1
|
Mohar NP, Langland CJ, Darr Z, Viles J, Moore SA, Darbro BW, Wallrath LL. A genetic variant in SMAD7 acts as a modifier of LMNA-associated muscular dystrophy, implicating SMAD signaling as a therapeutic target. SCIENCE ADVANCES 2025; 11:eads7903. [PMID: 40249815 PMCID: PMC12007578 DOI: 10.1126/sciadv.ads7903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 03/12/2025] [Indexed: 04/20/2025]
Abstract
Mutations in LMNA cause multiple types of muscular dystrophy (LMNA-MD). The symptoms of LMNA-MD are highly variable and sensitive to genetic background. To identify genetic contributions to this phenotypic variability, we performed whole-genome sequencing on four siblings possessing the same LMNA mutation with differing degrees of skeletal muscle disease severity. We identified a variant in SMAD7 that segregated with severe muscle disease. To functionally test the SMAD7 variant, we generated a Drosophila model possessing the LMNA mutation and the SMAD7 variant in the orthologous fly genes. The SMAD7 variant increased SMAD signaling and enhanced muscle defects caused by the mutant lamin. Conversely, overexpression of wild-type SMAD7 rescued muscle function. These findings were extended to humans by showing that SMAD signaling is increased in muscle biopsy tissue from individuals with LMNA-MD compared to age-matched controls. Collectively, our findings support SMAD7 as the first functionally tested genetic modifier for LMNA-MD and suggest components of the SMAD pathway as therapeutic targets.
Collapse
Affiliation(s)
- Nathaniel P. Mohar
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Christopher J. Langland
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Zachary Darr
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Jill Viles
- Independent researcher, Gowrie, Iowa, USA
| | - Steven A. Moore
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Benjamin W. Darbro
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Lori L. Wallrath
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
2
|
Roman YM. Pharmacogenomics and rare diseases: optimizing drug development and personalized therapeutics. Pharmacogenomics 2025:1-8. [PMID: 40194983 DOI: 10.1080/14622416.2025.2490465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 03/31/2025] [Indexed: 04/09/2025] Open
Abstract
Pharmacogenomics (PGx) is an evolving field that integrates genetic information into clinical decision-making to optimize drug therapy and minimize adverse drug reactions (ADRs). Its application in rare disease (RD) drug development is promising, given the genetic basis of many RDs and the need for precision medicine approaches. Despite significant advancements, challenges persist in developing effective therapies for RDs due to small patient populations, genetic heterogeneity, and limited surrogate biomarkers. The Orphan Drug Act in the U.S. has incentivized RD drug development. However, the traditional drug approval process is constrained by logistical and economic challenges, necessitating innovative PGx-driven strategies. Identifying genetic biomarkers in the early drug development stages can optimize dose selection, enhance therapeutic efficacy, and reduce ADRs. Case studies such as eliglustat for Gaucher disease and ivacaftor for cystic fibrosis demonstrate the efficacy of PGx-guided treatment strategies. Integrating PGx into global drug development requires the harmonization of regulatory policies and increased diversity in genetic research. Artificial intelligence (AI) tools further enhance genetic analysis, disease prediction, and clinical decision-making. Modernizing drug labeling with PGx information is critical to ensuring safe and effective drug use. Collectively, PGx offers transformative potential in RD therapeutics by facilitating personalized medicine approaches and addressing unmet medical needs.
Collapse
Affiliation(s)
- Youssef M Roman
- Department of Pharmacy Practice and Administrative Sciences, L.S. Skaggs College of Pharmacy, Idaho State University, Meridian, ID, USA
- Clinical Pharmacy Services, Boise VA Medical Center, Boise, ID, USA
| |
Collapse
|
3
|
Russ-Silsby J, Lee Y, Rajesh V, Amoli M, Mirhosseini NA, Godbole T, Johnson MB, Ibarra DE, Sun H, Krentz NAJ, Wakeling MN, Flanagan SE, Hattersley AT, Gloyn AL, De Franco E. Complete Loss of PAX4 causes Transient Neonatal Diabetes in Humans. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.04.01.25324926. [PMID: 40236391 PMCID: PMC11998800 DOI: 10.1101/2025.04.01.25324926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Gene discovery studies in individuals with diabetes diagnosed within 6 months of life (neonatal diabetes, NDM) can provide unique insights into the development and function of human pancreatic beta-cells. We describe the identification of homozygous PAX4 loss-of-function variants in 2 unrelated individuals with NDM: a p.(Arg126*) stop-gain variant and a c.-352_104del deletion affecting the first 4 PAX4 exons. We confirmed the p.(Arg126*) variant causes nonsense mediated decay in CRISPR-edited human induced pluripotent stem cell (iPSC)-derived pancreatic endoderm cells. Integrated analysis of CUT&RUN and RNA-sequencing in PAX4-depleted islet cell models identified genes directly regulated by PAX4 involved in both pancreatic islet development and glucose-stimulated insulin secretion. Both probands had transient NDM which remitted in early infancy but relapsed between the ages of 2 and 7 years, demonstrating that in contrast to mouse models, PAX4 is not essential for the development of human pancreatic beta-cells.
Collapse
Affiliation(s)
- James Russ-Silsby
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, U.K
| | - Yunkyeong Lee
- Division of Endocrinology, Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA, USA
| | - Varsha Rajesh
- Division of Endocrinology, Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA, USA
| | - Mahsa Amoli
- Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Iran
| | | | | | - Matthew B. Johnson
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, U.K
| | - Dora E. Ibarra
- Division of Endocrinology, Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA, USA
| | - Han Sun
- Division of Endocrinology, Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA, USA
| | - Nicole A. J. Krentz
- Division of Endocrinology, Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA, USA
| | - Matthew N. Wakeling
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, U.K
| | - Sarah E. Flanagan
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, U.K
| | - Andrew T. Hattersley
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, U.K
| | - Anna L. Gloyn
- Division of Endocrinology, Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA
- Stanford Diabetes Research Center, School of Medicine, Stanford University, Stanford, CA, USA
| | - Elisa De Franco
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, U.K
| |
Collapse
|
4
|
Peck A, Dadi A, Yavarow Z, Alfano LN, Anderson D, Arkin MR, Chou TF, D'Ambrosio ES, Diaz-Manera J, Dudley JP, Elder AG, Ghoshal N, Hart CE, Hart MM, Huryn DM, Johnson AE, Jones KB, Kimonis V, Kiskinis E, Lee EB, Lloyd TE, Mapstone M, Martin A, Meyer H, Mozaffar T, Onyike CU, Pfeffer G, Pindon A, Raman M, Richard I, Rubinsztein DC, Schiava M, Schütz AK, Shen PS, Southworth DR, Staffaroni AM, Taralio-Gravovac M, Weihl CC, Yao Q, Ye Y, Peck N. 2024 VCP International Conference: Exploring multi-disciplinary approaches from basic science of valosin containing protein, an AAA+ ATPase protein, to the therapeutic advancement for VCP-associated multisystem proteinopathy. Neurobiol Dis 2025; 207:106861. [PMID: 40037468 PMCID: PMC11960434 DOI: 10.1016/j.nbd.2025.106861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/26/2025] [Accepted: 02/26/2025] [Indexed: 03/06/2025] Open
Abstract
Valosin-containing protein (VCP/p97) is a ubiquitously expressed AAA+ ATPase associated with numerous protein-protein interactions and critical cellular functions including protein degradation and clearance, mitochondrial homeostasis, DNA repair and replication, cell cycle regulation, endoplasmic reticulum-associated degradation, and lysosomal functions including autophagy and apoptosis. Autosomal-dominant missense mutations in the VCP gene may result in VCP-associated multisystem proteinopathy (VCP-MSP), a rare degenerative disorder linked to heterogeneous phenotypes including inclusion body myopathy (IBM) with Paget's disease of bone (PDB) and frontotemporal dementia (FTD) or IBMPFD, amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), parkinsonism, Charcot-Marie Tooth disease (CMT), and spastic paraplegia. The complexity of VCP-MSP makes collaboration among stakeholders essential and necessitates a multi-disciplinary approach. The 2024 VCP International Conference was hosted at Caltech between February 22 and 25. Co-organized by Cure VCP Disease and Dr. Tsui-Fen Chou, the meeting aimed to center the patient as a research partner, harmonize diverse stakeholder engagement, and bridge the gap between basic and clinical neuroscience as it relates to VCP-MSP. Over 100 multi-disciplinary experts attended, ranging from basic scientists to clinicians to patient advocates. Attendees discussed genetics and clinical presentation, cellular and molecular mechanisms underlying disease, therapeutic approaches, and strategies for future VCP research. The conference included three roundtable discussions, 29 scientific presentations, 32 scientific posters, nine patient and caregiver posters, and a closing discussion forum. The following conference proceedings summarize these sessions, highlighting both the identified gaps in knowledge and the significant strides made towards understanding and treating VCP diseases.
Collapse
Affiliation(s)
- A Peck
- Cure VCP Disease, Warner Robins, GA, USA
| | - A Dadi
- Cure VCP Disease, Warner Robins, GA, USA
| | - Z Yavarow
- Cure VCP Disease, Warner Robins, GA, USA
| | - L N Alfano
- The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | | | - M R Arkin
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - T F Chou
- Department of Biology, Caltech, Pasadena, CA, USA
| | - E S D'Ambrosio
- Nationwide Children's Hospital, Columbus, OH, USA; Department of Genetic and Cellular Medicine and Department of Neurology, UMass Chan Medical School, Worcester, MA, USA
| | - J Diaz-Manera
- The John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute and Newcastle Hospitals NHS Foundation Trust, Center for Life, Central Parkway, Newcastle, Upon Tyne, United Kingdom
| | - J P Dudley
- LaMontagne Center for Infectious Disease, University of Texas, Austin, TX, USA
| | - A G Elder
- Cure VCP Disease, Warner Robins, GA, USA
| | - N Ghoshal
- Departments of Neurology and Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - C E Hart
- Creyon Bio, San Diego, CA, USA; Lilly, Indianapolis, IN, USA
| | - M M Hart
- Cure VCP Disease, Warner Robins, GA, USA
| | - D M Huryn
- Department of Chemistry University of Pennsylvania, Philadelphia, PA, USA
| | - A E Johnson
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - K B Jones
- Department of Orthopaedics, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - V Kimonis
- Department of Pediatrics, University of California, Irvine, CA, USA; Department of Neurology, University of California, Irvine, CA, USA
| | - E Kiskinis
- The Ken & Ruth Davee Department of Neurology, Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - E B Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - T E Lloyd
- Department of Neurology Baylor College of Medicine, Houston, TX, USA
| | - M Mapstone
- Department of Neurology, University of California, Irvine, CA, USA
| | - A Martin
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - H Meyer
- Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - T Mozaffar
- Department of Neurology, University of California, Irvine, CA, USA
| | - C U Onyike
- Division of Geriatric Psychiatry and Neuropsychiatry, Johns Hopkins University School of Medicine, Baltimore, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, USA
| | - G Pfeffer
- Department of Clinical Neurosciences, University of Calgary, Calgary, Canada; Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - A Pindon
- Cure VCP Disease, Warner Robins, GA, USA; Myhre Syndrome Foundation, Richardson, TX, USA
| | - M Raman
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| | - I Richard
- Généthon, 91000 Evry, France; Université Paris-Saclay, Université Evry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Evry, France
| | - D C Rubinsztein
- Cambridge Institute for Medical Research, University of Cambridge, CB2 0XY Cambridge, UK; UK Dementia Research Institute, Cambridge Biomedical Campus, Cambridge, UK
| | - M Schiava
- The John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute and Newcastle Hospitals NHS Foundation Trust, Center for Life, Central Parkway, Newcastle, Upon Tyne, United Kingdom
| | - A K Schütz
- Department of Chemistry and Pharmacy, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - P S Shen
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - D R Southworth
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
| | - A M Staffaroni
- UCSF Memory and Aging Center University of California San Francisco, CA, USA
| | - M Taralio-Gravovac
- Department of Biochemistry & Molecular Biology, University of Calgary, Alberta, Calgary, Canada
| | - C C Weihl
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Q Yao
- Department of Medicine Stony Brook University, Renaissance School of Medicine, Stony Brook, NY, USA
| | - Y Ye
- Laboratory of Molecular Biology, NIH, NIDDK, Bethesda, MD, USA
| | - N Peck
- Cure VCP Disease, Warner Robins, GA, USA.
| |
Collapse
|
5
|
Oancea C, Gherman DM, Popescu FG, Aurelian SM, Homentcovschi C. The Uneven Effect of Rare Diseases on Functional Status and Work Capacity. Healthcare (Basel) 2025; 13:594. [PMID: 40150443 PMCID: PMC11942041 DOI: 10.3390/healthcare13060594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/29/2025] Open
Abstract
Background: Rare diseases are defined as clinical conditions that affect only a small number of persons in a population, considered fewer than 1 per 2000 in the European Union or fewer than 1 per 1600 in the United States They are serious, often chronic and progressive conditions, characterized by a pronounced clinical polymorphism that crosses all medical specialties. Multiple areas of life beyond just physical health are affected with significant impact on patients, families, and healthcare systems. Objective: To analyze the socio-demographic, medical, and vocational characteristics that correlate with functional status and work disability as a measure of quality of life in rare diseases. Methods: An observational retrospective study of adults with rare diseases evaluated for eligibility for social insurance rights in the National Institute of Medical Assessment and Work Capacity Rehabilitation Bucharest (INEMRCM, the Romanian abbreviation) over a 5-year period was made. Descriptive analysis was used to present sample characteristics. Means and standard deviations (SD) were calculated to describe numerical variables, frequencies were used to describe categorical variables, and logistic regression analysis was conducted to evaluate potential predictors of work capacity. All statistical analyses were performed by PSPP.3 software. p < 0.05 was the cut-off for statistical significance with a 95% confidence interval. Results: 90 consecutive persons were included in the survey. The mean age of the group was 44.5 years ± SD 10.61 years, with a female/male ratio of 48/42 persons. The mean disease duration was 10.61 years ± SD 9.76 years. Men had more severe disease (73.81%); p = 0.018 and significantly younger retirement age, M/F = 39.10 ± 12.26/43.06 ± 9.32; p = 0.037. Less disabling diseases were predominant autoimmune conditions (85.71% of cases); genetic conditions had a more severe functional impact in 63.75% of cases; p = 0.037. People with multisystem diseases but with specific or targeted treatment can work more frequently (76.19%); those with visual impairment have more severe impairments (73.77%); p < 0.001. All individuals who received specific therapy had a better functional status, unlike only 37.21% of those who received symptomatic treatment or treatment for complications; p = 0.023. Logistic regression analysis indicated that the type of impairment and the availability of specific treatments could serve as predictors of a reduced likelihood of employment in rare disease cases. Education level and occupation were not correlated with functional impairment and work disability (NS). Conclusions: Several factors, including some that are modifiable, were associated with better outcomes, such as reduced disability and an increased potential for work participation. Sex, disease etiology, type of impairment, and treatment were all significantly linked to functional capacity. Among these, the type of impairment and the availability of specific treatments might be predictors of employment. Addressing these parameters requires a multidisciplinary team, involving specialized care and comprehensive support services to improve the overall quality of life of individuals affected by rare diseases.
Collapse
Affiliation(s)
- Corina Oancea
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy Bucharest, 050474 Bucharest, Romania; (C.O.); (D.M.G.); (C.H.)
| | - Despina Mihaela Gherman
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy Bucharest, 050474 Bucharest, Romania; (C.O.); (D.M.G.); (C.H.)
| | - Florina Georgeta Popescu
- Department of Occupational Health, Victor Babes University of Medicine and Pharmacy Timisoara, 300041 Timișoara, Romania
| | - Sorina Maria Aurelian
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy Bucharest, 050474 Bucharest, Romania; (C.O.); (D.M.G.); (C.H.)
| | - Corina Homentcovschi
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy Bucharest, 050474 Bucharest, Romania; (C.O.); (D.M.G.); (C.H.)
| |
Collapse
|
6
|
Leckie J, Yokota T. Integrating Machine Learning-Based Approaches into the Design of ASO Therapies. Genes (Basel) 2025; 16:185. [PMID: 40004514 PMCID: PMC11855077 DOI: 10.3390/genes16020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Rare diseases impose a significant burden on affected individuals, caregivers, and healthcare systems worldwide. Developing effective therapeutics for these small patient populations presents substantial challenges. Antisense oligonucleotides (ASOs) have emerged as a promising therapeutic approach that targets the underlying genetic cause of disease at the RNA level. Several ASOs have gained FDA approval for the treatment of genetic conditions, including use in personalized N-of-1 trials. However, despite their potential, ASOs often exhibit limited clinical efficacy, and optimizing their design is a complex process influenced by numerous factors. Machine learning-based platforms, including eSkip-Finder and ASOptimizer, have been developed to address these challenges by predicting optimal ASO sequences and chemical modifications to enhance efficacy. eSkip-Finder focuses on exon-skipping applications, while ASOptimizer aims to optimize ASOs for RNA degradation. Preliminary in vitro results have demonstrated the promising predictive power of these platforms. However, limitations remain, including their generalizability to alternative targets and gaps in their consideration of all factors influencing ASO efficacy and safety. Continued advancements in machine learning models, alongside efforts to incorporate additional features affecting ASO efficacy and safety, hold significant promise for the field. These platforms have the potential to streamline ASO development, reduce associated costs, and improve clinical outcomes, positioning machine learning as a key tool in the future of ASO therapeutics.
Collapse
Affiliation(s)
- Jamie Leckie
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada;
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada;
- The Friends of Garrett Cumming Research & Muscular Dystrophy Canada HM Toupin Neurological Sciences Research, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
7
|
Trezza A, Roncaglia B, Visibelli A, Barletta R, Peruzzi L, Marzocchi B, Braconi D, Spiga O, Santucci A. Integrated Clinomics and Molecular Dynamics Simulation Approaches Reveal the SAA1.1 Allele as a Biomarker in Alkaptonuria Disease Severity. Biomolecules 2025; 15:194. [PMID: 40001497 PMCID: PMC11853296 DOI: 10.3390/biom15020194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/16/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Alkaptonuria (AKU) is a rare metabolic disorder characterized by the accumulation of homogentisic acid (HGA), leading to progressive ochronosis and joint degeneration. While much is known about HGA's role in tissue damage, the molecular mechanisms underlying acute inflammation in AKU remain poorly understood. Serum amyloid A (SAA) proteins are key mediators of the inflammatory response, yet their potential as biomarkers for inflammation in AKU has not been explored. This study investigated the role of the SAA1.1 allele as a biomarker for the severity of acute inflammation in AKU. Data from the ApreciseKUre Precision Medicine Ecosystem were analyzed to assess the relationship between SAA1 allelic variants and inflammatory markers. Molecular dynamics simulations compared the structural dynamics of SAA1.1 and SAA1.2 isoforms, with standard modeling and analysis pipelines employed. Using a clinomics approach, we showed that AKU patients expressing the SAA1.1 allele have significantly higher acute inflammation-related markers. Extensive molecular dynamics simulations revealed that the SAA1.1 isoform lent high structural instability of the C-terminal domain, accelerating the formation of amyloid fibrils and exacerbating the inflammatory condition. These findings would identify the SAA1.1 allele as a novel genetic biomarker for the progression of secondary amyloidosis in AKU and its severity. Furthermore, new molecular insights into the inflammatory mechanisms of AKU were provided, suggesting potential therapeutic approaches aimed at stabilizing SAA1.1 protein and preventing amyloid fibril formation, with significant implications in AKU and precision medicine strategies for SAA-related diseases.
Collapse
Affiliation(s)
- Alfonso Trezza
- ONE-HEALTH Laboratory, Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro, 53100 Siena, Italy; (A.T.); (B.R.); (A.V.); (R.B.); (L.P.); (B.M.); (D.B.); (O.S.)
| | - Bianca Roncaglia
- ONE-HEALTH Laboratory, Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro, 53100 Siena, Italy; (A.T.); (B.R.); (A.V.); (R.B.); (L.P.); (B.M.); (D.B.); (O.S.)
| | - Anna Visibelli
- ONE-HEALTH Laboratory, Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro, 53100 Siena, Italy; (A.T.); (B.R.); (A.V.); (R.B.); (L.P.); (B.M.); (D.B.); (O.S.)
| | - Roberta Barletta
- ONE-HEALTH Laboratory, Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro, 53100 Siena, Italy; (A.T.); (B.R.); (A.V.); (R.B.); (L.P.); (B.M.); (D.B.); (O.S.)
| | - Luana Peruzzi
- ONE-HEALTH Laboratory, Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro, 53100 Siena, Italy; (A.T.); (B.R.); (A.V.); (R.B.); (L.P.); (B.M.); (D.B.); (O.S.)
| | - Barbara Marzocchi
- ONE-HEALTH Laboratory, Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro, 53100 Siena, Italy; (A.T.); (B.R.); (A.V.); (R.B.); (L.P.); (B.M.); (D.B.); (O.S.)
| | - Daniela Braconi
- ONE-HEALTH Laboratory, Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro, 53100 Siena, Italy; (A.T.); (B.R.); (A.V.); (R.B.); (L.P.); (B.M.); (D.B.); (O.S.)
| | - Ottavia Spiga
- ONE-HEALTH Laboratory, Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro, 53100 Siena, Italy; (A.T.); (B.R.); (A.V.); (R.B.); (L.P.); (B.M.); (D.B.); (O.S.)
| | - Annalisa Santucci
- ONE-HEALTH Laboratory, Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro, 53100 Siena, Italy; (A.T.); (B.R.); (A.V.); (R.B.); (L.P.); (B.M.); (D.B.); (O.S.)
- MetabERN, Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro, 53100 Siena, Italy
| |
Collapse
|
8
|
O'Brien TJ, Barlow IL, Feriani L, Brown AEX. High-throughput tracking enables systematic phenotyping and drug repurposing in C. elegans disease models. eLife 2025; 12:RP92491. [PMID: 39773880 PMCID: PMC11709427 DOI: 10.7554/elife.92491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
There are thousands of Mendelian diseases with more being discovered weekly and the majority have no approved treatments. To address this need, we require scalable approaches that are relatively inexpensive compared to traditional drug development. In the absence of a validated drug target, phenotypic screening in model organisms provides a route for identifying candidate treatments. Success requires a screenable phenotype. However, the right phenotype and assay may not be obvious for pleiotropic neuromuscular disorders. Here, we show that high-throughput imaging and quantitative phenotyping can be conducted systematically on a panel of C. elegans disease model strains. We used CRISPR genome-editing to create 25 worm models of human Mendelian diseases and phenotyped them using a single standardised assay. All but two strains were significantly different from wild-type controls in at least one feature. The observed phenotypes were diverse, but mutations of genes predicted to have related functions led to similar behavioural differences in worms. As a proof-of-concept, we performed a drug repurposing screen of an FDA-approved compound library, and identified two compounds that rescued the behavioural phenotype of a model of UNC80 deficiency. Our results show that a single assay to measure multiple phenotypes can be applied systematically to diverse Mendelian disease models. The relatively short time and low cost associated with creating and phenotyping multiple strains suggest that high-throughput worm tracking could provide a scalable approach to drug repurposing commensurate with the number of Mendelian diseases.
Collapse
Affiliation(s)
- Thomas J O'Brien
- Institute of Clinical Sciences, Imperial College LondonLondonUnited Kingdom
- MRC London Institute of Medical SciencesLondonUnited Kingdom
| | - Ida L Barlow
- Institute of Clinical Sciences, Imperial College LondonLondonUnited Kingdom
- MRC London Institute of Medical SciencesLondonUnited Kingdom
| | - Luigi Feriani
- Institute of Clinical Sciences, Imperial College LondonLondonUnited Kingdom
- MRC London Institute of Medical SciencesLondonUnited Kingdom
| | - André EX Brown
- Institute of Clinical Sciences, Imperial College LondonLondonUnited Kingdom
- MRC London Institute of Medical SciencesLondonUnited Kingdom
| |
Collapse
|
9
|
Hamdan A, Hendrickx N, Hooker AC, Chen X, Comets E, Traschütz A, Schüle R, Mentré F, Synofzik M, Karlsson MO. Longitudinal Analysis of Natural History Progression of Rare and Ultra-Rare Cerebellar Ataxias Using Item Response Theory. Clin Pharmacol Ther 2024; 116:1593-1605. [PMID: 39403821 DOI: 10.1002/cpt.3466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024]
Abstract
Degenerative cerebellar ataxias comprise a heterogeneous group of rare and ultra-rare genetic diseases. While disease-modifying treatments are now on the horizon for many ataxias, robust trial designs and analysis methods are lacking. To better inform trial designs, we applied item response theory (IRT) modeling to evaluate the natural history progression of several ataxias, assessed with the widely used scale for assessment and rating of ataxia (SARA). A longitudinal IRT model was built utilizing real-world data from the large autosomal recessive cerebellar ataxia (ARCA) registry. Disease progression was evaluated for the overall cohort as well as for the 10 most common ARCA genotypes. Sample sizes were calculated for simulated trials with autosomal recessive spastic ataxia Charlevoix-Saguenay (ARSACS) and polymerase gamma (POLG) ataxia, as showcased, across multiple design and analysis scenarios. Longitudinal IRT models were able to describe the changes in the latent variable underlying SARA as a function of time since ataxia onset for both the overall ARCA cohort and the common genotypes. The typical progression rates varied across genotypes between relatively high in POLG (~ 0.98 SARA points/year at SARA = 20) and very low in COQ8A ataxia (~ 0.003 SARA points/year at SARA = 20). Smaller trial sizes were required in case of faster progression, longer trials (~ 75-90% less with 5 years vs. 2 years), and larger drug effects (~ 70-80% less with 100% vs. 50% inhibition). Simulating under the developed IRT model, the longitudinal IRT model had the highest power, with a well-controlled type I error, compared to total score models or end-of-treatment analyses. The established longitudinal IRT framework allows efficient utilization of natural history data and ultimately facilitates the design and analysis of treatment trials in rare and ultra-rare genetic ataxias.
Collapse
Affiliation(s)
- Alzahra Hamdan
- Pharmacometrics Research Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | | | - Andrew C Hooker
- Pharmacometrics Research Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Xiaomei Chen
- Pharmacometrics Research Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Emmanuelle Comets
- Université Paris Cité, IAME, Inserm, Paris, France
- Univ Rennes, Inserm, EHESP, Irset - UMR_S 1085, Rennes, France
| | - Andreas Traschütz
- Department of Neurodegenerative Diseases, Center for Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE) Tübingen, Tübingen, Germany
| | - Rebecca Schüle
- Department of Neurodegenerative Diseases, Center for Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Division of Neurodegenerative Diseases, Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Center for Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE) Tübingen, Tübingen, Germany
| | - Mats O Karlsson
- Pharmacometrics Research Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden
| |
Collapse
|
10
|
Mukherjee J, Sharma R, Dutta P, Bhunia B. Artificial intelligence in healthcare: a mastery. Biotechnol Genet Eng Rev 2024; 40:1659-1708. [PMID: 37013913 DOI: 10.1080/02648725.2023.2196476] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023]
Abstract
There is a vast development of artificial intelligence (AI) in recent years. Computational technology, digitized data collection and enormous advancement in this field have allowed AI applications to penetrate the core human area of specialization. In this review article, we describe current progress achieved in the AI field highlighting constraints on smooth development in the field of medical AI sector, with discussion of its implementation in healthcare from a commercial, regulatory and sociological standpoint. Utilizing sizable multidimensional biological datasets that contain individual heterogeneity in genomes, functionality and milieu, precision medicine strives to create and optimize approaches for diagnosis, treatment methods and assessment. With the arise of complexity and expansion of data in the health-care industry, AI can be applied more frequently. The main application categories include indications for diagnosis and therapy, patient involvement and commitment and administrative tasks. There has recently been a sharp rise in interest in medical AI applications due to developments in AI software and technology, particularly in deep learning algorithms and in artificial neural network (ANN). In this overview, we enlisted the major categories of issues that AI systems are ideally equipped to resolve followed by clinical diagnostic tasks. It also includes a discussion of the future potential of AI, particularly for risk prediction in complex diseases, and the difficulties, constraints and biases that must be meticulously addressed for the effective delivery of AI in the health-care sector.
Collapse
Affiliation(s)
- Jayanti Mukherjee
- Department of Pharmaceutical Chemistry, CMR College of Pharmacy Affiliated to Jawaharlal Nehru Technological University, Hyderabad, Telangana, India
| | - Ramesh Sharma
- Department of Bioengineering, National Institute of Technology, Agartala, India
| | - Prasenjit Dutta
- Department of Production Engineering, National Institute of Technology, Agartala, India
| | - Biswanath Bhunia
- Department of Bioengineering, National Institute of Technology, Agartala, India
| |
Collapse
|
11
|
Belnap N, Ramsey K, Carvalho ST, Nearman L, Haas H, Huentelman M, Lee K. Exploring the Frontier: The Human Microbiome's Role in Rare Childhood Neurological Diseases and Epilepsy. Brain Sci 2024; 14:1051. [PMID: 39595814 PMCID: PMC11592123 DOI: 10.3390/brainsci14111051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 10/19/2024] [Accepted: 10/19/2024] [Indexed: 11/28/2024] Open
Abstract
Emerging research into the human microbiome, an intricate ecosystem of microorganisms residing in and on our bodies, reveals that it plays a pivotal role in maintaining our health, highlighting the potential for microbiome-based interventions to prevent, diagnose, treat, and manage a myriad of diseases. The objective of this review is to highlight the importance of microbiome studies in enhancing our understanding of rare genetic epilepsy and related neurological disorders. Studies suggest that the gut microbiome, acting through the gut-brain axis, impacts the development and severity of epileptic conditions in children. Disruptions in microbial composition can affect neurotransmitter systems, inflammatory responses, and immune regulation, which are all critical factors in the pathogenesis of epilepsy. This growing body of evidence points to the potential of microbiome-targeted therapies, such as probiotics or dietary modifications, as innovative approaches to managing epilepsy. By harnessing the power of the microbiome, we stand to develop more effective and personalized treatment strategies for children affected by this disease and other rare neurological diseases.
Collapse
Affiliation(s)
- Newell Belnap
- Center for Rare Childhood Disorders, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA; (N.B.)
| | - Keri Ramsey
- Center for Rare Childhood Disorders, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA; (N.B.)
| | | | - Lexi Nearman
- Department of Biological Science, Northern Arizona University, Flagstaff, AZ 86011, USA
- TGen Integrated Microbiomics Center, Translational Genomics Research Institute (TGen), Flagstaff, AZ 86011, USA
| | - Hannah Haas
- Center for Rare Childhood Disorders, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA; (N.B.)
- Barrett, the Honors College, Arizona State University, Tempe, AZ 85281, USA
| | - Matt Huentelman
- Center for Rare Childhood Disorders, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA; (N.B.)
| | - Keehoon Lee
- TGen Integrated Microbiomics Center, Translational Genomics Research Institute (TGen), Flagstaff, AZ 86011, USA
| |
Collapse
|
12
|
Sheth J, Nair A, Sheth F, Ajagekar M, Dhondekar T, Panigrahi I, Bavdekar A, Nampoothiri S, Datar C, Gandhi A, Muranjan M, Kaur A, Desai M, Mistri M, Patel C, Naik P, Shah M, Godbole K, Kapoor S, Gupta N, Bijarnia-Mahay S, Kadam S, Solanki D, Desai S, Iyer A, Patel K, Patel H, Shah RC, Mehta S, Shah R, Bhavsar R, Shah J, Pandya M, Patel B, Shah S, Shah H, Shah S, Bajaj S, Shah S, Thaker N, Kalane U, Kamate M, Kn VR, Tayade N, Jagadeesan S, Jain D, Chandarana M, Singh J, Mehta S, Suresh B, Sheth H. Burden of rare genetic disorders in India: twenty-two years' experience of a tertiary centre. Orphanet J Rare Dis 2024; 19:295. [PMID: 39138584 PMCID: PMC11323464 DOI: 10.1186/s13023-024-03300-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Rare disorders comprise of ~ 7500 different conditions affecting multiple systems. Diagnosis of rare diseases is complex due to dearth of specialized medical professionals, testing labs and limited therapeutic options. There is scarcity of data on the prevalence of rare diseases in different populations. India being home to a large population comprising of 4600 population groups, of which several thousand are endogamous, is likely to have a high burden of rare diseases. The present study provides a retrospective overview of a cohort of patients with rare genetic diseases identified at a tertiary genetic test centre in India. RESULTS Overall, 3294 patients with 305 rare diseases were identified in the present study cohort. These were categorized into 14 disease groups based on the major organ/ organ system affected. Highest number of rare diseases (D = 149/305, 48.9%) were identified in the neuromuscular and neurodevelopmental (NMND) group followed by inborn errors of metabolism (IEM) (D = 47/305; 15.4%). Majority patients in the present cohort (N = 1992, 61%) were diagnosed under IEM group, of which Gaucher disease constituted maximum cases (N = 224, 11.2%). Under the NMND group, Duchenne muscular dystrophy (N = 291/885, 32.9%), trinucleotide repeat expansion disorders (N = 242/885; 27.3%) and spinal muscular atrophy (N = 141/885, 15.9%) were the most common. Majority cases of β-thalassemia (N = 120/149, 80.5%) and cystic fibrosis (N = 74/75, 98.7%) under the haematological and pulmonary groups were observed, respectively. Founder variants were identified for Tay-Sachs disease and mucopolysaccharidosis IVA diseases. Recurrent variants for Gaucher disease (GBA:c.1448T > C), β-thalassemia (HBB:c.92.+5G > C), non-syndromic hearing loss (GJB2:c.71G > A), albinism (TYR:c.832 C > T), congenital adrenal hyperplasia (CYP21A2:c.29-13 C > G) and progressive pseudo rheumatoid dysplasia (CCN6:c.298T > A) were observed in the present study. CONCLUSION The present retrospective study of rare disease patients diagnosed at a tertiary genetic test centre provides first insight into the distribution of rare genetic diseases across the country. This information will likely aid in drafting future health policies, including newborn screening programs, development of target specific panel for affordable diagnosis of rare diseases and eventually build a platform for devising novel treatment strategies for rare diseases.
Collapse
Affiliation(s)
- Jayesh Sheth
- FRIGE Institute of Human Genetics, FRIGE House, Ahmedabad, India.
| | - Aadhira Nair
- FRIGE Institute of Human Genetics, FRIGE House, Ahmedabad, India
| | - Frenny Sheth
- FRIGE Institute of Human Genetics, FRIGE House, Ahmedabad, India
| | - Manali Ajagekar
- FRIGE Institute of Human Genetics, FRIGE House, Ahmedabad, India
| | | | - Inusha Panigrahi
- Postgraduate Institute of Medical Education and Research, PGIMER, Chandigarh, India
| | | | | | - Chaitanya Datar
- Bharati Hospital and Research Centre, Dhankawadi, Pune, India
| | | | - Mamta Muranjan
- Department of Pediatrics, KEM Hospital, Parel, Mumbai, India
| | - Anupriya Kaur
- Postgraduate Institute of Medical Education and Research, PGIMER, Chandigarh, India
| | - Manisha Desai
- FRIGE Institute of Human Genetics, FRIGE House, Ahmedabad, India
| | - Mehul Mistri
- FRIGE Institute of Human Genetics, FRIGE House, Ahmedabad, India
| | - Chitra Patel
- FRIGE Institute of Human Genetics, FRIGE House, Ahmedabad, India
| | - Premal Naik
- Rainbow Super speciality Hospital, Ahmedabad, India
| | | | - Koumudi Godbole
- Deenanath Mangeshkar Hospital & Research Centre, Pune, India
| | - Seema Kapoor
- Division of Genetics & Metabolism Department of Pediatrics, Lok Nayak Hospital and Maulana Azad Medical College, New Delhi, India
| | - Neerja Gupta
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Sunita Bijarnia-Mahay
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Sandeep Kadam
- Department of Pediatrics, K.E.M Hospital, Pune, India
| | | | - Soham Desai
- Shree Krishna Hospital, Karamsad, Anand, India
| | | | - Ketan Patel
- Himalaya Arcade, Homeopathy Clinic, Vastrapur, Ahmedabad, India
| | - Harsh Patel
- Zydus Hospital & Healthcare Research Pvt Ltd, Ahmedabad, India
| | - Raju C Shah
- Ankur Neonatal Hospital, Ashram Road, Ahmedabad, India
| | | | | | - Riddhi Bhavsar
- FRIGE Institute of Human Genetics, FRIGE House, Ahmedabad, India
| | - Jhanvi Shah
- FRIGE Institute of Human Genetics, FRIGE House, Ahmedabad, India
| | - Mili Pandya
- FRIGE Institute of Human Genetics, FRIGE House, Ahmedabad, India
| | | | | | - Heli Shah
- Ansa Clinic, S. G. Highway, Ahmedabad, India
| | - Shalin Shah
- Ansa Clinic, S. G. Highway, Ahmedabad, India
| | - Shruti Bajaj
- The Purple Gene Clinic, Simplex Khushaangan, SV Road, Malad West, Mumbai, India
| | | | | | - Umesh Kalane
- Deenanath Mangeshkar Hospital & Research Centre, Pune, India
| | | | - Vykunta Raju Kn
- Department of Pediatric Neurology, Indira Gandhi Institute of Child Health, Bangalore, India
| | - Naresh Tayade
- Department of Paediatrics, Dr. Panjabrao Deshmukh Memorial Medical College, Amravati, India
| | - Sujatha Jagadeesan
- Department of Clinical Genetics & Genetic Counselling, Mediscan Systems, Chennai, India
| | - Deepika Jain
- Shishu Child Development and Early Intervention Centre, Ahmedabad, India
| | - Mitesh Chandarana
- Medisquare Superspeciality Hospital and Research Institute, Ahmedabad, India
| | - Jitendra Singh
- Neurology Clinic, Shivranjini Cross Road, Satellite, Ahmedabad, India
| | | | - Beena Suresh
- Department of Clinical Genetics & Genetic Counselling, Mediscan Systems, Chennai, India
| | - Harsh Sheth
- FRIGE Institute of Human Genetics, FRIGE House, Ahmedabad, India.
| |
Collapse
|
13
|
Dickson PI. Genetics is Scary. MISSOURI MEDICINE 2024; 121:276. [PMID: 39575072 PMCID: PMC11578568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Affiliation(s)
- Patricia I Dickson
- Department of Pediatrics, Washington University School of Medicine in St. Louis, Missouri
| |
Collapse
|
14
|
Mattar CN, Chew WL, Lai PS. Embryo and fetal gene editing: Technical challenges and progress toward clinical applications. Mol Ther Methods Clin Dev 2024; 32:101229. [PMID: 38533521 PMCID: PMC10963250 DOI: 10.1016/j.omtm.2024.101229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Gene modification therapies (GMTs) are slowly but steadily making progress toward clinical application. As the majority of rare diseases have an identified genetic cause, and as rare diseases collectively affect 5% of the global population, it is increasingly important to devise gene correction strategies to address the root causes of the most devastating of these diseases and to provide access to these novel therapies to the most affected populations. The main barriers to providing greater access to GMTs continue to be the prohibitive cost of developing these novel drugs at clinically relevant doses, subtherapeutic effects, and toxicity related to the specific agents or high doses required. In vivo strategy and treating younger patients at an earlier course of their disease could lower these barriers. Although currently regarded as niche specialties, prenatal and preconception GMTs offer a robust solution to some of these barriers. Indeed, treating either the fetus or embryo benefits from economy of scale, targeting pre-pathological tissues in the fetus prior to full pathogenesis, or increasing the likelihood of complete tissue targeting by correcting pluripotent embryonic cells. Here, we review advances in embryo and fetal GMTs and discuss requirements for clinical application.
Collapse
Affiliation(s)
- Citra N.Z. Mattar
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, Singapore 119228
- Department of Obstetrics and Gynaecology, National University Health System, Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, Singapore 119228
| | - Wei Leong Chew
- Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, 60 Biopolis St, Singapore, Singapore 138672
| | - Poh San Lai
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, Singapore 119228
| |
Collapse
|
15
|
Parsons BL, Beal MA, Dearfield KL, Douglas GR, Gi M, Gollapudi BB, Heflich RH, Horibata K, Kenyon M, Long AS, Lovell DP, Lynch AM, Myers MB, Pfuhler S, Vespa A, Zeller A, Johnson GE, White PA. Severity of effect considerations regarding the use of mutation as a toxicological endpoint for risk assessment: A report from the 8th International Workshop on Genotoxicity Testing (IWGT). ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024. [PMID: 38828778 DOI: 10.1002/em.22599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/13/2024] [Accepted: 04/15/2024] [Indexed: 06/05/2024]
Abstract
Exposure levels without appreciable human health risk may be determined by dividing a point of departure on a dose-response curve (e.g., benchmark dose) by a composite adjustment factor (AF). An "effect severity" AF (ESAF) is employed in some regulatory contexts. An ESAF of 10 may be incorporated in the derivation of a health-based guidance value (HBGV) when a "severe" toxicological endpoint, such as teratogenicity, irreversible reproductive effects, neurotoxicity, or cancer was observed in the reference study. Although mutation data have been used historically for hazard identification, this endpoint is suitable for quantitative dose-response modeling and risk assessment. As part of the 8th International Workshops on Genotoxicity Testing, a sub-group of the Quantitative Analysis Work Group (WG) explored how the concept of effect severity could be applied to mutation. To approach this question, the WG reviewed the prevailing regulatory guidance on how an ESAF is incorporated into risk assessments, evaluated current knowledge of associations between germline or somatic mutation and severe disease risk, and mined available data on the fraction of human germline mutations expected to cause severe disease. Based on this review and given that mutations are irreversible and some cause severe human disease, in regulatory settings where an ESAF is used, a majority of the WG recommends applying an ESAF value between 2 and 10 when deriving a HBGV from mutation data. This recommendation may need to be revisited in the future if direct measurement of disease-causing mutations by error-corrected next generation sequencing clarifies selection of ESAF values.
Collapse
Affiliation(s)
- Barbara L Parsons
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Marc A Beal
- Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Kerry L Dearfield
- U.S. Environmental Protection Agency and U.S. Department of Agriculture, Washington, DC, USA
| | - George R Douglas
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - Min Gi
- Department of Environmental Risk Assessment, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | | | - Robert H Heflich
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | | | - Michelle Kenyon
- Portfolio and Regulatory Strategy, Drug Safety Research and Development, Pfizer, Groton, Connecticut, USA
| | - Alexandra S Long
- Existing Substances Risk Assessment Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - David P Lovell
- Population Health Research Institute, St George's Medical School, University of London, London, UK
| | | | - Meagan B Myers
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | | | - Alisa Vespa
- Pharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Andreas Zeller
- Pharmaceutical Sciences, pRED Innovation Center Basel, Hoffmann-La Roche Ltd, Basel, Switzerland
| | - George E Johnson
- Swansea University Medical School, Swansea University, Swansea, Wales, UK
| | - Paul A White
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
16
|
Cho H, Yoo M, Pongkulapa T, Rabie H, Muotri AR, Yin PT, Choi J, Lee K. Magnetic Nanoparticle-Assisted Non-Viral CRISPR-Cas9 for Enhanced Genome Editing to Treat Rett Syndrome. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306432. [PMID: 38647391 PMCID: PMC11200027 DOI: 10.1002/advs.202306432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/23/2024] [Indexed: 04/25/2024]
Abstract
The CRISPR-Cas9 technology has the potential to revolutionize the treatment of various diseases, including Rett syndrome, by enabling the correction of genes or mutations in human patient cells. However, several challenges need to be addressed before its widespread clinical application. These challenges include the low delivery efficiencies to target cells, the actual efficiency of the genome-editing process, and the precision with which the CRISPR-Cas system operates. Herein, the study presents a Magnetic Nanoparticle-Assisted Genome Editing (MAGE) platform, which significantly improves the transfection efficiency, biocompatibility, and genome-editing accuracy of CRISPR-Cas9 technology. To demonstrate the feasibility of the developed technology, MAGE is applied to correct the mutated MeCP2 gene in induced pluripotent stem cell-derived neural progenitor cells (iPSC-NPCs) from a Rett syndrome patient. By combining magnetofection and magnetic-activated cell sorting, MAGE achieves higher multi-plasmid delivery (99.3%) and repairing efficiencies (42.95%) with significantly shorter incubation times than conventional transfection agents without size limitations on plasmids. The repaired iPSC-NPCs showed similar characteristics as wild-type neurons when they differentiated into neurons, further validating MAGE and its potential for future clinical applications. In short, the developed nanobio-combined CRISPR-Cas9 technology offers the potential for various clinical applications, particularly in stem cell therapies targeting different genetic diseases.
Collapse
Affiliation(s)
- Hyeon‐Yeol Cho
- Department of Chemistry and Chemical BiologyRutgers, The State University of New JerseyPiscatawayNJ08854USA
- Department of Chemical and Biomolecular EngineeringSogang UniversitySeoul04107South Korea
- Department of Bio and Fermentation Convergence TechnologyKookmin UniversitySeoul02707South Korea
| | - Myungsik Yoo
- W. M. Keck Center for Collaborative Neuroscience and Department of Cell Biology and NeuroscienceRutgers, The State University of New JerseyPiscatawayNJ08854USA
| | - Thanapat Pongkulapa
- Department of Chemistry and Chemical BiologyRutgers, The State University of New JerseyPiscatawayNJ08854USA
| | - Hudifah Rabie
- Department of Chemistry and Chemical BiologyRutgers, The State University of New JerseyPiscatawayNJ08854USA
| | - Alysson R. Muotri
- School of MedicineDepartment of Pediatrics/Rady Children's Hospital San DiegoDepartment of Cellular and Molecular MedicineStem Cell ProgramLa JollaCA92093USA
| | - Perry T. Yin
- Department of Biomedical EngineeringRutgersThe State University of New JerseyPiscatawayNJ08854USA
| | - Jeong‐Woo Choi
- Department of Chemical and Biomolecular EngineeringSogang UniversitySeoul04107South Korea
| | - Ki‐Bum Lee
- Department of Chemistry and Chemical BiologyRutgers, The State University of New JerseyPiscatawayNJ08854USA
| |
Collapse
|
17
|
Shen G, Liu J, Yang H, Xie N, Yang Y. mRNA therapies: Pioneering a new era in rare genetic disease treatment. J Control Release 2024; 369:696-721. [PMID: 38580137 DOI: 10.1016/j.jconrel.2024.03.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/16/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024]
Abstract
Rare genetic diseases, often referred to as orphan diseases due to their low prevalence and limited treatment options, have long posed significant challenges to our medical system. In recent years, Messenger RNA (mRNA) therapy has emerged as a highly promising treatment approach for various diseases caused by genetic mutations. Chemically modified mRNA is introduced into cells using carriers like lipid-based nanoparticles (LNPs), producing functional proteins that compensate for genetic deficiencies. Given the advantages of precise dosing, biocompatibility, transient expression, and minimal risk of genomic integration, mRNA therapies can safely and effectively correct genetic defects in rare diseases and improve symptoms. Currently, dozens of mRNA drugs targeting rare diseases are undergoing clinical trials. This comprehensive review summarizes the progress of mRNA therapy in treating rare genetic diseases. It introduces the development, molecular design, and delivery systems of mRNA therapy, highlighting their research progress in rare genetic diseases based on protein replacement and gene editing. The review also summarizes research progress in various rare disease models and clinical trials. Additionally, it discusses the challenges and future prospects of mRNA therapy. Researchers are encouraged to join this field and collaborate to advance the clinical translation of mRNA therapy, bringing hope to patients with rare genetic diseases.
Collapse
Affiliation(s)
- Guobo Shen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jian Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hanmei Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Na Xie
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China.
| | - Yang Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
18
|
Al-Attar M, Butterworth S, McKay L. A quantitative and qualitative analysis of patient group narratives suggests common biopsychosocial red flags of undiagnosed rare disease. Orphanet J Rare Dis 2024; 19:172. [PMID: 38641814 PMCID: PMC11031885 DOI: 10.1186/s13023-024-03143-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 03/24/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND The 'diagnostic odyssey' is a common challenge faced by patients living with rare diseases and poses a significant burden for patients, their families and carers, and the healthcare system. The diagnosis of rare diseases in clinical settings is challenging, with patients typically experiencing a multitude of unnecessary tests and procedures. To improve diagnosis of rare disease, clinicians require evidence-based guidance on when their patient may be presenting with a rare disease. This study aims to identify common experiences amongst patients with rare diseases, to inform a series of 'red flags' that can aid diagnosis of rare diseases in non-specialist settings. A questionnaire was developed by Medics for Rare Diseases, informed by the experiences of clinicians, rare disease patients and patient advocates, and was shared with UK-based rare disease patient groups. Study participants were engaged via social media platforms, blogs and email newsletters of three umbrella rare disease organisations. The questionnaire, comprising 22 questions, was designed to identify typical experiences relating to physical and psychosocial manifestations and presentation of disease, patient interactions with healthcare providers, and family history. RESULTS Questionnaire responses were received from 79 different rare disease patient groups and the common experiences identified were used to inform seven red flags of rare disease: multi-system involvement (3 or more); genetic inheritance pattern; continued presentation throughout childhood and adulthood; difficulties at school, especially relating to absences, difficulty participating in physical education and experiences of bullying or social isolation; multiple specialist referrals; extended period with unexplained symptoms; and misdiagnosis. In light of the red flags identified, recommendations for primary care and education settings have been proposed, focusing on the need for holistic assessment and awareness of both physical and psychosocial factors. CONCLUSIONS This study identified key commonalities experienced by patients with rare disease across physical and psychosocial domains, in addition to understanding patients' history and experiences with healthcare providers. These findings could be used to develop a clinical decision‑making tool to support non-specialist practitioners to consider when their patient may have an undiagnosed rare condition, which may minimise the challenges of the 'diagnostic odyssey' and improve the patient experience.
Collapse
Affiliation(s)
- Mariam Al-Attar
- Salford Royal Hospital, Northern Care Alliance NHS Foundation Trust, Salford, UK
| | | | - Lucy McKay
- Medics4RareDiseases, Unit 12 Treadaway Technical Centre, Treadaway Hill, High Wycombe, Loudwater, HP10 9RS, UK.
| |
Collapse
|
19
|
Vukadin L, Park B, Mohamed M, Li H, Elkholy A, Torrelli-Diljohn A, Kim JH, Jeong K, Murphy JM, Harvey CA, Dunlap S, Gehrs L, Lee H, Kim HG, Sah JP, Lee SN, Stanford D, Barrington RA, Foote JB, Sorace AG, Welner RS, Hildreth BE, Lim STS, Ahn EYE. A mouse model of Zhu-Tokita-Takenouchi-Kim syndrome reveals indispensable SON functions in organ development and hematopoiesis. JCI Insight 2024; 9:e175053. [PMID: 38290089 PMCID: PMC10972584 DOI: 10.1172/jci.insight.175053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/25/2024] [Indexed: 02/01/2024] Open
Abstract
Rare diseases are underrepresented in biomedical research, leading to insufficient awareness. Zhu-Tokita-Takenouchi-Kim (ZTTK) syndrome is a rare disease caused by genetic alterations that result in heterozygous loss of function of SON. While patients with ZTTK syndrome live with numerous symptoms, the lack of model organisms hampers our understanding of SON and this complex syndrome. Here, we developed Son haploinsufficiency (Son+/-) mice as a model of ZTTK syndrome and identified the indispensable roles of Son in organ development and hematopoiesis. Son+/- mice recapitulated clinical symptoms of ZTTK syndrome, including growth retardation, cognitive impairment, skeletal abnormalities, and kidney agenesis. Furthermore, we identified hematopoietic abnormalities in Son+/- mice, including leukopenia and immunoglobulin deficiency, similar to those observed in human patients. Surface marker analyses and single-cell transcriptome profiling of hematopoietic stem and progenitor cells revealed that Son haploinsufficiency shifted cell fate more toward the myeloid lineage but compromised lymphoid lineage development by reducing genes required for lymphoid and B cell lineage specification. Additionally, Son haploinsufficiency caused inappropriate activation of erythroid genes and impaired erythropoiesis. These findings highlight the importance of the full gene expression of Son in multiple organs. Our model serves as an invaluable research tool for this rare disease and related disorders associated with SON dysfunction.
Collapse
Affiliation(s)
- Lana Vukadin
- Department of Pathology, Division of Molecular and Cellular Pathology, and
| | - Bohye Park
- Department of Pathology, Division of Molecular and Cellular Pathology, and
| | - Mostafa Mohamed
- Department of Pathology, Division of Molecular and Cellular Pathology, and
| | - Huashi Li
- Department of Pathology, Division of Molecular and Cellular Pathology, and
| | - Amr Elkholy
- Department of Pathology, Division of Molecular and Cellular Pathology, and
| | - Alex Torrelli-Diljohn
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jung-Hyun Kim
- Metastasis Branch, Division of Cancer Biology, National Cancer Center, Goyang, Gyeonggi-do, South Korea
| | - Kyuho Jeong
- Department of Medicine, College of Medicine, Dongguk University, Gyeongju, South Korea
| | - James M. Murphy
- Department of Pathology, Division of Molecular and Cellular Pathology, and
| | - Caitlin A. Harvey
- Department of Pathology, Division of Molecular and Cellular Pathology, and
| | - Sophia Dunlap
- Department of Pathology, Division of Molecular and Cellular Pathology, and
| | - Leah Gehrs
- Department of Pathology, Division of Molecular and Cellular Pathology, and
| | - Hanna Lee
- Department of Pathology, Division of Molecular and Cellular Pathology, and
| | - Hyung-Gyoon Kim
- Department of Pathology, Division of Molecular and Cellular Pathology, and
| | - Jay Prakash Sah
- Department of Pathology, Division of Molecular and Cellular Pathology, and
| | | | - Denise Stanford
- Department of Medicine, Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Robert A. Barrington
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | | | - Anna G. Sorace
- Department of Radiology and
- O’Neal Comprehensive Cancer Center, and
| | - Robert S. Welner
- O’Neal Comprehensive Cancer Center, and
- Department of Medicine, Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Blake E. Hildreth
- Department of Pathology, Division of Molecular and Cellular Pathology, and
- O’Neal Comprehensive Cancer Center, and
| | - Ssang-Taek Steve Lim
- Department of Pathology, Division of Molecular and Cellular Pathology, and
- O’Neal Comprehensive Cancer Center, and
| | - Eun-Young Erin Ahn
- Department of Pathology, Division of Molecular and Cellular Pathology, and
- O’Neal Comprehensive Cancer Center, and
| |
Collapse
|
20
|
Cheung SYA, Hay JL, Lin YW, de Greef R, Bullock J. Pediatric oncology drug development and dosage optimization. Front Oncol 2024; 13:1235947. [PMID: 38348118 PMCID: PMC10860405 DOI: 10.3389/fonc.2023.1235947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/29/2023] [Indexed: 02/15/2024] Open
Abstract
Oncology drug discovery and development has always been an area facing many challenges. Phase 1 oncology studies are typically small, open-label, sequential studies enrolling a small sample of adult patients (i.e., 3-6 patients/cohort) in dose escalation. Pediatric evaluations typically lag behind the adult development program. The pediatric starting dose is traditionally referenced on the recommended phase 2 dose in adults with the incorporation of body size scaling. The size of the study is also small and dependent upon the prevalence of the disease in the pediatric population. Similar to adult development, the dose is escalated or de-escalated until reaching the maximum tolerated dose (MTD) that also provides desired biological activities or efficacy. The escalation steps and identification of MTD are often rule-based and do not incorporate all the available information, such as pharmacokinetic (PK), pharmacodynamic (PD), tolerability and efficacy data. Therefore, it is doubtful if the MTD approach is optimal to determine the dosage. Hence, it is important to evaluate whether there is an optimal dosage below the MTD, especially considering the emerging complexity of combination therapies and the long-term tolerability and safety of the treatments. Identification of an optimal dosage is also vital not only for adult patients but for pediatric populations as well. Dosage-finding is much more challenging for pediatric populations due to the limited patient population and differences among the pediatric age range in terms of maturation and ontogeny that could impact PK. Many sponsors defer the pediatric strategy as they are often perplexed by the challenges presented by pediatric oncology drug development (model of action relevancy to pediatric population, budget, timeline and regulatory requirements). This leads to a limited number of approved drugs for pediatric oncology patients. This review article provides the current regulatory landscape, incentives and how they impact pediatric drug discovery and development. We also consider different pediatric cancers and potential clinical trial challenges/opportunities when designing pediatric clinical trials. An outline of how quantitative methods such as pharmacometrics/modelling & simulation can support the dosage-finding and justification is also included. Finally, we provide some reflections that we consider helpful to accelerate pediatric drug discovery and development.
Collapse
|
21
|
Vukadin L, Park B, Mohamed M, Li H, Elkholy A, Torrelli-Diljohn A, Kim JH, Jeong K, Murphy JM, Harvey CA, Dunlap S, Gehrs L, Lee H, Kim HG, Lee SN, Stanford D, Barrington RA, Foote JB, Sorace AG, Welner RS, Hildreth BE, Lim STS, Ahn EYE. A mouse model of ZTTK syndrome reveals indispensable SON functions in organ development and hematopoiesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.19.567732. [PMID: 38014320 PMCID: PMC10680872 DOI: 10.1101/2023.11.19.567732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Rare diseases are underrepresented in biomedical research, leading to insufficient awareness. Zhu-Tokita-Takenouchi-Kim (ZTTK) syndrome is a rare disease caused by genetic alterations that result in heterozygous loss-of-function of SON. While ZTTK syndrome patients suffer from numerous symptoms, the lack of model organisms hamper our understanding of both SON and this complex syndrome. Here, we developed Son haploinsufficiency (Son+/-) mice as a model of ZTTK syndrome and identified the indispensable roles of Son in organ development and hematopoiesis. Son+/- mice recapitulated clinical symptoms of ZTTK syndrome, including growth retardation, cognitive impairment, skeletal abnormalities, and kidney agenesis. Furthermore, we identified hematopoietic abnormalities in Son+/- mice, similar to those observed in human patients. Surface marker analyses and single-cell transcriptome profiling of hematopoietic stem and progenitor cells revealed that Son haploinsufficiency inclines cell fate toward the myeloid lineage but compromises lymphoid lineage development by reducing key genes required for lymphoid and B cell lineage specification. Additionally, Son haploinsufficiency causes inappropriate activation of erythroid genes and impaired erythroid maturation. These findings highlight the importance of the full gene dosage of Son in organ development and hematopoiesis. Our model serves as an invaluable research tool for this rare disease and related disorders associated with SON dysfunction.
Collapse
Affiliation(s)
- Lana Vukadin
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Bohye Park
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mostafa Mohamed
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Huashi Li
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Amr Elkholy
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alex Torrelli-Diljohn
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jung-Hyun Kim
- Metastasis Branch, Division of Cancer Biology, National Cancer Center, Goyang, Gyeonggi-do, Korea
| | - Kyuho Jeong
- Department of Medicine, College of Medicine, Dongguk University, Gyeongju, Korea
| | - James M Murphy
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Caitlin A. Harvey
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sophia Dunlap
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Leah Gehrs
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hanna Lee
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hyung-Gyoon Kim
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Seth N. Lee
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Denise Stanford
- Department of Medicine, Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert A. Barrington
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Jeremy B. Foote
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anna G. Sorace
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert S. Welner
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Medicine, Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Blake E. Hildreth
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ssang-Taek Steve Lim
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Eun-Young Erin Ahn
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
22
|
Gogoleva N, Shahri ZJ, Noda A, Liao CW, Wakimoto A, Inoue Y, Jeon H, Takahashi S, Hamada M. Intraplacental injection of AAV9-CMV-iCre results in the widespread transduction of multiple organs in double-reporter mouse embryos. Exp Anim 2023; 72:460-467. [PMID: 37183025 PMCID: PMC10658086 DOI: 10.1538/expanim.23-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/29/2023] [Indexed: 05/16/2023] Open
Abstract
Adeno-associated virus serotype 9 (AAV9) has become a popular tool for gene transfer because of its ability to cross the blood-brain barrier and efficiently transduce genetic material into a variety of cell types. The study utilized GRR (Green-to-Red Reporter) mouse embryos, in which the expression of iCre results in the disappearance of Green Fluorescent Protein (GFP) expression and the detection of Discosoma sp. Red Fluorescent Protein (DsRed) expression by intraplacental injection. Our results demonstrate that AAV9-CMV-iCre can transduce multiple organs in embryos at developmental stages E9.5-E11.5, including the liver, heart, brain, thymus, and intestine. These findings suggest that intraplacental injection of AAV9-CMV-iCre is a viable method for the widespread transduction of GRR mouse embryos.
Collapse
Affiliation(s)
- Natalia Gogoleva
- Ph.D. Program in Human Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Zeynab Javanfekr Shahri
- Ph.D. Program in Human Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Atsushi Noda
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Ching-Wei Liao
- Ph.D. Program in Human Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Arata Wakimoto
- Ph.D. Program in Human Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yuri Inoue
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Hyojung Jeon
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Laboratory of Stem Cell Therapy, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Michito Hamada
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
23
|
Osako M, Yamaoka Y, Takeuchi C, Fujiwara T, Mochizuki Y. Benefits and Challenges of Pediatric-to-Adult Health Care Transition in Childhood-Onset Neurologic Conditions. Neurol Clin Pract 2023; 13:e200130. [PMID: 37064588 PMCID: PMC10101709 DOI: 10.1212/cpj.0000000000200130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/14/2022] [Indexed: 03/21/2023]
Abstract
Background and Objectives Although the importance of pediatric-to-adult health care transition (HCT) has been recognized, individuals with childhood-onset neurologic conditions often encounter challenges during pediatric-to-adult HCT, and HCT benefits for this population remain elusive. We assessed the current HCT situation in individuals with childhood-onset neurologic conditions to develop an improved transition system that incorporates patient perspectives. Methods This cross-sectional study was conducted at the Tokyo Metropolitan Kita Medical and Rehabilitation Center for the Disabled from November 2020 to December 2020. We targeted adults with childhood-onset neurologic conditions who visited the Department of Internal Medicine and their families. Questionnaires provided to 127 patients asked them about their experiences with pediatric-to-adult HCT (i.e., educational opportunities regarding HCT during pediatric visits, difficulties in transition, and the merits/demerits of adult practice) and their families' perspectives regarding pediatric-to-adult HCT. We also reviewed the patients' medical records to examine the severity of their disabilities. Results Responses were collected from 111 patients (response rate: 87%). Most patients had both severe physical and intellectual disabilities, and approximately half had a physical disability level of Gross Motor Function Classification System V and a profound intellectual disability. Half of the respondents were not transitioned through pediatric-to-adult HCT by their pediatricians, and they visited adult departments by themselves without a formal referral process. They experienced difficulties during HCT, such as a lack of knowledge regarding adult health care providers and consultants. However, those who underwent HCT benefited from it in terms of their health, experience, and service use, such as age- and condition-appropriate care, seeing adult specialists, and the introduction of adult services. They also addressed challenges in managing appointments and having adult doctors understand their medical history. Nonetheless, they were not informed about diseases and medical and welfare resources for adulthood during pediatric visits and desired to discuss future plans with pediatricians. Discussion Systems that provide sufficient pediatric-to-adult HCT for individuals with childhood-onset neurologic conditions are required. Lifelong education for patients and families, training for pediatricians on HCT and neurologists on childhood-onset conditions and disabilities, and clinical practice and human resources that support patients and families are warranted.
Collapse
Affiliation(s)
- Miho Osako
- Department of Neurology (MO, CT, YM), Tokyo Metropolitan Kita Medical and Rehabilitation Center for the Disabled; and Department of Global Health Promotion (YY, TF), Tokyo Medical and Dental University
| | - Yui Yamaoka
- Department of Neurology (MO, CT, YM), Tokyo Metropolitan Kita Medical and Rehabilitation Center for the Disabled; and Department of Global Health Promotion (YY, TF), Tokyo Medical and Dental University
| | - Chisen Takeuchi
- Department of Neurology (MO, CT, YM), Tokyo Metropolitan Kita Medical and Rehabilitation Center for the Disabled; and Department of Global Health Promotion (YY, TF), Tokyo Medical and Dental University
| | - Takeo Fujiwara
- Department of Neurology (MO, CT, YM), Tokyo Metropolitan Kita Medical and Rehabilitation Center for the Disabled; and Department of Global Health Promotion (YY, TF), Tokyo Medical and Dental University
| | - Yoko Mochizuki
- Department of Neurology (MO, CT, YM), Tokyo Metropolitan Kita Medical and Rehabilitation Center for the Disabled; and Department of Global Health Promotion (YY, TF), Tokyo Medical and Dental University
| |
Collapse
|
24
|
Penning LC, Berenguer M, Czlonkowska A, Double KL, Dusek P, Espinós C, Lutsenko S, Medici V, Papenthin W, Stremmel W, Willemse J, Weiskirchen R. A Century of Progress on Wilson Disease and the Enduring Challenges of Genetics, Diagnosis, and Treatment. Biomedicines 2023; 11:biomedicines11020420. [PMID: 36830958 PMCID: PMC9953205 DOI: 10.3390/biomedicines11020420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Wilson disease (WD) is a rare, inherited metabolic disorder manifested with varying clinical presentations including hepatic, neurological, psychiatric, and ophthalmological features, often in combination. Causative mutations in the ATP7B gene result in copper accumulation in hepatocytes and/or neurons, but clinical diagnosis remains challenging. Diagnosis is complicated by mild, non-specific presentations, mutations exerting no clear effect on protein function, and inconclusive laboratory tests, particularly regarding serum ceruloplasmin levels. As early diagnosis and effective treatment are crucial to prevent progressive damage, we report here on the establishment of a global collaboration of researchers, clinicians, and patient advocacy groups to identify and address the outstanding challenges posed by WD.
Collapse
Affiliation(s)
- Louis C. Penning
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands
- Correspondence: (L.C.P.); (R.W.)
| | - Marina Berenguer
- Digestive Medicine Department, Ciberehd & IISLaFe, Hospital U. i P. La Fe, University of Valencia, 46010 Valenci, Spain
| | - Anna Czlonkowska
- Second Department of Neurology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| | - Kay L. Double
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), The University of Sydney, Sydney, NSW 2006, Australia
| | - Petr Dusek
- Department of Radiology, Charles University and General University Hospital, 128 08 Prague, Czech Republic
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, 128 08 Prague, Czech Republic
| | - Carmen Espinós
- Rare Neurodegenerative Diseases Lab, Centro de Investigacion Principe Felipe, 46012 Valencia, Spain
| | - Svetlana Lutsenko
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 1800, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 1800, USA
| | - Valentina Medici
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of California Davis, Sacramento, CA 59817, USA
| | - Wiebke Papenthin
- German Society for Wilson disease Patients (Morbus Wilson e.V.), Zehlendorfer Damm 119, D-14532 Kleinnachnow, Germany
| | - Wolfgang Stremmel
- Private Practice for Internal Medicine, Beethovenstraße 2, D-76530 Baden-Baden, Germany
| | - Jose Willemse
- Dutch Society for Liver Disease Patients (Nederlandse Leverpatienten Vereniging), 3828 NS Hoogland, The Netherlands
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital Aachen, D-52074 Aachen, Germany
- Correspondence: (L.C.P.); (R.W.)
| |
Collapse
|
25
|
Sintila SA, Boziki M, Bakirtzis C, Stardeli T, Smyrni N, Nikolaidis I, Parissis D, Afrantou T, Karapanayiotides T, Koutroulou I, Giantzi V, Theotokis P, Kesidou E, Xiromerisiou G, Dardiotis E, Ioannidis P, Grigoriadis N. The Experience of a Tertiary Reference Hospital in the Study of Rare Neurological Diseases. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59020266. [PMID: 36837468 PMCID: PMC9959728 DOI: 10.3390/medicina59020266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023]
Abstract
Background and Objectives: Rare diseases (RDs) are life-threatening or chronically impairing conditions that affect about 6% of the world's population. RDs are often called 'orphan' diseases, since people suffering from them attract little support from national health systems. Aim: The aim of this study is to describe the clinical characteristics of, and the available laboratory examinations for, patients who were hospitalized in a tertiary referral center and finally received a diagnosis associated with a Rare Neurological Disease (RND). Materials and Methods: Patients that were hospitalized in our clinic from 1 January 2014 to 31 March 2022 and were finally diagnosed with an RND were consecutively included. The RND classification was performed according to the ORPHAcode system. Results: A total of 342 out of 11.850 (2.9%) adult patients admitted to our department during this period received a diagnosis associated with an RND. The most common diagnosis (N = 80, 23%) involved an RND presenting with dementia, followed by a motor neuron disease spectrum disorder (N = 64, 18.7%). Family history indicative of an RND was present in only 21 patients (6.1%). Fifty-five (16%) people had previously been misdiagnosed with another neurological condition. The mean time delay between disease onset and diagnosis was 4.24 ± 0.41 years. Conclusions: Our data indicate that a broad spectrum of RNDs may reach a tertiary Neurological Center after a significant delay. Moreover, our data underline the need for a network of reference centers, both at a national and international level, expected to support research on the diagnosis and treatment of RND.
Collapse
Affiliation(s)
- Styliani-Aggeliki Sintila
- 2nd Department of Neurology, AHEPA University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Marina Boziki
- 2nd Department of Neurology, AHEPA University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Christos Bakirtzis
- 2nd Department of Neurology, AHEPA University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Thomai Stardeli
- 2nd Department of Neurology, AHEPA University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Nikoletta Smyrni
- 2nd Department of Neurology, AHEPA University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Ioannis Nikolaidis
- 2nd Department of Neurology, AHEPA University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Dimitrios Parissis
- 2nd Department of Neurology, AHEPA University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Theodora Afrantou
- 2nd Department of Neurology, AHEPA University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Theodore Karapanayiotides
- 2nd Department of Neurology, AHEPA University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Ioanna Koutroulou
- 2nd Department of Neurology, AHEPA University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Virginia Giantzi
- 2nd Department of Neurology, AHEPA University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Paschalis Theotokis
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, AHEPA University Hospital, 54636 Thessaloniki, Greece
| | - Evangelia Kesidou
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, AHEPA University Hospital, 54636 Thessaloniki, Greece
| | - Georgia Xiromerisiou
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece
| | - Efthimios Dardiotis
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece
| | - Panagiotis Ioannidis
- 2nd Department of Neurology, AHEPA University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
- Correspondence: (P.I.); (N.G.)
| | - Nikolaos Grigoriadis
- 2nd Department of Neurology, AHEPA University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
- Correspondence: (P.I.); (N.G.)
| |
Collapse
|
26
|
Dobrigna M, Poëa-Guyon S, Rousseau V, Vincent A, Toutain A, Barnier JV. The molecular basis of p21-activated kinase-associated neurodevelopmental disorders: From genotype to phenotype. Front Neurosci 2023; 17:1123784. [PMID: 36937657 PMCID: PMC10017488 DOI: 10.3389/fnins.2023.1123784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Although the identification of numerous genes involved in neurodevelopmental disorders (NDDs) has reshaped our understanding of their etiology, there are still major obstacles in the way of developing therapeutic solutions for intellectual disability (ID) and other NDDs. These include extensive clinical and genetic heterogeneity, rarity of recurrent pathogenic variants, and comorbidity with other psychiatric traits. Moreover, a large intragenic mutational landscape is at play in some NDDs, leading to a broad range of clinical symptoms. Such diversity of symptoms is due to the different effects DNA variations have on protein functions and their impacts on downstream biological processes. The type of functional alterations, such as loss or gain of function, and interference with signaling pathways, has yet to be correlated with clinical symptoms for most genes. This review aims at discussing our current understanding of how the molecular changes of group I p21-activated kinases (PAK1, 2 and 3), which are essential actors of brain development and function; contribute to a broad clinical spectrum of NDDs. Identifying differences in PAK structure, regulation and spatio-temporal expression may help understanding the specific functions of each group I PAK. Deciphering how each variation type affects these parameters will help uncover the mechanisms underlying mutation pathogenicity. This is a prerequisite for the development of personalized therapeutic approaches.
Collapse
Affiliation(s)
- Manon Dobrigna
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Sandrine Poëa-Guyon
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Véronique Rousseau
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Aline Vincent
- Department of Genetics, EA7450 BioTARGen, University Hospital of Caen, Caen, France
| | - Annick Toutain
- Department of Genetics, University Hospital of Tours, UMR 1253, iBrain, Université de Tours, INSERM, Tours, France
| | - Jean-Vianney Barnier
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
- *Correspondence: Jean-Vianney Barnier,
| |
Collapse
|
27
|
Zlatic SA, Duong D, Gadalla KK, Murage B, Ping L, Shah R, Fink JJ, Khwaja O, Swanson LC, Sahin M, Rayaprolu S, Kumar P, Rangaraju S, Bird A, Tarquinio D, Carpenter R, Cobb S, Faundez V. Convergent cerebrospinal fluid proteomes and metabolic ontologies in humans and animal models of Rett syndrome. iScience 2022; 25:104966. [PMID: 36060065 PMCID: PMC9437849 DOI: 10.1016/j.isci.2022.104966] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/30/2022] [Accepted: 08/12/2022] [Indexed: 11/22/2022] Open
Abstract
MECP2 loss-of-function mutations cause Rett syndrome, a neurodevelopmental disorder resulting from a disrupted brain transcriptome. How these transcriptional defects are decoded into a disease proteome remains unknown. We studied the proteome of Rett cerebrospinal fluid (CSF) to identify consensus Rett proteome and ontologies shared across three species. Rett CSF proteomes enriched proteins annotated to HDL lipoproteins, complement, mitochondria, citrate/pyruvate metabolism, synapse compartments, and the neurosecretory protein VGF. We used shared Rett ontologies to select analytes for orthogonal quantification and functional validation. VGF and ontologically selected CSF proteins had genotypic discriminatory capacity as determined by receiver operating characteristic analysis in Mecp2 -/y and Mecp2 -/+ . Differentially expressed CSF proteins distinguished Rett from a related neurodevelopmental disorder, CDKL5 deficiency disorder. We propose that Mecp2 mutant CSF proteomes and ontologies inform putative mechanisms and biomarkers of disease. We suggest that Rett syndrome results from synapse and metabolism dysfunction.
Collapse
Affiliation(s)
| | - Duc Duong
- Departments of Biochemistry, Emory University, Atlanta, GA 30322, USA
| | - Kamal K.E. Gadalla
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Brenda Murage
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Lingyan Ping
- Departments of Biochemistry, Emory University, Atlanta, GA 30322, USA
| | - Ruth Shah
- The Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, King’s Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | | | - Omar Khwaja
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Lindsay C. Swanson
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Mustafa Sahin
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Sruti Rayaprolu
- Departments of Neurology, Emory University, Atlanta, GA 30322, USA
| | - Prateek Kumar
- Departments of Neurology, Emory University, Atlanta, GA 30322, USA
| | | | - Adrian Bird
- The Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, King’s Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | | | | | - Stuart Cobb
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Victor Faundez
- Departments of Cell Biology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
28
|
Kaywanga F, Alimohamed MZ, David AB, Maeda D, Mbarak S, Mavura T, Nkya S, Ishengoma DS. Rare diseases in Tanzania: a National Call for Action to address policy and urgent needs of individuals with rare diseases. Orphanet J Rare Dis 2022; 17:343. [PMID: 36064429 PMCID: PMC9446714 DOI: 10.1186/s13023-022-02498-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 08/18/2022] [Indexed: 11/30/2022] Open
Abstract
A rare disease is generally defined as a condition which affects about 1 among 2000 people and currently, there are approximately 5000–8000 rare diseases (RDs) affecting over 400 million people world-wide. Although RDs may arise from different causes such as infections and environmental factors, about 80% are caused by genetic abnormalities. In Tanzania, there are no reports of the types of RDs, their incidence, distribution and numbers of individuals affected. In addition, there have been no strategies to map RDs in the country and develop a definition that fits the local context. Public awareness and understanding of RDs are very limited, and these lead to poor management and stigmatisation of patients. To address the ongoing problems, Tanzania joined other countries world-wide and global partners to commemorate the rare diseases day (RDD) for the first time in 2016 and subsequently every year. Unlike previous years where the RDD was organised by Ali Kimara Rare Diseases Foundation (AKRDF) with few partners, in 2020, a bigger event was co-hosted by Ali AKRDF and Tanzania Human Genetics Organization together with government representatives and other multiple partners. The organisers, government representatives and participants proposed a national “Call for Action” with the overall goal of improving the lives of patients/individuals with RDs. The call focuses and aims to address 17 strategic issues that are broadly categorised into four areas. These include generating demographic data of individuals with RDs; advocating for policies and guidelines for diagnosis, care, treatment and health financing; developing policies supporting public education, awareness and advocacy; and strengthening research, innovation and public–private partnerships. If adopted and implemented, the potential impacts of these recommendations will include improved access to adequate and high-quality health and education services, and policies and guidelines to address the current and future challenges facing individuals with RDs and their families.
Collapse
Affiliation(s)
- Frida Kaywanga
- Department of Haematology and Blood Transfusion, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania.,Tanzania Human Genetics Organization, Dar es Salaam, Tanzania
| | - Mohamed Zahir Alimohamed
- Department of Haematology and Blood Transfusion, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania.,Tanzania Human Genetics Organization, Dar es Salaam, Tanzania.,Shree Hindu Mandal Hospital, Dar es Salaam, Tanzania.,Department of Genetics, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Aneth Bella David
- Tanzania Human Genetics Organization, Dar es Salaam, Tanzania.,Department of Molecular Biology and Biotechnology, University of Dar Es Salaam, Dar es Salaam, Tanzania.,Plant Protection Department, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Daniel Maeda
- Tanzania Human Genetics Organization, Dar es Salaam, Tanzania.,Department of Molecular Biology and Biotechnology, University of Dar Es Salaam, Dar es Salaam, Tanzania
| | - Sharifa Mbarak
- Ali Kimara Rare Diseases Foundation, Dar es Salaam, Tanzania
| | - Togolani Mavura
- Ali Kimara Rare Diseases Foundation, Dar es Salaam, Tanzania.,Jakaya Mrisho Kikwete Foundation, Dar es Salaam, Tanzania
| | - Siana Nkya
- Department of Haematology and Blood Transfusion, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania.,Tanzania Human Genetics Organization, Dar es Salaam, Tanzania.,Dar es Salaam University College of Education, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Deus S Ishengoma
- Tanzania Human Genetics Organization, Dar es Salaam, Tanzania. .,National Institute for Medical Research, 3 Baraka Obama Drive, P. O Box 9653, 11101, Dar es Salaam, Tanzania. .,Faculty of Pharmaceutical Sciences, Monash University, Melbourne, Australia. .,Harvard T.H Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
29
|
Abstract
The human brain consumes five orders of magnitude more energy than the sun by unit of mass and time. This staggering bioenergetic cost serves mostly synaptic transmission and actin cytoskeleton dynamics. The peak of both brain bioenergetic demands and the age of onset for neurodevelopmental disorders is approximately 5 years of age. This correlation suggests that defects in the machinery that provides cellular energy would be causative and/or consequence of neurodevelopmental disorders. We explore this hypothesis from the perspective of the machinery required for the synthesis of the electron transport chain, an ATP-producing and NADH-consuming enzymatic cascade. The electron transport chain is constituted by nuclear- and mitochondrial-genome-encoded subunits. These subunits are synthesized by the 80S and the 55S ribosomes, which are segregated to the cytoplasm and the mitochondrial matrix, correspondingly. Mitochondrial protein synthesis by the 55S ribosome is the rate-limiting step in the synthesis of electron transport chain components, suggesting that mitochondrial protein synthesis is a bottleneck for tissues with high bionergetic demands. We discuss genetic defects in the human nuclear and mitochondrial genomes that affect these protein synthesis machineries and cause a phenotypic spectrum spanning autism spectrum disorders to neurodegeneration during neurodevelopment. We propose that dysregulated mitochondrial protein synthesis is a chief, yet understudied, causative mechanism of neurodevelopmental and behavioral disorders.
Collapse
|
30
|
García-Vaquero ML, Gama-Carvalho M, Pinto FR, De Las Rivas J. Biological interacting units identified in human protein networks reveal tissue-functional diversification and its impact on disease. Comput Struct Biotechnol J 2022; 20:3764-3778. [PMID: 35891788 PMCID: PMC9304429 DOI: 10.1016/j.csbj.2022.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 12/29/2022] Open
Abstract
Biological processes are exerted by groups of physically interacting proteins. Proteins display variable biological roles depending on tissue-interactomic context. Tissue-specific protein-protein interaction networks reveal functional diversification. Most disease associated genes/proteins display tissue-specific phenotypes. Protein interaction network analysis is a valuable resource to identify disease genes.
Protein-protein interactions (PPI) play an essential role in the biological processes that occur in the cell. Therefore, the dissection of PPI networks becomes decisive to model functional coordination and predict pathological de-regulation. Cellular networks are dynamic and proteins display varying roles depending on the tissue-interactomic context. Thus, the use of centrality measures in individual proteins fall short to dissect the functional properties of the cell. For this reason, there is a need for more comprehensive, relational, and context-specific ways to analyze the multiple actions of proteins in different cells and identify specific functional assemblies within global biomolecular networks. Under this framework, we define Biological Interacting units (BioInt-U) as groups of proteins that interact physically and are enriched in a common Gene Ontology. A search strategy was applied on 33 tissue-specific (TS) PPI networks to generate BioInt libraries associated with each particular human tissue. The cross-tissue comparison showed that housekeeping assemblies incorporate different proteins and exhibit distinct network properties depending on the tissue. Furthermore, disease genes (DGs) of tissue-associated pathologies preferentially accumulate in units in the expected tissues, which in turn were more central in the TS networks. Overall, the study reveals a tissue-specific functional diversification based on the identification of specific protein units and suggests vulnerabilities specific of each tissue network, which can be applied to refine protein-disease association methods.
Collapse
Key Words
- BiU, BioInt unit
- Biological function
- CO, CORUM complex
- DEg, Differentially expressed gene
- DG, Disease gene
- Disease gene
- GO-BP, Gene Ontology biological process
- HK, Housekeeping
- Housekeeping gene
- PPI network
- PPI, Protein-protein interaction
- Protein module
- SS, Simpson's similarity
- TE, Tissue enriched
- TS, Tissue-specific
- Tissue-specific gene
- UB, Ubiquitous
Collapse
Affiliation(s)
- Marina L García-Vaquero
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, C8 bdg, Lisboa 1749-016, Portugal.,Cancer Research Center (CiC-IBMCC, CSIC/USAL and IBSAL), Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca (USAL) and Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca 37007, Spain
| | - Margarida Gama-Carvalho
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, C8 bdg, Lisboa 1749-016, Portugal
| | - Francisco R Pinto
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, C8 bdg, Lisboa 1749-016, Portugal
| | - Javier De Las Rivas
- Cancer Research Center (CiC-IBMCC, CSIC/USAL and IBSAL), Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca (USAL) and Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca 37007, Spain
| |
Collapse
|
31
|
Payne RM. Cardiovascular Research in Friedreich Ataxia: Unmet Needs and Opportunities. JACC Basic Transl Sci 2022; 7:1267-1283. [PMID: 36644283 PMCID: PMC9831864 DOI: 10.1016/j.jacbts.2022.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 01/18/2023]
Abstract
Friedreich Ataxia (FRDA) is an autosomal recessive disease in which a mitochondrial protein, frataxin, is severely decreased in its expression. In addition to progressive ataxia, patients with FRDA often develop a cardiomyopathy that can be hypertrophic. This cardiomyopathy is unlike the sarcomeric hypertrophic cardiomyopathies in that the hypertrophy is associated with massive mitochondrial proliferation within the cardiomyocyte rather than contractile protein overexpression. This is associated with atrial arrhythmias, apoptosis, and fibrosis over time, and patients often develop heart failure leading to premature death. The differences between this mitochondrial cardiomyopathy and the more common contractile protein hypertrophic cardiomyopathies can be a source of misunderstanding in the management of these patients. Although imaging studies have revealed much about the structure and function of the heart in this disease, we still lack an understanding of many important clinical and fundamental molecular events that determine outcome of the heart in FRDA. This review will describe the current basic and clinical understanding of the FRDA heart, and most importantly, identify major gaps in our knowledge that represent new directions and opportunities for research.
Collapse
Affiliation(s)
- R. Mark Payne
- Address for correspondence: Dr R. Mark Payne, Division of Pediatric Cardiology, Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 West Walnut, R4 302b, Indianapolis, Indiana 46202, USA.
| |
Collapse
|
32
|
Toncheva D, Marinova M, Borovska P, Serbezov D. Spatio-temporal dynamics of pathogenic variants associated with monogenic disorders reconstructed with ancient DNA. PLoS One 2022; 17:e0269628. [PMID: 35749392 PMCID: PMC9231702 DOI: 10.1371/journal.pone.0269628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/24/2022] [Indexed: 11/18/2022] Open
Abstract
Genetic disease burden in ancient communities has barely been evaluated despite an ever expanding body of ancient genomes becoming available. In this study, we inspect 2729 publicly available ancient genomes (100 BP—52000 BP) for the presence of pathogenic variants in 32643 disease-associated loci. We base our subsequent analyses on 19 variants in seven genes—PAH, EDAR, F11, HBB, LRRK2, SLC12A6 and MAOA, associated with monogenic diseases and with well-established pathogenic impact in contemporary populations. We determine 230 homozygote genotypes of these variants in the screened 2729 ancient DNA samples. Eleven of these are in the PAH gene (126 ancient samples in total), a gene associated with the condition phenylketonuria in modern populations. The variants examined seem to show varying dynamics over the last 10000 years, some exhibiting a single upsurge in frequency and subsequently disappearing, while others maintain high frequency levels (compared to contemporary population frequencies) over long time periods. The geographic distribution and age of the ancient DNA samples with established pathogenic variants suggests multiple independent origin of these variants. Comparison of estimates of the geographic prevalence of these variants from ancient and contemporary data show discontinuity in their prevalence and supports their recurrent emergence. The oldest samples in which a variant is established might give an indication of their age and place origin, and an EDAR gene pathogenic variant was established in a sample estimated to be 33210–32480 calBCE. Knowledge about the historical prevalence of variants causing monogenic disorders provides insight on their emergence, dynamics and spread.
Collapse
Affiliation(s)
- Draga Toncheva
- Department of Medical Genetics, Medical Faculty, Medical University-Sofia, Sofia, Bulgaria
- Bulgarian Academy of Sciences, Sofia, Bulgaria
- * E-mail:
| | - Maria Marinova
- Department of Computer systems and Technologies, Faculty of Electronics and Automation, Technical University–Sofia, Branch Plovdiv, Bulgaria
| | - Plamenka Borovska
- Department of Informatics, Faculty of Applied Mathematics and Informatics, Technical University of Sofia, Sofia, Bulgaria
| | - Dimitar Serbezov
- Department of Medical Genetics, Medical Faculty, Medical University-Sofia, Sofia, Bulgaria
| |
Collapse
|
33
|
Ardizzone A, Capra AP, Campolo M, Filippone A, Esposito E, Briuglia S. Neurofibromatosis: New Clinical Challenges in the Era of COVID-19. Biomedicines 2022; 10:biomedicines10050940. [PMID: 35625677 PMCID: PMC9138859 DOI: 10.3390/biomedicines10050940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 02/01/2023] Open
Abstract
Rare diseases constitute a wide range of disorders thus defined for their low prevalence. However, taken together, rare diseases impact a considerable percentage of the world population, thus representing a public healthcare problem. In particular, neurofibromatoses are autosomal-dominant genetic disorders that include type 1 neurofibromatosis (NF1), type 2 neurofibromatosis (NF2) and schwannomatosis. Each of the three types is a genetically distinct disease with an unpredictable clinical course and for which there is still no resolutive cure. Therefore, a personalized therapeutic approach directed at improving the symptomatology as well as the search for new pharmacological strategies for the management of neurofibromatosis represents a priority for positive outcomes for affected patients. The coronavirus disease 2019 (COVID-19) pandemic has severely affected health systems around the world, impacting the provision of medical care and modifying clinical surveillance along with scientific research procedures. COVID-19 significantly worsened exchanges between healthcare personnel and neurofibromatosis patients, precluding continuous clinical monitoring in specialized clinic centers. In this new scenario, our article presents, for the first time, a comprehensive literature review on the clinical challenges for neurofibromatosis clinical care and research during the COVID-19 pandemic health emergency. The review was performed through PubMed (Medline) and Google Scholar databases until December 2021.
Collapse
Affiliation(s)
- Alessio Ardizzone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (A.A.); (A.P.C.); (M.C.); (A.F.)
| | - Anna Paola Capra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (A.A.); (A.P.C.); (M.C.); (A.F.)
| | - Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (A.A.); (A.P.C.); (M.C.); (A.F.)
| | - Alessia Filippone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (A.A.); (A.P.C.); (M.C.); (A.F.)
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (A.A.); (A.P.C.); (M.C.); (A.F.)
- Correspondence: ; Tel.: +39-090-676-5208
| | - Silvana Briuglia
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy;
| |
Collapse
|
34
|
Zárybnický T, Heikkinen A, Kangas SM, Karikoski M, Martínez-Nieto GA, Salo MH, Uusimaa J, Vuolteenaho R, Hinttala R, Sipilä P, Kuure S. Modeling Rare Human Disorders in Mice: The Finnish Disease Heritage. Cells 2021; 10:cells10113158. [PMID: 34831381 PMCID: PMC8621025 DOI: 10.3390/cells10113158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 12/31/2022] Open
Abstract
The modification of genes in animal models has evidently and comprehensively improved our knowledge on proteins and signaling pathways in human physiology and pathology. In this review, we discuss almost 40 monogenic rare diseases that are enriched in the Finnish population and defined as the Finnish disease heritage (FDH). We will highlight how gene-modified mouse models have greatly facilitated the understanding of the pathological manifestations of these diseases and how some of the diseases still lack proper models. We urge the establishment of subsequent international consortiums to cooperatively plan and carry out future human disease modeling strategies. Detailed information on disease mechanisms brings along broader understanding of the molecular pathways they act along both parallel and transverse to the proteins affected in rare diseases, therefore also aiding understanding of common disease pathologies.
Collapse
Affiliation(s)
- Tomáš Zárybnický
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, P.O. Box 63, 00014 Helsinki, Finland;
| | - Anne Heikkinen
- Biocenter Oulu, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland; (A.H.); (S.M.K.); (M.H.S.); (R.V.)
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 8000, 90014 Oulu, Finland
| | - Salla M. Kangas
- Biocenter Oulu, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland; (A.H.); (S.M.K.); (M.H.S.); (R.V.)
- PEDEGO Research Unit, University of Oulu, P.O. Box 8000, 90014 Oulu, Finland;
- Medical Research Center, Oulu University Hospital, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland
| | - Marika Karikoski
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, 20520 Turku, Finland; (M.K.); (G.A.M.-N.)
| | - Guillermo Antonio Martínez-Nieto
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, 20520 Turku, Finland; (M.K.); (G.A.M.-N.)
- Turku Center for Disease Modelling (TCDM), Institute of Biomedicine, University of Turku, 20520 Turku, Finland
| | - Miia H. Salo
- Biocenter Oulu, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland; (A.H.); (S.M.K.); (M.H.S.); (R.V.)
- PEDEGO Research Unit, University of Oulu, P.O. Box 8000, 90014 Oulu, Finland;
- Medical Research Center, Oulu University Hospital, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland
| | - Johanna Uusimaa
- PEDEGO Research Unit, University of Oulu, P.O. Box 8000, 90014 Oulu, Finland;
- Medical Research Center, Oulu University Hospital, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland
- Clinic for Children and Adolescents, Division of Pediatric Neurology, Oulu University Hospital, P.O. Box 20, 90029 Oulu, Finland
| | - Reetta Vuolteenaho
- Biocenter Oulu, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland; (A.H.); (S.M.K.); (M.H.S.); (R.V.)
| | - Reetta Hinttala
- Biocenter Oulu, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland; (A.H.); (S.M.K.); (M.H.S.); (R.V.)
- PEDEGO Research Unit, University of Oulu, P.O. Box 8000, 90014 Oulu, Finland;
- Medical Research Center, Oulu University Hospital, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland
- Correspondence: (R.H.); (P.S.); (S.K.)
| | - Petra Sipilä
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, 20520 Turku, Finland; (M.K.); (G.A.M.-N.)
- Turku Center for Disease Modelling (TCDM), Institute of Biomedicine, University of Turku, 20520 Turku, Finland
- Correspondence: (R.H.); (P.S.); (S.K.)
| | - Satu Kuure
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, P.O. Box 63, 00014 Helsinki, Finland;
- GM-Unit, Laboratory Animal Center, Helsinki Institute of Life Science, University of Helsinki, 00790 Helsinki, Finland
- Correspondence: (R.H.); (P.S.); (S.K.)
| |
Collapse
|
35
|
Jensen TL, Gøtzsche CR, Woldbye DPD. Current and Future Prospects for Gene Therapy for Rare Genetic Diseases Affecting the Brain and Spinal Cord. Front Mol Neurosci 2021; 14:695937. [PMID: 34690692 PMCID: PMC8527017 DOI: 10.3389/fnmol.2021.695937] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, gene therapy has been raising hopes toward viable treatment strategies for rare genetic diseases for which there has been almost exclusively supportive treatment. We here review this progress at the pre-clinical and clinical trial levels as well as market approvals within diseases that specifically affect the brain and spinal cord, including degenerative, developmental, lysosomal storage, and metabolic disorders. The field reached an unprecedented milestone when Zolgensma® (onasemnogene abeparvovec) was approved by the FDA and EMA for in vivo adeno-associated virus-mediated gene replacement therapy for spinal muscular atrophy. Shortly after EMA approved Libmeldy®, an ex vivo gene therapy with lentivirus vector-transduced autologous CD34-positive stem cells, for treatment of metachromatic leukodystrophy. These successes could be the first of many more new gene therapies in development that mostly target loss-of-function mutation diseases with gene replacement (e.g., Batten disease, mucopolysaccharidoses, gangliosidoses) or, less frequently, gain-of-toxic-function mutation diseases by gene therapeutic silencing of pathologic genes (e.g., amyotrophic lateral sclerosis, Huntington's disease). In addition, the use of genome editing as a gene therapy is being explored for some diseases, but this has so far only reached clinical testing in the treatment of mucopolysaccharidoses. Based on the large number of planned, ongoing, and completed clinical trials for rare genetic central nervous system diseases, it can be expected that several novel gene therapies will be approved and become available within the near future. Essential for this to happen is the in depth characterization of short- and long-term effects, safety aspects, and pharmacodynamics of the applied gene therapy platforms.
Collapse
Affiliation(s)
- Thomas Leth Jensen
- Department of Neurology, Rigshospitalet University Hospital, Copenhagen, Denmark
| | | | | |
Collapse
|
36
|
Hurvitz N, Azmanov H, Kesler A, Ilan Y. Establishing a second-generation artificial intelligence-based system for improving diagnosis, treatment, and monitoring of patients with rare diseases. Eur J Hum Genet 2021; 29:1485-1490. [PMID: 34276056 PMCID: PMC8484657 DOI: 10.1038/s41431-021-00928-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/06/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023] Open
Abstract
Patients with rare diseases are a major challenge for healthcare systems. These patients face three major obstacles: late diagnosis and misdiagnosis, lack of proper response to therapies, and absence of valid monitoring tools. We reviewed the relevant literature on first-generation artificial intelligence (AI) algorithms which were designed to improve the management of chronic diseases. The shortage of big data resources and the inability to provide patients with clinical value limit the use of these AI platforms by patients and physicians. In the present study, we reviewed the relevant literature on the obstacles encountered in the management of patients with rare diseases. Examples of currently available AI platforms are presented. The use of second-generation AI-based systems that are patient-tailored is presented. The system provides a means for early diagnosis and a method for improving the response to therapies based on clinically meaningful outcome parameters. The system may offer a patient-tailored monitoring tool that is based on parameters that are relevant to patients and caregivers and provides a clinically meaningful tool for follow-up. The system can provide an inclusive solution for patients with rare diseases and ensures adherence based on clinical responses. It has the potential advantage of not being dependent on large datasets and is a dynamic system that adapts to ongoing changes in patients' disease and response to therapy.
Collapse
Affiliation(s)
- Noa Hurvitz
- Faculty of Medicine, Department of Medicine, Hebrew University, Hadassah Medical Center, Jerusalem, Israel
| | - Henny Azmanov
- Faculty of Medicine, Department of Medicine, Hebrew University, Hadassah Medical Center, Jerusalem, Israel
| | - Asa Kesler
- Faculty of Medicine, Department of Medicine, Hebrew University, Hadassah Medical Center, Jerusalem, Israel
| | - Yaron Ilan
- Faculty of Medicine, Department of Medicine, Hebrew University, Hadassah Medical Center, Jerusalem, Israel.
| |
Collapse
|
37
|
Qiu T, Wang Y, Liang S, Han R, Toumi M. Partnership agreements for regenerative medicines: a database analysis and implications for future innovation. Regen Med 2021; 16:733-755. [PMID: 34431716 DOI: 10.2217/rme-2021-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Partnerships have been leveraged to advance the regenerative medicines (RMs) development. This study analyzed the evolution of partnership landscape for regenerative medicines (RMs). Methods: Partnership agreements publicly announced from January 2014 - June 2020 were described. Results: 1169 partnership agreements with total amount of US$63,496 million were identified. Most agreements concerned RMs that were for oncology (25.3%), in the discovery or preclinical phase (66.9%) and gene-based products (45.3%). The most common partnership type is collaborative agreements without licensing. The partnerships between 'biotechnology companies and not-for-profit organizations' represented the largest number (n = 416; 35.6%). 'Big Pharma' preferred collaboration and licensing agreements with a higher amount. Conclusion: Collaborations between highly specialized players with complementary expertise promote the successful translation of scientific discovery to RMs.
Collapse
Affiliation(s)
- Tingting Qiu
- Department of Public Health, Aix-Marseille University, 27 Boulevard Jean Moulin, Marseille, 13385, France
| | - Yitong Wang
- Department of Public Health, Aix-Marseille University, 27 Boulevard Jean Moulin, Marseille, 13385, France
| | - Shuyao Liang
- Department of Public Health, Aix-Marseille University, 27 Boulevard Jean Moulin, Marseille, 13385, France
| | - Ru Han
- Department of Public Health, Aix-Marseille University, 27 Boulevard Jean Moulin, Marseille, 13385, France
| | - Mondher Toumi
- Department of Public Health, Aix-Marseille University, 27 Boulevard Jean Moulin, Marseille, 13385, France
| |
Collapse
|
38
|
Understanding microcephaly through the study of centrosome regulation in Drosophila neural stem cells. Biochem Soc Trans 2021; 48:2101-2115. [PMID: 32897294 DOI: 10.1042/bst20200261] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 12/30/2022]
Abstract
Microcephaly is a rare, yet devastating, neurodevelopmental condition caused by genetic or environmental insults, such as the Zika virus infection. Microcephaly manifests with a severely reduced head circumference. Among the known heritable microcephaly genes, a significant proportion are annotated with centrosome-related ontologies. Centrosomes are microtubule-organizing centers, and they play fundamental roles in the proliferation of the neuronal progenitors, the neural stem cells (NSCs), which undergo repeated rounds of asymmetric cell division to drive neurogenesis and brain development. Many of the genes, pathways, and developmental paradigms that dictate NSC development in humans are conserved in Drosophila melanogaster. As such, studies of Drosophila NSCs lend invaluable insights into centrosome function within NSCs and help inform the pathophysiology of human microcephaly. This mini-review will briefly survey causative links between deregulated centrosome functions and microcephaly with particular emphasis on insights learned from Drosophila NSCs.
Collapse
|
39
|
Gokhale A, Lee CE, Zlatic SA, Freeman AAH, Shearing N, Hartwig C, Ogunbona O, Bassell JL, Wynne ME, Werner E, Xu C, Wen Z, Duong D, Seyfried NT, Bearden CE, Oláh VJ, Rowan MJM, Glausier JR, Lewis DA, Faundez V. Mitochondrial Proteostasis Requires Genes Encoded in a Neurodevelopmental Syndrome Locus. J Neurosci 2021; 41:6596-6616. [PMID: 34261699 PMCID: PMC8336702 DOI: 10.1523/jneurosci.2197-20.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 02/08/2023] Open
Abstract
Eukaryotic cells maintain proteostasis through mechanisms that require cytoplasmic and mitochondrial translation. Genetic defects affecting cytoplasmic translation perturb synapse development, neurotransmission, and are causative of neurodevelopmental disorders, such as Fragile X syndrome. In contrast, there is little indication that mitochondrial proteostasis, either in the form of mitochondrial protein translation and/or degradation, is required for synapse development and function. Here we focus on two genes deleted in a recurrent copy number variation causing neurodevelopmental disorders, the 22q11.2 microdeletion syndrome. We demonstrate that SLC25A1 and MRPL40, two genes present in the microdeleted segment and whose products localize to mitochondria, interact and are necessary for mitochondrial ribosomal integrity and proteostasis. Our Drosophila studies show that mitochondrial ribosome function is necessary for synapse neurodevelopment, function, and behavior. We propose that mitochondrial proteostasis perturbations, either by genetic or environmental factors, are a pathogenic mechanism for neurodevelopmental disorders.SIGNIFICANCE STATEMENT The balance between cytoplasmic protein synthesis and degradation, or cytoplasmic proteostasis, is required for normal synapse function and neurodevelopment. Cytoplasmic and mitochondrial ribosomes are necessary for two compartmentalized, yet interdependent, forms of proteostasis. Proteostasis dependent on cytoplasmic ribosomes is a well-established target of genetic defects that cause neurodevelopmental disorders, such as autism. Here we show that the mitochondrial ribosome is a neurodevelopmentally regulated organelle whose function is required for synapse development and function. We propose that defective mitochondrial proteostasis is a mechanism with the potential to contribute to neurodevelopmental disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Zhexing Wen
- Departments of Cell Biology
- Psychiatry and Behavioral Sciences
| | - Duc Duong
- and Biochemistry, Emory University, Atlanta, Georgia 30322
| | | | - Carrie E Bearden
- Semel Institute for Neuroscience and Human Behavior Department of Psychology, UCLA, Los Angeles, California 90095
| | | | | | - Jill R Glausier
- Departments of Psychiatry and Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - David A Lewis
- Departments of Psychiatry and Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | | |
Collapse
|
40
|
Bülow P, Zlatic SA, Wenner PA, Bassell GJ, Faundez V. FMRP attenuates activity dependent modifications in the mitochondrial proteome. Mol Brain 2021; 14:75. [PMID: 33931071 PMCID: PMC8086361 DOI: 10.1186/s13041-021-00783-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 04/21/2021] [Indexed: 12/21/2022] Open
Abstract
Homeostatic plasticity is necessary for the construction and maintenance of functional neuronal networks, but principal molecular mechanisms required for or modified by homeostatic plasticity are not well understood. We recently reported that homeostatic plasticity induced by activity deprivation is dysregulated in cortical neurons from Fragile X Mental Retardation protein (FMRP) knockout mice (Bulow et al. in Cell Rep 26: 1378-1388 e1373, 2019). These findings led us to hypothesize that identifying proteins sensitive to activity deprivation and/or FMRP expression could reveal pathways required for or modified by homeostatic plasticity. Here, we report an unbiased quantitative mass spectrometry used to quantify steady-state proteome changes following chronic activity deprivation in wild type and Fmr1-/y cortical neurons. Proteome hits responsive to both activity deprivation and the Fmr1-/y genotype were significantly annotated to mitochondria. We found an increased number of mitochondria annotated proteins whose expression was sensitive to activity deprivation in Fmr1-/y cortical neurons as compared to wild type neurons. These findings support a novel role of FMRP in attenuating mitochondrial proteome modifications induced by activity deprivation.
Collapse
Affiliation(s)
- Pernille Bülow
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Stephanie A Zlatic
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Peter A Wenner
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - Victor Faundez
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
41
|
Braconi D, Bernardini G, Spiga O, Santucci A. Leveraging proteomics in orphan disease research: pitfalls and potential. Expert Rev Proteomics 2021; 18:315-327. [PMID: 33861161 DOI: 10.1080/14789450.2021.1918549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction: The term 'orphan diseases' includes conditions meeting prevalence-based or commercial viability criteria: they affect a small number of individuals and are considered an unviable market for drug development. Proteomics is an important technology to study them, providing information on mechanisms and evolution, biomarkers, and effects of therapeutic interventions.Areas covered: Herein, we review how proteomics and bioinformatic tools could be applied to the study of rare diseases and discuss pitfalls and potential.Expert opinion: Research in the field of rare diseases has to face many challenges, and implementation plans should foresee highly specialized collaborative consortia to create multidisciplinary frameworks for data sharing, advancing research, supporting clinical studies, and accelerating drug development. The integration of different technologies will allow better knowledge of disease pathophysiology, and the inclusion of proteomics and other omics technologies in this context will be pivotal to this aim.Several aspects of rare diseases, often perceived as limiting factors, might actually be advantages for a precision medicine approach: the limited number of patients, the collaboration with patient societies, and the availability of curated clinical registries could allow the development of homogeneous clinical databases and ultimately a better control over the data to be analyzed.
Collapse
Affiliation(s)
- Daniela Braconi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Giulia Bernardini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Ottavia Spiga
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Annalisa Santucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| |
Collapse
|
42
|
Yahia A, Stevanin G. The History of Gene Hunting in Hereditary Spinocerebellar Degeneration: Lessons From the Past and Future Perspectives. Front Genet 2021; 12:638730. [PMID: 33833777 PMCID: PMC8021710 DOI: 10.3389/fgene.2021.638730] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/02/2021] [Indexed: 01/02/2023] Open
Abstract
Hereditary spinocerebellar degeneration (SCD) encompasses an expanding list of rare diseases with a broad clinical and genetic heterogeneity, complicating their diagnosis and management in daily clinical practice. Correct diagnosis is a pillar for precision medicine, a branch of medicine that promises to flourish with the progressive improvements in studying the human genome. Discovering the genes causing novel Mendelian phenotypes contributes to precision medicine by diagnosing subsets of patients with previously undiagnosed conditions, guiding the management of these patients and their families, and enabling the discovery of more causes of Mendelian diseases. This new knowledge provides insight into the biological processes involved in health and disease, including the more common complex disorders. This review discusses the evolution of the clinical and genetic approaches used to diagnose hereditary SCD and the potential of new tools for future discoveries.
Collapse
Affiliation(s)
- Ashraf Yahia
- Department of Biochemistry, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
- Department of Biochemistry, Faculty of Medicine, National University, Khartoum, Sudan
- Institut du Cerveau, INSERM U1127, CNRS UMR7225, Sorbonne Université, Paris, France
- Ecole Pratique des Hautes Etudes, EPHE, PSL Research University, Paris, France
| | - Giovanni Stevanin
- Institut du Cerveau, INSERM U1127, CNRS UMR7225, Sorbonne Université, Paris, France
- Ecole Pratique des Hautes Etudes, EPHE, PSL Research University, Paris, France
| |
Collapse
|
43
|
Corbee RJ, Penning LC. COMMD1 Exemplifies the Power of Inbred Dogs to Dissect Genetic Causes of Rare Copper-Related Disorders. Animals (Basel) 2021; 11:ani11030601. [PMID: 33668783 PMCID: PMC7996361 DOI: 10.3390/ani11030601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Wilson's Disease is a rare autosomal recessive disorder in humans, often presenting with hepatic copper overload. Finding the genetic cause of a rare disease, especially if it is related to food constituents like the trace element copper, is a Herculean task. This review describes examples of how the unique population structure of in-bred dog strains led to the discovery of a novel gene and two modifier genes involved in inherited copper toxicosis. COMMD1, after the discovery in 2002, was shown to be a highly promiscuous protein involved in copper transport, protein trafficking/degradation, regulation of virus replication, and inflammation. Mutations in the ATP7A and ATP7B proteins in Labrador retrievers and Dobermann dogs resulted in a wide variation in hepatic copper levels in these breeds. To our knowledge, numerous dog breeds with inherited copper toxicosis of unknown genetic origin exist. Therefore, the possibility that men's best friend will provide new leads in rare copper storage diseases seems realistic.
Collapse
|
44
|
Hartwig C, Méndez GM, Bhattacharjee S, Vrailas-Mortimer AD, Zlatic SA, Freeman AAH, Gokhale A, Concilli M, Werner E, Sapp Savas C, Rudin-Rush S, Palmer L, Shearing N, Margewich L, McArthy J, Taylor S, Roberts B, Lupashin V, Polishchuk RS, Cox DN, Jorquera RA, Faundez V. Golgi-Dependent Copper Homeostasis Sustains Synaptic Development and Mitochondrial Content. J Neurosci 2021; 41:215-233. [PMID: 33208468 PMCID: PMC7810662 DOI: 10.1523/jneurosci.1284-20.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/02/2020] [Accepted: 11/09/2020] [Indexed: 01/05/2023] Open
Abstract
Rare genetic diseases preponderantly affect the nervous system causing neurodegeneration to neurodevelopmental disorders. This is the case for both Menkes and Wilson disease, arising from mutations in ATP7A and ATP7B, respectively. The ATP7A and ATP7B proteins localize to the Golgi and regulate copper homeostasis. We demonstrate genetic and biochemical interactions between ATP7 paralogs with the conserved oligomeric Golgi (COG) complex, a Golgi apparatus vesicular tether. Disruption of Drosophila copper homeostasis by ATP7 tissue-specific transgenic expression caused alterations in epidermis, aminergic, sensory, and motor neurons. Prominent among neuronal phenotypes was a decreased mitochondrial content at synapses, a phenotype that paralleled with alterations of synaptic morphology, transmission, and plasticity. These neuronal and synaptic phenotypes caused by transgenic expression of ATP7 were rescued by downregulation of COG complex subunits. We conclude that the integrity of Golgi-dependent copper homeostasis mechanisms, requiring ATP7 and COG, are necessary to maintain mitochondria functional integrity and localization to synapses.SIGNIFICANCE STATEMENT Menkes and Wilson disease affect copper homeostasis and characteristically afflict the nervous system. However, their molecular neuropathology mechanisms remain mostly unexplored. We demonstrate that copper homeostasis in neurons is maintained by two factors that localize to the Golgi apparatus, ATP7 and the conserved oligomeric Golgi (COG) complex. Disruption of these mechanisms affect mitochondrial function and localization to synapses as well as neurotransmission and synaptic plasticity. These findings suggest communication between the Golgi apparatus and mitochondria through homeostatically controlled cellular copper levels and copper-dependent enzymatic activities in both organelles.
Collapse
Affiliation(s)
- Cortnie Hartwig
- Departments of Cell Biology, Emory University, Atlanta, Georgia 30322
| | | | - Shatabdi Bhattacharjee
- Neuroscience Institute, Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia 30302
| | | | | | - Amanda A H Freeman
- The Center for the Study of Human Health, Emory University, Atlanta, Georgia 30322
| | - Avanti Gokhale
- Departments of Cell Biology, Emory University, Atlanta, Georgia 30322
| | - Mafalda Concilli
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli 80078, Italy
| | - Erica Werner
- Departments of Cell Biology, Emory University, Atlanta, Georgia 30322
| | | | | | - Laura Palmer
- Departments of Cell Biology, Emory University, Atlanta, Georgia 30322
| | - Nicole Shearing
- Departments of Cell Biology, Emory University, Atlanta, Georgia 30322
| | - Lindsey Margewich
- School of Biological Sciences, IL State University, Normal, Illinois 617901
| | - Jacob McArthy
- School of Biological Sciences, IL State University, Normal, Illinois 617901
| | - Savanah Taylor
- School of Biological Sciences, IL State University, Normal, Illinois 617901
| | - Blaine Roberts
- Departments of Biochemistry, Emory University, Atlanta, Georgia 30322
| | - Vladimir Lupashin
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Roman S Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli 80078, Italy
| | - Daniel N Cox
- Neuroscience Institute, Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia 30302
| | - Ramon A Jorquera
- Neuroscience Department, Universidad Central del Caribe, Bayamon, Puerto Rico 00956
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile
| | - Victor Faundez
- Departments of Cell Biology, Emory University, Atlanta, Georgia 30322
| |
Collapse
|
45
|
Reynaud-Dulaurier R, Decressac M. PHP.B/eB Vectors Bring New Successes to Gene Therapy for Brain Diseases. Front Bioeng Biotechnol 2020; 8:582979. [PMID: 33178675 PMCID: PMC7593648 DOI: 10.3389/fbioe.2020.582979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/07/2020] [Indexed: 12/27/2022] Open
Affiliation(s)
| | - Michael Decressac
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut des Neurosciences, Grenoble, France
| |
Collapse
|