1
|
Miao R, Liu Y, Shen S, Wang W, Wang S. Chromatin remodeling in lymphocytic function and fate: the multifaceted roles of SWI/SNF complex. Front Immunol 2025; 16:1575857. [PMID: 40342423 PMCID: PMC12058788 DOI: 10.3389/fimmu.2025.1575857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 04/08/2025] [Indexed: 05/11/2025] Open
Abstract
The Switch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complex comprises 10-15 subunits, which modulate the arrangement, location, or conformation of nucleosomes to upregulate chromatin accessibility. During lymphocytic differentiation and functional development, the SWI/SNF complex exerts its effects by binding to specific transcription factors (TFs) or DNA sequences via its subunits, which are thereafter recruited to the promoter or enhancer regions of target genes, rendering each subunit crucial wherein. The loss of individual subunits during lymphocytic differentiation not only disrupts the targeting of the SWI/SNF complex but also impairs its chromatin remodeling function, ultimately resulting in altered differentiation of immature lymphocytes, dysfunction of mature lymphocytes, and injured immune responses. Therefore, in this paper, we focus on TFs interacting with SWI/SNF complex subunits in lymphocytes, and summarize the effects of the loss of specific subunits of the SWI/SNF complex on lymphocytic differentiation and function, as well as the modification in the expression of key genes. We also summarize the potential clinical treatments and applications targeting the loss of SWI/SNF complex subunits, and focus on the application in Chimeric Antigen Receptor (CAR) technology. In conclusion, the SWI/SNF complex is a key regulatory factor in lymphocytic biology, involved in fundamental cellular processes and closely associated with hematological diseases and immune dysfunction. However, the specific roles of SWI/SNF complex subunits in different lymphocytic subpopulations remain unclear. Future clarification of the specific functions of these subunits in different lymphocytic subsets is expected to promote the development of immunotherapy and personalized therapy.
Collapse
Affiliation(s)
- Renjie Miao
- Affiliated Third Hospital of Zhenjiang to Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yun Liu
- Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- School of Medicine, Jiangsu University, Zhenjiang,
Jiangsu, China
| | - Shuo Shen
- Affiliated Third Hospital of Zhenjiang to Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wenxin Wang
- Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- School of Medicine, Jiangsu University, Zhenjiang,
Jiangsu, China
| | - Shengjun Wang
- Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- School of Medicine, Jiangsu University, Zhenjiang,
Jiangsu, China
| |
Collapse
|
2
|
Mutchler AL, Haynes AP, Saleem M, Jamison S, Khan MM, Ertuglu L, Kirabo A. Epigenetic Regulation of Innate and Adaptive Immune Cells in Salt-Sensitive Hypertension. Circ Res 2025; 136:232-254. [PMID: 39819017 PMCID: PMC11750173 DOI: 10.1161/circresaha.124.325439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Access to excess dietary sodium has heightened the risk of cardiovascular diseases, particularly affecting individuals with salt sensitivity of blood pressure. Our research indicates that innate antigen-presenting immune cells contribute to rapid blood pressure increases in response to excess sodium intake. Emerging evidence suggests that epigenetic reprogramming, with subsequent transcriptional and metabolic changes, of innate immune cells allows these cells to have a sustained response to repetitive stimuli. Epigenetic mechanisms also steer T-cell differentiation in response to innate immune signaling. Immune cells respond to environmental and nutritional cues, such as salt, promoting epigenetic regulation changes. This article aims to identify and discuss the role of epigenetic mechanisms in the immune system contributing to salt-sensitive hypertension.
Collapse
Affiliation(s)
- Ashley L. Mutchler
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alexandria Porcia Haynes
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mohammad Saleem
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Mohd Mabood Khan
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lale Ertuglu
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN 37212-8802, USA
- Vanderbilt Center for Immunobiology
- Vanderbilt Institute for Infection, Immunology and Inflammation
- Vanderbilt Institute for Global Health
| |
Collapse
|
3
|
Sun S, Chen Y, Ouyang Y, Tang Z. Regulatory Roles of SWI/SNF Chromatin Remodeling Complexes in Immune Response and Inflammatory Diseases. Clin Rev Allergy Immunol 2024; 68:2. [PMID: 39751934 DOI: 10.1007/s12016-024-09011-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2024] [Indexed: 01/04/2025]
Abstract
The switch/sucrose non-fermentable (SWI/SNF) chromatin remodeling complexes (also referred to as BAF complexes) are composed of multiple subunits, which regulate the nucleosome translocation and chromatin accessibility. In recent years, significant advancements have been made in understanding mutated genes encoding subunits of the SWI/SNF complexes in cancer biology. Nevertheless, the role of SWI/SNF complexes in immune response and inflammatory diseases continues to attract significant attention. This review presents a summary of the significant functions of SWI/SNF complexes during the overall process from the development to the activation of innate and adaptive immune cells. In addition, the correlation between various SWI/SNF subunits and diverse inflammatory diseases is explored. Further investigations are warranted in terms of the mechanism of SWI/SNF complexes' preference for binding sites and opposite pro-/anti-inflammatory effects. In conclusion, further efforts are needed to evaluate the druggability of targeting SWI/SNF complexes in inflammatory diseases, and we hope this review will inspire the development of novel immune modulators in clinical practice.
Collapse
Affiliation(s)
- Shunan Sun
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, People's Republic of China
- Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuzhen Ouyang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenwei Tang
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, People's Republic of China.
| |
Collapse
|
4
|
Mu S, Wang W, Liu Q, Ke N, Li H, Sun F, Zhang J, Zhu Z. Autoimmune disease: a view of epigenetics and therapeutic targeting. Front Immunol 2024; 15:1482728. [PMID: 39606248 PMCID: PMC11599216 DOI: 10.3389/fimmu.2024.1482728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Autoimmune diseases comprise a large group of conditions characterized by a complex pathogenesis and significant heterogeneity in their clinical manifestations. Advances in sequencing technology have revealed that in addition to genetic susceptibility, various epigenetic mechanisms including DNA methylation and histone modification play critical roles in disease development. The emerging field of epigenetics has provided new perspectives on the pathogenesis and development of autoimmune diseases. Aberrant epigenetic modifications can be used as biomarkers for disease diagnosis and prognosis. Exploration of human epigenetic profiles revealed that patients with autoimmune diseases exhibit markedly altered DNA methylation profiles compared with healthy individuals. Targeted cutting-edge epigenetic therapies are emerging. For example, DNA methylation inhibitors can rectify methylation dysregulation and relieve patients. Histone deacetylase inhibitors such as vorinostat can affect chromatin accessibility and further regulate gene expression, and have been used in treating hematological malignancies. Epigenetic therapies have opened new avenues for the precise treatment of autoimmune diseases and offer new opportunities for improved therapeutic outcomes. Our review can aid in comprehensively elucidation of the mechanisms of autoimmune diseases and development of new targeted therapies that ultimately benefit patients with these conditions.
Collapse
Affiliation(s)
- Siqi Mu
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
- Department of Skin Genetics, Anhui Province Laboratory of Inflammation and Immune Mediated Diseases, Hefei, Anhui, China
- Department of Dermatology, Shannan People's Hospital, Shannan, China
- First Clinical Medical College, Anhui Medical University, Hefei, Anhui, China
| | - Wanrong Wang
- Department of Skin Genetics, Anhui Province Laboratory of Inflammation and Immune Mediated Diseases, Hefei, Anhui, China
- Department of Dermatology, Shannan People's Hospital, Shannan, China
- First Clinical Medical College, Anhui Medical University, Hefei, Anhui, China
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei, Anhui, China
| | - Qiuyu Liu
- First Clinical Medical College, Anhui Medical University, Hefei, Anhui, China
| | - Naiyu Ke
- Department of Ophthalmology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hao Li
- Department of Urology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Feiyang Sun
- First Clinical Medical College, Anhui Medical University, Hefei, Anhui, China
| | - Jiali Zhang
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
- Department of Skin Genetics, Anhui Province Laboratory of Inflammation and Immune Mediated Diseases, Hefei, Anhui, China
- Department of Dermatology, Shannan People's Hospital, Shannan, China
| | - Zhengwei Zhu
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
- Department of Skin Genetics, Anhui Province Laboratory of Inflammation and Immune Mediated Diseases, Hefei, Anhui, China
- Department of Dermatology, Shannan People's Hospital, Shannan, China
| |
Collapse
|
5
|
Jeon J, Lee SW, Park HJ, Park YH, Kim TC, Lee S, Lee S, Van Kaer L, Hong S. Overexpression of Chromatin Remodeling Factor SRG3 Down-Regulates IL1β-Expressing M1 Macrophages and IL17-Producing T Cells in Adipose Tissues. Int J Mol Sci 2024; 25:11681. [PMID: 39519233 PMCID: PMC11546064 DOI: 10.3390/ijms252111681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
The SWItch3-related gene (SRG3) is a core component of ATP-dependent SWI/SNF complexes, which are crucial for regulating immune cell development and function (e.g., macrophages and CD4+ T cells), embryonic development, and non-immune cell differentiation. Notably, SRG3 overexpression has been shown to polarize macrophages in the central nervous system toward an anti-inflammatory M2 phenotype, thereby protecting against the development of experimental autoimmune encephalomyelitis in mice. However, the effect of SRG3 on immune responses in adipose tissues remains unclear. To address this issue, we examined the cellularity and inflammatory status of adipose tissue in B10.PL mice overexpressing the SRG3 gene under the ubiquitous β-actin promoter (SRG3β-actin). Interestingly, SRG3 overexpression significantly reduced adipocyte size in both white and brown adipose tissues, without affecting the overall adipose tissue weight. Such phenotypic effects might be associated with the improved glucose tolerance observed in SRG3β-actin B10.PL mice. Moreover, we found that SRG3 overexpression down-regulates IL1β-expressing M1 macrophages, leading to a significant decrease in the M1/M2 macrophage ratio. Additionally, SRG3β-actin B10.PL mice showed a dramatic reduction in neutrophils as well as IL1β- and IL17-producing T cells in adipose tissues. Taken together, our results indicate that SRG3 plays a vital role in maintaining immune homeostasis within adipose tissues.
Collapse
Affiliation(s)
- Jungmin Jeon
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul 05006, Republic of Korea; (J.J.); (H.J.P.); (Y.H.P.); (T.-C.K.); (S.L.); (S.L.)
| | - Sung Won Lee
- Department of Biomedical Laboratory Science, College of Health and Biomedical Services, Sangji University, Wonju 26339, Republic of Korea;
| | - Hyun Jung Park
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul 05006, Republic of Korea; (J.J.); (H.J.P.); (Y.H.P.); (T.-C.K.); (S.L.); (S.L.)
| | - Yun Hoo Park
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul 05006, Republic of Korea; (J.J.); (H.J.P.); (Y.H.P.); (T.-C.K.); (S.L.); (S.L.)
| | - Tae-Cheol Kim
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul 05006, Republic of Korea; (J.J.); (H.J.P.); (Y.H.P.); (T.-C.K.); (S.L.); (S.L.)
| | - Sujin Lee
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul 05006, Republic of Korea; (J.J.); (H.J.P.); (Y.H.P.); (T.-C.K.); (S.L.); (S.L.)
| | - Seyeong Lee
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul 05006, Republic of Korea; (J.J.); (H.J.P.); (Y.H.P.); (T.-C.K.); (S.L.); (S.L.)
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA;
| | - Seokmann Hong
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul 05006, Republic of Korea; (J.J.); (H.J.P.); (Y.H.P.); (T.-C.K.); (S.L.); (S.L.)
| |
Collapse
|
6
|
Liu X, Liu K, Wang Y, Meng X, Wang Q, Tao S, Xu Q, Shen X, Gao X, Hong S, Jin H, Wang JQ, Wang D, Lu L, Meng Z, Wang L. SWI/SNF chromatin remodeling factor BAF60b restrains inflammatory diseases by affecting regulatory T cell migration. Cell Rep 2024; 43:114458. [PMID: 38996070 DOI: 10.1016/j.celrep.2024.114458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/21/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Regulatory T (Treg) cells play a critical regulatory role in the immune system by suppressing excessive immune responses and maintaining immune balance. The effective migration of Treg cells is crucial for controlling the development and progression of inflammatory diseases. However, the mechanisms responsible for directing Treg cells into the inflammatory tissue remain incompletely elucidated. In this study, we identified BAF60b, a subunit of switch/sucrose nonfermentable (SWI/SNF) chromatin remodeling complexes, as a positive regulator of Treg cell migration that inhibits the progression of inflammation in experimental autoimmune encephalomyelitis (EAE) and colitis animal models. Mechanistically, transcriptome and genome-wide chromatin-landscaped analyses demonstrated that BAF60b interacts with the transcription factor RUNX1 to promote the expression of CCR9 on Treg cells, which in turn affects their ability to migrate to inflammatory tissues. Our work provides insights into the essential role of BAF60b in regulating Treg cell migration and its impact on inflammatory diseases.
Collapse
MESH Headings
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Animals
- Cell Movement
- Mice
- Mice, Inbred C57BL
- Inflammation/pathology
- Inflammation/metabolism
- Chromatin Assembly and Disassembly
- Chromosomal Proteins, Non-Histone/metabolism
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Humans
- Transcription Factors/metabolism
- Core Binding Factor Alpha 2 Subunit/metabolism
- Core Binding Factor Alpha 2 Subunit/genetics
- Colitis/metabolism
- Colitis/pathology
- Colitis/immunology
- Colitis/genetics
Collapse
Affiliation(s)
- Xiaoqian Liu
- Institute of Immunology and Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 311100, China; Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Kuai Liu
- Institute of Immunology and Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 311100, China; Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yuxi Wang
- Laboratory Animal Center, Zhejiang University, Hangzhou 310058, China
| | - Xiaoyu Meng
- Institute of Immunology and Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 311100, China; Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qianqian Wang
- Laboratory Animal Center, Zhejiang University, Hangzhou 310058, China
| | - Sijue Tao
- Laboratory Animal Center, Zhejiang University, Hangzhou 310058, China
| | - Qianying Xu
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xin Shen
- Co-Facility Center, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xianzhi Gao
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311100, China; Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Shenghui Hong
- Laboratory Animal Center, Zhejiang University, Hangzhou 310058, China
| | - Huihui Jin
- Laboratory Animal Center, Zhejiang University, Hangzhou 310058, China
| | - James Q Wang
- Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining 314400, China
| | - Di Wang
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Linrong Lu
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhuoxian Meng
- Department of Pathology and Pathophysiology and Department of Cardiology, School of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou 310009, China
| | - Lie Wang
- Institute of Immunology and Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 311100, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311100, China; Zhejiang University School of Medicine, Hangzhou 310058, China; Laboratory Animal Center, Zhejiang University, Hangzhou 310058, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining 314400, China; Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China.
| |
Collapse
|
7
|
Singh V, Nandi S, Ghosh A, Adhikary S, Mukherjee S, Roy S, Das C. Epigenetic reprogramming of T cells: unlocking new avenues for cancer immunotherapy. Cancer Metastasis Rev 2024; 43:175-195. [PMID: 38233727 DOI: 10.1007/s10555-024-10167-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024]
Abstract
T cells, a key component of cancer immunotherapy, undergo a variety of histone modifications and DNA methylation changes since their bone marrow progenitor stages before developing into CD8+ and CD4+ T cells. These T cell types can be categorized into distinct subtypes based on their functionality and properties, such as cytotoxic T cells (Tc), helper T cells (Th), and regulatory T cells (Treg) as subtypes for CD8+ and CD4+ T cells. Among these, the CD4+ CD25+ Tregs potentially contribute to cancer development and progression by lowering T effector (Teff) cell activity under the influence of the tumor microenvironment (TME). This contributes to the development of therapeutic resistance in patients with cancer. Subsequently, these individuals become resistant to monoclonal antibody therapy as well as clinically established immunotherapies. In this review, we delineate the different epigenetic mechanisms in cancer immune response and its involvement in therapeutic resistance. Furthermore, the possibility of epi-immunotherapeutic methods based on histone deacetylase inhibitors and histone methyltransferase inhibitors are under investigation. In this review we highlight EZH2 as the principal driver of cancer cell immunoediting and an immune escape regulator. We have addressed in detail how understanding T cell epigenetic regulation might bring unique inventive strategies to overcome drug resistance and increase the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Vipin Singh
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - Sandhik Nandi
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - Aritra Ghosh
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
- Indian Institute of Science Education and Research, Kolkata, India
| | - Santanu Adhikary
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Shravanti Mukherjee
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
| | - Siddhartha Roy
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India.
- Homi Bhabha National Institute, Mumbai, 400094, India.
| |
Collapse
|
8
|
Rodríguez-Ubreva J, Calvillo CL, Forbes Satter LR, Ballestar E. Interplay between epigenetic and genetic alterations in inborn errors of immunity. Trends Immunol 2023; 44:902-916. [PMID: 37813732 PMCID: PMC10615875 DOI: 10.1016/j.it.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 10/11/2023]
Abstract
Inborn errors of immunity (IEIs) comprise a variety of immune conditions leading to infections, autoimmunity, allergy, and cancer. Some IEIs have no identified mutation(s), while others with identical mutations can display heterogeneous presentations. These observations suggest the involvement of epigenetic mechanisms. Epigenetic alterations can arise from downstream activation of cellular pathways through both extracellular stimulation and genetic-associated changes, impacting epigenetic enzymes or their interactors. Therefore, we posit that epigenetic alterations and genetic defects do not exclude each other as a disease-causing etiology. In this opinion, encompassing both basic and clinical viewpoints, we focus on selected IEIs with mutations in transcription factors that interact with epigenetic enzymes. The intricate interplay between these factors offers insights into genetic and epigenetic mechanisms in IEIs.
Collapse
Affiliation(s)
- Javier Rodríguez-Ubreva
- Epigenetics and Immune Disease Group, Josep Carreras Leukemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Celia L Calvillo
- Epigenetics and Immune Disease Group, Josep Carreras Leukemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Lisa R Forbes Satter
- Department of Pediatrics, Division of Immunology, Allergy, and Retrovirology, Baylor College of Medicine, Houston, TX, USA; William T. Shearer Texas Children's Hospital Center for Human Immunobiology, Houston, TX, USA
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Leukemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain; Epigenetics in Inflammatory and Metabolic Diseases Laboratory, Health Science Center (HSC), East China Normal University (ECNU), Shanghai, China.
| |
Collapse
|
9
|
Shahbazi R, Yasavoli-Sharahi H, Alsadi N, Sharifzad F, Fang S, Cuenin C, Cahais V, Chung FFL, Herceg Z, Matar C. Lentinula edodes Cultured Extract and Rouxiella badensis subsp. acadiensis (Canan SV-53) Intake Alleviates Immune Deregulation and Inflammation by Modulating Signaling Pathways and Epigenetic Mechanisms. Int J Mol Sci 2023; 24:14610. [PMID: 37834058 PMCID: PMC10572597 DOI: 10.3390/ijms241914610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Puberty is a critical developmental period of life characterized by marked physiological changes, including changes in the immune system and gut microbiota development. Exposure to inflammation induced by immune stressors during puberty has been found to stimulate central inflammation and lead to immune disturbance at distant sites from the gut; however, its enduring effects on gut immunity are not well explored. Therefore, in this study, we used a pubertal lipopolysaccharides (LPS)-induced inflammation mouse model to mimic pubertal exposure to inflammation and dysbiosis. We hypothesized that pubertal LPS-induced inflammation may cause long-term dysfunction in gut immunity by enduring dysregulation of inflammatory signaling and epigenetic changes, while prebiotic/probiotic intake may mitigate the gut immune system deregulation later in life. To this end, four-week-old female Balb/c mice were fed prebiotics/probiotics and exposed to LPS in the pubertal window. To better decipher the acute and enduring immunoprotective effects of biotic intake, we addressed the effect of treatment on interleukin (IL)-17 signaling related-cytokines and pathways. In addition, the effect of treatment on gut microbiota and epigenetic alterations, including changes in microRNA (miRNA) expression and DNA methylation, were studied. Our results revealed a significant dysregulation in selected cytokines, proteins, and miRNAs involved in key signaling pathways related to IL-17 production and function, including IL-17A and F, IL-6, IL-1β, transforming growth factor-β (TGF-β), signal transducer and activator of transcription-3 (STAT3), p-STAT3, forkhead box O1 (FOXO1), and miR-145 in the small intestine of adult mice challenged with LPS during puberty. In contrast, dietary interventions mitigated the lasting adverse effects of LPS on gut immune function, partly through epigenetic mechanisms. A DNA methylation analysis demonstrated that enduring changes in gut immunity in adult mice might be linked to differentially methylated genes, including Lpb, Rorc, Runx1, Il17ra, Rac1, Ccl5, and Il10, involved in Th17 cell differentiation and IL-17 production and signaling. In addition, prebiotic administration prevented LPS-induced changes in the gut microbiota in pubertal mice. Together, these results indicate that following a healthy diet rich in prebiotics and probiotics is an optimal strategy for programming immune system function in the critical developmental windows of life and controlling inflammation later in life.
Collapse
Affiliation(s)
- Roghayeh Shahbazi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (R.S.); (H.Y.-S.); (N.A.)
| | - Hamed Yasavoli-Sharahi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (R.S.); (H.Y.-S.); (N.A.)
| | - Nawal Alsadi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (R.S.); (H.Y.-S.); (N.A.)
| | - Farzaneh Sharifzad
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Sandra Fang
- Translational Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Cyrille Cuenin
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007 Lyon, France; (C.C.); (V.C.); (F.F.-L.C.); (Z.H.)
| | - Vincent Cahais
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007 Lyon, France; (C.C.); (V.C.); (F.F.-L.C.); (Z.H.)
| | - Felicia Fei-Lei Chung
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007 Lyon, France; (C.C.); (V.C.); (F.F.-L.C.); (Z.H.)
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Jalan Universiti, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| | - Zdenko Herceg
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007 Lyon, France; (C.C.); (V.C.); (F.F.-L.C.); (Z.H.)
| | - Chantal Matar
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (R.S.); (H.Y.-S.); (N.A.)
- School of Nutrition, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
10
|
Kharel A, Shen J, Brown R, Chen Y, Nguyen C, Alson D, Bluemn T, Fan J, Gai K, Zhang B, Kudek M, Zhu N, Cui W. Loss of PBAF promotes expansion and effector differentiation of CD8 + T cells during chronic viral infection and cancer. Cell Rep 2023; 42:112649. [PMID: 37330910 PMCID: PMC10592487 DOI: 10.1016/j.celrep.2023.112649] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/10/2023] [Accepted: 05/30/2023] [Indexed: 06/20/2023] Open
Abstract
During chronic viral infection and cancer, it has been established that a subset of progenitor CD8+ T cells continuously gives rise to terminally exhausted cells and cytotoxic effector cells. Although multiple transcriptional programs governing the bifurcated differentiation trajectories have been previously studied, little is known about the chromatin structure changes regulating CD8+ T cell-fate decision. In this study, we demonstrate that the chromatin remodeling complex PBAF restrains expansion and promotes exhaustion of CD8+ T cells during chronic viral infection and cancer. Mechanistically, transcriptomic and epigenomic analyses reveal the role of PBAF in maintaining chromatin accessibility of multiple genetic pathways and transcriptional programs to restrain proliferation and promote T cell exhaustion. Harnessing this knowledge, we demonstrate that perturbation of PBAF complex constrained exhaustion and promoted expansion of tumor-specific CD8+ T cells resulting in antitumor immunity in a preclinical melanoma model, implicating PBAF as an attractive target for cancer immunotherapeutic.
Collapse
Affiliation(s)
- Arjun Kharel
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jian Shen
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ryan Brown
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yao Chen
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Christine Nguyen
- Blood Research Institute, Versiti, Milwaukee, WI, USA; Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Donia Alson
- Blood Research Institute, Versiti, Milwaukee, WI, USA
| | - Theresa Bluemn
- Blood Research Institute, Versiti, Milwaukee, WI, USA; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jie Fan
- Department of Medicine/Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Kexin Gai
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Bin Zhang
- Department of Medicine/Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Microbiology-Immunology, Northwestern University, Chicago, IL, USA
| | - Matthew Kudek
- Blood Research Institute, Versiti, Milwaukee, WI, USA
| | - Nan Zhu
- Blood Research Institute, Versiti, Milwaukee, WI, USA; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Weiguo Cui
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Blood Research Institute, Versiti, Milwaukee, WI, USA; Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
11
|
Pandey RV, Strobl J, Redl A, Unterluggauer L, Gail L, Kleissl L, Müller S, Atzmüller D, Fife-Gernedl V, Krausgruber T, Knaus H, Mitterbauer M, Wohlfarth P, Rabitsch W, Bock C, Stary G. Epigenetic regulation of T cell lineages in skin and blood following hematopoietic stem cell transplantation. Clin Immunol 2023; 248:109245. [PMID: 36702179 DOI: 10.1016/j.clim.2023.109245] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
Allogeneic hematopoietic stem-cell transplantation (HSCT) seeks to reconstitute the host's immune system from donor stem cells. The success of HSCT is threatened by complications including leukemia relapse or graft-versus-host-disease (GvHD). To investigate the underlying regulatory processes in central and peripheral T cell recovery, we performed sequential multi-omics analysis of T cells of the skin and blood during HSCT. We detected rapid effector T cell reconstitution, while emergence of regulatory T cells was delayed. Epigenetic and gene-regulatory programs were associated with recovering T cells and diverged greatly between skin and blood T cells. The BRG1/BRM-associated factor chromatin remodeling complex and histone deacetylases (HDACs) were epigenetic regulators involved in restoration of T cell homeostasis after transplantation. In isolated T cells of patients after HSCT, we observed class I HDAC-inhibitors to modulate their dysbalance. The present study highlights the importance of epigenetic regulation in the recovery of T cells following HSCT.
Collapse
Affiliation(s)
- Ram Vinay Pandey
- Department of Dermatology, Medical University of Vienna, Vienna 1090, Austria
| | - Johanna Strobl
- Department of Dermatology, Medical University of Vienna, Vienna 1090, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Anna Redl
- Department of Dermatology, Medical University of Vienna, Vienna 1090, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Luisa Unterluggauer
- Department of Dermatology, Medical University of Vienna, Vienna 1090, Austria
| | - Laura Gail
- Department of Dermatology, Medical University of Vienna, Vienna 1090, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna 1090, Austria
| | - Lisa Kleissl
- Department of Dermatology, Medical University of Vienna, Vienna 1090, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna 1090, Austria
| | - Sophie Müller
- Department of Dermatology, Medical University of Vienna, Vienna 1090, Austria
| | - Denise Atzmüller
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna 1090, Austria
| | - Victoria Fife-Gernedl
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Thomas Krausgruber
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria; Institute of Artificial Intelligence, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Hanna Knaus
- Department of Internal Medicine I, Bone Marrow Transplantation Unit, Medical University of Vienna, Vienna 1090, Austria
| | - Margit Mitterbauer
- Department of Internal Medicine I, Bone Marrow Transplantation Unit, Medical University of Vienna, Vienna 1090, Austria
| | - Philipp Wohlfarth
- Department of Internal Medicine I, Bone Marrow Transplantation Unit, Medical University of Vienna, Vienna 1090, Austria
| | - Werner Rabitsch
- Department of Internal Medicine I, Bone Marrow Transplantation Unit, Medical University of Vienna, Vienna 1090, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna 1090, Austria; Institute of Artificial Intelligence, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Georg Stary
- Department of Dermatology, Medical University of Vienna, Vienna 1090, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna 1090, Austria.
| |
Collapse
|
12
|
Friedman MJ, Lee H, Lee JY, Oh S. Transcriptional and Epigenetic Regulation of Context-Dependent Plasticity in T-Helper Lineages. Immune Netw 2023; 23:e5. [PMID: 36911799 PMCID: PMC9995996 DOI: 10.4110/in.2023.23.e5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Th cell lineage determination and functional specialization are tightly linked to the activation of lineage-determining transcription factors (TFs) that bind cis-regulatory elements. These lineage-determining TFs act in concert with multiple layers of transcriptional regulators to alter the epigenetic landscape, including DNA methylation, histone modification and three-dimensional chromosome architecture, in order to facilitate the specific Th gene expression programs that allow for phenotypic diversification. Accumulating evidence indicates that Th cell differentiation is not as rigid as classically held; rather, extensive phenotypic plasticity is an inherent feature of T cell lineages. Recent studies have begun to uncover the epigenetic programs that mechanistically govern T cell subset specification and immunological memory. Advances in next generation sequencing technologies have allowed global transcriptomic and epigenomic interrogation of CD4+ Th cells that extends previous findings focusing on individual loci. In this review, we provide an overview of recent genome-wide insights into the transcriptional and epigenetic regulation of CD4+ T cell-mediated adaptive immunity and discuss the implications for disease as well as immunotherapies.
Collapse
Affiliation(s)
- Meyer J. Friedman
- Department and School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Haram Lee
- College of Pharmacy Korea University, Sejong 30019, Korea
| | - June-Yong Lee
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
- Institute of Genetic Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Soohwan Oh
- College of Pharmacy Korea University, Sejong 30019, Korea
| |
Collapse
|
13
|
Leija-Martínez JJ, Giacoman-Martínez A, Del-Río-Navarro BE, Sanchéz-Muñoz F, Hernández-Diazcouder A, Muñoz-Hernández O, Romero-Nava R, Villafaña S, Marchat LA, Hong E, Huang F. Promoter methylation status of RORC, IL17A, and TNFA in peripheral blood leukocytes in adolescents with obesity-related asthma. Heliyon 2022; 8:e12316. [PMID: 36590520 PMCID: PMC9798174 DOI: 10.1016/j.heliyon.2022.e12316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/07/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
A higher Th17-immune response characterises obesity and obesity-related asthma phenotype. Nevertheless, obesity-related asthma has a more significant Th17-immune response than obesity alone. Retinoid-related orphan receptor C (RORC) is the essential transcription factor for Th17 polarisation. Previous studies have found that adolescents with obesity-related asthma presented upregulation of RORC, IL17A, and TNFA. However, the mechanisms that cause these higher mRNA expression levels in this asthmatic phenotype are poorly understood. Methylation directly regulates gene expression by adding a methyl group to carbon 5 of dinucleotide CpG cytosine. Thus, we evaluated the relationship between RORC, IL17A, and TNFA methylation status and mRNA expression levels to investigate a possible epigenetic regulation. A total of 102 adolescents (11-18 years) were studied in the following four groups: 1) healthy participants (HP), 2) allergic asthmatic participants (AAP), 3) obese participants without asthma (OP), and 4) non-allergic obesity-related asthma participants (OAP). Real-time qPCR assessed the methylation status and gene expression levels in peripheral blood leukocytes. Remarkably, the OAP and AAP groups have lower promoter methylation patterns of RORC, IL17A, and TNFA than the HP group. Notably, the OAP group presents lower RORC promoter methylation status than the OP group. Interestingly, RORC promoter methylation status was moderately negatively associated with gene expression of RORC (r s = -0.39, p < 0.001) and IL17A (r s = -0.37, p < 0.01), respectively. Similarly, the promoter methylation pattern of IL17A was moderately negatively correlated with IL17A gene expression (r s = -0.3, p < 0.01). There is also a moderate inverse relationship between TNFA promoter methylation status and TNFA gene expression (r s = -0.3, p < 0.01). The present study suggests an association between lower RORC, IL17A, and TNFA gene promoter methylation status with obesity-related asthma and allergic asthma. RORC, IL17A, and TNFA gene promoter methylation patterns are moderately inversely correlated with their respective mRNA expression levels. Therefore, DNA methylation may regulate RORC, IL17A, and TNF gene expression in both asthmatic phenotypes.
Collapse
Affiliation(s)
- José J. Leija-Martínez
- Universidad Nacional Autónoma de México, Programa de Maestría y Doctorado en Ciencias Médicas, Odontológicas y de la Salud, Mexico City, Mexico,Hospital Infantil de Mexico Federico Gómez, Research Laboratory of Pharmacology, Mexico City, Mexico
| | - Abraham Giacoman-Martínez
- Hospital Infantil de Mexico Federico Gómez, Research Laboratory of Pharmacology, Mexico City, Mexico,Department of Pharmacobiology, Centro de Investigacion de Estudio Avanzados del Instituto Politecnico Nacional, Calz. de Los Tenorios 235, Col. Granjas Coapa, Mexico City 14330, Mexico
| | - Blanca E. Del-Río-Navarro
- Universidad Nacional Autónoma de México, Programa de Maestría y Doctorado en Ciencias Médicas, Odontológicas y de la Salud, Mexico City, Mexico,Hospital Infantil de México Federico Gómez, Department of Pediatric Allergy-Clinical Immunology, Mexico City, Mexico
| | - Fausto Sanchéz-Muñoz
- Universidad Nacional Autónoma de México, Programa de Maestría y Doctorado en Ciencias Médicas, Odontológicas y de la Salud, Mexico City, Mexico,Departamento de Inmunología, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City, Mexico
| | | | - Onofre Muñoz-Hernández
- Universidad Nacional Autónoma de México, Programa de Maestría y Doctorado en Ciencias Médicas, Odontológicas y de la Salud, Mexico City, Mexico
| | - Rodrigo Romero-Nava
- Hospital Infantil de Mexico Federico Gómez, Research Laboratory of Pharmacology, Mexico City, Mexico,Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico
| | - Santiago Villafaña
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico
| | - Laurence A. Marchat
- Laboratorio 2 de Biomedicina Molecular, ENMH, Instituto Politécnico Nacional, Mexico
| | - Enrique Hong
- Universidad Nacional Autónoma de México, Programa de Maestría y Doctorado en Ciencias Médicas, Odontológicas y de la Salud, Mexico City, Mexico,Department of Pharmacobiology, Centro de Investigacion de Estudio Avanzados del Instituto Politecnico Nacional, Calz. de Los Tenorios 235, Col. Granjas Coapa, Mexico City 14330, Mexico
| | - Fengyang Huang
- Universidad Nacional Autónoma de México, Programa de Maestría y Doctorado en Ciencias Médicas, Odontológicas y de la Salud, Mexico City, Mexico,Hospital Infantil de Mexico Federico Gómez, Research Laboratory of Pharmacology, Mexico City, Mexico,Corresponding author.
| |
Collapse
|
14
|
Chi X, Jin W, Zhao X, Xie T, Shao J, Bai X, Jiang Y, Wang X, Dong C. RORγt expression in mature T H17 cells safeguards their lineage specification by inhibiting conversion to T H2 cells. SCIENCE ADVANCES 2022; 8:eabn7774. [PMID: 36026450 PMCID: PMC9417185 DOI: 10.1126/sciadv.abn7774] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 07/13/2022] [Indexed: 05/31/2023]
Abstract
RORγt is the lineage-specific transcription factor for T helper 17 (TH17) cells and an attractive drug target for treating TH17-associated diseases. Although the critical role of RORγt in early TH17 cell differentiation has been well recognized, its function in mature TH17 cell maintenance remains largely unknown. Here, we show that genetic deletion of Rorc in mature TH17 cells inhibited their pathogenic functions. Mechanistically, loss of RORγt led to a closed chromatin configuration at key TH17-specific gene loci, particularly at the "super-enhancer" regions. Unexpectedly, RORγt directly bound and inhibited Il4 transcription, whereas pharmaceutically or genetically targeting RORγt caused spontaneous conversion of TH17 cells to TH2-like cells in vitro and in vivo. Our results thus reveal dual crucial functions of RORγt in effector TH17 cells in maintaining TH17 cell program and constraining TH2 cell conversion, offering previously unidenified considerations in therapeutic targeting of RORγt.
Collapse
Affiliation(s)
- Xinxin Chi
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
- School of Life Science, Tsinghua University, Beijing 100084, China
| | - Wei Jin
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xiaohong Zhao
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Tian Xie
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
- School of Life Science, Tsinghua University, Beijing 100084, China
| | - Jing Shao
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xue Bai
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yu Jiang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xiaohu Wang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Chen Dong
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai 200127, China
| |
Collapse
|
15
|
Fonseca Peixoto R, Ewerton Maia Rodrigues C, Henrique de Sousa Palmeira P, Cézar Comberlang Queiroz Davis Dos Santos F, Keesen de Souza Lima T, de Sousa Braz A. Immune hallmarks of rheumatoid arthritis management: A brief review. Cytokine 2022; 158:156007. [PMID: 35985174 DOI: 10.1016/j.cyto.2022.156007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022]
Abstract
The purpose of this review was to examine current evidence on immunomodulation mediated by conventional drugs and the use of novel biological agents for the treatment of rheumatoid arthritis (RA). Currently, treatment is focused on maximizing quality of life through sustained clinical remission and/or attenuating disease activity. To do so, disease-modifying antirheumatic drugs, especially methotrexate, are used alone or in combination with other drugs, including leflunomide, biological disease-modifying antirheumatic drugs (bDMARDs) and targeted synthetic disease-modifying antirheumatic drugs (tsDMARDs). The most recent strategies modulate the immune response of the individual RA patient using tsDMARDs such as JAK inhibitors and bDMARDs such as ig-CTLA-4, anti- IL6R, anti-TNF-α and anti-CD20. To better understand current immunopharmacological interventions, we also looked at documented mechanisms of RA-mediated immunomodulation, highlighting perspectives potentially boosting RA treatment.
Collapse
Affiliation(s)
- Rephany Fonseca Peixoto
- Laboratory of Immunology of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil
| | - Carlos Ewerton Maia Rodrigues
- Post‑Graduate Program in Medical Sciences, Medical School, University of Fortaleza (Unifor), Fortaleza, Brazil; Department of Internal Medicine, Federal University of Ceará, Brazil.
| | - Pedro Henrique de Sousa Palmeira
- Laboratory of Immunology of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil
| | | | - Tatjana Keesen de Souza Lima
- Laboratory of Immunology of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil
| | | |
Collapse
|
16
|
Wang X, Lei L, Su Y, Liu J, Yuan N, Gao Y, Yang X, Sun C, Ning B, Zhang B. Pbrm1 intrinsically controls the development and effector differentiation of iNKT cells. J Cell Mol Med 2022; 26:4268-4276. [PMID: 35770325 PMCID: PMC9344823 DOI: 10.1111/jcmm.17445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 11/29/2022] Open
Abstract
Under static condition, the pool size of peripheral invariant natural killer T (iNKT) cells is determined by their homeostatic proliferation, survival and thymic input. However, the underlying mechanism is not fully understood. In the present study, we found that the percentage and number of iNKT cells were significantly reduced in the spleen, but not in the thymus of mice with deletion of polybromo‐1 (Pbrm1) compared to wild type (WT) mice. Pbrm1 deletion did not affect iNKT cell proliferation and survival, instead significantly impaired their development from stage 1 to stage 2. Importantly, loss of Pbrm1 led to a dysfunction of RORγt expression and iNKT17 cell differentiation, but not iNKT1 and iNKT2 proportion. Collectively, our study reveals a novel mechanism of Pbrm1 controlling the peripheral size of iNKT cells through regulating their development and differentiation.
Collapse
Affiliation(s)
- Xin Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shaanxi, China
| | - Lei Lei
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shaanxi, China
| | - Jun Liu
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shaanxi, China
| | - Ning Yuan
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shaanxi, China
| | - Yang Gao
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Kidney Transplantation, Nephropathy Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaofeng Yang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| | - Chenming Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| | - Bin Ning
- Jinan Central Hospital, Shandong University, Jinan, Shandong, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| |
Collapse
|
17
|
Nuclear receptor RORγ inverse agonists/antagonists display tissue- and gene-context selectivity through distinct activities in altering chromatin accessibility and master regulator SREBP2 occupancy. Pharmacol Res 2022; 182:106324. [PMID: 35750301 PMCID: PMC10158160 DOI: 10.1016/j.phrs.2022.106324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/26/2022] [Accepted: 06/19/2022] [Indexed: 11/21/2022]
Abstract
The nuclear receptor RORγ is a major driver of autoimmune diseases and certain types of cancer due to its aberrant function in T helper 17 (Th17) cell differentiation and tumor cholesterol metabolism, respectively. Compound screening using the classic receptor-coactivator interaction perturbation scheme led to identification of many small-molecule modulators of RORγ(t). We report here that inverse agonists/antagonists of RORγ such as VTP-43742 derivative VTP-23 and TAK828F, which can potently inhibit the inflammatory gene program in Th17 cells, unexpectedly lack high potency in inhibiting the growth of TNBC tumor cells. In contrast, antagonists such as XY018 and GSK805 that strongly suppress tumor cell growth and survival display only modest activities in reducing Th17-related cytokine expression. Unexpectedly, we found that VTP-23 significantly induces the cholesterol biosynthesis program in TNBC cells. Our further mechanistic analyses revealed that VTP-23 enhances the local chromatin accessibility, H3K27ac mark and the cholesterol master regulator SREBP2 recruitment at the RORγ binding sites, whereas XY018 exerts the opposite activities. Yet, they display similar inhibitory effects on circadian rhythm program. Similar distinctions and contrasting activities between TAK828F and SR2211 in their effects on local chromatin structure at Il17 genes were also observed. Together, our study shows for the first-time that structurally distinct RORγ antagonists possess different or even contrasting activities in tissue/cell-specific manner. Our findings also highlight that the activities at natural chromatin are key determinants of RORγ modulators' tissue selectivity.
Collapse
|
18
|
Duddu AS, Majumdar SS, Sahoo S, Jhunjhunwala S, Jolly MK. Emergent dynamics of a three-node regulatory network explain phenotypic switching and heterogeneity: a case study of Th1/Th2/Th17 cell differentiation. Mol Biol Cell 2022; 33:ar46. [PMID: 35353012 PMCID: PMC9265159 DOI: 10.1091/mbc.e21-10-0521] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Naïve helper (CD4+) T-cells can differentiate into distinct functional subsets including Th1, Th2, and Th17 phenotypes. Each of these phenotypes has a 'master regulator' - T-bet (Th1), GATA3 (Th2) and RORγT (Th17) - that inhibits the other two master regulators. Such mutual repression among them at a transcriptional level can enable multistability, giving rise to six experimentally observed phenotypes - Th1, Th2, Th17, hybrid Th/Th2, hybrid Th2/Th17 and hybrid Th1/Th17. However, the dynamics of switching among these phenotypes, particularly in the case of epigenetic influence, remains unclear. Here, through mathematical modeling, we investigated the coupled transcription-epigenetic dynamics in a three-node mutually repressing network to elucidate how epigenetic changes mediated by any 'master regulator' can influence the transition rates among different cellular phenotypes. We show that the degree of plasticity exhibited by one phenotype depends on relative strength and duration of mutual epigenetic repression mediated among the master regulators in a three-node network. Further, our model predictions can offer putative mechanisms underlying relatively higher plasticity of Th17 phenotype as observed in vitro and in vivo. Together, our modeling framework characterizes phenotypic plasticity and heterogeneity as an outcome of emergent dynamics of a three-node regulatory network, such as the one mediated by T-bet/GATA3/RORγT.
Collapse
Affiliation(s)
- Atchuta Srinivas Duddu
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Sauma Suvra Majumdar
- epartment of Biotechnology, National Institute of Technology, Durgapur 713216, India
| | - Sarthak Sahoo
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Siddharth Jhunjhunwala
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
19
|
Wang F, Yang Y, Li Z, Wang Y, Zhang Z, Zhang W, Mu Y, Yang J, Yu L, Wang M. Mannan-Binding Lectin Regulates the Th17/Treg Axis Through JAK/STAT and TGF-β/SMAD Signaling Against Candida albicans Infection. J Inflamm Res 2022; 15:1797-1810. [PMID: 35300210 PMCID: PMC8923702 DOI: 10.2147/jir.s344489] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/08/2022] [Indexed: 12/04/2022] Open
Abstract
Background Mannan-binding lectin (MBL) is a key molecule in innate immunity and activates the lectin complement pathway, which plays an important role in resisting Candida albicans (C. albicans) infection. However, the underlying mechanism of this resistance to infection remains unclear. Methods In this study, we investigated how MBL regulates the differentiation of CD4+ T cells into T helper type 17 (Th17) and T regulatory (Treg) cells against C. albicans in mice, as well as the underlying mechanisms. We generated MBL double-knockout (KO) mice and infected them with C. albicans by intraperitoneal injection. Results Compared with that in wild-type (WT) mice, the percentage of Th17 cells increased in MBL-null mice, whereas Treg cells decreased, indicating that MBL might regulate the Th17/Treg balance. In addition, in MBL-null mice, the expression levels of interleukin (IL)-17A, IL-21, and the master transcription factor of Th17 cells, RORγt, significantly increased. Conversely, IL-10, IL-2, and the Treg-specific transcription factor, Foxp3, decreased. Moreover, we found that the levels of TGF-β and IL-6 upregulated in MBL-null mice. Mechanistically, we found that MBL regulated the TGF-β/SMAD pathway through the inhibition of p-SMAD2 and promotion of p-SMAD3, and mediated the JAK/STAT pathway through the inhibition of p-JAK2 and p-STAT3 and promotion of p-JAK3 and p-STAT5. MBL double-KO mice showed a more severe inflammatory response and significantly lower survival rates with C. albicans infection. Conclusion These results suggest that MBL regulates the Th17/Treg cell balance to inhibit inflammatory responses, possibly via IL-6- and TGF-β-mediated JAK/STAT and TGF-β/SMAD signaling, and play an important role in anti-C. albicans infection.
Collapse
Affiliation(s)
- Fanping Wang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, 453003, People’s Republic of China
- Xinxiang Key Laboratory of Immunoregulation and Molecular Diagnostics, Xinxiang, 453003, People’s Republic of China
| | - Yonghui Yang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, 453003, People’s Republic of China
- Henan Center for Disease Control and Prevention, Zhengzhou, Henan, 450000, People’s Republic of China
| | - Zhixin Li
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, 453003, People’s Republic of China
- Xinxiang Key Laboratory of Immunoregulation and Molecular Diagnostics, Xinxiang, 453003, People’s Republic of China
| | - Yan Wang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, 453003, People’s Republic of China
- Department of Laboratory Medicine, Luoyang Oriental Hospital, Luoyang, Henan, 471000, People’s Republic of China
| | - Zhenchao Zhang
- Xinxiang Key Laboratory of Immunoregulation and Molecular Diagnostics, Xinxiang, 453003, People’s Republic of China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, People’s Republic of China
| | - Wei Zhang
- Xinxiang Key Laboratory of Immunoregulation and Molecular Diagnostics, Xinxiang, 453003, People’s Republic of China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, People’s Republic of China
| | - Yonghui Mu
- Xinxiang Key Laboratory of Immunoregulation and Molecular Diagnostics, Xinxiang, 453003, People’s Republic of China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, People’s Republic of China
| | - Jingwen Yang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, 453003, People’s Republic of China
- Xinxiang Key Laboratory of Immunoregulation and Molecular Diagnostics, Xinxiang, 453003, People’s Republic of China
| | - Lili Yu
- Xinxiang Key Laboratory of Immunoregulation and Molecular Diagnostics, Xinxiang, 453003, People’s Republic of China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, People’s Republic of China
| | - Mingyong Wang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, 453003, People’s Republic of China
- Xinxiang Key Laboratory of Immunoregulation and Molecular Diagnostics, Xinxiang, 453003, People’s Republic of China
- Correspondence: Mingyong Wang; Lili Yu, Email ;
| |
Collapse
|
20
|
Frias AB, Boi SK, Lan X, Youngblood B. Epigenetic regulation of T cell adaptive immunity. Immunol Rev 2021; 300:9-21. [PMID: 33644866 DOI: 10.1111/imr.12943] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 12/24/2022]
Abstract
The conceptualization of adaptive immunity, founded on the observation of immunological memory, has served as the basis for modern vaccination and immunotherapy approaches. This fundamental concept has allowed immunologists to explore mechanisms that enable humoral and cellular lymphocytes to tailor immune response functions to a wide array of environmental insults and remain poised for future pathogenic encounters. Until recently, for T cells it has remained unclear how memory differentiation acquires and sustains a gene expression program that grants a cell with a capacity for a heightened recall response. Recent investigations into this critical question have identified epigenetic programs as a causal molecular mechanism governing T cell subset specification and immunological memory. Here, we outline the studies that have illustrated this concept and posit on how insights into T cell adaptive immunity can be applied to improve upon existing immunotherapies.
Collapse
Affiliation(s)
- Adolfo B Frias
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shannon K Boi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xin Lan
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.,College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ben Youngblood
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|