1
|
Zhou J, Zhang R, Guo P, Li P, Shi S, Liu Y. Effect of tripterine on the pharmacokinetics of cyclosporine A and its mechanism in rats. Biomed Rep 2025; 23:109. [PMID: 40364906 PMCID: PMC12067525 DOI: 10.3892/br.2025.1987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 04/16/2025] [Indexed: 05/15/2025] Open
Abstract
Tripterine is a key active component in Tripterygium wilfordii polyglycosides tablets. Cyclosporine A (CsA) is an immunosuppressive drug that is widely used in organ transplantation. The combined use of Tripterygium wilfordii and CsA can reportedly enhance the immunosuppressive effects of Cyclosporine whilst reducing its toxicity. Therefore, in the present study, a detection method for CsA concentration in rat blood samples was developed using liquid chromatography-mass spectrometry (MS)/MS. Reverse transcription-quantitative (RT-q) PCR and western blotting (WB) were used to examine the impact of tripterine on the expression of a variety of drug-metabolizing enzymes, drug transporters and nuclear receptors. Compared with that in the control group, the maximum concentration (Cmax) of CsA was found to be reduced across all tripterine dosage groups, where the area under the curve was significantly decreased in the 18 and 54 mg/kg groups. PCR and WB results indicated that tripterine inhibited the expression of cytochrome P450 (CYP) 3A1, CYP3A2, uridine diphosphate glucuronosyltransferase 1A1, organic anion-transporting polypeptide 1B2, p-glycoprotein 1, multidrug resistance-associated protein 2 (MRP2), breast cancer resistance protein, bile salt export pump (BSEP) and Na+-taurocholate co-transporting polypeptide (NTCP). These results suggest that tripterine's inhibition of NTCP, BSEP and MRP2 in the liver may disrupt bile acid circulation. Additionally, tripterine's activation of farnesoid X receptor in the intestine may limit bile acid synthesis, resulting in reduced CsA uptake into the bloodstream and inhibiting its enterohepatic circulation, ultimately leading to a decrease in CsA blood concentration. In addition, the combination of Tripterygium wilfordii and CsA have the prospect of joint clinical application. The present study demonstrated the inhibitory effect of tripterine on the pharmacokinetics of CsA, which could be of significance for the combined use of these two drugs.
Collapse
Affiliation(s)
- Jinping Zhou
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Rui Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Pengpeng Guo
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Peixia Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Shaojun Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yani Liu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
2
|
Tsai YS, Lin XB, Lin SW, Chen YL, Hsu CL, Chen CC. Impact of probiotic Lactobacillus plantarum GKM3 on gastrointestinal health in overweight and obese individuals: A randomized clinical trial. Clin Nutr ESPEN 2025; 68:283-291. [PMID: 40383259 DOI: 10.1016/j.clnesp.2025.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Revised: 05/05/2025] [Accepted: 05/13/2025] [Indexed: 05/20/2025]
Abstract
BACKGROUND & AIMS Overweight and obesity, usually resulting from excess calorie intake, pose significant health challenges in modern societies and contribute to the development of chronic metabolic disorders. Gut microbes have been recognized as key regulators of energy utilization and gastrointestinal health. In this study, we investigated the effects of probiotics Lactobacillus plantarum strain GKM3 on overweight and obese subjects in a double-blind, randomized, placebo-controlled clinical trial. METHODS Participants, aged 20-40 with body mass index between 25.0 and 29.9 and body fat percentages over 25 % for males and 30 % for females, were divided into a placebo group (n = 19) and a probioitcs group (n = 40), receiving capsules containing either a placebo or the probiotics GKM3 for four weeks. RESULTS Our findings demonstrated that supplementation with strain GKM3 at 1 g per day over the 4-week period significantly increased bowel movement frequency and alleviated symptoms such as gastroesophageal reflux, nausea, abdominal pain, and constipation. Fecal lipid analysis revealed elevated levels of triglycerides and total cholesterol compared to the placebo group. Microbiota analysis showed a significant reduction in obesity-associated taxa (Alcaligenaceae, Fusobacteriaceae, Acidaminococcus, Fusobacterium, and Megamonas) and an increase in beneficial genera (Akkermansia and Lactobacillus) following probiotic intervention. CONCLUSION Our study suggests that the strain GKM3 modulates gut flora, leading to reduced fat absorption and improved gastrointestinal functions in overweight and obese individuals.
Collapse
Affiliation(s)
- You-Shan Tsai
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan City 325002, Taiwan
| | - Xin-Bei Lin
- Department of Nutrition, Chung Shan Medical University, Taichung City 402306, Taiwan
| | - Shih-Wei Lin
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan City 325002, Taiwan
| | - Yen-Lien Chen
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan City 325002, Taiwan
| | - Chin-Lin Hsu
- Department of Nutrition, Chung Shan Medical University, Taichung City 402306, Taiwan; Department of Nutrition, Chung Shan Medical University Hospital, Taichung City 402306, Taiwan.
| | - Chin-Chu Chen
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan City 325002, Taiwan; Institute of Food Science and Technology, National Taiwan University, Taipei City 106319, Taiwan.
| |
Collapse
|
3
|
Tonphu K, Mueangaun S, Lerkdumnernkit N, Sengking J, Tocharus J, Benjakul S, Mittal A, Tocharus C. Chitooligosaccharide-epigallocatechin gallate conjugate ameliorates lipid accumulation and promotes browning of white adipose tissue in high fat diet fed rats. Chem Biol Interact 2025; 406:111316. [PMID: 39577827 DOI: 10.1016/j.cbi.2024.111316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/14/2024] [Accepted: 11/20/2024] [Indexed: 11/24/2024]
Abstract
The prevalence of obesity has increased progressively worldwide. Obesity is characterized by excessive accumulation of fat in adipose tissues, leading to metabolic impairment. The anti-obese effects of chitooligosaccharide (COS) and epigallocatechin-3-gallate (EGCG) have been extensively clarified. This study aimed to investigate the effects and potential mechanisms of the COS-EGCG conjugate (CE) on anti-obesity, specifically by alleviating lipid accumulation and promoting the browning of white adipose tissue (WAT) in obese rats. Obesity as a consequence of a high-fat diet (HFD) was induced in male Wistar rats. The HFD was given for 16 weeks and the rats were then randomly subdivided into five groups namely: vehicle (control group), HFD plus CE at 150 mg/kg/day, HFD plus CE at 600 mg/kg/day, HFD plus COS at 600 mg/kg/day, and HFD plus atorvastatin at 10 mg/kg/day for 4 weeks. CE could reduce body weight, improve serum lipid profiles, and promote lipid metabolism via activation of AMP-activated protein kinase (AMPK) in WAT and enhance the processes of WAT browning by activating sirtuin 1 (Sirt 1), peroxisome proliferator-activated receptor-gamma coactivator (PGC1-α), and uncoupling the protein 1 (UCP1) signaling pathway. CE reduced obesity and promoted WAT browning in HFD-fed rats. Therefore, CE might be a new therapy for metabolic syndrome and obesity.
Collapse
Affiliation(s)
- Kanokrada Tonphu
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sirikul Mueangaun
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Natcha Lerkdumnernkit
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jirakhamon Sengking
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, 90110, Thailand
| | - Ajay Mittal
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, 90110, Thailand
| | - Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Functional Food Research Center for Well-being, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
4
|
Li Y, Sun M, Tian X, Bao T, Yu Q, Ma NL, Gan R, Cheang WS, Wu X. Gymnemic acid alleviates gut barrier disruption and lipid dysmetabolism via regulating gut microbiota in HFD hamsters. J Nutr Biochem 2024; 133:109709. [PMID: 39053860 DOI: 10.1016/j.jnutbio.2024.109709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/09/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Gut microbiota dysbiosis and gut barrier disruption are key events associated with high-fat diet (HFD)-induced systemic metabolic disorders. Gymnemic acid (GA) has been reported to have an important role in alleviating HFD-induced disorders of glycolipid metabolism, but its regulatory role in HFD-induced disorders of the gut microbiota and gut barrier function has not been elucidated. Here we showed that GA intervention in HFD-induced hamsters increased the relative abundance of short-chain fatty acid (SCFA)-producing microbes including Lactobacillus (P<.05) and Lachnoclostridium (P<.01) in the gut, and reduced the relative abundance of lipopolysaccharide (LPS)-producing microbes including Enterococcus (P<.05) and Bacteroides (P<.05), subsequently improving HFD-induced intestinal barrier dysfunction and systemic inflammation. Specifically, GA intervention reduced mRNA expression of inflammatory cytokines, including IL-1β, IL-6, and TNF-α (P<.01), increased mRNA expression of antioxidant-related genes, including Nfe2l2, Ho-1, and Nqo1 (P<.01), and increased mRNA expression of intestinal tight junction proteins, including Occludin and Claudin-1 (P<.01), thereby improving gut barrier function of HFD hamsters. This ameliorative effect of GA on the gut of HFD hamsters may further promote lipid metabolic balance in liver and adipose tissue by regulating the Toll-like receptor 4 (TLR4)-nuclear factor-κB (NF-κB) signaling pathway. Taken together, these results systematically revealed the important role of GA in regulating HFD-induced gut microbiota disturbance and gut barrier function impairment, providing a potential clinical theoretical basis for targeted treatment of HFD-induced microbiota dysbiosis.
Collapse
Affiliation(s)
- Yumeng Li
- Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin, China; TIB-UM Joint Laboratory of Synthetic Biology for Traditional Chinese Medicine, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, China
| | - Mingzhe Sun
- Air Force Medical Center of People's Liberation Army, Beijing, China; College of food science & nutritional engineering, China Agricultural University, Beijing, China
| | - Xutong Tian
- Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin, China
| | - Tongtong Bao
- Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin, China
| | - Qian Yu
- Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin, China
| | - Nyuk Ling Ma
- BIOSES Research Interest Group, Faculty of Science & Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Center for Global Health Research (CGHR), Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Renyou Gan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore; Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China; TIB-UM Joint Laboratory of Synthetic Biology for Traditional Chinese Medicine, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, China
| | - Xin Wu
- Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin, China; TIB-UM Joint Laboratory of Synthetic Biology for Traditional Chinese Medicine, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, China.
| |
Collapse
|
5
|
Peña-Vázquez GI, Arredondo-Arenillas A, Serrano-Sandoval SN, Antunes-Ricardo M. Functional foods lipids: unraveling their role in the immune response in obesity. Crit Rev Food Sci Nutr 2024:1-22. [PMID: 39073763 DOI: 10.1080/10408398.2024.2382942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Functional lipids are lipids that are found in food matrices and play an important role in influencing human health as their role goes beyond energy storage and structural components. Ongoing research into functional lipids has highlighted their potential to modulate immune responses and other mechanisms associated with obesity, along with its comorbidities. These lipids represent a new field that may offer new therapeutic and preventive strategies for these diseases by understanding their contribution to health. In this review, we discussed in-depth the potential food sources of functional lipids and their reported potential benefit of the major lipid classification: based on their composition such as simple, compound, and derived lipids, and based on their function such as storage and structural, by investigating the intricate mechanisms through which these lipids interact in the human body. We summarize the key insights into the bioaccessibility and bioavailability of the most studied functional lipids. Furthermore, we review the main immunomodulatory mechanisms reported in the literature in the past years. Finally, we discuss the perspectives and challenges faced in the food industry related to functional lipids.
Collapse
Affiliation(s)
- Gloria Itzel Peña-Vázquez
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, NL, México
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Monterrey, NL, México
| | - Ana Arredondo-Arenillas
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, NL, México
| | - Sayra N Serrano-Sandoval
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, NL, México
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Monterrey, NL, México
| | - Marilena Antunes-Ricardo
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, NL, México
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Monterrey, NL, México
| |
Collapse
|
6
|
Zhao XY, Wang JQ, Neely GG, Shi YC, Wang QP. Natural compounds as obesity pharmacotherapies. Phytother Res 2024; 38:797-838. [PMID: 38083970 DOI: 10.1002/ptr.8083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/20/2023] [Accepted: 11/22/2023] [Indexed: 02/15/2024]
Abstract
Obesity has become a serious global public health problem, affecting over 988 million people worldwide. Nevertheless, current pharmacotherapies have proven inadequate. Natural compounds have garnered significant attention due to their potential antiobesity effects. Over the past three decades, ca. 50 natural compounds have been evaluated for the preventive and/or therapeutic effects on obesity in animals and humans. However, variations in the antiobesity efficacies among these natural compounds have been substantial, owing to differences in experimental designs, including variations in animal models, dosages, treatment durations, and administration methods. The feasibility of employing these natural compounds as pharmacotherapies for obesity remained uncertain. In this review, we systematically summarized the antiobesity efficacy and mechanisms of action of each natural compound in animal models. This comprehensive review furnishes valuable insights for the development of antiobesity medications based on natural compounds.
Collapse
Affiliation(s)
- Xin-Yuan Zhao
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Ji-Qiu Wang
- Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - G Gregory Neely
- The Dr. John and Anne Chong Laboratory for Functional Genomics, Charles Perkins Centre and School of Life & Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Yan-Chuan Shi
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Qiao-Ping Wang
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Medical Center for Comprehensive Weight Control, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Xiang S, Chen J, Deng M, Wang Z, Li X, Lin D, Zhou J. Celastrol ameliorates experimental autoimmune uveitis through STAT3 targeting and gut microenvironment reprofiling. Int Immunopharmacol 2024; 127:111339. [PMID: 38064813 DOI: 10.1016/j.intimp.2023.111339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND Extensive research has revealed the favorable effects of celastrol (CEL) against various diseases, but the role of CEL in autoimmune uveitis remains unexplored. METHODS We first assessed the prophylactical and therapeutical effects of CEL on autoimmune uveitis via rat experimental autoimmune uveitis model. After network pharmacology, functional enrichment and molecular docking analyses, we predicted the potential target of CEL and validated its effect on EAU by clinical and histopathological scores, Evans blue staining, immunofluorescence assay and western blotting. Then we evaluated the role of CEL in the gut environment by 16S rRNA sequencing and untargeted metabolomic analysis. RESULTS We confirmed that CEL treatment suppressed the pathological TH17 response, inhibited the migration of inflammatory cells, and preserved the integrity of BRB via targeting STAT3-IL17 pathway. Furthermore, CEL was found to reduce the relative abundance of opportunistic pathogenic bacteria including Clostridium_sensu_stricto_1, Parasutterella and GCA-900066575, and enrich the relative abundance of beneficial Oscillospirales and Ruminococcus_torques_group in EAU rats by fecal 16S rRNA sequencing. Meanwhile, CEL treatment reshaped the gut metabolites in the EAU rats by increasing the relative concentrations of cholic acid, progesterone and guggulsterone, and decreasing the relative levels of isoproterenol, creatinine and phenylacetylglutamine. CONCLUSIONS CEL exerts its ameliorative effects on the experimental autoimmune uveitis through the dual mechanisms of targeting STAT3 and reprofiling the gut microenvironment.
Collapse
Affiliation(s)
- Shengjin Xiang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Jinrun Chen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Mengyun Deng
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Zixiang Wang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Xingyi Li
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Dan Lin
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.
| | - Jianhong Zhou
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
8
|
Zou G, Yu R, Zhao D, Duan Z, Guo S, Wang T, Ma L, Yuan Z, Yu C. Celastrol ameliorates energy metabolism dysfunction of hypertensive rats by dilating vessels to improve hemodynamics. J Nat Med 2024; 78:191-207. [PMID: 38032498 DOI: 10.1007/s11418-023-01759-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023]
Abstract
The impact of hypertension on tissue and organ damage is mediated through its influence on the structure and function of blood vessels. This study aimed to examine the potential of celastrol, a bioactive compound derived from Tripterygium wilfordii Hook F, in mitigating hypertension-induced energy metabolism disorder and enhancing blood perfusion and vasodilation. In order to investigate this phenomenon, we conducted in vivo experiments on renovascular hypertensive rats, employing indirect calorimetry to measure energy metabolism and laser speckle contrast imaging to evaluate hemodynamics. In vitro, we assessed the vasodilatory effects of celastrol on the basilar artery and superior mesenteric artery of rats using the Multi Wires Myograph System. Furthermore, we conducted preliminary investigations to elucidate the underlying mechanism. Moreover, administration of celastrol at doses of 1 and 2 mg/kg yielded a notable enhancement in blood flow ranging from 6 to 31% across different cerebral and mesenteric vessels in hypertensive rats. Furthermore, celastrol demonstrated a concentration-dependent (1 × 10-7 to 1 × 10-5 M) arterial dilation, independent of endothelial function. This vasodilatory effect could potentially be attributed to the inhibition of Ca2+ channels on vascular smooth muscle cells induced by celastrol. These findings imply that celastrol has the potential to ameliorate hemodynamics through vasodilation, thereby alleviating energy metabolism dysfunctions in hypertensive rats. Consequently, celastrol may hold promise as a novel therapeutic agent for the treatment of hypertension.
Collapse
Affiliation(s)
- Gang Zou
- Collage of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Ruihong Yu
- Collage of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Dezhang Zhao
- Collage of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Research Center for Innovative Pharmaceutical and Experiment Analysis Technology, Chongqing, 400016, China
| | - Zhaohui Duan
- Collage of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Shimin Guo
- Collage of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Tingting Wang
- Collage of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Limei Ma
- Collage of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Zhiyi Yuan
- Collage of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Chao Yu
- Collage of Pharmacy, Chongqing Medical University, Chongqing, 400016, China.
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
9
|
Chavanelle V, Langhi C, Michaux A, Ripoche D, Otero YF, Joubioux FL, Maugard T, Guigas B, Giera M, Peltier S, Sirvent P. A novel polyphenol-rich combination of 5 plant extracts prevents high-fat diet-induced body weight gain by regulating intestinal macronutrient absorption in mice. Nutr Res 2023; 118:70-84. [PMID: 37598559 DOI: 10.1016/j.nutres.2023.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/22/2023]
Abstract
Global prevalence of obesity and type 2 diabetes are rapidly increasing to pandemic proportions. A novel supplement composed of 5 plant extracts from olive leaf, bilberry, artichoke, chrysanthellum, and black pepper was designed to prevent type 2 diabetes development in people at risk. It was previously shown to improve body weight and glucose control in preclinical rodent models, with these effects being accompanied by increased fecal energy excretion and in vitro inhibition of several digestive enzymes. Thus, we hypothesized that, in mice fed a high-fat diet (HFD), a single dose of this botanical supplementation would decrease the responses to oral fat and carbohydrate tolerance tests, and that chronic supplementation would result in increased fecal triglyceride content. We showed that acute administration in HFD-fed mice (1.452 g/kg body weight) markedly reduced circulating triglycerides following an oral lipid gavage, whereas glycemic responses to various carbohydrate tests were only mildly affected. When incorporated into the food (2.5%) of HFD-fed mice, chronic supplementation prevented body weight gain and improved glucose homeostasis and lipid tolerance. Fecal free fatty acid content, but not triglyceride, was significantly increased in supplemented animals, suggesting reduced lipid absorption in the digestive tract. Congruently, this botanical supplementation downregulated several genes associated with fatty acid transport whose expression was increased by HFD, principally in the jejunum. This study provides novel insights as for the mode of action behind the antiobesity effect of this plant-based supplementation, in HFD-fed mice.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Thierry Maugard
- La Rochelle Université - LIENSs UMR CNRS 7266, La Rochelle, France
| | - Bruno Guigas
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | | | | |
Collapse
|
10
|
Gu J, Shi YN, Zhu N, Li HF, Zhang CJ, Qin L. Celastrol functions as an emerging manager of lipid metabolism: Mechanism and therapeutic potential. Biomed Pharmacother 2023; 164:114981. [PMID: 37285754 DOI: 10.1016/j.biopha.2023.114981] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/27/2023] [Accepted: 06/01/2023] [Indexed: 06/09/2023] Open
Abstract
Lipid metabolism disorders are pivotal in the development of various lipid-related diseases, such as obesity, atherosclerosis, non-alcoholic fatty liver disease, type 2 diabetes, and cancer. Celastrol, a bioactive compound extracted from the Chinese herb Tripterygium wilfordii Hook F, has recently demonstrated potent lipid-regulating abilities and promising therapeutic effects for lipid-related diseases. There is substantial evidence indicating that celastrol can ameliorate lipid metabolism disorders by regulating lipid profiles and related metabolic processes, including lipid synthesis, catabolism, absorption, transport, and peroxidation. Even wild-type mice show augmented lipid metabolism after treatment with celastrol. This review aims to provide an overview of recent advancements in the lipid-regulating properties of celastrol, as well as to elucidate its underlying molecular mechanisms. Besides, potential strategies for targeted drug delivery and combination therapy are proposed to enhance the lipid-regulating effects of celastrol and avoid the limitations of its clinical application.
Collapse
Affiliation(s)
- Jia Gu
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Ya-Ning Shi
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China; Science and Technology Innovation Center, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Neng Zhu
- Department of Urology, The First Hospital of Hunan University of Chinese Medicine, Changsha 410021, Hunan, China
| | - Hong-Fang Li
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Chan-Juan Zhang
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Li Qin
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China; Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China; Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China.
| |
Collapse
|
11
|
Zhao Q, Dai MY, Huang RY, Duan JY, Zhang T, Bao WM, Zhang JY, Gui SQ, Xia SM, Dai CT, Tang YM, Gonzalez FJ, Li F. Parabacteroides distasonis ameliorates hepatic fibrosis potentially via modulating intestinal bile acid metabolism and hepatocyte pyroptosis in male mice. Nat Commun 2023; 14:1829. [PMID: 37005411 PMCID: PMC10067939 DOI: 10.1038/s41467-023-37459-z] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 03/17/2023] [Indexed: 04/04/2023] Open
Abstract
Parabacteroides distasonis (P. distasonis) plays an important role in human health, including diabetes, colorectal cancer and inflammatory bowel disease. Here, we show that P. distasonis is decreased in patients with hepatic fibrosis, and that administration of P. distasonis to male mice improves thioacetamide (TAA)- and methionine and choline-deficient (MCD) diet-induced hepatic fibrosis. Administration of P. distasonis also leads to increased bile salt hydrolase (BSH) activity, inhibition of intestinal farnesoid X receptor (FXR) signaling and decreased taurochenodeoxycholic acid (TCDCA) levels in liver. TCDCA produces toxicity in mouse primary hepatic cells (HSCs) and induces mitochondrial permeability transition (MPT) and Caspase-11 pyroptosis in mice. The decrease of TCDCA by P. distasonis improves activation of HSCs through decreasing MPT-Caspase-11 pyroptosis in hepatocytes. Celastrol, a compound reported to increase P. distasonis abundance in mice, promotes the growth of P. distasonis with concomitant enhancement of bile acid excretion and improvement of hepatic fibrosis in male mice. These data suggest that supplementation of P. distasonis may be a promising means to ameliorate hepatic fibrosis.
Collapse
Affiliation(s)
- Qi Zhao
- Laboratory of Metabolomics and Drug-Induced Liver Injury, Department of Gastroenterology & Hepatology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Man-Yun Dai
- Laboratory of Metabolomics and Drug-Induced Liver Injury, Department of Gastroenterology & Hepatology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruo-Yue Huang
- Laboratory of Metabolomics and Drug-Induced Liver Injury, Department of Gastroenterology & Hepatology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing-Yi Duan
- Laboratory of Metabolomics and Drug-Induced Liver Injury, Department of Gastroenterology & Hepatology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Zhang
- Laboratory of Metabolomics and Drug-Induced Liver Injury, Department of Gastroenterology & Hepatology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei-Min Bao
- Department of General Surgery, The First People's Hospital of Yunnan Province, Kunming, 650101, China
| | - Jing-Yi Zhang
- Department of Gastroenterology, The second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Shao-Qiang Gui
- Department of Gastroenterology, The second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Shu-Min Xia
- Department of Gastroenterology, The second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Cong-Ting Dai
- Department of Gastroenterology, The second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Ying-Mei Tang
- Department of Gastroenterology, The second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China.
| | - Frank J Gonzalez
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Fei Li
- Laboratory of Metabolomics and Drug-Induced Liver Injury, Department of Gastroenterology & Hepatology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
12
|
Xian J, Zhong X, Huang Q, Gu H, Feng Y, Sun J, Wang D, Li J, Zhang C, Wu Y, Zhang J. N-Trimethylated chitosan coating white adipose tissue vascular-targeting oral nano-system for the enhanced anti-obesity effects of celastrol. Int J Biol Macromol 2023; 236:124023. [PMID: 36924876 DOI: 10.1016/j.ijbiomac.2023.124023] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/29/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023]
Abstract
Oral nanoparticles (NPs) are more suitable for obesity control compared to NPs administered intravenously, as their convenience increases patient compliance. Herein, we developed an oral nano-system to improve the anti-obesity efficacy of celastrol (Cel). The observed enhanced efficacy was mediated by zein core NPs decorated with adipose-homing peptides that were coated with N-trimethylated chitosan. The optimized Cel/AHP-NPs@TMC exhibited spherical morphology by TEM, as well as narrow size distribution (221.76 ± 6.73 nm) and adequate stability in a gastrointestinal environment. Based on the combined delivery advantages of AHP-NPs@TMC - i.e., improved cellular internalization within Caco-2 cells and enhanced white adipose tissue (WAT) vascular targeting - Cel/AHP-NPs@TMC significantly reduced the body weight, blood lipid levels, adipose inflammation, and WAT distribution in diet-induced obese mice without side-effects. In short, this study provides clear evidence that TMC-based oral NPs can effectively improve celastrol for obesity treatment.
Collapse
Affiliation(s)
- Jing Xian
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuemei Zhong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qi Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huan Gu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yixuan Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiayi Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Di Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingjing Li
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong
| | - Chen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yihan Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
13
|
Hua H, Wu M, Wu T, Ji Y, Jin L, Du Y, Zhang Y, Huang S, Zhang A, Ding G, Liu Q, Jia Z. Reduction of NADPH oxidase 4 in adipocytes contributes to the anti-obesity effect of dihydroartemisinin. Heliyon 2023; 9:e14028. [PMID: 36915539 PMCID: PMC10006843 DOI: 10.1016/j.heliyon.2023.e14028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/09/2023] [Accepted: 02/20/2023] [Indexed: 02/27/2023] Open
Abstract
Artemisinin derivatives have been found to have anti-obesity effects recently, but the mechanism is still controversial. Herein, long-term DHA treatment in obese mice significantly reduced the body weight and improved glucose metabolism. However, short-term DHA treatment did not affect glucose metabolism in obese mice, suggesting that the improved glucose metabolism in mice with DHA treatment could be secondary to body weight reduction. Consistent with previous reports, we observed that DHA inhibited the differentiation of adipocytes. Mechanistically, DHA significantly reduced the expression of NADPH oxidase 4 (NOX4) in white adipose tissue (WAT) of mice and differentiated adipocytes, and using NOX4 siRNA or the NOX4 inhibitor GKT137831 significantly attenuated adipocyte differentiation. Over-expression of NOX4 partially reversed the inhibition effect of DHA on adipogenic differentiation of preadipocytes. In addition, targeted proteomics analysis showed that DHA improved the abnormality of metabolic pathways. In conclusion, DHA significantly reduced fat mass and improved glucose metabolism in obese mice, possibly by inhibiting NOX4 expression to suppress adipocyte differentiation and lipid accumulation in adipocytes.
Collapse
Affiliation(s)
- Hu Hua
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Mengqiu Wu
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Tong Wu
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing, China.,Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yong Ji
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Lv Jin
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Du
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yue Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Songming Huang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Guixia Ding
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Qianqi Liu
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing, China.,Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Zeng D, Zhang L, Luo Q. Celastrol-regulated gut microbiota and bile acid metabolism alleviate hepatocellular carcinoma proliferation by regulating the interaction between FXR and RXRα in vivo and in vitro. Front Pharmacol 2023; 14:1124240. [PMID: 36874033 PMCID: PMC9975715 DOI: 10.3389/fphar.2023.1124240] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
Celastrol, a triterpene derived from Thunder God Vine (Tripterygium wilfordii Hook f; Celastraceae), a traditional Chinese herb, has promising anticancer activity. The present study aimed to elucidate an indirect mechanism of celastrol-mediated alleviation of hepatocellular carcinoma (HCC) via gut microbiota-regulated bile acid metabolism and downstream signaling. Here, we constructed a rat model of orthotopic HCC and performed 16S rDNA sequencing and UPLC-MS analysis. The results showed that celastrol could regulate gut bacteria; suppress the abundance of Bacteroides fragilis; raise the levels of glycoursodeoxycholic acid (GUDCA), a bile acid; and alleviate HCC. We found that GUDCA suppressed cellular proliferation and induced the arrest of mTOR/S6K1 pathway-associated cell cycle G0/G1 phase in HepG2 cells. Further analyses using molecular simulations, Co-IP, and immunofluorescence assays revealed that GUDCA binds to farnesoid X receptor (FXR) and regulates the interaction of FXR with retinoid X receptor a (RXRα). Transfection experiments using the FXR mutant confirmed that FXR is essential for GUCDA-mediated suppression of HCC cellular proliferation. Finally, animal experiments showed that the treatment with the combination of celastrol/GUDCA alleviated the adverse effects of celastrol alone treatment on body weight loss and improved survival in rats with HCC. In conclusion, the findings of this study suggest that celastrol exerts an alleviating effect on HCC, in part via regulation of the B. fragilis-GUDCA-FXR/RXRα-mTOR axis.
Collapse
Affiliation(s)
- Dequan Zeng
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China.,Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen, China.,School of Pharmaceutical Science, Xiamen University, Xiamen, China
| | - Lipen Zhang
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China.,Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen, China
| | - Qiang Luo
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China.,Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen, China
| |
Collapse
|
15
|
Li Y, Huang X, Yang G, Xu K, Yin Y, Brecchia G, Yin J. CD36 favours fat sensing and transport to govern lipid metabolism. Prog Lipid Res 2022; 88:101193. [PMID: 36055468 DOI: 10.1016/j.plipres.2022.101193] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/26/2022] [Accepted: 08/26/2022] [Indexed: 11/24/2022]
Abstract
CD36, located on the cell membrane, transports fatty acids in response to dietary fat. It is a critical fatty acid sensor and regulator of lipid metabolism. The interaction between CD36 and lipid dysmetabolism and obesity has been identified in various models and human studies. Nevertheless, the mechanisms by which CD36 regulates lipid metabolism and the role of CD36 in metabolic diseases remain obscure. Here, we summarize the latest research on the role of membrane CD36 in fat metabolism, with emphasis on CD36-mediated fat sensing and transport. This review also critically discusses the factors affecting the regulation of CD36-mediated fat dysfunction. Finally, we review previous clinical evidence of CD36 in metabolic diseases and consider the path forward.
Collapse
Affiliation(s)
- Yunxia Li
- College of Animal Science and Technology, Hunan Agriculture University, Changsha 410128, China
| | - Xingguo Huang
- College of Animal Science and Technology, Hunan Agriculture University, Changsha 410128, China
| | - Guan Yang
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong SAR, China
| | - Kang Xu
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.
| | - Yulong Yin
- College of Animal Science and Technology, Hunan Agriculture University, Changsha 410128, China
| | - Gabriele Brecchia
- Department of Veterinary Medicine, University of Milano, Via dell'Università, 26900 Lodi, Italy
| | - Jie Yin
- College of Animal Science and Technology, Hunan Agriculture University, Changsha 410128, China.
| |
Collapse
|
16
|
Zhu Y, Ouyang Z, Du H, Wang M, Wang J, Sun H, Kong L, Xu Q, Ma H, Sun Y. New opportunities and challenges of natural products research: When target identification meets single-cell multiomics. Acta Pharm Sin B 2022; 12:4011-4039. [PMID: 36386472 PMCID: PMC9643300 DOI: 10.1016/j.apsb.2022.08.022] [Citation(s) in RCA: 196] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/06/2022] [Accepted: 08/22/2022] [Indexed: 12/12/2022] Open
Abstract
Natural products, and especially the active ingredients found in traditional Chinese medicine (TCM), have a thousand-year-long history of clinical use and a strong theoretical basis in TCM. As such, traditional remedies provide shortcuts for the development of original new drugs in China, and increasing numbers of natural products are showing great therapeutic potential in various diseases. This paper reviews the molecular mechanisms of action of natural products from different sources used in the treatment of inflammatory diseases and cancer, introduces the methods and newly emerging technologies used to identify and validate the targets of natural active ingredients, enumerates the expansive list of TCM used to treat inflammatory diseases and cancer, and summarizes the patterns of action of emerging technologies such as single-cell multiomics, network pharmacology, and artificial intelligence in the pharmacological studies of natural products to provide insights for the development of innovative natural product-based drugs. Our hope is that we can make use of advances in target identification and single-cell multiomics to obtain a deeper understanding of actions of mechanisms of natural products that will allow innovation and revitalization of TCM and its swift industrialization and internationalization.
Collapse
Affiliation(s)
- Yuyu Zhu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zijun Ouyang
- Institute of Marine Biomedicine, School of Food and Drug, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Haojie Du
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China
| | - Meijing Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China
| | - Jiaojiao Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Haiyan Sun
- Institute of Marine Biomedicine, School of Food and Drug, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Lingdong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China
| | - Hongyue Ma
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
17
|
He Y, Song Z, Ji Y, Tso P, Wu Z. Preventive Effects of l-Glutamine on High-Fat Diet-Induced Metabolic Disorders Linking with Regulation of Intestinal Barrier Integrity, Hepatic Lipid Metabolism, and Gut Microbiota in Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11923-11934. [PMID: 36122193 DOI: 10.1021/acs.jafc.2c01975] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The present study was conducted to investigate the effects of l-glutamine (Gln) on a high-fat diet (HFD)-induced lipid metabolic abnormality and explore its possible mechanisms. The results demonstrated that Gln administration reduced body weight, improved serum lipids, and decreased glucose tolerance in HFD-fed rats. Meanwhile, Gln administration alleviated liver injury, reduced the hepatic inflammatory response by inhibiting NLRP3 inflammasome activation, and decreased hepatic lipid accumulation by promoting VLDL secretion and fatty acid β-oxidation, as well as reduced bile acid synthesis by activating hepatic and ileal FXR in HFD-fed rats. Moreover, Gln administration restored HFD-induced intestinal barrier dysfunction, promoted intestinal fat absorption, suppressed intestinal inflammation, and also reshaped the gut microbiota composition in HFD-fed rats by downregulating the abundance of potential pathogens Escherichia-Shigella and upregulating the abundance of beneficial bacteria such as Akkermansia. To conclude, the present results showed that Gln may be a potential option for preventing HFD-induced metabolic disorders via the gut-liver axis.
Collapse
Affiliation(s)
- Yu He
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Zhuan Song
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Yun Ji
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, 2120 E. Galbraith Road, Building A, Cincinnati, Ohio 45237, United States
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
| |
Collapse
|
18
|
Yang S, Hao S, Wang Q, Lou Y, Jia L, Chen D. The interactions between traditional Chinese medicine and gut microbiota: Global research status and trends. Front Cell Infect Microbiol 2022; 12:1005730. [PMID: 36171760 PMCID: PMC9510645 DOI: 10.3389/fcimb.2022.1005730] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/22/2022] [Indexed: 11/15/2022] Open
Abstract
Background There is a crosstalk between traditional Chinese medicine (TCM) and gut microbiota (GM), many articles have studied and discussed the relationship between the two. The purpose of this study is to use bibliometric analysis to explore the research status and development trends of the TCM/GM research, identify and analyze the highly cited papers relating to the TCM/GM. Methods A literature search regarding TCM/GM publications from 2004 to 2021 was undertaken on August 13, 2022. The main information (full record and cited references) of publications was extracted from the Science Citation Index Expanded (SCI-E) of Web of Science Core Collection (WoSCC). The Bibliometrix of R package, CiteSpace and VOSviewer were used for bibliometric analysis. Results A total of 830 papers were included. The publication years of papers were from 2004 to 2021. The number of papers had increased rapidly since 2018. China had the most publications and made most contributions to this field. Nanjing University of Chinese Medicine and Beijing University of Chinese Medicine were in the leading productive position in TCM/GM research, Chinese Academy of Chinese Medical Sciences had the highest total citations (TC). Duan Jin-ao from Nanjing University of Chinese Medicine had the largest number of publications, and Tong Xiao-lin from China Academy of Chinese Medical Sciences had the most TC. The Journal of Ethnopharmacology had the most published papers and the most TC. The main themes in TCM/GM included the role of GM in TCM treatment of glucolipid metabolism diseases and lower gastrointestinal diseases; the mechanism of interactions between GM and TCM to treat diseases; the links between TCM/GM and metabolism; and the relationship between GM and oral bioavailability of TCM. Conclusion This study gained insight into the research status, hotspots and trends of global TCM/GM research, identified the most cited articles in TCM/GM and analyzed their characteristics, which may inform clinical researchers and practitioners’ future directions.
Collapse
Affiliation(s)
- Shanshan Yang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Shaodong Hao
- Sixth Clinical School of Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qin Wang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yanni Lou
- Oncology Department of Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Liqun Jia
- Oncology Department of Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Liqun Jia, ; Dongmei Chen,
| | - Dongmei Chen
- Oncology Department of Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Liqun Jia, ; Dongmei Chen,
| |
Collapse
|
19
|
Li Z, Zhang J, Duan X, Zhao G, Zhang M. Celastrol: A Promising Agent Fighting against Cardiovascular Diseases. Antioxidants (Basel) 2022; 11:antiox11081597. [PMID: 36009315 PMCID: PMC9405053 DOI: 10.3390/antiox11081597] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Cardiovascular diseases (CVD) are leading causes of morbidity and mortality worldwide; therefore, seeking effective therapeutics to reduce the global burden of CVD has become increasingly urgent. Celastrol, a bioactive compound isolated from the roots of the plant Tripterygium wilfordii (TW), has been attracting increasing research attention in recent years, as it exerts cardiovascular treatment benefits targeting both CVD and their associated risk factors. Substantial evidence has revealed a protective role of celastrol against a broad spectrum of CVD including obesity, diabetes, atherosclerosis, cerebrovascular injury, calcific aortic valve disease and heart failure through complicated and interlinked mechanisms such as direct protection against cardiomyocyte hypertrophy and death, and indirect action on oxidation and inflammation. This review will mainly summarize the beneficial effects of celastrol against CVD, largely based on in vitro and in vivo preclinical studies, and the potential underlying mechanisms. We will also briefly discuss celastrol’s pharmacokinetic limitations, which hamper its further clinical applications, and prospective future directions.
Collapse
Affiliation(s)
- Zhexi Li
- Department of Cardiology, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, China
| | - Jingyi Zhang
- School of Cardiovascular and Metabolic Medicine & Sciences, King’s College London British Heart Foundation Centre of Research Excellence, London SE5 9NU, UK
| | - Xulei Duan
- Department of Cardiology, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, China
| | - Guoan Zhao
- Department of Cardiology, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, China
| | - Min Zhang
- Department of Cardiology, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, China
- School of Cardiovascular and Metabolic Medicine & Sciences, King’s College London British Heart Foundation Centre of Research Excellence, London SE5 9NU, UK
- Correspondence: ; Tel.: +44-207848-5319; Fax: +44-207848-5193
| |
Collapse
|
20
|
Li C, Gao Y, Huan Y, Ren P, Zhi J, Wu A, Xu J, Wei Z, Xue C, Tang Q. Colon and gut microbiota greatly affect the absorption and utilization of astaxanthin derived from Haematococcus pluvialis. Food Res Int 2022; 156:111324. [PMID: 35651077 DOI: 10.1016/j.foodres.2022.111324] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/15/2022]
Abstract
Astaxanthin has been widely favored as a health food supplement by individuals but its absorption in the body seems not to be satisfactory. In addition, the peak time of astaxanthin derived from Haematococcus pluvialis in the plasma was much longer than other carotenoids found in our previous research. Thus, it is necessary to explore the process that affects the absorption of astaxanthin in order to potentially find a novel approach to improve the absorption in the future. In this study, we confirmed that the colon has an ability to absorb astaxanthin and conducted acute feeding experiments with the treatment of antibiotics in C57BL/6J mice and chronic feeding experiments in germ-free (GF) mice to detect the relationship between the gut microbiota and the absorption of astaxanthin. Our study showed that the decrease of gut microbiota led to a less oral absorbability, which might be related to the decreased expression of SR-BI in the small intestine and the reduction of free form and Z-astaxanthin converted by the gut microbiota found in the vitro culture. The experiments of anaerobic culture also implied that Lactobacillus might play an important role in the absorption of astaxanthin.
Collapse
Affiliation(s)
- Chunjun Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yuan Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yuchen Huan
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Pengfei Ren
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jinjin Zhi
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Axue Wu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zihao Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, Shandong Province, PR China
| | - Qingjuan Tang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.
| |
Collapse
|
21
|
Zeng Z, Zhou Y, Xu Y, Wang S, Wang B, Zeng Z, Wang Q, Ye X, Jin L, Yue M, Tang L, Zou P, Zhao P, Li W. Bacillus amyloliquefaciens SC06 alleviates the obesity of ob/ob mice and improves their intestinal microbiota and bile acid metabolism. Food Funct 2022; 13:5381-5395. [PMID: 35470823 DOI: 10.1039/d1fo03170h] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dietary interventions with probiotics have been widely reported to be effective in regulating obesity, and the intestinal microbiota is considered to be an important environmental factor. However, few reports focus on the interactions of microbiota-metabolites-phenotypic variables in ob/ob mice, and they have not been characterized in great detail. In this study, we investigated the effects of Bacillus amyloliquefaciens SC06 on obesity, the intestinal microbiota and the bile acid metabolism of ob/ob mice using biochemical testing, histochemical staining, high-throughput sequencing of the 16S rRNA gene, LC-MS/MS analysis and qRT-PCR. The results showed that SC06 ameliorated the fat mass percentage, hepatic steatosis and liver lipid metabolism disorders and reshaped the gut microbiota and metabolites in male ob/ob mice, specifically deceasing f_S24-7, p_TM7, s_Alistipes massiliensis, f_Rikenellaceae, f_Prevotellaceae, f_Lactobacillaceae, g_Alistipes, g_Flexispira, g_Lactobacillus, g_Odoribacter, g_AF12 and g_Prevotella and increasing f_Bacteroidaceae, g_Bacteroides and f_Desulfovibrionaceae. Meanwhile, SC06 treatment groups had lower ibuprofen and higher glycodeoxycholic acid and 7-dehydrocholesterol. Correlation analysis further clarified the relationships between compositional changes in the microbiota and alterations in the metabolites and phenotypes of ob/ob mice. Moreover, SC06 downregulated bile acid synthesis, export and re-absorption in the liver and increased ileum re-absorption into the blood in ob/ob mice, which may be mediated by the FXR-SHP/FGF15 signaling pathway. These results suggest that Bacillus amyloliquefaciens SC06 can ameliorate obesity in male ob/ob mice by reshaping the intestinal microbial composition, changing metabolites and regulating bile acid metabolism via the FXR signaling pathway.
Collapse
Affiliation(s)
- Zhonghua Zeng
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Yuanhao Zhou
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Yibin Xu
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Song Wang
- Biomarker Technologies Corporation, Beijing 101300, China
| | - Baikui Wang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Zihan Zeng
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Qi Wang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Xiaolin Ye
- University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, 40204 Düsseldorf, Germany
| | - Lu Jin
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.
| | - Min Yue
- Zhejiang Provincial Key Lab of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Li Tang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Peng Zou
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Pengwei Zhao
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.
| | - Weifen Li
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
22
|
Li M, Xie F, Wang L, Zhu G, Qi LW, Jiang S. Celastrol: An Update on Its Hepatoprotective Properties and the Linked Molecular Mechanisms. Front Pharmacol 2022; 13:857956. [PMID: 35444532 PMCID: PMC9013942 DOI: 10.3389/fphar.2022.857956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/21/2022] [Indexed: 12/15/2022] Open
Abstract
The liver plays an important role in glucose and lipid homeostasis, drug metabolism, and bile synthesis. Metabolic disorder and inflammation synergistically contribute to the pathogenesis of numerous liver diseases, such as metabolic-associated fatty liver disease (MAFLD), liver injury, and liver cancer. Celastrol, a triterpene derived from Tripterygium wilfordii Hook.f., has been extensively studied in metabolic and inflammatory diseases during the last several decades. Here we comprehensively review the pharmacological activities and the underlying mechanisms of celastrol in the prevention and treatment of liver diseases including MAFLD, liver injury, and liver cancer. In addition, we also discuss the importance of novel methodologies and perspectives for the drug development of celastrol. Although celastrol has been claimed as a promising agent against several metabolic diseases, both preclinical and clinical studies are highly required to accelerate the clinical transformation of celastrol in treating different liver illness. It is foreseeable that celastrol-derived therapeutics is evolving in the field of liver ailments.
Collapse
Affiliation(s)
- Mengzhen Li
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, China
| | - Faren Xie
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Lu Wang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Guoxue Zhu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Lian-Wen Qi
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, China
| | - Shujun Jiang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
23
|
Ye Y, Shi L, Wang P, Yang M, Zhan P, Tian H, Liu J. Water extract of Ferula lehmanni Boiss. prevents high-fat diet-induced overweight and liver injury by modulating the intestinal microbiota in mice. Food Funct 2022; 13:1603-1616. [PMID: 35076647 DOI: 10.1039/d1fo03518e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Obesity, often accompanied by hepatic steatosis, has been associated with an increased risk of health complications such as fatty liver disease and certain cancers. Ferula lehmannii Boiss., a food and medicine homologue, has been used for centuries as a seasoning showing anti-bacterial and anti-oxidant effects on digestive discomfort. In the present study, we sought to investigate whether a short-term oral administration of water extract of Ferula lehmanni Boiss. (WEFL) could prevent high-fat diet (HFD)-induced abnormal weight gain and hepatic steatosis in mice and its underlying mechanisms. WEFL reduced HFD-increased body weight, liver injury markers and inflammatory cytokines (i.e. IL-6 and IL-1β), and inhibited the elevation of AMPKα, SREBP-1c and FAS in HFD. Moreover, WEFL reconstructed the gut microbiota composition by increasing the relative abundances of beneficial bacteria, e.g. Akkermansia spp., while decreasing Desulfovibrio spp. and so on, thereby reversing the detrimental effects of HFD in mice. Removal of the gut microbiota with antibiotics partially eliminated the hepatoprotective effects of WEFL. Notably, WEFL substantially promoted the levels of short-chain fatty acids, especially butyric acid. To clarify the functional components at play in WEFL, we used UPLC-MS/MS to comprehensively detect its substance composition and found it to be a collection of polyphenol-rich compounds. Together, our findings demonstrate that WEFL prevented HFD-induced obesity and liver injury through the hepatic-microbiota axis, and such health-promoting value might be explained by the enriched abundant polyphenols.
Collapse
Affiliation(s)
- Yuting Ye
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China.
| | - Lin Shi
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China.
| | - Peng Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China.
| | - Minmin Yang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China.
| | - Ping Zhan
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China.
| | - Honglei Tian
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China. .,Shaanxi Provincial Research Center of Functional Food Engineering Technology, Xi'an, China
| | - Jianshu Liu
- Shaanxi Provincial Research Center of Functional Food Engineering Technology, Xi'an, China
| |
Collapse
|
24
|
Lemon Balm and Corn Silk Extracts Mitigate High-Fat Diet-Induced Obesity in Mice. Antioxidants (Basel) 2021; 10:antiox10122015. [PMID: 34943118 PMCID: PMC8698494 DOI: 10.3390/antiox10122015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/31/2022] Open
Abstract
Lemon balm and corn silk are valuable medicinal herbs, which exhibit variety of beneficial effects for human health. The present study explored the anti-obesity effects of a mixture of lemon balm and corn silk extracts (M-LB/CS) by comparison with the effects of single herbal extracts in high-fat diet (HFD)-induced obesity in mice. HFD supplementation for 84 days increased the body weight, the fat mass density, the mean diameter of adipocytes, and the thickness of fat pads. However, oral administration of M-LB/CS significantly alleviated the HFD-mediated weight gain and adipocyte hypertrophy without affecting food consumption. Of the various combination ratios of M-LB/CS tested, the magnitude of the decreases in weight gain and adipocyte hypertrophy by administration of 1:1, 1:2, 2:1, and 4:1 (w/w) M-LB/CS was more potent than that by single herbal extracts alone. In addition, M-LB/CS reduced the HFD-mediated increases in serum cholesterol, triglyceride, and low-density lipoprotein, prevented the reduction in serum high-density lipoprotein, and facilitated fecal excretion of cholesterol and triglyceride. Moreover, M-LB/CS mitigated the abnormal changes in specific mRNAs associated with lipogenesis and lipolysis in the adipose tissue. Furthermore, M-LB/CS reduced lipid peroxidation by inhibiting the HFD-mediated reduction in glutathione, catalase, and superoxide dismutase. Therefore, M-LB/CS is a promising herbal mixture for preventing obesity.
Collapse
|
25
|
Zhou M, Johnston LJ, Wu C, Ma X. Gut microbiota and its metabolites: Bridge of dietary nutrients and obesity-related diseases. Crit Rev Food Sci Nutr 2021:1-18. [PMID: 34698581 DOI: 10.1080/10408398.2021.1986466] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
While the incidence of obesity keeps increasing in both adults and children worldwide, obesity and its complications remain major threatens to human health. Over the past decades, accumulating evidence has demonstrated the importance of microorganisms and their metabolites in the pathogenesis of obesity and related diseases. There also is a significant body of evidence validating the efficacy of microbial based therapies for managing various diseases. In this review, we collected the key information pertinent to obesity-related bacteria, fermentation substrates and major metabolites generated by studies involving humans and/or mice. We then briefly described the possible molecular mechanisms by which microorganisms cause or inhibit obesity with a focus on microbial metabolites. Lastly, we summarized the advantages and disadvantages of the utilization of probiotics, plant extracts, and exercise in controlling obesity. We speculated that new targets and combined approaches (e.g. diet combined with exercise) could lead to more precise prevention and/or alleviation of obesity in future clinical research implications.
Collapse
Affiliation(s)
- Min Zhou
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lee J Johnston
- West Central Research & Outreach Center, University of Minnesota, Morris, Minnesota, USA
| | - Chaodong Wu
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX, USA
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
26
|
Xu S, Lyu L, Zhu H, Huang X, Xu W, Xu W, Feng Y, Fan Y. Serum Metabolome Mediates the Antiobesity Effect of Celastrol-Induced Gut Microbial Alterations. J Proteome Res 2021; 20:4840-4851. [PMID: 34530620 DOI: 10.1021/acs.jproteome.1c00513] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The antiobesity effect of celastrol has been reported in numerous studies, but the underlying mechanism remains unclear. It is widely accepted that gut dysbiosis is closely related to obesity. The potential effect of celastrol on microbiota is worth exploring. In this study, the celastrol-induced weight loss was validated in high-fat diet (HFD)-induced obese mice, with the detection of reported phenotypes including a reduction in food intake, augments in dyslipidemia and glucose metabolism, and adipose thermogenesis. The anti-inflammatory effect of celastrol was also proved based on the alterations in serum cytokines. Antibiotic interference showed that gut microbiota contributes to celastrol-induced weight loss. Several key bacteria were identified using shotgun metagenomic sequencing to display the alterations of the intestinal microbiome in obese mice treated with celastrol. Meanwhile, the fecal and serum metabolic profiles were generated by pseudotargeted metabolomics, and changes in some critical metabolites related to appetite and metabolism were detected. Importantly, we applied in silico bidirectional mediation analysis to identify the precise connections among the alterations in gut microbes, serum metabolome, and host phenotypes induced by celastrol treatment for the first time. Therefore, we concluded that the celastrol-induced microbial changes partially contribute to the antiobesity effect via the serum metabolome. The mass spectrometry data are deposited on MetaboLights (ID: MTBLS3278).
Collapse
Affiliation(s)
- Shaohua Xu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Liwei Lyu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Huaichang Zhu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Xiaoqiang Huang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Wei Xu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Wen Xu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Yaqian Feng
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Yong Fan
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| |
Collapse
|
27
|
Osborn LJ, Orabi D, Goudzari M, Sangwan N, Banerjee R, Brown AL, Kadam A, Gromovsky AD, Linga P, Cresci GAM, Mak TD, Willard BB, Claesen J, Brown JM. A Single Human-Relevant Fast Food Meal Rapidly Reorganizes Metabolomic and Transcriptomic Signatures in a Gut Microbiota-Dependent Manner. IMMUNOMETABOLISM 2021; 3:e210029. [PMID: 34804604 PMCID: PMC8601658 DOI: 10.20900/immunometab20210029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND A major contributor to cardiometabolic disease is caloric excess, often a result of consuming low cost, high calorie fast food. Studies have demonstrated the pivotal role of gut microbes contributing to cardiovascular disease in a diet-dependent manner. Given the central contributions of diet and gut microbiota to cardiometabolic disease, we hypothesized that microbial metabolites originating after fast food consumption can elicit acute metabolic responses in the liver. METHODS We gave conventionally raised mice or mice that had their microbiomes depleted with antibiotics a single oral gavage of a liquified fast food meal or liquified control rodent chow meal. After four hours, mice were sacrificed and we used untargeted metabolomics of portal and peripheral blood, 16S rRNA gene sequencing, targeted liver metabolomics, and host liver RNA sequencing to identify novel fast food-derived microbial metabolites and their acute effects on liver function. RESULTS Several candidate microbial metabolites were enriched in portal blood upon fast food feeding, and were essentially absent in antibiotic-treated mice. Strikingly, at four hours post-gavage, fast food consumption resulted in rapid reorganization of the gut microbial community and drastically altered hepatic gene expression. Importantly, diet-driven reshaping of the microbiome and liver transcriptome was dependent on an intact microbial community and not observed in antibiotic ablated animals. CONCLUSIONS Collectively, these data suggest a single fast food meal is sufficient to reshape the gut microbial community in mice, yielding a unique signature of food-derived microbial metabolites. Future studies are in progress to determine the contribution of select metabolites to cardiometabolic disease progression and the translational relevance of these animal studies.
Collapse
Affiliation(s)
- Lucas J. Osborn
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH 44195, USA
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | - Danny Orabi
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH 44195, USA
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
- Department of General Surgery, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Maryam Goudzari
- Mass Spectrometry Core, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH 44195, USA
| | - Naseer Sangwan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH 44195, USA
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH 44195, USA
| | - Rakhee Banerjee
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH 44195, USA
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH 44195, USA
| | - Amanda L. Brown
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH 44195, USA
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | - Anagha Kadam
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH 44195, USA
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH 44195, USA
| | - Anthony D. Gromovsky
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH 44195, USA
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | - Pranavi Linga
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH 44195, USA
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH 44195, USA
| | - Gail A. M. Cresci
- Department of Inflammation and Immunity, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH 44195, USA
| | - Tytus D. Mak
- Mass Spectrometry Data Center, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Belinda B. Willard
- Mass Spectrometry Core, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jan Claesen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH 44195, USA
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | - J. Mark Brown
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH 44195, USA
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| |
Collapse
|
28
|
Murugan DD, Balan D, Wong PF. Adipogenesis and therapeutic potentials of antiobesogenic phytochemicals: Insights from preclinical studies. Phytother Res 2021; 35:5936-5960. [PMID: 34219306 DOI: 10.1002/ptr.7205] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 05/21/2021] [Accepted: 06/17/2021] [Indexed: 12/11/2022]
Abstract
Obesity is one of the most serious public health problems in both developed and developing countries in recent years. While lifestyle and diet modifications are the most important management strategies of obesity, these may be insufficient to ensure long-term weight reduction in certain individuals and alternative strategies including pharmacotherapy need to be considered. However, drugs option remains limited due to low efficacy and adverse effects associated with their use. Hence, identification of safe and effective alternative therapeutic agents remains warranted to combat obesity. In recent years, bioactive phytochemicals are considered as valuable sources for the discovery of new pharmacological agents for the treatment of obesity. Adipocyte hypertrophy and hyperplasia increases with obesity and undergo molecular and cellular alterations that can affect systemic metabolism giving rise to metabolic syndrome and comorbidities such as type 2 diabetes and cardiovascular diseases. Many phytochemicals have been reported to target adipocytes by inhibiting adipogenesis, inducing lipolysis, suppressing the differentiation of preadipocytes to mature adipocytes, reducing energy intake, and boosting energy expenditure mainly in vitro and in animal studies. Nevertheless, further high-quality studies are needed to firmly establish the clinical efficacy of these phytochemicals. This review outlines common pathways involved in adipogenesis and phytochemicals targeting effector molecules of these pathways, the challenges faced and the way forward for the development of phytochemicals as antiobesity agents.
Collapse
Affiliation(s)
- Dharmani Devi Murugan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Dharvind Balan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Pooi-Fong Wong
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|