1
|
Case JB, Jain S, Suthar MS, Diamond MS. SARS-CoV-2: The Interplay Between Evolution and Host Immunity. Annu Rev Immunol 2025; 43:29-55. [PMID: 39705164 DOI: 10.1146/annurev-immunol-083122-043054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2024]
Abstract
The persistence of SARS-CoV-2 infections at a global level reflects the repeated emergence of variant strains encoding unique constellations of mutations. These variants have been generated principally because of a dynamic host immune landscape, the countermeasures deployed to combat disease, and selection for enhanced infection of the upper airway and respiratory transmission. The resulting viral diversity creates a challenge for vaccination efforts to maintain efficacy, especially regarding humoral aspects of protection. Here, we review our understanding of how SARS-CoV-2 has evolved during the pandemic, the immune mechanisms that confer protection, and the impact viral evolution has had on transmissibility and adaptive immunity elicited by natural infection and/or vaccination. Evidence suggests that SARS-CoV-2 evolution initially selected variants with increased transmissibility but currently is driven by immune escape. The virus likely will continue to drift to maintain fitness until countermeasures capable of disrupting transmission cycles become widely available.
Collapse
Affiliation(s)
- James Brett Case
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA;
| | - Shilpi Jain
- Emory Vaccine Center, Emory National Primate Research Center, Atlanta, Georgia, USA
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mehul S Suthar
- Emory Vaccine Center, Emory National Primate Research Center, Atlanta, Georgia, USA
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Michael S Diamond
- Department of Pathology & Immunology; Department of Molecular Microbiology; and Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA;
| |
Collapse
|
2
|
Carreño JM, Wagner AL, Monahan B, Singh G, Floda D, Gonzalez-Reiche AS, Tcheou J, Raskin A, Bielak D, Morris S, Fried M, Yellin T, Sullivan L, Sordillo EM, Gordon A, van Bakel H, Simon V, Krammer F. SARS-CoV-2 serosurvey across multiple waves of the COVID-19 pandemic in New York City between 2020-2023. Nat Commun 2024; 15:5847. [PMID: 38992013 PMCID: PMC11239669 DOI: 10.1038/s41467-024-50052-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/26/2024] [Indexed: 07/13/2024] Open
Abstract
Sero-monitoring provides context to the epidemiology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and changes in population immunity following vaccine introduction. Here, we describe results of a cross-sectional hospital-based study of anti-spike seroprevalence in New York City (NYC) from February 2020 to July 2022, and a follow-up period from August 2023 to October 2023. Samples from 55,092 individuals, spanning five epidemiological waves were analyzed. Prevalence ratios (PR) were obtained using Poisson regression. Anti-spike antibody levels increased gradually over the first two waves, with a sharp increase during the 3rd wave coinciding with SARS-CoV-2 vaccination in NYC resulting in seroprevalence levels >90% by July 2022. Our data provide insights into the dynamic changes in immunity occurring in a large and diverse metropolitan community faced with a new viral pathogen and reflects the patterns of antibody responses as the pandemic transitions into an endemic stage.
Collapse
Affiliation(s)
- Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Abram L Wagner
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Brian Monahan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel Floda
- Department of Genetics and Genomic Sciences, ISMMS, New York, NY, USA
| | | | - Johnstone Tcheou
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ariel Raskin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dominika Bielak
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sara Morris
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miriam Fried
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Temima Yellin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Leeba Sullivan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emilia Mia Sordillo
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Aubree Gordon
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA.
| | - Harm van Bakel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics and Genomic Sciences, ISMMS, New York, NY, USA.
- Icahn Genomics Institute, ISMMS, New York, NY, USA.
- Department of Artificial Intelligence And Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Ignaz Semmelweis Institute, Interuniversity Institute for Infection Research, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
3
|
Suthar MS. Durability of immune responses to SARS-CoV-2 infection and vaccination. Semin Immunol 2024; 73:101884. [PMID: 38861769 PMCID: PMC11490408 DOI: 10.1016/j.smim.2024.101884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 06/13/2024]
Abstract
Infection with SARS-CoV-2 in humans has caused a pandemic of unprecedented dimensions. SARS-CoV-2 is primarily transmitted through respiratory droplets and targets ciliated epithelial cells in the nasal cavity, trachea, and lungs by utilizing the cellular receptor angiotensin-converting enzyme 2 (ACE2). The innate immune response, including type I and III interferons, inflammatory cytokines (IL-6, TNF-α, IL-1β), innate immune cells (monocytes, DCs, neutrophils, natural killer cells), antibodies (IgG, sIgA, neutralizing antibodies), and adaptive immune cells (B cells, CD8+ and CD4+ T cells) play pivotal roles in mitigating COVID-19 disease. Broad and durable B-cell- and T-cell immunity elicited by infection and vaccination is essential for protection against severe disease, hospitalization and death. However, the emergence of SARS-CoV-2 variants that evade neutralizing antibodies continue to jeopardize vaccine efficacy. In this review, we highlight our understanding the infection- and vaccine-mediated humoral, B and T cell responses, the durability of the immune responses, and how variants continue to threaten the efficacy of SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Mehul S Suthar
- Emory Vaccine Center, Emory National Primate Research Center, Emory Vaccine Center, Emory University, Atlanta, GA, USA; Emory Center of Excellence of Influenza Research and Response (CEIRR), Atlanta, GA, USA; Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA; Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
4
|
Singh G, Abbad A, Tcheou J, Mendu DR, Firpo-Betancourt A, Gleason C, Srivastava K, Cordon-Cardo C, Simon V, Krammer F, Carreño JM. Binding and Avidity Signatures of Polyclonal Sera From Individuals With Different Exposure Histories to Severe Acute Respiratory Syndrome Coronavirus 2 Infection, Vaccination, and Omicron Breakthrough Infections. J Infect Dis 2023; 228:564-575. [PMID: 37104046 PMCID: PMC10469125 DOI: 10.1093/infdis/jiad116] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/07/2023] [Accepted: 04/18/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND The number of exposures to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and to vaccine antigens affect the magnitude and avidity of the polyclonal response. METHODS We studied binding and avidity of different antibody isotypes to the spike, the receptor-binding domain (RBD), and the nucleoprotein (NP) of wild-type (WT) and BA.1 SARS-CoV-2 in convalescent, mRNA vaccinated and/or boosted, hybrid immune individuals and in individuals with breakthrough cases during the peak of the BA.1 wave. RESULTS We found an increase in spike-binding antibodies and antibody avidity with increasing number of exposures to infection and/or vaccination. NP antibodies were detectible in convalescent individuals and a proportion of breakthrough cases, but they displayed low avidity. Omicron breakthrough infections elicited high levels of cross-reactive antibodies between WT and BA.1 antigens in vaccinated individuals without prior infection directed against the spike and RBD. The magnitude of the antibody response and avidity correlated with neutralizing activity against WT virus. CONCLUSIONS The magnitude and quality of the antibody response increased with the number of antigenic exposures, including breakthrough infections. However, cross-reactivity of the antibody response after BA.1 breakthroughs, was affected by the number of prior exposures.
Collapse
Affiliation(s)
- Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Anass Abbad
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Johnstone Tcheou
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Demodara Rao Mendu
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Adolfo Firpo-Betancourt
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Charles Gleason
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Komal Srivastava
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Carlos Cordon-Cardo
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
5
|
Carreño JM, Raskin A, Singh G, Tcheou J, Kawabata H, Gleason C, Srivastava K, Vigdorovich V, Dambrauskas N, Gupta SL, González Domínguez I, Martinez JL, Slamanig S, Sather DN, Raghunandan R, Wirachwong P, Muangnoicharoen S, Pitisuttithum P, Wrammert J, Suthar MS, Sun W, Palese P, García-Sastre A, Simon V, Krammer F. An inactivated NDV-HXP-S COVID-19 vaccine elicits a higher proportion of neutralizing antibodies in humans than mRNA vaccination. Sci Transl Med 2023; 15:eabo2847. [PMID: 36791207 DOI: 10.1126/scitranslmed.abo2847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
NDV-HXP-S is a recombinant Newcastle disease virus-based vaccine against SARS-CoV-2, which expresses an optimized (HexaPro) spike protein on its surface. The vaccine can be produced in embryonated chicken eggs using the same process as that used for the production of the vast majority of influenza virus vaccines. Here, we performed a secondary analysis of the antibody responses after vaccination with inactivated NDV-HXP-S in a phase 1 clinical study in Thailand. The SARS-CoV-2 neutralizing and spike protein binding activity of NDV-HXP-S postvaccination serum samples was compared to that of samples from mRNA BNT162b2 (Pfizer) vaccinees. Neutralizing activity of sera from NDV-HXP-S vaccinees was comparable to that of BNT162b2 vaccinees, whereas spike protein binding activity of the NDV-HXP-S vaccinee samples was lower than that of sera obtained from mRNA vaccinees. This led us to calculate ratios between binding and neutralizing antibody titers. Samples from NDV-HXP-S vaccinees had binding to neutralizing activity ratios that were lower than those of BNT162b2 sera, suggesting that NDV-HXP-S vaccination elicits a high proportion of neutralizing antibodies and low non-neutralizing antibody titers. Further analysis showed that, in contrast to mRNA vaccination, which induces strong antibody titers to the receptor binding domain (RBD), the N-terminal domain, and the S2 domain, NDV-HXP-S vaccination induced an RBD-focused antibody response with little reactivity to S2. This finding may explain the high proportion of neutralizing antibodies. In conclusion, vaccination with inactivated NDV-HXP-S induces a high proportion of neutralizing antibodies and absolute neutralizing antibody titers that are comparable to those elicited by mRNA vaccination.
Collapse
Affiliation(s)
- Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
| | - Ariel Raskin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
| | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
| | - Johnstone Tcheou
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
| | - Hisaaki Kawabata
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
| | - Charles Gleason
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
| | - Komal Srivastava
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
| | - Vladimir Vigdorovich
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Nicholas Dambrauskas
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Sneh Lata Gupta
- Department of Pediatrics, Centers for Childhood Infections and Vaccines, Children's Healthcare of Atlanta, Emory University, Atlanta, GA 30329, USA.,Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Irene González Domínguez
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
| | - Jose Luis Martinez
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
| | - Stefan Slamanig
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
| | - D Noah Sather
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA.,Department of Pediatrics, University of Washington, Seattle, WA 98109, USA
| | | | - Ponthip Wirachwong
- Government Pharmaceutical Organization, 75/1 Rama VI Road, Ratchathewi, Bangkok 10400, Thailand
| | - Sant Muangnoicharoen
- Vaccine Trial Centre Faculty of Tropical Medicine, Mahidol, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand
| | - Punnee Pitisuttithum
- Vaccine Trial Centre Faculty of Tropical Medicine, Mahidol, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand
| | - Jens Wrammert
- Department of Pediatrics, Centers for Childhood Infections and Vaccines, Children's Healthcare of Atlanta, Emory University, Atlanta, GA 30329, USA.,Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Mehul S Suthar
- Department of Pediatrics, Centers for Childhood Infections and Vaccines, Children's Healthcare of Atlanta, Emory University, Atlanta, GA 30329, USA.,Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30329, USA.,Department of Microbiology and Immunology, Emory University, Atlanta, GA 30329, USA
| | - Weina Sun
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA.,Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA.,Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA.,Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA.,Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA.,Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA.,Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
| |
Collapse
|
6
|
Riesenhuber M, Nitsche C, Binder CJ, Schernhammer ES, Stamm T, Jakse F, Anwari E, Hamidi F, Haslacher H, Perkmann T, Hengstenberg C, Zelniker TA. Comparison of the prevalence of SARS-CoV-2 nucleoprotein antibodies in healthcare workers and an unselected adult and paediatric all-comer patient population: insights from a longitudinal study of healthcare workers and concurrent serial cross-sectional studies of patients at an academic medical centre in Austria. BMJ Open 2023; 13:e063760. [PMID: 36657754 PMCID: PMC9852740 DOI: 10.1136/bmjopen-2022-063760] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 12/27/2022] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVES This study aimed to estimate and compare the prevalence of the virus-specific antibodies against the SARS-CoV-2 nucleoprotein antigen (anti-SARS-CoV-2 N) in healthcare workers and an all-comer paediatric and adult patient population. DESIGN, SETTING AND PARTICIPANTS A longitudinal study enrolling healthcare professionals and concurrent serial cross-sectional studies of unselected all-comer patients were conducted at an Austrian academic medical centre. Healthcare workers were tested at enrolment and after 1, 2, 3, 6 and 12 months. The cross-sectional studies in patients were conducted at three time periods, which roughly coincided with the times after the first, second and third wave of SARS-CoV-2 in Austria (ie, 24 August-7 September 2020; 8-22 February 2021 and 9-23 November 2021). Anti-SARS-CoV-2 N antibodies were measured using a sandwich electrochemiluminescence assay (Roche). RESULTS In total, 2735 and 9275 samples were measured in 812 healthcare workers (median age: 40 years, 78% female) and 8451 patients (median age: 55 years, 52% female), respectively. Over the entire study period, anti-SARS-CoV-2 N antibodies were detected in 98 of 812 healthcare workers, resulting in a seroprevalence of 12.1% (95% CI 10.0% to 14.5%), which did not differ significantly (p=0.63) from that of the all-comer patient population at the end of the study period (407/3184; 12.8%, 95% CI 11.7% to 14.0%). The seroprevalence between healthcare workers and patients did not differ significantly at any time and was 1.5-fold to 2-fold higher than the number of confirmed cases in Austria throughout the pandemic. In particular, there was no significant difference in the seroprevalence between paediatric and adult patients at any of the tested time periods. CONCLUSION Throughout the pandemic, healthcare staff and an adult and paediatric all-comer patient population had similar exposure to SARS-CoV-2. TRIAL REGISTRATION NUMBER ClinicalTrials.gov Identifier: NCT04407429.
Collapse
Affiliation(s)
- Martin Riesenhuber
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Wien, Austria
| | - Christian Nitsche
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Wien, Austria
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Wien, Austria
| | - Eva S Schernhammer
- Department of Epidemiology, Center for Public Health, Medical University of Vienna, Wien, Austria
| | - Tanja Stamm
- Institute for Outcomes Research, Center for Medical Data Science, Medical University of Vienna, Vienna, Austria
| | - Friedrich Jakse
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Wien, Austria
| | - Elaaha Anwari
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Wien, Austria
| | - Fardin Hamidi
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Wien, Austria
| | - Helmuth Haslacher
- Department of Laboratory Medicine, Medical University of Vienna, Wien, Austria
| | - Thomas Perkmann
- Department of Laboratory Medicine, Medical University of Vienna, Wien, Austria
| | - Christian Hengstenberg
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Wien, Austria
| | - Thomas A Zelniker
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Wien, Austria
| |
Collapse
|
7
|
Fish CS, Owiti P, Begnel ER, Itell HL, Ojee E, Adhiambo J, Ogweno V, Holland LA, Richardson BA, Khan AK, Maqsood R, Gantt S, Lim ES, Slyker J, Kinuthia J, Overbaugh J, Wamalwa D, Lehman DA, Chohan BH. Comparison of nucleocapsid and spike antibody ELISAs for determining SARS-CoV-2 seropositivity in Kenyan women and infants. J Med Virol 2023; 95:e28221. [PMID: 36251533 PMCID: PMC9839577 DOI: 10.1002/jmv.28221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/23/2022] [Accepted: 10/03/2022] [Indexed: 01/29/2023]
Abstract
A multitude of enzyme-linked immunosorbent assays (ELISAs) has been developed to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies since the coronavirus disease 2019 pandemic started in late 2019. Assessing the reliability of these assays in diverse global populations is critical. This study compares the use of the commercially available Platelia Total Ab Assay (Bio-Rad) nucleocapsid ELISA to the widely used Mount Sinai spike IgG ELISA in a Kenyan population seroprevalence study. Using longitudinal plasma specimens collected from a mother-infant cohort living in Nairobi, Kenya between May 2019 and December 2020, this study demonstrates that the two assays have a high qualitative agreement (92.7%) and strong correlation of antibody levels (R2 = 0.973) in repeated measures. Within this cohort, seroprevalence detected by either ELISA closely resembled previously published seroprevalence estimates for Kenya during the sampling period and no significant difference in the incidence of SARS-CoV-2 antibody detection by either assay was observed. Assay comparability was not affected by HIV exposure status. These data support the use of the Platelia SARS-CoV-2 Total Ab ELISA as a suitable high-throughput method for seroprevalence studies in Kenya.
Collapse
Affiliation(s)
- Carolyn S. Fish
- Division of Human Biology, Fred Hutchinson Cancer CenterSeattleWashingtonUSA
| | - Prestone Owiti
- Department of Paediatrics and Child HealthUniversity of NairobiNairobiKenya
| | - Emily R. Begnel
- Department of Global Health, Hans Rosling CenterUniversity of WashingtonSeattleWashingtonUSA
| | - Hannah L. Itell
- Division of Human Biology, Fred Hutchinson Cancer CenterSeattleWashingtonUSA,Molecular and Cellular Biology Graduate ProgramUniversity of Washington and Fred Hutchinson Cancer CenterSeattleWashingtonUSA
| | - Ednah Ojee
- Department of Paediatrics and Child HealthUniversity of NairobiNairobiKenya
| | - Judith Adhiambo
- Department of Paediatrics and Child HealthUniversity of NairobiNairobiKenya
| | - Vincent Ogweno
- Department of Paediatrics and Child HealthUniversity of NairobiNairobiKenya
| | - LaRinda A. Holland
- Center for Fundamental and Applied Microbiomics, Biodesign InstituteArizona State UniversityTempeArizonaUSA
| | - Barbra A. Richardson
- Department of Global Health, Hans Rosling CenterUniversity of WashingtonSeattleWashingtonUSA,Department of BiostatisticsUniversity of WashingtonSeattleWashingtonUSA
| | - Adam K. Khan
- School of Life SciencesArizona State UniversityTempeArizonaUSA
| | - Rabia Maqsood
- Center for Fundamental and Applied Microbiomics, Biodesign InstituteArizona State UniversityTempeArizonaUSA
| | - Soren Gantt
- Département de Microbiologie, Infectiologie et Immunologie, Centre de Recherche du CHU St‐JustineUniversité de MontréalMontréalQuébecCanada
| | - Efrem S. Lim
- Center for Fundamental and Applied Microbiomics, Biodesign InstituteArizona State UniversityTempeArizonaUSA,School of Life SciencesArizona State UniversityTempeArizonaUSA
| | - Jennifer Slyker
- Department of Global Health, Hans Rosling CenterUniversity of WashingtonSeattleWashingtonUSA,Department of EpidemiologyUniversity of WashingtonSeattleWashingtonUSA
| | - John Kinuthia
- Department of Global Health, Hans Rosling CenterUniversity of WashingtonSeattleWashingtonUSA,Department of Research and Programs, Kenyatta National HospitalNairobiKenya
| | - Julie Overbaugh
- Division of Human Biology, Fred Hutchinson Cancer CenterSeattleWashingtonUSA,Division of Public Health SciencesFred Hutchinson Cancer CenterSeattleWashingtonUSA
| | - Dalton Wamalwa
- Department of Paediatrics and Child HealthUniversity of NairobiNairobiKenya,Department of Global Health, Hans Rosling CenterUniversity of WashingtonSeattleWashingtonUSA
| | - Dara A. Lehman
- Division of Human Biology, Fred Hutchinson Cancer CenterSeattleWashingtonUSA,Department of Global Health, Hans Rosling CenterUniversity of WashingtonSeattleWashingtonUSA
| | - Bhavna H. Chohan
- Department of Global Health, Hans Rosling CenterUniversity of WashingtonSeattleWashingtonUSA,Kenya Medical Research InstituteNairobiKenya
| |
Collapse
|
8
|
Kubale J, Gleason C, Carreño JM, Srivastava K, Singh G, Gordon A, Krammer F, Simon V. SARS-CoV-2 Spike-Binding Antibody Longevity and Protection from Reinfection with Antigenically Similar SARS-CoV-2 Variants. mBio 2022; 13:e0178422. [PMID: 35997286 PMCID: PMC9600418 DOI: 10.1128/mbio.01784-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/25/2022] [Indexed: 11/20/2022] Open
Abstract
The PARIS (Protection Associated with Rapid Immunity to SARS-CoV-2) cohort follows health care workers with and without documented coronavirus disease 2019 (COVID-19) since April 2020. We report our findings regarding severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike-binding antibody stability and protection from infection in the pre-variant era. We analyzed data from 400 health care workers (150 seropositive and 250 seronegative at enrollment) for a median of 84 days. The SARS-CoV-2 spike-binding antibody titers were highly variable with antibody levels decreasing over the first 3 months, followed by a relative stabilization. We found that both more advanced age (>40 years) and female sex were associated with higher antibody levels (1.6-fold and 1.4-fold increases, respectively). Only six percent of the initially seropositive participants "seroreverted." We documented a total of 11 new SARS-CoV-2 infections (10 naive participants and 1 previously infected participant without detectable antibodies; P < 0.01), indicating that spike antibodies limit the risk of reinfection. These observations, however, only apply to SARS-CoV-2 variants antigenically similar to the ancestral SARS-CoV-2 ones. In conclusion, SARS-CoV-2 antibody titers mounted upon infection are stable over several months and provide protection from infection with antigenically similar viruses. IMPORTANCE SARS-CoV-2 is the cause of one of the largest noninfluenza pandemics of this century. This exceptional public health crisis highlights the urgent need for better understanding of the correlates of protection from infection and severe COVID-19. We established the PARIS cohort to determine durability and effectiveness of SARS-CoV-2 immune responses. Here, we report on the kinetics of SARS-CoV-2 spike-binding antibody after SARS-CoV-2 infection as well as reinfection rates using data collected between April 2020 and August 2021. We found that antibody levels stabilized at individual steady state levels after an initial decrease with seroreversion being found in only 6% of the convalescent participants. SARS-CoV-2 infections only occurred in participants without detectable spike-binding antibodies, indicating significant protection from reinfection with antigenically similar viruses. Our data indicate the importance of spike-binding antibody titers in protection prior to vaccination and the wide circulation of antigenically diverse variants of concern.
Collapse
Affiliation(s)
- John Kubale
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Charles Gleason
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Komal Srivastava
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - PARIS Study Team
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Aubree Gordon
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|