET, Universidad Nacional de Quilmes, Argentina
| | - Pamela L. Toledo
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes and Grupo de Biología Estructural y Biotecnología, IMBICE, CONICET, Universidad Nacional de Quilmes, Argentina
| | - Alejo R. Gianotti
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes and Grupo de Biología Estructural y Biotecnología, IMBICE, CONICET, Universidad Nacional de Quilmes, Argentina
| | - Mario R. Ermácora
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes and Grupo de Biología Estructural y Biotecnología, IMBICE, CONICET, Universidad Nacional de Quilmes, Argentina
| |
Collapse
|
21
|
Chen C, Fu G, Guo Q, Xue S, Luo SZ. Phase separation of p53 induced by its unstructured basic region and prevented by oncogenic mutations in tetramerization domain. Int J Biol Macromol 2022; 222:207-216. [PMID: 36108750 DOI: 10.1016/j.ijbiomac.2022.09.087] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/30/2022] [Accepted: 09/09/2022] [Indexed: 11/05/2022]
Abstract
Liquid-liquid phase separation (LLPS) drives the formation of extensive membrane-less compartments to regulate various cellular biological activities both physiologically and pathologically. It has been widely accepted that LLPS is closely related to amyloid diseases and increasing reports have linked this phenomenon to cancers. Mutations of tumor suppressor protein p53 exist in more than half of malignant tumors, making the protein vitally important in cancer research. Recently, p53 was reported to undergo phase separation, which may regulate the function of p53. The molecular mechanism of p53 phase separation and how this process relates to cancer remains largely unclear. Herein, we find that the disordered unstructured basic region (UBR) plays a crucial role in p53 LLPS, driven by electrostatic and hydrophobic interactions. Mutations in the tetramerization domain (TD) disrupt p53 phase separation by preventing the tetramer formation. Furthermore, our results have revealed that, in response to DNA damage in cell, the wild type (WT) p53 undergoes LLPS, while LLPS in oncogenic mutations is diminished or eliminated. The expression of the target gene of p53 decreased significantly with the mutations and cell survival increased with the mutations. Thus, we propose a novel mechanism of p53 carcinogenesis, whereby oncogenic mutations in TD impair the formation of p53 condensates, decreasing the activation of target genes and promoting cancer progression. This study helps to understand the behavior and function of p53 in a different aspect and may provide insights into cancer therapies targeting p53.
Collapse
Affiliation(s)
- Chen Chen
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Gaohong Fu
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Quanqiang Guo
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Song Xue
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Shi-Zhong Luo
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
22
|
Chakravarty AK, McGrail DJ, Lozanoski TM, Dunn BS, Shih DJ, Cirillo KM, Cetinkaya SH, Zheng WJ, Mills GB, Yi SS, Jarosz DF, Sahni N. Biomolecular Condensation: A New Phase in Cancer Research. Cancer Discov 2022; 12:2031-2043. [PMID: 35852417 PMCID: PMC9437557 DOI: 10.1158/2159-8290.cd-21-1605] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/06/2022] [Accepted: 06/08/2022] [Indexed: 01/09/2023]
Abstract
Multicellularity was a watershed development in evolution. However, it also meant that individual cells could escape regulatory mechanisms that restrict proliferation at a severe cost to the organism: cancer. From the standpoint of cellular organization, evolutionary complexity scales to organize different molecules within the intracellular milieu. The recent realization that many biomolecules can "phase-separate" into membraneless organelles, reorganizing cellular biochemistry in space and time, has led to an explosion of research activity in this area. In this review, we explore mechanistic connections between phase separation and cancer-associated processes and emerging examples of how these become deranged in malignancy. SIGNIFICANCE One of the fundamental functions of phase separation is to rapidly and dynamically respond to environmental perturbations. Importantly, these changes often lead to alterations in cancer-relevant pathways and processes. This review covers recent advances in the field, including emerging principles and mechanisms of phase separation in cancer.
Collapse
Affiliation(s)
- Anupam K. Chakravarty
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Daniel J. McGrail
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, Ohio
| | | | - Brandon S. Dunn
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David J.H. Shih
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, Texas
| | - Kara M. Cirillo
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sueda H. Cetinkaya
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wenjin Jim Zheng
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, Texas
| | - Gordon B. Mills
- Department of Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health and Sciences University, Portland, Oregon
| | - S. Stephen Yi
- Department of Oncology, Livestrong Cancer Institutes, The University of Texas at Austin, Austin, Texas
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
- Interdisciplinary Life Sciences Graduate Programs (ILSGP) and Oden Institute for Computational Engineering and Sciences (ICES), The University of Texas at Austin, Austin, Texas
| | - Daniel F. Jarosz
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California
| | - Nidhi Sahni
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Program in Quantitative and Computational Biosciences (QCB), Baylor College of Medicine, Houston, Texas
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
23
|
Dai Z, Li G, Chen Q, Yang X. Ser392 phosphorylation modulated a switch between p53 and transcriptional condensates. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194827. [PMID: 35618207 DOI: 10.1016/j.bbagrm.2022.194827] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Human p53 is a transcription factor regulating the transcription of a variety of target genes. Under various stresses, its tumor suppressor function was activated by the phosphorylation of p53. In this study, we found that full-length wild-type p53 could form phase-separated condensates with the aggregation tendency in vitro and in vivo. The LLPS of p53 was regulated by multiple functional domains. Specific DNA could promote the formation of p53 condensates. Fluorescence recovery data after photobleaching revealed that the Ser392 phosphorylation enhanced the fluidity of p53 condensates. Fluorescence analysis suggested that Ser392 phosphorylation increased the p53 concentration in condensates involved in transcription initiation and the stability of p53-mediated transcriptional condensates. The experiments in cells showed that p53 was evenly dispersed in the nucleus, it formed the dynamic condensates under the UV radiation-induced DNA damage, and the Ser392 nonphosphorylatable mutant S392A p53 formed condensates with significantly reduced number and size. These findings revealed that p53 phosphorylation modified its LLPS behavior, and suggested a mechanism that phosphorylation regulated condensate preference.
Collapse
Affiliation(s)
- Zhuojun Dai
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong Province 510006, PR China
| | - Guoli Li
- Ministry of Agriculture Key Laboratory of Animal Biochemistry and Nutrition, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province 450002, PR China
| | - Qunyang Chen
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong Province 510006, PR China
| | - Xiaorong Yang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong Province 510006, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China.
| |
Collapse
|
24
|
Hibino E, Tenno T, Hiroaki H. Relevance of Amorphous and Amyloid-Like Aggregates of the p53 Core Domain to Loss of its DNA-Binding Activity. Front Mol Biosci 2022; 9:869851. [PMID: 35558561 PMCID: PMC9086241 DOI: 10.3389/fmolb.2022.869851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
The anti-oncogenic protein p53 is a transcription factor that prevents tumorigenesis by inducing gene repair proteins or apoptosis under DNA damage. Since the DNA-binding domain of p53 (p53C) is aggregation-prone, the anti-oncogenic function of p53 is often lost in cancer cells. This tendency is rather severe in some tumor-related p53 mutants, such as R175H. In this study, we examined the effect of salts, including KCl and sugars, on the aggregation of p53C by monitoring two distinct aggregates: amorphous-like and amyloid-like. The amorphous aggregates are detectable with 8-(phenylamino)-1-naphthalenesulfonic acid (ANS) fluorescence, whereas the amyloid aggregates are sensitive to thioflavin-T (ThT) fluorescence. We found that KCl inhibited the formation of amorphous aggregates but promoted the formation of amyloid aggregates in a p53C R175H mutant. The salts exhibited different effects against the wild-type and R175H mutants of p53C. However, the ratio of ANS/ThT fluorescence for the wild-type and R175H mutant remained constant. KCl also suppressed the structural transition and loss of the DNA-binding function of p53C. These observations indicate the existence of multiple steps of p53C aggregation, probably coupled with the dissociation of Zn. Notably, amorphous aggregates and amyloid aggregates have distinct properties that could be discriminated by various small additives upon aggregation.
Collapse
Affiliation(s)
- Emi Hibino
- Laboratory of Structural Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Takeshi Tenno
- Laboratory of Structural Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
- BeCellBar LLC., Nagoya University, Nagoya, Japan
| | - Hidekazu Hiroaki
- Laboratory of Structural Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
- BeCellBar LLC., Nagoya University, Nagoya, Japan
- *Correspondence: Hidekazu Hiroaki,
| |
Collapse
|
25
|
Zong S, Wang J, Huang X, Wu H, Liu Q, Hao H. Formation and stabilization mechanism of mesoscale clusters in solution. IUCRJ 2022; 9:215-222. [PMID: 35371509 PMCID: PMC8895010 DOI: 10.1107/s2052252521012987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
To understand the existence of complex meso-sized solute-rich clusters, which challenge the understanding of phases and phase equilibria, the formation and stabilization mechanisms of clusters in solution during nucleation of crystals and the associated physico-chemical rules are studied in detail. An essential part of the mechanism is the formation of long-lived oligomers between solute molecules. By means of density functional theory simulation and nuclear magnetic resonance experiments, this work showed that the oligomers in solution tend to be π-π stacking dimers. Clusters are formed under the combined effect of diffusion and monomer-dimer reaction. The physically meaningful quantities such as the monomer-dimer reaction rate constants and the diffusion coefficients of both species were obtained by reaction-diffusion kinetics and diffusion-ordered spectroscopy results. The evolution of cluster radius as a function of time, and the qualitative spatial distributions of monomer and dimer densities under steady-state were plotted to better understand the formation process and the nature of the clusters.
Collapse
Affiliation(s)
- Shuyi Zong
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Jingkang Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, People’s Republic of China
| | - Xin Huang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, People’s Republic of China
| | - Hao Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Qi Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Hongxun Hao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, People’s Republic of China
- School of Chemical Engineering and Technology, Hainan University, Haikou 570208, People’s Republic of China
| |
Collapse
|
26
|
Abstract
The 14-3-3 family proteins are vital scaffold proteins that ubiquitously expressed in various tissues. They interact with numerous protein targets and mediate many cellular signaling pathways. The 14-3-3 binding motifs are often embedded in intrinsically disordered regions which are closely associated with liquid-liquid phase separation (LLPS). In the past ten years, LLPS has been observed for a variety of proteins and biological processes, indicating that LLPS plays a fundamental role in the formation of membraneless organelles and cellular condensates. While extensive investigations have been performed on 14-3-3 proteins, its involvement in LLPS is overlooked. To date, 14-3-3 proteins have not been reported to undergo LLPS alone or regulate LLPS of their binding partners. To reveal the potential involvement of 14-3-3 proteins in LLPS, in this review, we summarized the LLPS propensity of 14-3-3 binding partners and found that about one half of them may undergo LLPS spontaneously. We further analyzed the phase separation behavior of representative 14-3-3 binders and discussed how 14-3-3 proteins may be involved. By modulating the conformation and valence of interactions and recruiting other molecules, we speculate that 14-3-3 proteins can efficiently regulate the functions of their targets in the context of LLPS. Considering the critical roles of 14-3-3 proteins, there is an urgent need for investigating the involvement of 14-3-3 proteins in the phase separation process of their targets and the underling mechanisms.
Collapse
|
27
|
Hibino E, Hiroaki H. Potential of rescue and reactivation of tumor suppressor p53 for cancer therapy. Biophys Rev 2022; 14:267-275. [PMID: 35340607 PMCID: PMC8921420 DOI: 10.1007/s12551-021-00915-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/14/2021] [Indexed: 01/13/2023] Open
Abstract
The tumor suppressor protein p53, a transcription product of the anti-oncogene TP53, is a critical factor in preventing cellular cancerization and killing cancer cells by inducing apoptosis. As a result, p53 is often referred to as the "guardian of the genome." Almost half of cancers possess genetic mutations in the TP53 gene, and most of these mutations result in the malfunction of p53, which promotes aggregation. In some cases, the product of the TP53 mutant allele shows higher aggregation propensity; the mutant co-aggregates with the normal (functional) p53 protein, thus losing cellular activity of the p53 guardian. Cancer might also progress because of the proteolytic degradation of p53 by activated E3 ubiquitination enzymes, MDM2 and MDM4. The inhibition of the specific interaction between MDM2 (MDM4) and p53 also results in increased p53 activity in cancer cells. Although the molecular targets of the drugs are different, two drug discovery strategies with a common goal, "rescuing p53 protein," have recently emerged. To conduct this approach, various biophysical methods of protein characterization were employed. In this review, we focus on these two independent strategies based on the unique biophysical features of the p53 protein.
Collapse
Affiliation(s)
- Emi Hibino
- Laboratory of Structural Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya, Aichi 464-8601 Japan
| | - Hidekazu Hiroaki
- Laboratory of Structural Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya, Aichi 464-8601 Japan
- Business Incubation Building, BeCellBar LLC, Nagoya University, Furocho, Chikusa-ku, Nagoya, Aichi 464-8601 Japan
| |
Collapse
|
28
|
Marques MA, de Andrade GC, Silva JL, de Oliveira GAP. Protein of a thousand faces: The tumor-suppressive and oncogenic responses of p53. Front Mol Biosci 2022; 9:944955. [PMID: 36090037 PMCID: PMC9452956 DOI: 10.3389/fmolb.2022.944955] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/18/2022] [Indexed: 12/30/2022] Open
Abstract
The p53 protein is a pleiotropic regulator working as a tumor suppressor and as an oncogene. Depending on the cellular insult and the mutational status, p53 may trigger opposing activities such as cell death or survival, senescence and cell cycle arrest or proliferative signals, antioxidant or prooxidant activation, glycolysis, or oxidative phosphorylation, among others. By augmenting or repressing specific target genes or directly interacting with cellular partners, p53 accomplishes a particular set of activities. The mechanism in which p53 is activated depends on increased stability through post-translational modifications (PTMs) and the formation of higher-order structures (HOS). The intricate cell death and metabolic p53 response are reviewed in light of gaining stability via PTM and HOS formation in health and disease.
Collapse
Affiliation(s)
- Mayra A. Marques
- *Correspondence: Mayra A. Marques, ; Guilherme A. P. de Oliveira,
| | | | | | | |
Collapse
|
29
|
Loh D, Reiter RJ. Melatonin: Regulation of Biomolecular Condensates in Neurodegenerative Disorders. Antioxidants (Basel) 2021; 10:1483. [PMID: 34573116 PMCID: PMC8465482 DOI: 10.3390/antiox10091483] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Biomolecular condensates are membraneless organelles (MLOs) that form dynamic, chemically distinct subcellular compartments organizing macromolecules such as proteins, RNA, and DNA in unicellular prokaryotic bacteria and complex eukaryotic cells. Separated from surrounding environments, MLOs in the nucleoplasm, cytoplasm, and mitochondria assemble by liquid-liquid phase separation (LLPS) into transient, non-static, liquid-like droplets that regulate essential molecular functions. LLPS is primarily controlled by post-translational modifications (PTMs) that fine-tune the balance between attractive and repulsive charge states and/or binding motifs of proteins. Aberrant phase separation due to dysregulated membrane lipid rafts and/or PTMs, as well as the absence of adequate hydrotropic small molecules such as ATP, or the presence of specific RNA proteins can cause pathological protein aggregation in neurodegenerative disorders. Melatonin may exert a dominant influence over phase separation in biomolecular condensates by optimizing membrane and MLO interdependent reactions through stabilizing lipid raft domains, reducing line tension, and maintaining negative membrane curvature and fluidity. As a potent antioxidant, melatonin protects cardiolipin and other membrane lipids from peroxidation cascades, supporting protein trafficking, signaling, ion channel activities, and ATPase functionality during condensate coacervation or dissolution. Melatonin may even control condensate LLPS through PTM and balance mRNA- and RNA-binding protein composition by regulating N6-methyladenosine (m6A) modifications. There is currently a lack of pharmaceuticals targeting neurodegenerative disorders via the regulation of phase separation. The potential of melatonin in the modulation of biomolecular condensate in the attenuation of aberrant condensate aggregation in neurodegenerative disorders is discussed in this review.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX 78229, USA
| |
Collapse
|
30
|
Δ133p53β isoform pro-invasive activity is regulated through an aggregation-dependent mechanism in cancer cells. Nat Commun 2021; 12:5463. [PMID: 34526502 PMCID: PMC8443592 DOI: 10.1038/s41467-021-25550-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 08/04/2021] [Indexed: 11/09/2022] Open
Abstract
The p53 isoform, Δ133p53β, is critical in promoting cancer. Here we report that Δ133p53β activity is regulated through an aggregation-dependent mechanism. Δ133p53β aggregates were observed in cancer cells and tumour biopsies. The Δ133p53β aggregation depends on association with interacting partners including p63 family members or the CCT chaperone complex. Depletion of the CCT complex promotes accumulation of Δ133p53β aggregates and loss of Δ133p53β dependent cancer cell invasion. In contrast, association with p63 family members recruits Δ133p53β from aggregates increasing its intracellular mobility. Our study reveals novel mechanisms of cancer progression for p53 isoforms which are regulated through sequestration in aggregates and recruitment upon association with specific partners like p63 isoforms or CCT chaperone complex, that critically influence cancer cell features like EMT, migration and invasion.
Collapse
|
31
|
Intrinsic disorder and phase transitions: Pieces in the puzzling role of the prion protein in health and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 183:1-43. [PMID: 34656326 DOI: 10.1016/bs.pmbts.2021.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
After four decades of prion protein research, the pressing questions in the literature remain similar to the common existential dilemmas. Who am I? Some structural characteristics of the cellular prion protein (PrPC) and scrapie PrP (PrPSc) remain unknown: there are no high-resolution atomic structures for either full-length endogenous human PrPC or isolated infectious PrPSc particles. Why am I here? It is not known why PrPC and PrPSc are found in specific cellular compartments such as the nucleus; while the physiological functions of PrPC are still being uncovered, the misfolding site remains obscure. Where am I going? The subcellular distribution of PrPC and PrPSc is wide (reported in 10 different locations in the cell). This complexity is further exacerbated by the eight different PrP fragments yielded from conserved proteolytic cleavages and by reversible post-translational modifications, such as glycosylation, phosphorylation, and ubiquitination. Moreover, about 55 pathological mutations and 16 polymorphisms on the PrP gene (PRNP) have been described. Prion diseases also share unique, challenging features: strain phenomenon (associated with the heterogeneity of PrPSc conformations) and the possible transmissibility between species, factors which contribute to PrP undruggability. However, two recent concepts in biochemistry-intrinsically disordered proteins and phase transitions-may shed light on the molecular basis of PrP's role in physiology and disease.
Collapse
|
32
|
Fahim A, Annunziata O. Effect of a Good buffer on the fate of metastable protein-rich droplets near physiological composition. Int J Biol Macromol 2021; 186:519-527. [PMID: 34265335 DOI: 10.1016/j.ijbiomac.2021.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 10/20/2022]
Abstract
Metastable protein-rich microdroplets are produced from liquid-liquid phase separation (LLPS) of protein aqueous solutions. These globules can be intermediates for the formation of other protein-rich phases. Lysozyme aqueous solutions undergo LLPS around 0 °C in the presence of NaCl near physiological conditions. Here, it is shown that insertion of small amounts of 4-(2-hydroxyethyl)-1-piperazineethanesulfonate (HEPES, 0.1 M) as a second additive to lysozyme-NaCl-water solutions near physiological ionic strength (0.2 M) is an essential step for triggering conversion of protein-rich droplets into another phase. Specifically, LLPS induced by cooling reproducibly leads to a rapid and high-yield formation of compact tetragonal crystalline microparticles only in the presence of HEPES. These microcrystals exhibit small size (1-3 μm), narrow size distribution and guest-binding properties. The temperature-concentration phase diagram shows a characteristic topology with LLPS boundary metastable with respect to tetragonal microcrystals, which in turn become less stable than rod-shaped orthorhombic crystals above 40 °C. Interestingly, dynamic light scattering, hydrogen-ion titrations and isothermal titration calorimetry reveal that lysozyme-HEPES interactions were found to be weakly attractive and exothermic. Our findings indicate that additives of salting-in type can represent an important factor controlling the fate of metastable protein-rich microdroplets relevant to drug formulations, femtosecond crystallography, and potential implications in protein-driven cytoplasmic compartmentalization.
Collapse
Affiliation(s)
- Aisha Fahim
- Department of Chemistry and Biochemistry, Texas Christian University, 2950 W. Bowie St., Sid Richardson Bldg. #438, Fort Worth, TX 76129, USA
| | - Onofrio Annunziata
- Department of Chemistry and Biochemistry, Texas Christian University, 2950 W. Bowie St., Sid Richardson Bldg. #438, Fort Worth, TX 76129, USA..
| |
Collapse
|
33
|
The Ambiguous Functions of the Precursors That Enable Nonclassical Modes of Olanzapine Nucleation and Growth. CRYSTALS 2021. [DOI: 10.3390/cryst11070738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
One of the most consequential assumptions of the classical theories of crystal nucleation and growth is the Szilard postulate, which states that molecules from a supersaturated phase join a nucleus or a growing crystal individually. In the last 20 years, observations in complex biological, geological, and engineered environments have brought to light violations of the Szilard rule, whereby molecules assemble into ordered or disordered precursors that then host and promote nucleation or contribute to fast crystal growth. Nonclassical crystallization has risen to a default mode presumed to operate in the majority of the inspected crystallizing systems. In some cases, the existence of precursors in the growth media is admitted as proof for their role in nucleation and growth. With the example of olanzapine, a marketed drug for schizophrenia and bipolar disorder, we demonstrate that molecular assemblies in the solution selectively participate in crystal nucleation and growth. In aqueous and organic solutions, olanzapine assembles into both mesoscopic solute-rich clusters and dimers. The clusters facilitate nucleation of crystals and crystal form transformations. During growth, however, the clusters land on the crystal surface and transform into defects, but do not support step growth. The dimers are present at low concentrations in the supersaturated solution, yet the crystals grow by the association of dimers, and not of the majority monomers. The observations with olanzapine emphasize that detailed studies of the crystal and solution structures and the dynamics of molecular association may empower classical and nonclassical models that advance the understanding of natural crystallization, and support the design and manufacture of promising functional materials.
Collapse
|
34
|
Petronilho EC, Pedrote MM, Marques MA, Passos YM, Mota MF, Jakobus B, de Sousa GDS, Pereira da Costa F, Felix AL, Ferretti GDS, Almeida FP, Cordeiro Y, Vieira TCRG, de Oliveira GAP, Silva JL. Phase separation of p53 precedes aggregation and is affected by oncogenic mutations and ligands. Chem Sci 2021; 12:7334-7349. [PMID: 34163823 PMCID: PMC8171334 DOI: 10.1039/d1sc01739j] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mutant p53 tends to form aggregates with amyloid properties, especially amyloid oligomers inside the nucleus, which are believed to cause oncogenic gain-of-function (GoF). The mechanism of the formation of the aggregates in the nucleus remains uncertain. The present study demonstrated that the DNA-binding domain of p53 (p53C) underwent phase separation (PS) on the pathway to aggregation under various conditions. p53C phase separated in the presence of the crowding agent polyethylene glycol (PEG). Similarly, mutant p53C (M237I and R249S) underwent PS; however, the process evolved to a solid-like phase transition faster than that in the case of wild-type p53C. The data obtained by microscopy of live cells indicated that transfection of mutant full-length p53 into the cells tended to result in PS and phase transition (PT) in the nuclear compartments, which are likely the cause of the GoF effects. Fluorescence recovery after photobleaching (FRAP) experiments revealed liquid characteristics of the condensates in the nucleus. Mutant p53 tended to undergo gel- and solid-like phase transitions in the nucleus and in nuclear bodies demonstrated by slow and incomplete recovery of fluorescence after photobleaching. Polyanions, such as heparin and RNA, were able to modulate PS and PT in vitro. Heparin apparently stabilized the condensates in a gel-like state, and RNA apparently induced a solid-like state of the protein even in the absence of PEG. Conditions that destabilize p53C into a molten globule conformation also produced liquid droplets in the absence of crowding. The disordered transactivation domain (TAD) modulated both phase separation and amyloid aggregation. In summary, our data provide mechanistic insight into the formation of p53 condensates and conditions that may result in the formation of aggregated structures, such as mutant amyloid oligomers, in cancer. The pathway of mutant p53 from liquid droplets to gel-like and solid-like (amyloid) species may be a suitable target for anticancer therapy. Mutant p53 tends to form aggregates with amyloid properties, especially amyloid oligomers inside the nucleus, which are believed to cause oncogenic gain-of-function (GoF).![]()
Collapse
Affiliation(s)
- Elaine C Petronilho
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro Rio de Janeiro RJ 21941-902 Brazil
| | - Murilo M Pedrote
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro Rio de Janeiro RJ 21941-902 Brazil
| | - Mayra A Marques
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro Rio de Janeiro RJ 21941-902 Brazil
| | - Yulli M Passos
- Faculty of Pharmacy, Federal University of Rio de Janeiro Rio de Janeiro Brazil
| | - Michelle F Mota
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro Rio de Janeiro RJ 21941-902 Brazil
| | - Benjamin Jakobus
- Modal Informática Ltda Almeida Godinho, 19, 304 Rio de Janeiro RJ 22741-140 Brazil
| | - Gileno Dos Santos de Sousa
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro Rio de Janeiro RJ 21941-902 Brazil
| | - Filipe Pereira da Costa
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro Rio de Janeiro RJ 21941-902 Brazil
| | - Adriani L Felix
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro Rio de Janeiro RJ 21941-902 Brazil
| | - Giulia D S Ferretti
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro Rio de Janeiro RJ 21941-902 Brazil
| | - Fernando P Almeida
- National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro Rio de Janeiro RJ 21941-902 Brazil
| | - Yraima Cordeiro
- Faculty of Pharmacy, Federal University of Rio de Janeiro Rio de Janeiro Brazil
| | - Tuane C R G Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro Rio de Janeiro RJ 21941-902 Brazil
| | - Guilherme A P de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro Rio de Janeiro RJ 21941-902 Brazil
| | - Jerson L Silva
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro Rio de Janeiro RJ 21941-902 Brazil
| |
Collapse
|
35
|
Yang DS, Saeedi A, Davtyan A, Fathi M, Sherman MB, Safari MS, Klindziuk A, Barton MC, Varadarajan N, Kolomeisky AB, Vekilov PG. Mesoscopic protein-rich clusters host the nucleation of mutant p53 amyloid fibrils. Proc Natl Acad Sci U S A 2021; 118:e2015618118. [PMID: 33653952 PMCID: PMC7958401 DOI: 10.1073/pnas.2015618118] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The protein p53 is a crucial tumor suppressor, often called "the guardian of the genome"; however, mutations transform p53 into a powerful cancer promoter. The oncogenic capacity of mutant p53 has been ascribed to enhanced propensity to fibrillize and recruit other cancer fighting proteins in the fibrils, yet the pathways of fibril nucleation and growth remain obscure. Here, we combine immunofluorescence three-dimensional confocal microscopy of human breast cancer cells with light scattering and transmission electron microscopy of solutions of the purified protein and molecular simulations to illuminate the mechanisms of phase transformations across multiple length scales, from cellular to molecular. We report that the p53 mutant R248Q (R, arginine; Q, glutamine) forms, both in cancer cells and in solutions, a condensate with unique properties, mesoscopic protein-rich clusters. The clusters dramatically diverge from other protein condensates. The cluster sizes are decoupled from the total cluster population volume and independent of the p53 concentration and the solution concentration at equilibrium with the clusters varies. We demonstrate that the clusters carry out a crucial biological function: they host and facilitate the nucleation of amyloid fibrils. We demonstrate that the p53 clusters are driven by structural destabilization of the core domain and not by interactions of its extensive unstructured region, in contradistinction to the dense liquids typical of disordered and partially disordered proteins. Two-step nucleation of mutant p53 amyloids suggests means to control fibrillization and the associated pathologies through modifying the cluster characteristics. Our findings exemplify interactions between distinct protein phases that activate complex physicochemical mechanisms operating in biological systems.
Collapse
Affiliation(s)
- David S Yang
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204
| | - Arash Saeedi
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204
| | - Aram Davtyan
- Department of Chemistry, Rice University, Houston, TX 77251
| | - Mohsen Fathi
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204
| | - Michael B Sherman
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555
| | - Mohammad S Safari
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | | | - Michelle C Barton
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Navin Varadarajan
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204
| | - Anatoly B Kolomeisky
- Department of Chemistry, Rice University, Houston, TX 77251
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77251
| | - Peter G Vekilov
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204;
- Department of Chemistry, University of Houston, Houston, TX 77204
| |
Collapse
|
36
|
Boija A, Klein IA, Young RA. Biomolecular Condensates and Cancer. Cancer Cell 2021; 39:174-192. [PMID: 33417833 PMCID: PMC8721577 DOI: 10.1016/j.ccell.2020.12.003] [Citation(s) in RCA: 190] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 12/14/2022]
Abstract
Malignant transformation is characterized by dysregulation of diverse cellular processes that have been the subject of detailed genetic, biochemical, and structural studies, but only recently has evidence emerged that many of these processes occur in the context of biomolecular condensates. Condensates are membrane-less bodies, often formed by liquid-liquid phase separation, that compartmentalize protein and RNA molecules with related functions. New insights from condensate studies portend a profound transformation in our understanding of cellular dysregulation in cancer. Here we summarize key features of biomolecular condensates, note where they have been implicated-or will likely be implicated-in oncogenesis, describe evidence that the pharmacodynamics of cancer therapeutics can be greatly influenced by condensates, and discuss some of the questions that must be addressed to further advance our understanding and treatment of cancer.
Collapse
Affiliation(s)
- Ann Boija
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.
| | - Isaac A Klein
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
37
|
Sosa RD, Conrad JC, Reynolds MA, Rimer JD. Suppressing barite crystallization with organophosphorus compounds. CrystEngComm 2021. [DOI: 10.1039/d1ce00813g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A naturally derived phosphorous-containing molecule, phytate, functions as a dual inhibitor of barium sulfate (barite) nucleation and growth, making it a potentially viable environmentally-friendly alternative to current barite scale treatments.
Collapse
Affiliation(s)
- Ricardo D. Sosa
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, USA
| | - Jacinta C. Conrad
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, USA
| | | | - Jeffrey D. Rimer
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, USA
| |
Collapse
|
38
|
Lemos C, Schulze L, Weiske J, Meyer H, Braeuer N, Barak N, Eberspächer U, Werbeck N, Stresemann C, Lange M, Lesche R, Zablowsky N, Juenemann K, Kamburov A, Luh LM, Leissing TM, Mortier J, Steckel M, Steuber H, Eis K, Eheim A, Steigemann P. Identification of Small Molecules that Modulate Mutant p53 Condensation. iScience 2020; 23:101517. [PMID: 32927263 PMCID: PMC7495113 DOI: 10.1016/j.isci.2020.101517] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/27/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023] Open
Abstract
Structural mutants of p53 induce global p53 protein destabilization and misfolding, followed by p53 protein aggregation. First evidence indicates that p53 can be part of protein condensates and that p53 aggregation potentially transitions through a condensate-like state. We show condensate-like states of fluorescently labeled structural mutant p53 in the nucleus of living cancer cells. We furthermore identified small molecule compounds that interact with the p53 protein and lead to dissolution of p53 structural mutant condensates. The same compounds lead to condensation of a fluorescently tagged p53 DNA-binding mutant, indicating that the identified compounds differentially alter p53 condensation behavior depending on the type of p53 mutation. In contrast to p53 aggregation inhibitors, these compounds are active on p53 condensates and do not lead to mutant p53 reactivation. Taken together our study provides evidence for structural mutant p53 condensation in living cells and tools to modulate this process.
Collapse
Affiliation(s)
- Clara Lemos
- Bayer AG Research and Development, Pharmaceuticals, Müllerstr. 178, 13342 Berlin, Germany
| | - Luise Schulze
- Bayer AG Research and Development, Pharmaceuticals, Müllerstr. 178, 13342 Berlin, Germany
| | - Joerg Weiske
- Bayer AG Research and Development, Pharmaceuticals, Müllerstr. 178, 13342 Berlin, Germany
| | - Hanna Meyer
- Bayer AG Research and Development, Pharmaceuticals, Müllerstr. 178, 13342 Berlin, Germany
| | - Nico Braeuer
- Bayer AG Research and Development, Pharmaceuticals, Müllerstr. 178, 13342 Berlin, Germany
| | - Naomi Barak
- Bayer AG Research and Development, Pharmaceuticals, Müllerstr. 178, 13342 Berlin, Germany
| | - Uwe Eberspächer
- Bayer AG Research and Development, Pharmaceuticals, Müllerstr. 178, 13342 Berlin, Germany
| | - Nicolas Werbeck
- Bayer AG Research and Development, Pharmaceuticals, Müllerstr. 178, 13342 Berlin, Germany
| | - Carlo Stresemann
- Bayer AG Research and Development, Pharmaceuticals, Müllerstr. 178, 13342 Berlin, Germany
| | - Martin Lange
- Bayer AG Research and Development, Pharmaceuticals, Müllerstr. 178, 13342 Berlin, Germany
| | - Ralf Lesche
- Bayer AG Research and Development, Pharmaceuticals, Müllerstr. 178, 13342 Berlin, Germany
| | - Nina Zablowsky
- Bayer AG Research and Development, Pharmaceuticals, Müllerstr. 178, 13342 Berlin, Germany
| | - Katrin Juenemann
- Bayer AG Research and Development, Pharmaceuticals, Müllerstr. 178, 13342 Berlin, Germany
| | - Atanas Kamburov
- Bayer AG Research and Development, Pharmaceuticals, Müllerstr. 178, 13342 Berlin, Germany
| | - Laura Martina Luh
- Bayer AG Research and Development, Pharmaceuticals, Müllerstr. 178, 13342 Berlin, Germany
| | - Thomas Markus Leissing
- Bayer AG Research and Development, Pharmaceuticals, Müllerstr. 178, 13342 Berlin, Germany
| | - Jeremie Mortier
- Bayer AG Research and Development, Pharmaceuticals, Müllerstr. 178, 13342 Berlin, Germany
| | - Michael Steckel
- Bayer AG Research and Development, Pharmaceuticals, Müllerstr. 178, 13342 Berlin, Germany
| | - Holger Steuber
- Bayer AG Research and Development, Pharmaceuticals, Müllerstr. 178, 13342 Berlin, Germany
| | - Knut Eis
- Bayer AG Research and Development, Pharmaceuticals, Müllerstr. 178, 13342 Berlin, Germany
| | - Ashley Eheim
- Bayer AG Research and Development, Pharmaceuticals, Müllerstr. 178, 13342 Berlin, Germany
| | - Patrick Steigemann
- Bayer AG Research and Development, Pharmaceuticals, Müllerstr. 178, 13342 Berlin, Germany
| |
Collapse
|
39
|
Biophysical characterization of p53 core domain aggregates. Biochem J 2020; 477:111-120. [PMID: 31841126 DOI: 10.1042/bcj20190778] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 12/16/2022]
Abstract
Aggregation is the cause of numerous protein conformation diseases. A common facet of these maladies is the transition of a protein from its functional native state into higher order forms, such as oligomers and amyloid fibrils. p53 is an essential tumor suppressor that is prone to such conformational transitions, resulting in its compromised ability to avert cancer. This work explores the biophysical properties of early-, mid-, and late-stage p53 core domain (p53C) aggregates. Atomistic and coarse-grained molecular dynamics (MD) simulations suggest that early- and mid-stage p53C aggregates have a polymorphic topology of antiparallel and parallel β-sheets that localize to the core amyloidogenic sequence. Both topologies involve similar extents of interstrand mainchain hydrogen bonding, while sidechain interactions could play a role in regulating strand orientation. The free energy difference between the antiparallel and parallel states was within statistical uncertainty. Negative stain electron microscopy of mature fibrils shows a wide distribution of fiber widths, indicating that polymorphism may extend to the quaternary structure level. Circular dichroism of the fibrils was indicative of β-sheet rich structures in atypical conformations. The Raman spectrum of aggregated p53C was consistent with a mixture of arranged β-sheets and heterogeneous structural elements, which is compatible with the MD findings of an ordered β-sheet nucleus flanked by disordered structure. Structural polymorphism is a common property of amyloids; however, because certain polymorphs of the same protein can be more harmful than others, going forward it will be pertinent to establish correlations between p53C aggregate structure and pathology.
Collapse
|
40
|
de Oliveira GAP, Petronilho EC, Pedrote MM, Marques MA, Vieira TCRG, Cino EA, Silva JL. The Status of p53 Oligomeric and Aggregation States in Cancer. Biomolecules 2020; 10:biom10040548. [PMID: 32260447 PMCID: PMC7226498 DOI: 10.3390/biom10040548] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 03/29/2020] [Accepted: 04/01/2020] [Indexed: 12/21/2022] Open
Abstract
Despite being referred to as the guardian of the genome, when impacted by mutations, p53 can lose its protective functions and become a renegade. The malignant transformation of p53 occurs on multiple levels, such as altered DNA binding properties, acquisition of novel cellular partners, or associating into different oligomeric states. The consequences of these transformations can be catastrophic. Ongoing studies have implicated different oligomeric p53 species as having a central role in cancer biology; however, the correlation between p53 oligomerization status and oncogenic activities in cancer progression remains an open conundrum. In this review, we summarize the roles of different p53 oligomeric states in cancer and discuss potential research directions for overcoming aberrant p53 function associated with them. We address how misfolding and prion-like amyloid aggregation of p53 seem to play a crucial role in cancer development. The misfolded and aggregated states of mutant p53 are prospective targets for the development of novel therapeutic strategies against tumoral diseases.
Collapse
Affiliation(s)
- Guilherme A. P. de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro RJ 21941-901, Brazil; (G.A.P.d.O.); (E.C.P.); (M.M.P.); (M.A.M.); (T.C.R.G.V.)
| | - Elaine C. Petronilho
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro RJ 21941-901, Brazil; (G.A.P.d.O.); (E.C.P.); (M.M.P.); (M.A.M.); (T.C.R.G.V.)
| | - Murilo M. Pedrote
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro RJ 21941-901, Brazil; (G.A.P.d.O.); (E.C.P.); (M.M.P.); (M.A.M.); (T.C.R.G.V.)
| | - Mayra A. Marques
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro RJ 21941-901, Brazil; (G.A.P.d.O.); (E.C.P.); (M.M.P.); (M.A.M.); (T.C.R.G.V.)
| | - Tuane C. R. G. Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro RJ 21941-901, Brazil; (G.A.P.d.O.); (E.C.P.); (M.M.P.); (M.A.M.); (T.C.R.G.V.)
| | - Elio A. Cino
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte MG 31270-901, Brazil
- Correspondence: (J.L.S.); (E.A.C.); Tel.: +55-21-3938-6756 (J.L.S.); +55-31-3409-2613 (E.A.C.)
| | - Jerson L. Silva
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro RJ 21941-901, Brazil; (G.A.P.d.O.); (E.C.P.); (M.M.P.); (M.A.M.); (T.C.R.G.V.)
- Correspondence: (J.L.S.); (E.A.C.); Tel.: +55-21-3938-6756 (J.L.S.); +55-31-3409-2613 (E.A.C.)
| |
Collapse
|
41
|
do Amaral MJ, Araujo TS, Díaz NC, Accornero F, Polycarpo CR, Cordeiro Y, Cabral KMS, Almeida MS. Phase Separation and Disorder-to-Order Transition of Human Brain Expressed X-Linked 3 (hBEX3) in the Presence of Small Fragments of tRNA. J Mol Biol 2020; 432:2319-2348. [PMID: 32142787 PMCID: PMC11949257 DOI: 10.1016/j.jmb.2020.02.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 02/10/2020] [Accepted: 02/27/2020] [Indexed: 12/19/2022]
Abstract
Brain Expressed X-linked (BEX) protein family consists of five members in humans and is highly expressed during neuronal development. They are known to participate in cell cycle and in signaling pathways involved in neurodegeneration and cancer. BEX3 possess a conserved leucine-rich nuclear export signal and experimental data confirmed BEX3 nucleocytoplasmic shuttling. Previous data revealed that mouse BEX3 auto-associates in an oligomer rich in intrinsic disorder. In this work, we show that human BEX3 (hBEX3) has well-defined three-dimensional structure in the presence of small fragments of tRNA (tRFs). Conversely, the nucleic acids-free purified hBEX3 presented disordered structure. Small-angle X-ray scattering data revealed that in the presence of tRFs, hBEX3 adopts compact globular fold, which is very distinct from the elongated high-order oligomer formed by the pure protein. Furthermore, microscopy showed that hBEX3 undergoes condensation in micron-sized protein-rich droplets in vitro. In the presence of tRFs, biomolecular condensates were smaller and in higher number, showing acridine orange green fluorescence emission, which corroborated with the presence of base-paired nucleic acids. Additionally, we found that over time hBEX3 transits from liquid condensates to aggregates that are reversible upon temperature increment and dissolved by 1,6-hexanediol. hBEX3 assemblies display different morphology in the presence of the tRFs that seems to protect from amyloid formation. Collectively, our findings support a role for tRFs in hBEX3 disorder-to-order transition and modulation of phase transitions. Moreover, hBEX3 aggregation-prone features and the specificity in interaction with tRNA fragments advocate paramount importance toward understanding BEX family involvement in neurodevelopment and cell death.
Collapse
Affiliation(s)
- Mariana J do Amaral
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Talita S Araujo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Nuria C Díaz
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Federica Accornero
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, 43210 OH, USA
| | - Carla R Polycarpo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Yraima Cordeiro
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Katia M S Cabral
- Plataforma Avançada de Biomoléculas, Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil; Faculdade de Medicina de Petrópolis/Faculdade Arthur Sá Earp Neto, 25680-120 Petrópolis, Rio de Janeiro, Brazil
| | - Marcius S Almeida
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil; Plataforma Avançada de Biomoléculas, Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil.
| |
Collapse
|
42
|
Kamagata K, Kanbayashi S, Honda M, Itoh Y, Takahashi H, Kameda T, Nagatsugi F, Takahashi S. Liquid-like droplet formation by tumor suppressor p53 induced by multivalent electrostatic interactions between two disordered domains. Sci Rep 2020; 10:580. [PMID: 31953488 PMCID: PMC6969132 DOI: 10.1038/s41598-020-57521-w] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/13/2019] [Indexed: 12/25/2022] Open
Abstract
Early in vivo studies demonstrated the involvement of a tumor-suppressing transcription factor, p53, into cellular droplets such as Cajal and promyelocytic leukemia protein bodies, suggesting that the liquid-liquid phase separation (LLPS) might be involved in the cellular functions of p53. To examine this possibility, we conducted extensive investigations on the droplet formation of p53 in vitro. First, p53 itself was found to form liquid-like droplets at neutral and slightly acidic pH and at low salt concentrations. Truncated p53 mutants modulated droplet formation, suggesting the importance of multivalent electrostatic interactions among the N-terminal and C-terminal domains. Second, FRET efficiency measurements for the dimer mutants of p53 revealed that distances between the core domains and between the C-terminal domains were modulated in an opposite manner within the droplets. Third, the molecular crowding agents were found to promote droplet formation, whereas ssDNA, dsDNA, and ATP, to suppress it. Finally, the p53 mutant mimicking posttranslational phosphorylation did not form the droplets. We conclude that p53 itself has a potential to form droplets that can be controlled by cellular molecules and by posttranslational modifications, suggesting that LLPS might be involved in p53 function.
Collapse
Affiliation(s)
- Kiyoto Kamagata
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan. .,Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan.
| | - Saori Kanbayashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan
| | - Masaya Honda
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan.,Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
| | - Yuji Itoh
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan
| | - Hiroto Takahashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan
| | - Tomoshi Kameda
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Koto, Tokyo, 135-0064, Japan
| | - Fumi Nagatsugi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan.,Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
| | - Satoshi Takahashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan.,Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
| |
Collapse
|
43
|
Abstract
This work provides a clearer picture for non-classical nucleation by revealing the presence of various intermediates using advanced characterization techniques.
Collapse
Affiliation(s)
- Biao Jin
- Physical Sciences Division
- Pacific Northwest National Laboratory
- Richland
- USA
- Department of Chemistry
| | - Zhaoming Liu
- Department of Chemistry
- Zhejiang University
- Hangzhou
- China
| | - Ruikang Tang
- Department of Chemistry
- Zhejiang University
- Hangzhou
- China
| |
Collapse
|
44
|
Affiliation(s)
- Peter G. Vekilov
- Department of Chemical and Biomolecular Engineering and Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
45
|
Mudogo CN, Falke S, Brognaro H, Duszenko M, Betzel C. Protein phase separation and determinants of in cell crystallization. Traffic 2019; 21:220-230. [DOI: 10.1111/tra.12711] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 10/21/2019] [Accepted: 10/27/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Celestin N. Mudogo
- Laboratory for Structural Biology of Infection and InflammationInstitute of Biochemistry and Molecular Biology, University of Hamburg Hamburg Germany
- Department of Basic Sciences, School of MedicineUniversity of Kinshasa Kinshasa Democratic Republic of Congo
| | - Sven Falke
- Laboratory for Structural Biology of Infection and InflammationInstitute of Biochemistry and Molecular Biology, University of Hamburg Hamburg Germany
| | - Hévila Brognaro
- Laboratory for Structural Biology of Infection and InflammationInstitute of Biochemistry and Molecular Biology, University of Hamburg Hamburg Germany
- Centre for Free‐Electron‐Laser Science Hamburg Germany
| | - Michael Duszenko
- Institute of Neurophysiology, University of Tübingen Tübingen Germany
| | - Christian Betzel
- Laboratory for Structural Biology of Infection and InflammationInstitute of Biochemistry and Molecular Biology, University of Hamburg Hamburg Germany
| |
Collapse
|
46
|
Modulation of p53 and prion protein aggregation by RNA. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:933-940. [DOI: 10.1016/j.bbapap.2019.02.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 02/19/2019] [Accepted: 02/25/2019] [Indexed: 02/07/2023]
|
47
|
de Oliveira GAP, Cordeiro Y, Silva JL, Vieira TCRG. Liquid-liquid phase transitions and amyloid aggregation in proteins related to cancer and neurodegenerative diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 118:289-331. [PMID: 31928729 DOI: 10.1016/bs.apcsb.2019.08.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Liquid-liquid phase separation (LLPS) and phase transition (LLPT) of proteins and nucleic acids have emerged as a new paradigm in cell biology. Here we will describe the recent findings about LLPS and LLPT, including the molecular and physical determinants leading to their formation, the resulting functions and their implications in cell physiology and disease. Amyloid aggregation is implicated in many neurodegenerative diseases and cancer, and LLPS of proteins involved in these diseases appear to be related to their function in different cell contexts. Amyloid formation would correspond to an irreversible liquid-to-solid transition, as clearly observed in the case of PrP, TDP43, FUS/TLS and tau protein in neurodegenerative pathologies as well as with the mutant tumor suppressor p53 in cancer. Nucleic acids play a modulatory effect on both LLPS and amyloid aggregation. Understanding the molecular events regulating how the demixing process advances to solid-like fibril materials is crucial for the development of novel therapeutic strategies against cancer and neurodegenerative maladies.
Collapse
Affiliation(s)
- Guilherme A P de Oliveira
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, United States
| | - Yraima Cordeiro
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro-RJ, Brazil
| | - Jerson L Silva
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Tuane C R G Vieira
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
48
|
Chan HY, Lubchenko V. A mechanism for reversible mesoscopic aggregation in liquid solutions. Nat Commun 2019; 10:2381. [PMID: 31147533 PMCID: PMC6542858 DOI: 10.1038/s41467-019-10270-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 04/30/2019] [Indexed: 02/02/2023] Open
Abstract
Solutions of proteins and other molecules exhibit puzzling, mesoscopically sized inclusions of a solute-rich liquid, well outside the region of stability of the solute-rich phase. This mesoscopic size is in conflict with existing views on heterophase fluctuations. Here we systematically work out a microscopic mechanism by which a metastable solute-rich phase can readily nucleate in a liquid solution. A requisite component of the mechanism is that the solute form long-lived complexes with itself or other molecules. After nucleated in this non-classical fashion, individual droplets grow until becoming mechanically unstable because of a concomitant drop in the internal pressure, the drop caused by the metastability of the solute-rich phase. The ensemble of the droplets is steady-state. In a freshly prepared solution, the ensemble is predicted to evolve in a way similar to the conventional Ostwald ripening, during which larger droplets grow at the expense of smaller droplets.
Collapse
Affiliation(s)
- Ho Yin Chan
- Department of Chemistry, University of Houston, Houston, TX, 77204-5003, USA
| | - Vassiliy Lubchenko
- Department of Chemistry, University of Houston, Houston, TX, 77204-5003, USA. .,Department of Physics, University of Houston, Houston, TX, 77204-5005, USA.
| |
Collapse
|