1
|
Eichel K. Endocytosis in the axon initial segment: Roles in neuronal polarity and plasticity. Curr Opin Neurobiol 2025; 90:102949. [PMID: 39689414 DOI: 10.1016/j.conb.2024.102949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/15/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024]
Abstract
The axon initial segment (AIS) is a specialized domain that maintains neuronal polarity and is the site of action potential generation, both of which underlie the neuron's ability to send and receive signals. Disruption of the AIS leads to a loss of neuronal polarity, altered neuronal signaling, and an array of neurological disorders. Therefore, understanding how the AIS forms and functions is a central question in cellular neuroscience that is essential to understanding neuronal physiology. Decades of study have identified many molecular components and mechanisms at the AIS. Recently, endocytosis at the AIS has been identified to function in both maintaining neuronal polarity and in mediating AIS plasticity through its ability to dynamically remodel the plasma membrane composition. This review discusses the emerging evidence for the roles of endocytosis in regulating AIS function and structural insights into how endocytosis can occur at the AIS.
Collapse
Affiliation(s)
- Kelsie Eichel
- Howard Hughes Medical Institute, University of Colorado Boulder, USA.
| |
Collapse
|
2
|
Ermanoska B, Baets J, Rodal AA. Non-muscle myosin II regulates presynaptic actin assemblies and neuronal mechanobiology in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.11.10.566609. [PMID: 38014140 PMCID: PMC10680633 DOI: 10.1101/2023.11.10.566609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Neuromuscular junctions (NMJs) are evolutionarily ancient, specialized contacts between neurons and muscles. They endure mechanical strain from muscle contractions throughout life, but cellular mechanisms for managing this stress remain unclear. Here we identify a novel actomyosin structure at Drosophila larval NMJs, consisting of a long-lived, low-turnover presynaptic actin core that co-localizes with non-muscle myosin II (NMII). This core is likely to have contractile properties, as manipulating neuronal NMII levels or activity disrupts its organization. Intriguingly, depleting neuronal NMII triggered changes in postsynaptic muscle NMII levels and organization near synapses, suggesting transsynaptic propagation of actomyosin rearrangements. We also found reduced levels of Integrin adhesion receptors both pre- and postsynaptically upon NMII knockdown, indicating disrupted neuron-muscle connections. Mechanical severing of axons caused similar actin core fragmentation and Integrin loss to NMII depletion, suggesting this structure responds to tension. Our findings reveal a presynaptic actomyosin assembly that maintains mechanical continuity between neurons and muscle, possibly facilitating mechanotransduction at the NMJ via Integrin-mediated adhesion.
Collapse
Affiliation(s)
| | - Jonathan Baets
- Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | | |
Collapse
|
3
|
Gallo G. The Axonal Actin Filament Cytoskeleton: Structure, Function, and Relevance to Injury and Degeneration. Mol Neurobiol 2024; 61:5646-5664. [PMID: 38216856 DOI: 10.1007/s12035-023-03879-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/13/2023] [Indexed: 01/14/2024]
Abstract
Early investigations of the neuronal actin filament cytoskeleton gave rise to the notion that, although growth cones exhibit high levels of actin filaments, the axon shaft exhibits low levels of actin filaments. With the development of new tools and imaging techniques, the axonal actin filament cytoskeleton has undergone a renaissance and is now an active field of research. This article reviews the current state of knowledge about the actin cytoskeleton of the axon shaft. The best understood forms of actin filament organization along axons are axonal actin patches and a submembranous system of rings that endow the axon with protrusive competency and structural integrity, respectively. Additional forms of actin filament organization along the axon have also been described and their roles are being elucidated. Extracellular signals regulate the axonal actin filament cytoskeleton and our understanding of the signaling mechanisms involved is being elaborated. Finally, recent years have seen advances in our perspective on how the axonal actin cytoskeleton is impacted by, and contributes to, axon injury and degeneration. The work to date has opened new venues and future research will undoubtedly continue to provide a richer understanding of the axonal actin filament cytoskeleton.
Collapse
Affiliation(s)
- Gianluca Gallo
- Department of Neural Sciences, Shriners Pediatric Research Center, Lewis Katz School of Medicine at Temple University, 3500 North Broad St, Philadelphia, PA, 19140, USA.
| |
Collapse
|
4
|
Micinski D, Hotulainen P. Actin polymerization and longitudinal actin fibers in axon initial segment plasticity. Front Mol Neurosci 2024; 17:1376997. [PMID: 38799616 PMCID: PMC11120970 DOI: 10.3389/fnmol.2024.1376997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
The location of the axon initial segment (AIS) at the junction between the soma and axon of neurons makes it instrumental in maintaining neural polarity and as the site for action potential generation. The AIS is also capable of large-scale relocation in an activity-dependent manner. This represents a form of homeostatic plasticity in which neurons regulate their own excitability by changing the size and/or position of the AIS. While AIS plasticity is important for proper functionality of AIS-containing neurons, the cellular and molecular mechanisms of AIS plasticity are poorly understood. Here, we analyzed changes in the AIS actin cytoskeleton during AIS plasticity using 3D structured illumination microscopy (3D-SIM). We showed that the number of longitudinal actin fibers increased transiently 3 h after plasticity induction. We further showed that actin polymerization, especially formin mediated actin polymerization, is required for AIS plasticity and formation of longitudinal actin fibers. From the formin family of proteins, Daam1 localized to the ends of longitudinal actin fibers. These results indicate that active re-organization of the actin cytoskeleton is required for proper AIS plasticity.
Collapse
Affiliation(s)
- David Micinski
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
- HiLIFE-Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Pirta Hotulainen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
- Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
Xu Z, Angstmann CN, Wu Y, Stefen H, Parić E, Fath T, Curmi PM. Location of the axon initial segment assembly can be predicted from neuronal shape. iScience 2024; 27:109264. [PMID: 38450155 PMCID: PMC10915628 DOI: 10.1016/j.isci.2024.109264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/21/2023] [Accepted: 02/14/2024] [Indexed: 03/08/2024] Open
Abstract
The axon initial segment (AIS) is located at the proximal axon demarcating the boundary between axonal and somatodendritic compartments. The AIS facilitates the generation of action potentials and maintenance of neuronal polarity. In this study, we show that the location of AIS assembly, as marked by Ankyrin G, corresponds to the nodal plane of the lowest-order harmonic of the Laplace-Beltrami operator solved over the neuronal shape. This correlation establishes a coupling between location of AIS assembly and neuronal cell morphology. We validate this correlation for neurons with atypical morphology and neurons containing multiple AnkG clusters on distinct neurites, where the nodal plane selects the appropriate axon showing enriched Tau. Based on our findings, we propose that Turing patterning systems are candidates for dynamically governing AIS location. Overall, this study highlights the importance of neuronal cell morphology in determining the precise localization of the AIS within the proximal axon.
Collapse
Affiliation(s)
- Zhuang Xu
- School of Physics, The University of New South Wales, Sydney, NSW 2052, Australia
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
- School of Mathematics and Statistics, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Christopher N. Angstmann
- School of Mathematics and Statistics, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Yuhuang Wu
- Infection Analytics Program, Kirby Institute for Infection and Immunity, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Holly Stefen
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Esmeralda Parić
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Thomas Fath
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Paul M.G. Curmi
- School of Physics, The University of New South Wales, Sydney, NSW 2052, Australia
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
6
|
Thapa R, Afzal O, Afzal M, Gupta G, Bhat AA, Hassan Almalki W, Kazmi I, Alzarea SI, Saleem S, Arora P, Singh SK, Dua K. From LncRNA to metastasis: The MALAT1-EMT axis in cancer progression. Pathol Res Pract 2024; 253:154959. [PMID: 38029713 DOI: 10.1016/j.prp.2023.154959] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023]
Abstract
Cancer is a complex disease that causes abnormal genetic changes and unchecked cellular growth. It also causes a disruption in the normal regulatory processes that leads to the creation of malignant tissue. The complex interplay of genetic, environmental, and epigenetic variables influences its etiology. Long non-coding RNAs (LncRNAs) have emerged as pivotal contributors within the intricate landscape of cancer biology, orchestrating an array of multifaceted cellular processes that substantiate the processes of carcinogenesis and metastasis. Metastasis is a crucial driver of cancer mortality. Among these, MALAT1 (Metastasis-Associated Lung Adenocarcinoma Transcript 1) has drawn a lot of interest for its function in encouraging metastasis via controlling the Epithelial-Mesenchymal Transition (EMT) procedure. MALAT1 exerts a pivotal influence on the process of EMT, thereby promoting metastasis to distant organs. The mechanistic underpinning of this phenomenon involves the orchestration of an intricate regulatory network encompassing transcription factors, signalling cascades, and genes intricately associated with the EMT process by MALAT1. Its crucial function in transforming tumor cells into an aggressive phenotype is highlighted by its capacity to influence the expression of essential EMT effectors such as N-cadherin, E-cadherin, and Snail. An understanding of the MALAT1-EMT axis provides potential therapeutic approaches for cancer intervention. Targeting MALAT1 or its downstream EMT effectors may reduce the spread of metastatic disease and improve the effectiveness of already available therapies. Understanding the MALAT1-EMT axis holds significant clinical implications. Therefore, directing attention towards MALAT1 or its downstream mediators could present innovative therapeutic strategies for mitigating metastasis and improving patient prognosis. This study highlights the importance of MALAT1 in cancer biology and its potential for cutting back on metastatic disease with novel treatment strategies.
Collapse
Affiliation(s)
- Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India.
| | - Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Shakir Saleem
- Department of Public Health. College of Health Sciences, Saudi Electronic University, Riyadh, Saudi Arabia
| | - Poonam Arora
- SGT College of Pharmacy, SGT University, Gurugram, Haryana, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| |
Collapse
|
7
|
Xu Y, Kusuyama J, Osana S, Matsuhashi S, Li L, Takada H, Inada H, Nagatomi R. Lactate promotes neuronal differentiation of SH-SY5Y cells by lactate-responsive gene sets through NDRG3-dependent and -independent manners. J Biol Chem 2023:104802. [PMID: 37172727 DOI: 10.1016/j.jbc.2023.104802] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 04/23/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Lactate serves as the major glucose alternative to an energy substrate in the brain. Lactate level is increased in the fetal brain from the middle stage of gestation, indicating the involvement of lactate in brain development and neuronal differentiation. Recent reports show that lactate functions as a signaling molecule to regulate gene expression and protein stability. However, the roles of lactate signaling in neuronal cells remain unknown. Here, we showed that lactate promotes the all stages of neuronal differentiation of SH-SY5Y and Neuro2A, human and mouse neuroblastoma cell lines, characterized by increased neuronal marker expression and the rates of neurites extension. Transcriptomics revealed many lactate-responsive genes sets such as SPARCL1 in SH-SY5Y, Neuro2A, and primary embryonic mouse neuronal cells. The effects of lactate on neuronal function were mainly mediated through monocarboxylate transporters 1 (MCT1). We found that NDRG family member 3 (NDRG3), a lactate-binding protein, was highly expressed and stabilized by lactate treatment during neuronal differentiation. Combinative RNA-seq of SH-SY5Y with lactate treatment and NDRG3 knockdown shows that the promotive effects of lactate on neural differentiation are regulated through NDRG3-dependent and independent manners. Moreover, we identified TEA domain family member 1 (TEAD1) and ETS-related transcription factor 4 (ELF4) are the specific transcription factors that are regulated by both lactate and NDRG3 in neuronal differentiation. TEAD1 and ELF4 differently affect the expression of neuronal marker genes in SH-SY5Y cells. These results highlight the biological roles of extracellular and intracellular lactate as a critical signaling molecule that modifies neuronal differentiation.
Collapse
Affiliation(s)
- Yidan Xu
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Joji Kusuyama
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan; Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan; Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan; Department of Biosignals and Inheritance, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| | - Shion Osana
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan; Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan; Graduate School of Informatics and Engineering, University of Electro-Communications
| | - Satayuki Matsuhashi
- Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | - Longfei Li
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroaki Takada
- Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | - Hitoshi Inada
- Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan; Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryoichi Nagatomi
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan; Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan.
| |
Collapse
|
8
|
Yang C, Zhao X, An X, Zhang Y, Sun W, Zhang Y, Duan Y, Kang X, Sun Y, Jiang L, Lian F. Axonal transport deficits in the pathogenesis of diabetic peripheral neuropathy. Front Endocrinol (Lausanne) 2023; 14:1136796. [PMID: 37056668 PMCID: PMC10086245 DOI: 10.3389/fendo.2023.1136796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Diabetic peripheral neuropathy (DPN) is a chronic and prevalent metabolic disease that gravely endangers human health and seriously affects the quality of life of hyperglycemic patients. More seriously, it can lead to amputation and neuropathic pain, imposing a severe financial burden on patients and the healthcare system. Even with strict glycemic control or pancreas transplantation, peripheral nerve damage is difficult to reverse. Most current treatment options for DPN can only treat the symptoms but not the underlying mechanism. Patients with long-term diabetes mellitus (DM) develop axonal transport dysfunction, which could be an important factor in causing or exacerbating DPN. This review explores the underlying mechanisms that may be related to axonal transport impairment and cytoskeletal changes caused by DM, and the relevance of the latter with the occurrence and progression of DPN, including nerve fiber loss, diminished nerve conduction velocity, and impaired nerve regeneration, and also predicts possible therapeutic strategies. Understanding the mechanisms of diabetic neuronal injury is essential to prevent the deterioration of DPN and to develop new therapeutic strategies. Timely and effective improvement of axonal transport impairment is particularly critical for the treatment of peripheral neuropathies.
Collapse
|
9
|
Dorrego-Rivas A, Ezan J, Moreau MM, Poirault-Chassac S, Aubailly N, De Neve J, Blanchard C, Castets F, Fréal A, Battefeld A, Sans N, Montcouquiol M. The core PCP protein Prickle2 regulates axon number and AIS maturation by binding to AnkG and modulating microtubule bundling. SCIENCE ADVANCES 2022; 8:eabo6333. [PMID: 36083912 PMCID: PMC9462691 DOI: 10.1126/sciadv.abo6333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Core planar cell polarity (PCP) genes, which are involved in various neurodevelopmental disorders such as neural tube closure, epilepsy, and autism spectrum disorder, have poorly defined molecular signatures in neurons, mostly synapse-centric. Here, we show that the core PCP protein Prickle-like protein 2 (Prickle2) controls neuronal polarity and is a previously unidentified member of the axonal initial segment (AIS) proteome. We found that Prickle2 is present and colocalizes with AnkG480, the AIS master organizer, in the earliest stages of axonal specification and AIS formation. Furthermore, by binding to and regulating AnkG480, Prickle2 modulates its ability to bundle microtubules, a crucial mechanism for establishing neuronal polarity and AIS formation. Prickle2 depletion alters cytoskeleton organization, and Prickle2 levels determine both axon number and AIS maturation. Last, early Prickle2 depletion produces impaired action potential firing.
Collapse
Affiliation(s)
- Ana Dorrego-Rivas
- Univ. Bordeaux, INSERM, Magendie, U1215, F-33077 Bordeaux, France
- Corresponding author.
| | - Jerome Ezan
- Univ. Bordeaux, INSERM, Magendie, U1215, F-33077 Bordeaux, France
| | - Maïté M Moreau
- Univ. Bordeaux, INSERM, Magendie, U1215, F-33077 Bordeaux, France
| | | | | | - Julie De Neve
- Univ. Bordeaux, INSERM, Magendie, U1215, F-33077 Bordeaux, France
| | | | - Francis Castets
- Aix-Marseille Université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Case 907, 13288 Marseille Cedex 09, France
| | - Amélie Fréal
- Department of Functional Genomics, Vrije Universiteit (VU), Amsterdam, Netherlands
| | - Arne Battefeld
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Nathalie Sans
- Univ. Bordeaux, INSERM, Magendie, U1215, F-33077 Bordeaux, France
- Corresponding author.
| | | |
Collapse
|
10
|
Chen Y, Chen X, Zhang H, Sha Y, Meng R, Shao T, Yang X, Jin P, Zhuang Y, Min W, Xu D, Jiang Z, Li Y, Li L, Yue W, Yin C. TBC1D21 is an essential factor for sperm mitochondrial sheath assembly and male fertility‡. Biol Reprod 2022; 107:619-634. [PMID: 35403672 DOI: 10.1093/biolre/ioac069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/03/2022] [Accepted: 03/29/2022] [Indexed: 11/12/2022] Open
Abstract
During spermiogenesis, the formation of the mitochondrial sheath is critical for male fertility. The molecular processes that govern the development of the mitochondrial sheath remain unknown. Whether TBC1D21 serves as a GTPase-activating protein (GAP) for GTP hydrolysis in the testis is unclear, despite recent findings indicating that it collaborates with numerous proteins to regulate the formation of the mitochondrial sheath. To thoroughly examine the property of TBC1D21 in spermiogenesis, we applied the CRISPR/Cas9 technology to generate the Tbc1d21-/- mice, Tbc1d21D125A R128K mice with mutation in the GAP catalytic residues (IxxDxxR), and Tbc1d21-3xFlag mice. Male Tbc1d21-/- mice were infertile due to the curved spermatozoa flagella. In vitro fertilization is ineffective for Tbc1d21-/- sperm, although healthy offspring were obtained by intracytoplasmic sperm injection. Electron microscopy revealed aberrant ultrastructural changes in the mitochondrial sheath. Thirty-four Rab vectors were constructed followed by co-immunoprecipitation, which identified RAB13 as a novel TBC1D21 binding protein. Interestingly, infertility was not observed in Tbc1d21D125A R128K mice harboring the catalytic residue, suggesting that TBC1D21 is not a typical GAP for Rab-GTP hydrolysis. Moreover, TBC1D21 was expressed in the sperm mitochondrial sheath in Tbc1d21-3xFlag mice. Immunoprecipitation-mass spectrometry demonstrated the interactions of TBC1D21 with ACTB, TPM3, SPATA19, and VDAC3 to regulate the architecture of the sperm midpiece. The collective findings suggest that TBC1D21 is a scaffold protein required for the organization and stabilization of the mitochondrial sheath morphology.
Collapse
Affiliation(s)
- Yongjie Chen
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Xiu Chen
- Department of Pharmacy, Heze University, Heze, Shandong, China
| | - Haihang Zhang
- National Institute of Biological Sciences, Beijing, China
| | - Yanwei Sha
- Department of Andrology, United Diagnostic and Research Center for Clinical Genetics, School of Public Health & Women and Children's Hospital, Xiamen University, Xiamen, China
| | - Ranran Meng
- National Institute of Biological Sciences, Beijing, China
| | - Tianyu Shao
- National Institute of Biological Sciences, Beijing, China
| | - Xiaoyan Yang
- National Institute of Biological Sciences, Beijing, China
| | - Pengpeng Jin
- National Institute of Biological Sciences, Beijing, China
| | - Yinghua Zhuang
- National Institute of Biological Sciences, Beijing, China
| | - Wanping Min
- National Institute of Biological Sciences, Beijing, China
| | - Dan Xu
- National Institute of Biological Sciences, Beijing, China
| | - Zhaodi Jiang
- National Institute of Biological Sciences, Beijing, China
| | - Yuhua Li
- National Institute of Biological Sciences, Beijing, China
| | - Lin Li
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Wentao Yue
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Chenghong Yin
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| |
Collapse
|
11
|
Yogev Y, Bistritzer J, Sadaka Y, Michaelovsky A, Cavari Y, Feinstein Y, Abu-Madegem M, Fellig Y, Wormser O, Drabkin M, Halperin D, Birk OS. Transcript-Based Diagnosis and Expanded Phenotype of an Intronic Mutation in TPM3 Myopathy. Mol Diagn Ther 2022; 26:561-568. [PMID: 35796944 DOI: 10.1007/s40291-022-00601-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2022] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Congenital myopathies are a broad group of inborn muscle disorders caused by a multitude of genetic factors, often characterized by muscle atrophy and hypotonia. METHODS Clinical studies, imaging, histology, whole-exome sequencing (WES) and muscle tissue RNA studies. RESULTS We describe a severe congenital myopathy manifesting at birth with bilateral clubfeet, delayed motor development and hypotonia, becoming evident by 4 months of age. At 3 years of age, the patient had tongue fasciculations, was bedridden, and was chronically ventilated via tracheostomy. Imaging studies demonstrated severe muscle atrophy and, surprisingly, cerebral atrophy; electromyography demonstrated a myasthenic pattern and histological evaluation did not facilitate a definitive diagnosis. Trio WES did not identify a causative variant, except for a non-canonical intronic TPM3 c.118-12G>A variant of uncertain significance. Transcript analysis of muscle tissue from the patient proved the pathogenicity of this homozygous variant, with a 97% reduction in the muscle-specific TPM3.12 transcript. DISCUSSION This study broadens the phenotypic spectrum of recessive TPM3 disease, highlighting tongue fasciculations and bilateral clubfoot, as well as possibly-related cerebral atrophy. It also shows the importance of a broad approach to genetic analysis and the utility of RNA-based studies, demonstrating efficacy of early genome and transcriptome queries in facilitating rapid and cost-effective diagnosis of congenital myopathies.
Collapse
Affiliation(s)
- Yuval Yogev
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Jacob Bistritzer
- Pediatric Neurology Unit, Faculty of Health Sciences, Soroka Medical Center, Joyce and Irving Goldman Medical School, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yair Sadaka
- The Joyce and Irving Goldman Medical School, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Neuro-Developmental Research Center, Mental Health Institute, Beer Sheva, Israel
| | - Analia Michaelovsky
- Pediatric Neurology Unit, Faculty of Health Sciences, Soroka Medical Center, Joyce and Irving Goldman Medical School, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yuval Cavari
- The Pediatric Intensive Care Unit, Faculty of Health Sciences, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yael Feinstein
- The Pediatric Intensive Care Unit, Faculty of Health Sciences, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Munir Abu-Madegem
- Pediatric Neurology and Child Development Units, Clalit Health Services, Hadarom, Israel
| | - Yakov Fellig
- Department of Pathology, Faculty of Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ohad Wormser
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Max Drabkin
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Daniel Halperin
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ohad S Birk
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel. .,Genetics Institute, Faculty of Health Sciences, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| |
Collapse
|
12
|
Eichel K, Shen K. The function of the axon initial segment in neuronal polarity. Dev Biol 2022; 489:47-54. [DOI: 10.1016/j.ydbio.2022.05.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/09/2022] [Accepted: 05/23/2022] [Indexed: 11/25/2022]
|
13
|
Nowak RB, Alimohamadi H, Pestonjamasp K, Rangamani P, Fowler VM. Nanoscale Dynamics of Actin Filaments in the Red Blood Cell Membrane Skeleton. Mol Biol Cell 2022; 33:ar28. [PMID: 35020457 PMCID: PMC9250383 DOI: 10.1091/mbc.e21-03-0107] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Red blood cell (RBC) shape and deformability are supported by a planar network of short actin filament (F-actin) nodes (∼37 nm length, 15–18 subunits) interconnected by long spectrin strands at the inner surface of the plasma membrane. Spectrin-F-actin network structure underlies quantitative modeling of forces controlling RBC shape, membrane curvature, and deformation, yet the nanoscale organization and dynamics of the F-actin nodes in situ are not well understood. We examined F-actin distribution and dynamics in RBCs using fluorescent-phalloidin labeling of F-actin imaged by multiple microscopy modalities. Total internal reflection fluorescence and Zeiss Airyscan confocal microscopy demonstrate that F-actin is concentrated in multiple brightly stained F-actin foci ∼200–300 nm apart interspersed with dimmer F-actin staining regions. Single molecule stochastic optical reconstruction microscopy imaging of Alexa 647-phalloidin-labeled F-actin and computational analysis also indicates an irregular, nonrandom distribution of F-actin nodes. Treatment of RBCs with latrunculin A and cytochalasin D indicates that F-actin foci distribution depends on actin polymerization, while live cell imaging reveals dynamic local motions of F-actin foci, with lateral movements, appearance and disappearance. Regulation of F-actin node distribution and dynamics via actin assembly/disassembly pathways and/or via local extension and retraction of spectrin strands may provide a new mechanism to control spectrin-F-actin network connectivity, RBC shape, and membrane deformability.
Collapse
Affiliation(s)
- Roberta B Nowak
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Haleh Alimohamadi
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093-0411
| | - Kersi Pestonjamasp
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093-0411
| | - Velia M Fowler
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037.,Department of Biological Sciences, University of Delaware, Newark, DE 19716
| |
Collapse
|
14
|
Chaichim C, Tomanic T, Stefen H, Paric E, Gamaroff L, Suchowerska AK, Gunning PW, Ke YD, Fath T, Power J. Overexpression of Tropomyosin Isoform Tpm3.1 Does Not Alter Synaptic Function in Hippocampal Neurons. Int J Mol Sci 2021; 22:ijms22179303. [PMID: 34502205 PMCID: PMC8430609 DOI: 10.3390/ijms22179303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022] Open
Abstract
Tropomyosin (Tpm) has been regarded as the master regulator of actin dynamics. Tpms regulate the binding of the various proteins involved in restructuring actin. The actin cytoskeleton is the predominant cytoskeletal structure in dendritic spines. Its regulation is critical for spine formation and long-term activity-dependent changes in synaptic strength. The Tpm isoform Tpm3.1 is enriched in dendritic spines, but its role in regulating the synapse structure and function is not known. To determine the role of Tpm3.1, we studied the synapse structure and function of cultured hippocampal neurons from transgenic mice overexpressing Tpm3.1. We recorded hippocampal field excitatory postsynaptic potentials (fEPSPs) from brain slices to examine if Tpm3.1 overexpression alters long-term synaptic plasticity. Tpm3.1-overexpressing cultured neurons did not show a significantly altered dendritic spine morphology or synaptic activity. Similarly, we did not observe altered synaptic transmission or plasticity in brain slices. Furthermore, expression of Tpm3.1 at the postsynaptic compartment does not increase the local F-actin levels. The results suggest that although Tpm3.1 localises to dendritic spines in cultured hippocampal neurons, it does not have any apparent impact on dendritic spine morphology or function. This is contrary to the functional role of Tpm3.1 previously observed at the tip of growing neurites, where it increases the F-actin levels and impacts growth cone dynamics.
Collapse
Affiliation(s)
- Chanchanok Chaichim
- Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia;
- Dementia Research Centre, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (T.T.); (H.S.); (E.P.); (L.G.); (A.K.S.); (Y.D.K.)
| | - Tamara Tomanic
- Dementia Research Centre, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (T.T.); (H.S.); (E.P.); (L.G.); (A.K.S.); (Y.D.K.)
| | - Holly Stefen
- Dementia Research Centre, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (T.T.); (H.S.); (E.P.); (L.G.); (A.K.S.); (Y.D.K.)
| | - Esmeralda Paric
- Dementia Research Centre, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (T.T.); (H.S.); (E.P.); (L.G.); (A.K.S.); (Y.D.K.)
| | - Lucy Gamaroff
- Dementia Research Centre, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (T.T.); (H.S.); (E.P.); (L.G.); (A.K.S.); (Y.D.K.)
| | - Alexandra K. Suchowerska
- Dementia Research Centre, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (T.T.); (H.S.); (E.P.); (L.G.); (A.K.S.); (Y.D.K.)
| | - Peter W. Gunning
- Cellular and Genetic Medicine Unit, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia;
| | - Yazi D. Ke
- Dementia Research Centre, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (T.T.); (H.S.); (E.P.); (L.G.); (A.K.S.); (Y.D.K.)
| | - Thomas Fath
- Dementia Research Centre, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (T.T.); (H.S.); (E.P.); (L.G.); (A.K.S.); (Y.D.K.)
- Correspondence: (T.F.); (J.P.)
| | - John Power
- Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia;
- Correspondence: (T.F.); (J.P.)
| |
Collapse
|
15
|
Fujitani M, Otani Y, Miyajima H. Pathophysiological Roles of Abnormal Axon Initial Segments in Neurodevelopmental Disorders. Cells 2021; 10:2110. [PMID: 34440880 PMCID: PMC8392614 DOI: 10.3390/cells10082110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 11/17/2022] Open
Abstract
The 20-60 μm axon initial segment (AIS) is proximally located at the interface between the axon and cell body. AIS has characteristic molecular and structural properties regulated by the crucial protein, ankyrin-G. The AIS contains a high density of Na+ channels relative to the cell body, which allows low thresholds for the initiation of action potential (AP). Molecular and physiological studies have shown that the AIS is also a key domain for the control of neuronal excitability by homeostatic mechanisms. The AIS has high plasticity in normal developmental processes and pathological activities, such as injury, neurodegeneration, and neurodevelopmental disorders (NDDs). In the first half of this review, we provide an overview of the molecular, structural, and ion-channel characteristics of AIS, AIS regulation through axo-axonic synapses, and axo-glial interactions. In the second half, to understand the relationship between NDDs and AIS, we discuss the activity-dependent plasticity of AIS, the human mutation of AIS regulatory genes, and the pathophysiological role of an abnormal AIS in NDD model animals and patients. We propose that the AIS may provide a potentially valuable structural biomarker in response to abnormal network activity in vivo as well as a new treatment concept at the neural circuit level.
Collapse
Affiliation(s)
- Masashi Fujitani
- Department of Anatomy and Neuroscience, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi 693-8501, Shimane, Japan; (Y.O.); (H.M.)
| | | | | |
Collapse
|
16
|
Costa AR, Sousa MM. The role of the membrane-associated periodic skeleton in axons. Cell Mol Life Sci 2021; 78:5371-5379. [PMID: 34085116 PMCID: PMC11071922 DOI: 10.1007/s00018-021-03867-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/14/2021] [Accepted: 05/27/2021] [Indexed: 11/24/2022]
Abstract
The identification of the membrane periodic skeleton (MPS), composed of a periodic lattice of actin rings interconnected by spectrin tetramers, was enabled by the development of super-resolution microscopy, and brought a new exciting perspective to our view of neuronal biology. This exquisite cytoskeleton arrangement plays an important role on mechanisms regulating neuronal (dys)function. The MPS was initially thought to provide mainly for axonal mechanical stability. Since its discovery, the importance of the MPS in multiple aspects of neuronal biology has, however, emerged. These comprise its capacity to act as a signaling platform, regulate axon diameter-with important consequences on the efficiency of axonal transport and electrophysiological properties- participate in the assembly and function of the axon initial segment, and control axon microtubule stability. Recently, MPS disassembly has also surfaced as an early player in the course of axon degeneration. Here, we will discuss the current knowledge on the role of the MPS in axonal physiology and disease.
Collapse
Affiliation(s)
- Ana Rita Costa
- Nerve Regeneration Group, IBMC- Instituto de Biologia Molecular e Celular and i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
| | - Monica Mendes Sousa
- Nerve Regeneration Group, IBMC- Instituto de Biologia Molecular e Celular and i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal.
| |
Collapse
|
17
|
Pan X, Zhou Y, Hotulainen P, Meunier FA, Wang T. The axonal radial contractility: Structural basis underlying a new form of neural plasticity. Bioessays 2021; 43:e2100033. [PMID: 34145916 DOI: 10.1002/bies.202100033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 12/25/2022]
Abstract
Axons are the longest cellular structure reaching over a meter in the case of human motor axons. They have a relatively small diameter and contain several cytoskeletal elements that mediate both material and information exchange within neurons. Recently, a novel type of axonal plasticity, termed axonal radial contractility, has been unveiled. It is represented by dynamic and transient diameter changes of the axon shaft to accommodate the passages of large organelles. Mechanisms underpinning this plasticity are not fully understood. Here, we first summarised recent evidence of the functional relevance for axon radial contractility, then discussed the underlying structural basis, reviewing nanoscopic evidence of the subtle changes. Two models are proposed to explain how actomyosin rings are organised. Possible roles of non-muscle myosin II (NM-II) in axon degeneration are discussed. Finally, we discuss the concept of periodic functional nanodomains, which could sense extracellular cues and coordinate the axonal responses. Also see the video abstract here: https://youtu.be/ojCnrJ8RCRc.
Collapse
Affiliation(s)
- Xiaorong Pan
- Center for Brain Science, School of Life Science and Technology, Shanghaitech University, Shanghai, China
| | - Yimin Zhou
- Center for Brain Science, School of Life Science and Technology, Shanghaitech University, Shanghai, China
| | - Pirta Hotulainen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Tong Wang
- Center for Brain Science, School of Life Science and Technology, Shanghaitech University, Shanghai, China
| |
Collapse
|
18
|
Deletion of the Actin-Associated Tropomyosin Tpm3 Leads to Reduced Cell Complexity in Cultured Hippocampal Neurons-New Insights into the Role of the C-Terminal Region of Tpm3.1. Cells 2021; 10:cells10030715. [PMID: 33807093 PMCID: PMC8005004 DOI: 10.3390/cells10030715] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/20/2022] Open
Abstract
Tropomyosins (Tpms) have been described as master regulators of actin, with Tpm3 products shown to be involved in early developmental processes, and the Tpm3 isoform Tpm3.1 controlling changes in the size of neuronal growth cones and neurite growth. Here, we used primary mouse hippocampal neurons of C57/Bl6 wild type and Bl6Tpm3flox transgenic mice to carry out morphometric analyses in response to the absence of Tpm3 products, as well as to investigate the effect of C-terminal truncation on the ability of Tpm3.1 to modulate neuronal morphogenesis. We found that the knock-out of Tpm3 leads to decreased neurite length and complexity, and that the deletion of two amino acid residues at the C-terminus of Tpm3.1 leads to more detrimental changes in neurite morphology than the deletion of six amino acid residues. We also found that Tpm3.1 that lacks the 6 C-terminal amino acid residues does not associate with stress fibres, does not segregate to the tips of neurites, and does not impact the amount of the filamentous actin pool at the axonal growth cones, as opposed to Tpm3.1, which lacks the two C-terminal amino acid residues. Our study provides further insight into the role of both Tpm3 products and the C-terminus of Tpm3.1, and it forms the basis for future studies that aim to identify the molecular mechanisms underlying Tpm3.1 targeting to different subcellular compartments.
Collapse
|
19
|
Putting the axonal periodic scaffold in order. Curr Opin Neurobiol 2021; 69:33-40. [PMID: 33450534 DOI: 10.1016/j.conb.2020.12.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 01/01/2023]
Abstract
Neurons rely on a unique organization of their cytoskeleton to build, maintain and transform their extraordinarily intricate shapes. After decades of research on the neuronal cytoskeleton, it is exciting that novel assemblies are still discovered thanks to progress in cellular imaging methods. Indeed, super-resolution microscopy has revealed that axons are lined with a periodic scaffold of actin rings, spaced every 190nm by spectrins. Determining the architecture, composition, dynamics, and functions of this membrane-associated periodic scaffold is a current conceptual and technical challenge, as well as a very active area of research. This short review aims at summarizing the latest research on the axonal periodic scaffold, highlighting recent progress and open questions.
Collapse
|
20
|
Costa AR, Sousa MM. Non-Muscle Myosin II in Axonal Cell Biology: From the Growth Cone to the Axon Initial Segment. Cells 2020; 9:cells9091961. [PMID: 32858875 PMCID: PMC7563147 DOI: 10.3390/cells9091961] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 12/14/2022] Open
Abstract
By binding to actin filaments, non-muscle myosin II (NMII) generates actomyosin networks that hold unique contractile properties. Their dynamic nature is essential for neuronal biology including the establishment of polarity, growth cone formation and motility, axon growth during development (and axon regeneration in the adult), radial and longitudinal axonal tension, and synapse formation and function. In this review, we discuss the current knowledge on the spatial distribution and function of the actomyosin cytoskeleton in different axonal compartments. We highlight some of the apparent contradictions and open questions in the field, including the role of NMII in the regulation of axon growth and regeneration, the possibility that NMII structural arrangement along the axon shaft may control both radial and longitudinal contractility, and the mechanism and functional purpose underlying NMII enrichment in the axon initial segment. With the advances in live cell imaging and super resolution microscopy, it is expected that in the near future the spatial distribution of NMII in the axon, and the mechanisms by which it participates in axonal biology will be further untangled.
Collapse
|