1
|
Bonnar O, Eyre B, van Veluw SJ. Perivascular brain clearance as a therapeutic target in cerebral amyloid angiopathy and Alzheimer's disease. Neurotherapeutics 2025; 22:e00535. [PMID: 39890534 DOI: 10.1016/j.neurot.2025.e00535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 02/03/2025] Open
Abstract
Although distinct diseases, both cerebral amyloid angiopathy (CAA) and Alzheimer's disease (AD) are characterized by the aggregation and accumulation of amyloid-β (Aβ). This is thought to be due, in part, to impaired perivascular Aβ clearance from the brain. This shared failure in both diseases presents a common opportunity for therapeutic intervention. In this review we discuss the idea that promoting perivascular brain clearance could be an effective strategy for safely reducing Aβ levels in CAA and AD thereby improving clinical outcomes, most notably hemorrhagic stroke and cognitive decline. We will explore the evidence for the different forces that are thought to drive perivascular brain clearance, review the literature on potential strategies for potentiating these driving forces, and finally we will discuss the substantial translational challenges and considerations that would accompany such an intervention.
Collapse
Affiliation(s)
- Orla Bonnar
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| | - Beth Eyre
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Susanne J van Veluw
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Zhong R, Chernick D, Hottman D, Tan Y, Kim M, Narayanan M, Li L. The HDL-Mimetic Peptide 4F Mitigates Vascular and Cortical Amyloid Pathology and Associated Neuroinflammation in a Transgenic Mouse Model of Cerebral Amyloid Angiopathy and Alzheimer's Disease. Mol Neurobiol 2025:10.1007/s12035-025-04859-9. [PMID: 40120042 DOI: 10.1007/s12035-025-04859-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 03/14/2025] [Indexed: 03/25/2025]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia worldwide. Despite recent advances, more effective and safer treatment options for AD are needed. Cerebral amyloid angiopathy (CAA) is one of the key pathological hallmarks of AD characterized by amyloid-β (Aβ) deposition in the cerebral vasculature and is associated with intracerebral hemorrhage, cerebrovascular dysfunction, and cognitive impairment. CAA is also considered to underlie the main adverse effect of recently FDA-approved anti-Aβ immunotherapies, namely the amyloid-related imaging abnormalities (ARIA). Substantial evidence has shown that elevated levels of high-density lipoprotein (HDL) and its main protein component, APOA-I, are associated with reduced CAA and superior cognitive function. 4F is an APOA-I/HDL-mimetic peptide and its clinical safety and activity have been demonstrated in human trials for cardiovascular diseases. The present study investigates whether treatment with 4F modulates CAA and associated cognitive deficits and neuropathologies in the well-established Tg-SwDI mouse model of CAA/AD. Age/sex-matched Tg-SwDI mice received daily treatments of 4F or vehicle (PBS), respectively, by intraperitoneal injections for 12 weeks. The results showed that 4F treatment reduced overall Aβ plaque deposition and CAA, and attenuated CAA-associated microgliosis, without significantly affecting total levels of Aβ, astrocytosis, and behavioral function. Unbiased transcriptomic analysis revealed a heightened inflammatory state in the brain of SwDI mice and that 4F treatment reversed the overactivation of vascular cells, in particular vascular smooth muscle cells, relieving cerebrovascular inflammation in CAA/AD mice. Our study provides experimental evidence for the therapeutic potential of 4F to mitigate CAA and associated pathologies in AD.
Collapse
Affiliation(s)
- Rui Zhong
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Dustin Chernick
- Graduate Program in Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - David Hottman
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Yejun Tan
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Minwoo Kim
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Manojkumar Narayanan
- Graduate Program in Comparative and Molecular Biosciences, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Ling Li
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA.
- Graduate Program in Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
3
|
Tang C, Border JJ, Zhang H, Gregory A, Bai S, Fang X, Liu Y, Wang S, Hwang SH, Gao W, Morgan GC, Smith J, Bunn D, Cantwell C, Wagner KM, Morisseau C, Yang J, Shin SM, O'Herron P, Bagi Z, Filosa JA, Dong Y, Yu H, Hammock BD, Roman RJ, Fan F. Inhibition of soluble epoxide hydrolase ameliorates cerebral blood flow autoregulation and cognition in alzheimer's disease and diabetes-related dementia rat models. GeroScience 2025:10.1007/s11357-025-01550-8. [PMID: 39903369 DOI: 10.1007/s11357-025-01550-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/27/2025] [Indexed: 02/06/2025] Open
Abstract
Alzheimer's Disease and Alzheimer's Disease-related dementias (AD/ADRD) pose major global healthcare challenges, with diabetes mellitus (DM) being a key risk factor. Both AD and DM-related ADRD are characterized by reduced cerebral blood flow, although the exact mechanisms remain unclear. We previously identified compromised cerebral hemodynamics as early signs in TgF344-AD and type 2 DM-ADRD (T2DN) rat models. Genome-wide studies have linked AD/ADRD to SNPs in soluble epoxide hydrolase (sEH). This study explored the effects of sEH inhibition with TPPU on cerebral vascular function and cognition in AD and DM-ADRD models. Chronic TPPU treatment improved cognition in both AD and DM-ADRD rats without affecting body weight. In DM-ADRD rats, TPPU reduced plasma glucose and HbA1c levels. Transcriptomic analysis of primary cerebral vascular smooth muscle cells from AD rats treated with TPPU revealed enhanced pathways related to cell contraction, alongside decreased oxidative stress and inflammation. Both AD and DM-ADRD rats exhibited impaired myogenic responses and autoregulation in the cerebral circulation, which were normalized with chronic sEH inhibition. Additionally, TPPU improved acetylcholine-induced vasodilation in the middle cerebral arteries (MCA) of DM-ADRD rats. Acute TPPU administration unexpectedly caused vasoconstriction in the MCA of DM-ADRD rats at lower doses. In contrast, higher doses or longer durations were required to induce effective vasodilation at physiological perfusion pressure in both control and ADRD rats. Additionally, TPPU decreased reactive oxygen species production in cerebral vessels of AD and DM-ADRD rats. These findings provide novel evidence that chronic sEH inhibition can reverse cerebrovascular dysfunction and cognitive impairments in AD/ADRD, offering a promising avenue for therapeutic development.
Collapse
Affiliation(s)
- Chengyun Tang
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Pharmacology &Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jane J Border
- Pharmacology &Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Huawei Zhang
- Pharmacology &Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Andrew Gregory
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Shan Bai
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Xing Fang
- Pharmacology &Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Yedan Liu
- Pharmacology &Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Shaoxun Wang
- Pharmacology &Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Sung Hee Hwang
- Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
| | - Wenjun Gao
- Pharmacology &Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Gilbert C Morgan
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Jhania Smith
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - David Bunn
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Cameron Cantwell
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Karen M Wagner
- Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
| | - Christophe Morisseau
- Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
| | - Jun Yang
- Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
| | - Seung Min Shin
- Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Philip O'Herron
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Zsolt Bagi
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Jessica A Filosa
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Yanbin Dong
- Georgia Prevention Center, Augusta University, Augusta, GA, USA
| | - Hongwei Yu
- Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Bruce D Hammock
- Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
| | - Richard J Roman
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Fan Fan
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA.
- Pharmacology &Toxicology, University of Mississippi Medical Center, Jackson, MS, USA.
- Department of Physiology, Medical College of Georgia, Augusta University, 1462 Laney Walker Blvd, Augusta, GA, 30912, USA.
| |
Collapse
|
4
|
Wang J, Meng X, Yang J, Tang Y, Zeng F, Wang Y, Chen Z, Chen D, Zou R, Liu W. Improvements in Exercise for Alzheimer's Disease: Highlighting FGF21-Induced Cerebrovascular Protection. Neurochem Res 2025; 50:95. [PMID: 39903342 DOI: 10.1007/s11064-025-04350-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/13/2025] [Accepted: 01/27/2025] [Indexed: 02/06/2025]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease. Currently, it has shown a trend of earlier onset, with most patients experiencing a progressive decline in cognitive function following the disease's onset, which places a heavy burden on society and family. Since no drug cure for AD exists, exploring new ways for its treatment and prevention has become critical. Early vascular damage is an initial trigger for neuronal injury in AD, underscoring the importance of vascular health in the early stages of the disease. Patients with early AD experience abnormal blood-brain barrier transport of amyloid-β (Aβ) peptides, with excess Aβ being deposited in the cerebral vasculature. The toxic effects of Aβ lead to abnormalities in cerebrovascular structure and function. Fibroblast growth factor21 (FGF21) is an endocrine factor that positively regulates energy homeostasis and glucose-lipid metabolism. Notably, it is one of the effective targets for metabolic disease prevention and treatment. Recent studies have found that FGF21 has anti-aging and vasoprotective effects, with receptors for FGF21 present in the brain. Exercise stimulates the liver to produce large amounts of FGF21, which enters the blood-brain barrier with the blood to exert neurovascular protection. Therefore, we review the biological properties of FGF21, its role in the cerebrovascular structure and function in AD, and the mechanism of exercise-regulated FGF21 action on AD-related cerebrovascular changes, aiming to provide a new theoretical basis for using exercise to ameliorate degenerative neurological diseases.
Collapse
Affiliation(s)
- Juan Wang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, No. 437, Lushan South Road, Changsha, Hunan Province, 410012, China
| | - Xiangyuan Meng
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, No. 437, Lushan South Road, Changsha, Hunan Province, 410012, China
| | - Jialun Yang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, No. 437, Lushan South Road, Changsha, Hunan Province, 410012, China
| | - Yingzhe Tang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, No. 437, Lushan South Road, Changsha, Hunan Province, 410012, China
| | - Fanqi Zeng
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, No. 437, Lushan South Road, Changsha, Hunan Province, 410012, China
| | - Yiyang Wang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, No. 437, Lushan South Road, Changsha, Hunan Province, 410012, China
| | - Zeyu Chen
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, No. 437, Lushan South Road, Changsha, Hunan Province, 410012, China
| | - Dandan Chen
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, No. 437, Lushan South Road, Changsha, Hunan Province, 410012, China
| | - Ruihan Zou
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, No. 437, Lushan South Road, Changsha, Hunan Province, 410012, China
| | - Wenfeng Liu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, No. 437, Lushan South Road, Changsha, Hunan Province, 410012, China.
- Key Laboratory of Protein Chemistry and Developmental Biology, Ministry of Education, Hunan Normal University, Changsha, Hunan Province, 410081, China.
- Physical Education College, Yuelu District, Hunan Normal University, Changsha, Hunan Province, 410081, China.
| |
Collapse
|
5
|
Huang C, Wei Z, Zheng N, Yan J, Zhang J, Ye X, Zhao W. The interaction between dysfunction of vasculature and tauopathy in Alzheimer's disease and related dementias. Alzheimers Dement 2025; 21:e14618. [PMID: 39998958 PMCID: PMC11854360 DOI: 10.1002/alz.14618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/01/2025] [Accepted: 01/12/2025] [Indexed: 02/27/2025]
Abstract
Tauopathy is one of the pathological features of Alzheimer's disease and related dementias (ADRD). At present, there have been many studies on the formation, deposition, and intercellular transmission of tau in neurons and immune cells. The vasculature is an important component of the central nervous system. This review discusses the interaction between vasculature and tau in detail from three aspects. (1) The vascular risk factors (VRFs) discussed in this review include diabetes mellitus (DM), abnormal blood pressure (BP), and hypercholesterolemia. (2) In ADRD pathology, the hyperphosphorylation and deposition of tau interact with disrupted vasculature, such as different cells (endothelial cells, smooth muscular cells, and pericytes), the blood-brain barrier (BBB), and the cerebral lymphatic system. (3) The functions of vasculature are regulated by various signaling transductions. Endothelial nitric oxide synthase/nitric oxide, calcium signaling, Rho/Rho-associated coiled-coil containing Kinase, and receptors for advanced glycation end products are discussed in this review. Our findings indicate that the prevention and treatment of vascular health may be a potential target for ADRD combination therapy. HIGHLIGHTS: Persistent VRFs increase early disruption of vascular mechanisms and are strongly associated with tau pathology in ADRD. Cell dysfunction in the vasculature causes BBB leakage and drainage incapacity of the cerebral lymphatic system, which interacts with tau pathology. Signaling molecules in the vasculature regulate vasodilation and contraction, angiogenesis, and CBF. Abnormal signaling transduction is related to tau hyperphosphorylation and deposition.
Collapse
Affiliation(s)
- Chuyao Huang
- Science and Technology Innovation CenterGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Zhenwen Wei
- Science and Technology Innovation CenterGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Ningxiang Zheng
- Science and Technology Innovation CenterGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Jingsi Yan
- Science and Technology Innovation CenterGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Jiayu Zhang
- Science and Technology Innovation CenterGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Xinyi Ye
- Science and Technology Innovation CenterGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Wei Zhao
- Science and Technology Innovation CenterGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
| |
Collapse
|
6
|
Lin K, Stiles J, Tambo W, Ajmal E, Piao Q, Powell K, Li C. Bimodal functions of calcitonin gene-related peptide in the brain. Life Sci 2024; 359:123177. [PMID: 39486618 DOI: 10.1016/j.lfs.2024.123177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024]
Abstract
AIMS Calcitonin gene-related peptide (CGRP) is a pluripotent neuropeptide crucial for maintaining vascular homeostasis, yet its full therapeutic potential remains incompletely exploited. Within the brain, CGRP demonstrates a distinct bimodal effect, contributing to neuroprotection in ischemic conditions while inducing neuronal sensitization and inflammation in non-ischemic settings. Despite extensive research on CGRP, the absence of a definitive determinant for this observed dichotomy has limited its potential for therapeutic applications in the brain. This review examines the effects of CGRP in both physiological and pathological conditions, aiming to identify a unifying factor that could enhance its therapeutic applicability. MATERIALS AND METHODS This comprehensive literature review analyzes the molecular pathways associated with CGRP and the specific cellular responses observed in these contexts. Additionally, the review investigates the psychological implications of CGRP in relation to cerebral perfusion levels, aiming to elucidate its underlying factors. KEY FINDINGS Reviewing the literature reveals that, elevated levels of CGRP in non-ischemic conditions exert detrimental effects on brain function, while they confer protective effects in the context of ischemia. These encompass anti-oxidative, anti-inflammatory, anti-apoptotic, and angiogenic properties, along with behavioral normalization. Current findings indicate promising therapeutic avenues for CGRP beyond the acute phases of cerebral injury, extending to neurodegenerative and psychological disorders associated with cerebral hypoperfusion, as well as chronic recovery following acute cerebral injuries. SIGNIFICANCE Improved understanding of CGRP's bimodal properties, alongside advancements in CGRP delivery methodologies and brain ischemia detection technologies, paves the way for realizing its untapped potential and broad therapeutic benefits in diverse pathological conditions.
Collapse
Affiliation(s)
- Kanheng Lin
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Emory University, Atlanta, GA, USA
| | - Jacob Stiles
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; The College of William & Mary, Williamsburg, VA, USA
| | - Willians Tambo
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA
| | - Erum Ajmal
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Division of Neurosurgery, SUNY Downstate College of Medicine, Brooklyn, NY, USA
| | - Quanyu Piao
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Keren Powell
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Chunyan Li
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA; Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| |
Collapse
|
7
|
Moore A, Ritchie MD. Is the Relationship Between Cardiovascular Disease and Alzheimer's Disease Genetic? A Scoping Review. Genes (Basel) 2024; 15:1509. [PMID: 39766777 PMCID: PMC11675426 DOI: 10.3390/genes15121509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Cardiovascular disease (CVD) and Alzheimer's disease (AD) are two diseases highly prevalent in the aging population and often co-occur. The exact relationship between the two diseases is uncertain, though epidemiological studies have demonstrated that CVDs appear to increase the risk of AD and vice versa. This scoping review aims to examine the current identified overlapping genetics between CVDs and AD at the individual gene level and at the shared pathway level. METHODS Following PRISMA-ScR guidelines for a scoping review, we searched the PubMed and Scopus databases from 1990 to October 2024 for articles that involved (1) CVDs, (2) AD, and (3) used statistical methods to parse genetic relationships. RESULTS Our search yielded 2918 articles, of which 274 articles passed screening and were organized into two main sections: (1) evidence of shared genetic risk; and (2) shared mechanisms. The genes APOE, PSEN1, and PSEN2 reportedly have wide effects across the AD and CVD spectrum, affecting both cardiac and brain tissues. Mechanistically, changes in three main pathways (lipid metabolism, blood pressure regulation, and the breakdown of the blood-brain barrier (BBB)) contribute to subclinical and etiological changes that promote both AD and CVD progression. However, genetic studies continue to be limited by the availability of longitudinal data and lack of cohorts that are representative of diverse populations. CONCLUSIONS Highly penetrant familial genes simultaneously increase the risk of CVDs and AD. However, in most cases, sets of dysregulated genes within larger-scale mechanisms, like changes in lipid metabolism, blood pressure regulation, and BBB breakdown, increase the risk of both AD and CVDs and contribute to disease progression.
Collapse
Affiliation(s)
- Anni Moore
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Marylyn D. Ritchie
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
- Division of Informatics, Department of Biostatistics, Epidemiology & Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
8
|
Sighencea MG, Popescu RȘ, Trifu SC. From Fundamentals to Innovation in Alzheimer's Disease: Molecular Findings and Revolutionary Therapies. Int J Mol Sci 2024; 25:12311. [PMID: 39596378 PMCID: PMC11594972 DOI: 10.3390/ijms252212311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Alzheimer's disease (AD) is a global health concern and the leading cause of dementia in the elderly. The prevalence of this neurodegenerative condition is projected to increase concomitantly with increased life expectancy, resulting in a significant economic burden. With very few FDA-approved disease-modifying drugs available for AD, there is an urgent need to develop new compounds capable of impeding the progression of the disease. Given the unclear etiopathogenesis of AD, this review emphasizes the underlying mechanisms of this condition. It explores not only well-studied aspects, such as the accumulation of Aβ plaques and neurofibrillary tangles, but also novel areas, including glymphatic and lymphatic pathways, microbiota and the gut-brain axis, serotoninergic and autophagy alterations, vascular dysfunction, the metal hypothesis, the olfactory pathway, and oral health. Furthermore, the potential molecular targets arising from all these mechanisms have been reviewed, along with novel promising approaches such as nanoparticle-based therapy, neural stem cell transplantation, vaccines, and CRISPR-Cas9-mediated genome editing techniques. Taking into account the overlap of these various mechanisms, individual and combination therapies emerge as the future direction in the AD strategy.
Collapse
Affiliation(s)
| | - Ramona Ștefania Popescu
- Department of Infectious Diseases, “Carol Davila” University of Medicine and Pharmacy Bucharest, 020021 Bucharest, Romania;
| | - Simona Corina Trifu
- Department of Psychiatry, “Carol Davila” University of Medicine and Pharmacy Bucharest, 020021 Bucharest, Romania
| |
Collapse
|
9
|
Qiu J, Peng S, Qu R, Wu L, Xing L, Zhang L, Sun J. New evidence of vascular defects in neurodegenerative diseases revealed by single cell RNA sequencing. Clin Sci (Lond) 2024; 138:1377-1394. [PMID: 39469930 DOI: 10.1042/cs20241658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/07/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024]
Abstract
Neurodegenerative diseases (NDs) involve the progressive loss of neuronal structure or function in the brain and spinal cord. Despite their diverse etiologies, NDs manifest similar pathologies. Emerging research identifies vascular defects as a previously neglected hallmark of NDs. The development and popularization of single-cell RNA sequencing (scRNA-seq) technologies have significantly advanced our understanding of brain vascular cell types and their molecular characteristics, including gene expression changes at the single-cell level in NDs. These unprecedented insights deepen our understanding of the pathogenic mechanisms underlying NDs. However, the occurrence and role of vascular defects in disease progression remain largely unexplored. In this paper, we systematically summarize recent advances in the structure and organization of the central nervous system vasculature in mice, healthy individuals, and patients with NDs, focussing primarily on disease-specific alterations in vascular cell types or subtypes. Combining scRNA-seq with pathology evidence, we propose that vascular defects, characterized by disruptions in cell types and structural integrity, may serve as common early features of NDs. Finally, we discuss several pathways through which vascular defects in NDs lead to neuronal degeneration. A deeper understanding of the causes and contributions of vascular defects to NDs aids in elucidating the pathogenic mechanisms and developing meaningful therapeutic interventions.
Collapse
Affiliation(s)
- Jiaying Qiu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Department of Prenatal Screening and Diagnosis Center, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, China
| | - Siwan Peng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ruobing Qu
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Liucheng Wu
- Laboratory Animal Center, Nantong University, Nantong 226001, China
| | - Lingyan Xing
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Luzhong Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Junjie Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
10
|
Lin H, Wang Z, Liao Y, Yu Z, Xu H, Qin T, Tang J, Yang X, Chen S, Chen X, Zhang X, Shen Y. Super-resolution ultrasound imaging reveals temporal cerebrovascular changes with disease progression in female 5×FAD mouse model of Alzheimer's disease: correlation with pathological impairments. EBioMedicine 2024; 108:105355. [PMID: 39293213 PMCID: PMC11424966 DOI: 10.1016/j.ebiom.2024.105355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/20/2024] Open
Abstract
BACKGROUND Vascular dysfunction is closely associated with the progression of Alzheimer's disease (AD). A critical research gap exists that no studies have explored the in vivo temporal changes of cerebrovascular alterations with AD progression in mouse models, encompassing both structure and flow dynamics at micron-scale resolution across the early, middle, and late stages of the disease. METHODS In this study, ultrasound localisation microscopy (ULM) was applied to image the cerebrovascular alterations of the transgenic female 5×FAD mouse model across different stages of disease progression: early (4 months), moderate (7 months), and late (12 months). Age-matched non-transgenic (non-Tg) littermates were used as controls. Immunohistology examinations were performed to evaluate the influence of disease progression on the β-amyloid (Aβ) load and microvascular alterations, including morphological changes and the blood-brain barrier (BBB) leakage. FINDINGS Our findings revealed a significant decline in both vascular density and flow velocity in the retrosplenial cortex of 5×FAD mice at an early stage, which subsequently became more pronounced in the visual cortex and hippocampus as the disease progressed. Additionally, we observed a reduction in vascular length preceding diminished flow velocities in cortical penetrating arterioles during the early stages. The quantification of vascular metrics derived from ULM imaging showed significant correlations with those obtained from vascular histological images. Immunofluorescence staining identified early vascular abnormalities in the retrosplenial cortex. As the disease advanced, there was an exacerbation of Aβ accumulation and BBB disruption in a regionally variable manner. The vascular changes observed through ULM imaging exhibited a negative correlation with amyloid load and were associated with the compromise of the BBB integrity. INTERPRETATION Through high-resolution, in vivo imaging of cerebrovasculature, this study reveals significant spatiotemporal dysfunction in cerebrovascular dynamics accompanying disease progression in a mouse model of AD, enhancing our understanding of its pathophysiology. FUNDING This study is supported by grants from National Key Research and Development Program of China (2020YFA0908800), National Natural Science Foundation of China (12074269, 82272014, 82327804, 62071310), Shenzhen Basic Science Research (20220808185138001, JCYJ20220818095612027, JCYJ20210324093006017), STI 2030-Major Projects (2021ZD0200500) and Guangdong Natural Science Foundation (2024A1515012591, 2024A1515011342).
Collapse
Affiliation(s)
- Haoming Lin
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518071, China
| | - Zidan Wang
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518071, China
| | - Yingtao Liao
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518071, China; Department of Radiation Oncology, Huizhou Central People's Hospital, Huizhou, 516001, Guangdong, China
| | - Zhifan Yu
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518071, China
| | - Huiqin Xu
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518071, China
| | - Ting Qin
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518071, China
| | - Jianbo Tang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518071, China
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Centre for Disease Control and Prevention, Shenzhen, 518055, China
| | - Siping Chen
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518071, China
| | - Xin Chen
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518071, China
| | - Xinyu Zhang
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518071, China
| | - Yuanyuan Shen
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518071, China.
| |
Collapse
|
11
|
Tang C, Border JJ, Zhang H, Gregory A, Bai S, Fang X, Liu Y, Wang S, Hwang SH, Gao W, Morgan GC, Smith J, Bunn D, Cantwell C, Wagner KM, Morisseau C, Yang J, Shin SM, O’Herron P, Bagi Z, Filosa JA, Dong Y, Yu H, Hammock BD, Roman RJ, Fan F. Inhibition of Soluble Epoxide Hydrolase Ameliorates Cerebral Blood Flow Autoregulation and Cognition in Alzheimer's Disease and Diabetes-Related Dementia Rat Models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610540. [PMID: 39257786 PMCID: PMC11383657 DOI: 10.1101/2024.08.30.610540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Alzheimer's Disease and Alzheimer's Disease-related dementias (AD/ADRD) pose major global healthcare challenges, with diabetes mellitus (DM) being a key risk factor. Both AD and DM-related ADRD are characterized by reduced cerebral blood flow, although the exact mechanisms remain unclear. We previously identified compromised cerebral hemodynamics as early signs in TgF344-AD and type 2 DM-ADRD (T2DN) rat models. Genome-wide studies have linked AD/ADRD to SNPs in soluble epoxide hydrolase (sEH). This study explored the effects of sEH inhibition with TPPU on cerebral vascular function and cognition in AD and DM-ADRD models. Chronic TPPU treatment improved cognition in both AD and DM-ADRD rats without affecting body weight. In DM-ADRD rats, TPPU reduced plasma glucose and HbA1C levels. Transcriptomic analysis of primary cerebral vascular smooth muscle cells from AD rats treated with TPPU revealed enhanced pathways related to cell contraction, alongside decreased oxidative stress and inflammation. Both AD and DM-ADRD rats exhibited impaired myogenic responses and autoregulation in the cerebral circulation, which were normalized with chronic sEH inhibition. Additionally, TPPU improved acetylcholine-induced vasodilation in the middle cerebral arteries (MCA) of DM-ADRD rats. Acute TPPU administration unexpectedly caused vasoconstriction in the MCA of DM-ADRD rats at lower doses. In contrast, higher doses or longer durations were required to induce effective vasodilation at physiological perfusion pressure in both control and ADRD rats. Additionally, TPPU decreased reactive oxygen species production in cerebral vessels of AD and DM-ADRD rats. These findings provide novel evidence that chronic sEH inhibition can reverse cerebrovascular dysfunction and cognitive impairments in AD/ADRD, offering a promising avenue for therapeutic development.
Collapse
Affiliation(s)
- Chengyun Tang
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA
- Pharmacology &Toxicology, University of Mississippi Medical Center, Jackson, MS
| | - Jane J. Border
- Pharmacology &Toxicology, University of Mississippi Medical Center, Jackson, MS
| | - Huawei Zhang
- Pharmacology &Toxicology, University of Mississippi Medical Center, Jackson, MS
| | - Andrew Gregory
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA
| | - Shan Bai
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA
| | - Xing Fang
- Pharmacology &Toxicology, University of Mississippi Medical Center, Jackson, MS
| | - Yedan Liu
- Pharmacology &Toxicology, University of Mississippi Medical Center, Jackson, MS
| | - Shaoxun Wang
- Pharmacology &Toxicology, University of Mississippi Medical Center, Jackson, MS
| | - Sung Hee Hwang
- Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA
| | - Wenjun Gao
- Pharmacology &Toxicology, University of Mississippi Medical Center, Jackson, MS
| | - Gilbert C. Morgan
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA
| | - Jhania Smith
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA
| | - David Bunn
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA
| | - Cameron Cantwell
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA
| | - Karen M. Wagner
- Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA
| | - Christophe Morisseau
- Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA
| | - Jun Yang
- Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA
| | - Seung Min Shin
- Anesthesiology, Medical College of Wisconsin, Milwaukee, WI
| | - Philip O’Herron
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA
| | - Zsolt Bagi
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA
| | - Jessica A. Filosa
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA
| | - Yanbin Dong
- Georgia Prevention Center, Augusta University, Augusta, GA
| | - Hongwei Yu
- Anesthesiology, Medical College of Wisconsin, Milwaukee, WI
| | - Bruce D. Hammock
- Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA
| | - Richard J. Roman
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA
| | - Fan Fan
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA
- Pharmacology &Toxicology, University of Mississippi Medical Center, Jackson, MS
| |
Collapse
|
12
|
Cheng S, Xia IF, Wanner R, Abello J, Stratman AN, Nicoli S. Hemodynamics regulate spatiotemporal artery muscularization in the developing circle of Willis. eLife 2024; 13:RP94094. [PMID: 38985140 PMCID: PMC11236418 DOI: 10.7554/elife.94094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024] Open
Abstract
Vascular smooth muscle cells (VSMCs) envelop vertebrate brain arteries and play a crucial role in regulating cerebral blood flow and neurovascular coupling. The dedifferentiation of VSMCs is implicated in cerebrovascular disease and neurodegeneration. Despite its importance, the process of VSMC differentiation on brain arteries during development remains inadequately characterized. Understanding this process could aid in reprogramming and regenerating dedifferentiated VSMCs in cerebrovascular diseases. In this study, we investigated VSMC differentiation on zebrafish circle of Willis (CoW), comprising major arteries that supply blood to the vertebrate brain. We observed that arterial specification of CoW endothelial cells (ECs) occurs after their migration from cranial venous plexus to form CoW arteries. Subsequently, acta2+ VSMCs differentiate from pdgfrb+ mural cell progenitors after they were recruited to CoW arteries. The progression of VSMC differentiation exhibits a spatiotemporal pattern, advancing from anterior to posterior CoW arteries. Analysis of blood flow suggests that earlier VSMC differentiation in anterior CoW arteries correlates with higher red blood cell velocity and wall shear stress. Furthermore, pulsatile flow induces differentiation of human brain PDGFRB+ mural cells into VSMCs, and blood flow is required for VSMC differentiation on zebrafish CoW arteries. Consistently, flow-responsive transcription factor klf2a is activated in ECs of CoW arteries prior to VSMC differentiation, and klf2a knockdown delays VSMC differentiation on anterior CoW arteries. In summary, our findings highlight blood flow activation of endothelial klf2a as a mechanism regulating initial VSMC differentiation on vertebrate brain arteries.
Collapse
Affiliation(s)
- Siyuan Cheng
- Department of Genetics, Yale School of Medicine, New Haven, United States
- Yale Cardiovascular Research Center, Section of Cardiology, Department of Internal Medicine, Yale School of Medicine, New Haven, United States
- Vascular Biology & Therapeutics Program, Yale School of Medicine, New Haven, United States
| | - Ivan Fan Xia
- Department of Genetics, Yale School of Medicine, New Haven, United States
- Yale Cardiovascular Research Center, Section of Cardiology, Department of Internal Medicine, Yale School of Medicine, New Haven, United States
- Vascular Biology & Therapeutics Program, Yale School of Medicine, New Haven, United States
| | - Renate Wanner
- Department of Genetics, Yale School of Medicine, New Haven, United States
- Yale Cardiovascular Research Center, Section of Cardiology, Department of Internal Medicine, Yale School of Medicine, New Haven, United States
- Vascular Biology & Therapeutics Program, Yale School of Medicine, New Haven, United States
| | - Javier Abello
- Department of Cell Biology & Physiology, School of Medicine, Washington University in St. Louis, St. Louis, United States
| | - Amber N Stratman
- Department of Cell Biology & Physiology, School of Medicine, Washington University in St. Louis, St. Louis, United States
| | - Stefania Nicoli
- Department of Genetics, Yale School of Medicine, New Haven, United States
- Yale Cardiovascular Research Center, Section of Cardiology, Department of Internal Medicine, Yale School of Medicine, New Haven, United States
- Vascular Biology & Therapeutics Program, Yale School of Medicine, New Haven, United States
| |
Collapse
|
13
|
Liu Q, Wu C, Ding Q, Liu XY, Zhang N, Shen JH, Ou ZT, Lin T, Zhu HX, Lan Y, Xu GQ. Age-related changes in meningeal lymphatic function are closely associated with vascular endothelial growth factor-C expression. Brain Res 2024; 1833:148868. [PMID: 38519008 DOI: 10.1016/j.brainres.2024.148868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/19/2023] [Accepted: 03/16/2024] [Indexed: 03/24/2024]
Abstract
Meningeal lymphatic vessels (MLVs) have crucial roles in removing metabolic waste and toxic proteins from the brain and transporting them to the periphery. Aged mice show impaired meningeal lymphatic function. Nevertheless, as the disease progresses, and significant pathological changes manifest in the brain, treating the condition becomes increasingly challenging. Therefore, investigating the alterations in the structure and function of MLVs in the early stages of aging is critical for preventing age-related central nervous system degenerative diseases. We detected the structure and function of MLVs in young, middle-aged, and aged mice. Middle-aged mice, compared with young and aged mice, showed enhanced meningeal lymphatic function along with MLV expansion and performed better in the Y maze test. Moreover, age-related changes in meningeal lymphatic function were closely associated with vascular endothelial growth factor-C (VEGF-C) expression in the brain cortex. Our data suggested that the cerebral cortex may serve as a target for VEGF-C supplementation to ameliorate meningeal lymphatic dysfunction, thus providing a new strategy for preventing age-related central nervous system diseases.
Collapse
Affiliation(s)
- Qi Liu
- School of Rehabilitation Medicine, Weifang Medical University, Weifang, China; Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No. 106 Zhongshan Road II, Guangzhou 510080, China
| | - Cheng Wu
- Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No. 106 Zhongshan Road II, Guangzhou 510080, China
| | - Qian Ding
- Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No. 106 Zhongshan Road II, Guangzhou 510080, China
| | - Xiang-Yu Liu
- Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No. 106 Zhongshan Road II, Guangzhou 510080, China
| | - Ni Zhang
- Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No. 106 Zhongshan Road II, Guangzhou 510080, China
| | - Jun-Hui Shen
- Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No. 106 Zhongshan Road II, Guangzhou 510080, China
| | - Zi-Tong Ou
- Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No. 106 Zhongshan Road II, Guangzhou 510080, China
| | - Tuo Lin
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Hong-Xiang Zhu
- Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No. 106 Zhongshan Road II, Guangzhou 510080, China
| | - Yue Lan
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China.
| | - Guang-Qing Xu
- Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No. 106 Zhongshan Road II, Guangzhou 510080, China.
| |
Collapse
|
14
|
Cheng S, Xia IF, Wanner R, Abello J, Stratman AN, Nicoli S. Hemodynamics regulate spatiotemporal artery muscularization in the developing circle of Willis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.01.569622. [PMID: 38077062 PMCID: PMC10705471 DOI: 10.1101/2023.12.01.569622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Vascular smooth muscle cells (VSMCs) envelop vertebrate brain arteries, playing a crucial role in regulating cerebral blood flow and neurovascular coupling. The dedifferentiation of VSMCs is implicated in cerebrovascular diseases and neurodegeneration. Despite its importance, the process of VSMC differentiation on brain arteries during development remains inadequately characterized. Understanding this process could aid in reprogramming and regenerating differentiated VSMCs in cerebrovascular diseases. In this study, we investigated VSMC differentiation on the zebrafish circle of Willis (CoW), comprising major arteries that supply blood to the vertebrate brain. We observed that the arterial expression of CoW endothelial cells (ECs) occurs after their migration from the cranial venous plexus to form CoW arteries. Subsequently, acta2+ VSMCs differentiate from pdgfrb+ mural cell progenitors upon recruitment to CoW arteries. The progression of VSMC differentiation exhibits a spatiotemporal pattern, advancing from anterior to posterior CoW arteries. Analysis of blood flow suggests that earlier VSMC differentiation in anterior CoW arteries correlates with higher red blood cell velocity wall shear stress. Furthermore, pulsatile blood flow is required for differentiation of human brain pdgfrb+ mural cells into VSMCs as well as VSMC differentiation on zebrafish CoW arteries. Consistently, the flow-responsive transcription factor klf2a is activated in ECs of CoW arteries prior to VSMC differentiation, and klf2a knockdown delays VSMC differentiation on anterior CoW arteries. In summary, our findings highlight the role of blood flow activation of endothelial klf2a as a mechanism regulating the initial VSMC differentiation on vertebrate brain arteries.
Collapse
Affiliation(s)
- Siyuan Cheng
- Department of Genetics, Yale School of Medicine, 333 Cedar St, New Haven, CT 06520, USA
- Yale Cardiovascular Research Center, Section of Cardiology, Department of Internal Medicine, Yale School of Medicine, 300 George St, New Haven, CT 06511, USA
- Vascular Biology & Therapeutics Program, Yale School of Medicine, 10 Amistad St, New Haven, CT 06520, USA
| | - Ivan Fan Xia
- Department of Genetics, Yale School of Medicine, 333 Cedar St, New Haven, CT 06520, USA
- Yale Cardiovascular Research Center, Section of Cardiology, Department of Internal Medicine, Yale School of Medicine, 300 George St, New Haven, CT 06511, USA
- Vascular Biology & Therapeutics Program, Yale School of Medicine, 10 Amistad St, New Haven, CT 06520, USA
| | - Renate Wanner
- Department of Genetics, Yale School of Medicine, 333 Cedar St, New Haven, CT 06520, USA
- Yale Cardiovascular Research Center, Section of Cardiology, Department of Internal Medicine, Yale School of Medicine, 300 George St, New Haven, CT 06511, USA
- Vascular Biology & Therapeutics Program, Yale School of Medicine, 10 Amistad St, New Haven, CT 06520, USA
| | - Javier Abello
- Department of Cell Biology & Physiology, School of Medicine, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO 63110, USA
| | - Amber N. Stratman
- Department of Cell Biology & Physiology, School of Medicine, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO 63110, USA
| | - Stefania Nicoli
- Department of Genetics, Yale School of Medicine, 333 Cedar St, New Haven, CT 06520, USA
- Yale Cardiovascular Research Center, Section of Cardiology, Department of Internal Medicine, Yale School of Medicine, 300 George St, New Haven, CT 06511, USA
- Vascular Biology & Therapeutics Program, Yale School of Medicine, 10 Amistad St, New Haven, CT 06520, USA
| |
Collapse
|
15
|
Zhai Y, Morihara R, Feng T, Hu X, Fukui Y, Bian Z, Bian Y, Yu H, Sun H, Takemoto M, Nakano Y, Yunoki T, Tang Y, Ishiura H, Yamashita T. Protective effect of scallop-derived plasmalogen against vascular dysfunction, via the pSTAT3/PIM1/NFATc1 axis, in a novel mouse model of Alzheimer's disease with cerebral hypoperfusion. Brain Res 2024; 1828:148790. [PMID: 38272156 DOI: 10.1016/j.brainres.2024.148790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/23/2023] [Accepted: 01/21/2024] [Indexed: 01/27/2024]
Abstract
A strong relationship between Alzheimer's disease (AD) and vascular dysfunction has been the focus of increasing attention in aging societies. In the present study, we examined the long-term effect of scallop-derived plasmalogen (sPlas) on vascular remodeling-related proteins in the brain of an AD with cerebral hypoperfusion (HP) mouse model. We demonstrated, for the first time, that cerebral HP activated the axis of the receptor for advanced glycation endproducts (RAGE)/phosphorylated signal transducer and activator of transcription 3 (pSTAT3)/provirus integration site for Moloney murine leukemia virus 1 (PIM1)/nuclear factor of activated T cells 1 (NFATc1), accounting for such cerebral vascular remodeling. Moreover, we also found that cerebral HP accelerated pSTAT3-mediated astrogliosis and activation of the nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3) inflammasome, probably leading to cognitive decline. On the other hand, sPlas treatment attenuated the activation of the pSTAT3/PIM1/NFATc1 axis independent of RAGE and significantly suppressed NLRP3 inflammasome activation, demonstrating the beneficial effect on AD.
Collapse
Affiliation(s)
- Yun Zhai
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan; Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, Heilongjiang Province 150001, China
| | - Ryuta Morihara
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Tian Feng
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Xinran Hu
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Yusuke Fukui
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Zhihong Bian
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Yuting Bian
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Haibo Yu
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Hongming Sun
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Mami Takemoto
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Yumiko Nakano
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Taijun Yunoki
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Ying Tang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, Heilongjiang Province 150001, China
| | - Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Toru Yamashita
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan.
| |
Collapse
|
16
|
Kim YA, Mellen M, Kizil C, Santa-Maria I. Mechanisms linking cerebrovascular dysfunction and tauopathy: Adding a layer of epiregulatory complexity. Br J Pharmacol 2024; 181:879-895. [PMID: 37926507 DOI: 10.1111/bph.16280] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 09/11/2023] [Accepted: 09/30/2023] [Indexed: 11/07/2023] Open
Abstract
Intracellular accumulation of hyperphosphorylated misfolded tau proteins are found in many neurodegenerative tauopathies, including Alzheimer's disease (AD). Tau pathology can impact cerebrovascular physiology and function through multiple mechanisms. In vitro and in vivo studies have shown that alterations in the blood-brain barrier (BBB) integrity and function can result in synaptic abnormalities and neuronal damage. In the present review, we will summarize how tau proteostasis dysregulation contributes to vascular dysfunction and, conversely, we will examine the factors and pathways leading to tau pathological alterations triggered by cerebrovascular dysfunction. Finally, we will highlight the role epigenetic and epitranscriptomic factors play in regulating the integrity of the cerebrovascular system and the progression of tauopathy including a few observartions on potential therapeutic interventions. LINKED ARTICLES: This article is part of a themed issue From Alzheimer's Disease to Vascular Dementia: Different Roads Leading to Cognitive Decline. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.6/issuetoc.
Collapse
Affiliation(s)
- Yoon A Kim
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York, USA
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Marian Mellen
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcon, Madrid, Spain
| | - Caghan Kizil
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA
| | - Ismael Santa-Maria
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York, USA
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcon, Madrid, Spain
| |
Collapse
|
17
|
Wu YC, Bogale TA, Koistinaho J, Pizzi M, Rolova T, Bellucci A. The contribution of β-amyloid, Tau and α-synuclein to blood-brain barrier damage in neurodegenerative disorders. Acta Neuropathol 2024; 147:39. [PMID: 38347288 PMCID: PMC10861401 DOI: 10.1007/s00401-024-02696-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/15/2024]
Abstract
Central nervous system (CNS) accumulation of fibrillary deposits made of Amyloid β (Aβ), hyperphosphorylated Tau or α-synuclein (α-syn), present either alone or in the form of mixed pathology, characterizes the most common neurodegenerative diseases (NDDs) as well as the aging brain. Compelling evidence supports that acute neurological disorders, such as traumatic brain injury (TBI) and stroke, are also accompanied by increased deposition of toxic Aβ, Tau and α-syn species. While the contribution of these pathological proteins to neurodegeneration has been experimentally ascertained, the cellular and molecular mechanisms driving Aβ, Tau and α-syn-related brain damage remain to be fully clarified. In the last few years, studies have shown that Aβ, Tau and α-syn may contribute to neurodegeneration also by inducing and/or promoting blood-brain barrier (BBB) disruption. These pathological proteins can affect BBB integrity either directly by affecting key BBB components such as pericytes and endothelial cells (ECs) or indirectly, by promoting brain macrophages activation and dysfunction. Here, we summarize and critically discuss key findings showing how Aβ, Tau and α-syn can contribute to BBB damage in most common NDDs, TBI and stroke. We also highlight the need for a deeper characterization of the role of these pathological proteins in the activation and dysfunction of brain macrophages, pericytes and ECs to improve diagnosis and treatment of acute and chronic neurological disorders.
Collapse
Affiliation(s)
- Ying-Chieh Wu
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Tizibt Ashine Bogale
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, BS, Italy
- Department of Acute Brain and Cardiovascular Injury, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Jari Koistinaho
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Marina Pizzi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, BS, Italy
| | - Taisia Rolova
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Arianna Bellucci
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, BS, Italy.
| |
Collapse
|
18
|
Gohel D, Zhang P, Gupta AK, Li Y, Chiang CW, Li L, Hou Y, Pieper AA, Cummings J, Cheng F. Sildenafil as a Candidate Drug for Alzheimer's Disease: Real-World Patient Data Observation and Mechanistic Observations from Patient-Induced Pluripotent Stem Cell-Derived Neurons. J Alzheimers Dis 2024; 98:643-657. [PMID: 38427489 PMCID: PMC10977448 DOI: 10.3233/jad-231391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2024] [Indexed: 03/03/2024]
Abstract
Background Alzheimer's disease (AD) is a chronic neurodegenerative disease needing effective therapeutics urgently. Sildenafil, one of the approved phosphodiesterase-5 inhibitors, has been implicated as having potential effect in AD. Objective To investigate the potential therapeutic benefit of sildenafil on AD. Methods We performed real-world patient data analysis using the MarketScan® Medicare Supplemental and the Clinformatics® databases. We conducted propensity score-stratified analyses after adjusting confounding factors (i.e., sex, age, race, and comorbidities). We used both familial and sporadic AD patient induced pluripotent stem cells (iPSC) derived neurons to evaluate the sildenafil's mechanism-of-action. Results We showed that sildenafil usage is associated with reduced likelihood of AD across four new drug compactor cohorts, including bumetanide, furosemide, spironolactone, and nifedipine. For instance, sildenafil usage is associated with a 54% reduced incidence of AD in MarketScan® (hazard ratio [HR] = 0.46, 95% CI 0.32- 0.66) and a 30% reduced prevalence of AD in Clinformatics® (HR = 0.70, 95% CI 0.49- 1.00) compared to spironolactone. We found that sildenafil treatment reduced tau hyperphosphorylation (pTau181 and pTau205) in a dose-dependent manner in both familial and sporadic AD patient iPSC-derived neurons. RNA-sequencing data analysis of sildenafil-treated AD patient iPSC-derived neurons reveals that sildenafil specifically target AD related genes and pathobiological pathways, mechanistically supporting the beneficial effect of sildenafil in AD. Conclusions These real-world patient data validation and mechanistic observations from patient iPSC-derived neurons further suggested that sildenafil is a potential repurposable drug for AD. Yet, randomized clinical trials are warranted to validate the causal treatment effects of sildenafil in AD.
Collapse
Affiliation(s)
- Dhruv Gohel
- Genomic Medicine Institute,Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Pengyue Zhang
- Department of Biostatistics and Health Data Science, Indiana University, Indianapolis, IN, USA
| | - Amit Kumar Gupta
- Genomic Medicine Institute,Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Yichen Li
- Genomic Medicine Institute,Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Chien-Wei Chiang
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Lang Li
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Yuan Hou
- Genomic Medicine Institute,Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Andrew A. Pieper
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA
- Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - Jeffrey Cummings
- Department of Brain Health, School of Integrated Health Sciences, Chambers-Grundy Center for Transformative Neuroscience, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Feixiong Cheng
- Genomic Medicine Institute,Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
19
|
Kong P, Wang X, Gao YK, Zhang DD, Huang XF, Song Y, Zhang WD, Guo RJ, Li H, Han M. RGS5 maintaining vascular homeostasis is altered by the tumor microenvironment. Biol Direct 2023; 18:78. [PMID: 37986113 PMCID: PMC10662775 DOI: 10.1186/s13062-023-00437-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/05/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Regulator of G protein signaling 5 (RGS5), as a negative regulator of G protein-coupled receptor (GPCR) signaling, is highly expressed in arterial VSMCs and pericytes, which is involved in VSMC phenotypic heterogeneity and vascular remodeling in tumors. However, its role in normal and tumor vascular remodeling is controversial. METHODS RGS5 knockout (Rgs5-KO) mice and RGS5 overexpression or knockdown in VSMCs in vivo by adeno-associated virus type 9 (AAV) carrying RGS5 cDNA or small hairpin RNA (shRNA) targeting RGS5 were used to determine the functional significance of RGS5 in vascular inflammation. RGS5 expression in the triple-negative (TNBCs) and non-triple-negative breast cancers (Non-TNBCs) was determined by immunofluorescent and immunohistochemical staining. The effect of breast cancer cell-conditioned media (BC-CM) on the pro-inflammatory phenotype of VSMCs was measured by phagocytic activity assays, adhesion assay and Western blot. RESULTS We identified that knockout and VSMC-specific knockdown of RGS5 exacerbated accumulation and pyroptosis of pro-inflammatory VSMCs, resulting in vascular remodeling, which was negated by VSMC-specific RGS5 overexpression. In contrast, in the context of breast cancer tissues, the role of RGS5 was completely disrupted. RGS5 expression was increased in the triple-negative breast cancer (TNBC) tissues and in the tumor blood vessels, accompanied with an extensive vascular network. VSMCs treated with BC-CM displayed enhanced pro-inflammatory phenotype and higher adherent with macrophages. Furthermore, tumor-derived RGS5 could be transferred into VSMCs. CONCLUSIONS These findings suggest that tumor microenvironment shifts the function of RGS5 from anti-inflammation to pro-inflammation and induces the pro-inflammatory phenotype of VSMCs that is favorable for tumor metastasis.
Collapse
Affiliation(s)
- Peng Kong
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Xu Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Hebei Medical University, Shijiazhuang, China
| | - Ya-Kun Gao
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Dan-Dan Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Xiao-Fu Huang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Yu Song
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Wen-Di Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Rui-Juan Guo
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Han Li
- Department of Orthopaedic Surgery, Institute of Biomechanical Science and Biomechanical Key Laboratory of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Mei Han
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
20
|
Rahman MA, Liu J. A genome-wide association study coupled with machine learning approaches to identify influential demographic and genomic factors underlying Parkinson's disease. Front Genet 2023; 14:1230579. [PMID: 37842648 PMCID: PMC10570619 DOI: 10.3389/fgene.2023.1230579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
Background: Despite the recent success of genome-wide association studies (GWAS) in identifying 90 independent risk loci for Parkinson's disease (PD), the genomic underpinning of PD is still largely unknown. At the same time, accurate and reliable predictive models utilizing genomic or demographic features are desired in the clinic for predicting the risk of Parkinson's disease. Methods: To identify influential demographic and genomic factors associated with PD and to further develop predictive models, we utilized demographic data, incorporating 200 variables across 33,473 participants, along with genomic data involving 447,089 SNPs across 8,840 samples, both derived from the Fox Insight online study. We first applied correlation and GWAS analyses to find the top demographic and genomic factors associated with PD, respectively. We further developed and compared a variety of machine learning (ML) models for predicting PD. From the developed ML models, we performed feature importance analysis to reveal the predictability of each demographic or the genomic input feature for PD. Finally, we performed gene set enrichment analysis on our GWAS results to identify PD-associated pathways. Results: In our study, we identified both novel and well-known demographic and genetic factors (along with the enriched pathways) related to PD. In addition, we developed predictive models that performed robustly, with AUC = 0.89 for demographic data and AUC = 0.74 for genomic data. Our GWAS analysis identified several novel and significant variants and gene loci, including three intron variants in LMNA (p-values smaller than 4.0e-21) and one missense variant in SEMA4A (p-value = 1.11e-26). Our feature importance analysis from the PD-predictive ML models highlighted some significant and novel variants from our GWAS analysis (e.g., the intron variant rs1749409 in the RIT1 gene) and helped identify potentially causative variants that were missed by GWAS, such as rs11264300, a missense variant in the gene DCST1, and rs11584630, an intron variant in the gene KCNN3. Conclusion: In summary, by combining a GWAS with advanced machine learning models, we identified both known and novel demographic and genomic factors as well as built well-performing ML models for predicting Parkinson's disease.
Collapse
Affiliation(s)
- Md Asad Rahman
- Department of Engineering Management and Systems Engineering, Missouri University of Science and Technology, Rolla, MO, United States
| | - Jinling Liu
- Department of Engineering Management and Systems Engineering, Missouri University of Science and Technology, Rolla, MO, United States
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO, United States
| |
Collapse
|
21
|
Shields KL, Jarrett CL, Bisconti AV, Park SH, Craig JC, Broxterman RM, Richardson RS. Preserved endothelium-independent vascular function with aging in men and women: evidence from the peripheral and cerebral vasculature. J Appl Physiol (1985) 2023; 135:559-571. [PMID: 37391885 PMCID: PMC10538978 DOI: 10.1152/japplphysiol.00571.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023] Open
Abstract
In the peripheral and cerebral vasculature, the impact of aging and sex on the endothelial-independent functional capacity of vascular smooth muscle cells (VSMCs) is not well understood, nor is it known whether such VSMC functions in these vascular beds reflect one another. Therefore, endothelium-independent dilation, at both the conduit (Δ diameter) and microvascular (Δ vascular conductance, VC) level, elicited by sublingual nitroglycerin (NTG, 0.8 mg of Nitrostat), compared with sham-delivery (control), was assessed using Doppler ultrasound in the popliteal (PA) and middle cerebral (MCA) artery of 20 young [23 ± 4 yr, 10 males (YM)/10 females (YF)] and 21 old [69 ± 5 yr, 11 males (OM)/10 females (OF)] relatively healthy adults. In the PA, compared with zero, NTG significantly increased diameter in all groups (YM: 0.29 ± 0.13, YF: 0.35 ± 0.26, OM: 0.30 ± 0.18, OF: 0.31 ± 0.14 mm), while control did not. The increase in VC only achieved significance in the OF (0.22 ± 0.31 mL/min/mmHg). In the MCA, compared with zero, NTG significantly increased diameter and VC in all groups (YM: 0.89 ± 0.30, 1.06 ± 1.28; YF: 0.97 ± 0.31, 1.84 ± 1.07; OM: 0.90 ± 0.42, 0.72 ± 0.99; OF: 0.74 ± 0.32, 1.19 ± 1.18, mm and mL/min/mmHg, respectively), while control did not. There were no age or sex differences or age-by-sex interactions for both the NTG-induced PA and MCA dilation and VC. In addition, PA and MCA dilation and VC responses to NTG were not related when grouped by age, sex, or as all subjects (r = 0.04-0.44, P > 0.05). Thus, peripheral and cerebral endothelial-independent VSMC function appears to be unaffected by age or sex, and variations in such VSMC function in one of these vascular beds are not reflected in the other.NEW & NOTEWORTHY To confidently explain peripheral and cerebral vascular dysfunction, it is essential to have a clear understanding of the endothelial-independent function of VSMCs across age and sex. By assessing endothelium-independent dilation using sublingual nitroglycerin, endothelial-independent VSMC function in the periphery (popliteal artery), and in the cerebral circulation (middle cerebral artery), was not different due to age or sex. In addition, endothelial-independent VSMC function in one of these vascular beds is not reflected in the other.
Collapse
Affiliation(s)
- Katherine L Shields
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Catherine L Jarrett
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah, United States
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Angela V Bisconti
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah, United States
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Soung Hun Park
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Jesse C Craig
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah, United States
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Ryan M Broxterman
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah, United States
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Center on Aging, University of Utah, Salt Lake City, Utah, United States
| | - Russell S Richardson
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah, United States
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Center on Aging, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
22
|
Xu X, Liu XQ, Liu XL, Wang X, Zhang WD, Huang XF, Jia FY, Kong P, Han M. SM22α Deletion Contributes to Neurocognitive Impairment in Mice through Modulating Vascular Smooth Muscle Cell Phenotypes. Int J Mol Sci 2023; 24:ijms24087117. [PMID: 37108281 PMCID: PMC10138350 DOI: 10.3390/ijms24087117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Considerable evidence now indicates that cognitive impairment is primarily a vascular disorder. The depletion of smooth muscle 22 alpha (SM22α) contributes to vascular smooth muscle cells (VSMCs) switching from contractile to synthetic and proinflammatory phenotypes in the context of inflammation. However, the role of VSMCs in the pathogenesis of cognitive impairment remains undetermined. Herein, we showed a possible link between VSMC phenotypic switching and neurodegenerative diseases via the integration of multi-omics data. SM22α knockout (Sm22α-/-) mice exhibited obvious cognitive impairment and cerebral pathological changes, which were visibly ameliorated by the administration of AAV-SM22α. Finally, we confirmed that SM22α disruption promotes the expression of SRY-related HMG-box gene 10 (Sox10) in VSMCs, thereby aggravating the systemic vascular inflammatory response and ultimately leading to cognitive impairment in the brain. Therefore, this study supports the idea of VSMCs and SM22α as promising therapeutic targets in cognitive impairment to improve memory and cognitive decline.
Collapse
Affiliation(s)
- Xin Xu
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Key Laboratory of Neural and Vascular Biology of Ministry of Education, Shijiazhuang 050017, China
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Xiao-Qin Liu
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Key Laboratory of Neural and Vascular Biology of Ministry of Education, Shijiazhuang 050017, China
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Xin-Long Liu
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Key Laboratory of Neural and Vascular Biology of Ministry of Education, Shijiazhuang 050017, China
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Xu Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Key Laboratory of Neural and Vascular Biology of Ministry of Education, Shijiazhuang 050017, China
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Wen-Di Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Key Laboratory of Neural and Vascular Biology of Ministry of Education, Shijiazhuang 050017, China
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Xiao-Fu Huang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Key Laboratory of Neural and Vascular Biology of Ministry of Education, Shijiazhuang 050017, China
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Fang-Yue Jia
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Key Laboratory of Neural and Vascular Biology of Ministry of Education, Shijiazhuang 050017, China
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Peng Kong
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Key Laboratory of Neural and Vascular Biology of Ministry of Education, Shijiazhuang 050017, China
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Mei Han
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Key Laboratory of Neural and Vascular Biology of Ministry of Education, Shijiazhuang 050017, China
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| |
Collapse
|
23
|
Theerasri A, Janpaijit S, Tencomnao T, Prasansuklab A. Beyond the classical amyloid hypothesis in Alzheimer's disease: Molecular insights into current concepts of pathogenesis, therapeutic targets, and study models. WIREs Mech Dis 2023; 15:e1591. [PMID: 36494193 DOI: 10.1002/wsbm.1591] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is one of the progressive neurodegenerative disorders and the most common cause of dementia in the elderly worldwide causing difficulties in the daily life of the patient. AD is characterized by the aberrant accumulation of β-amyloid plaques and tau protein-containing neurofibrillary tangles (NFTs) in the brain giving rise to neuroinflammation, oxidative stress, synaptic failure, and eventual neuronal cell death. The total cost of care in AD treatment and related health care activities is enormous and pharmaceutical drugs approved by Food and Drug Administration have not manifested sufficient efficacy in protection and therapy. In recent years, there are growing studies that contribute a fundamental understanding to AD pathogenesis, AD-associated risk factors, and pharmacological intervention. However, greater molecular process-oriented research in company with suitable experimental models is still of the essence to enhance the prospects for AD therapy and cell lines as a disease model are still the major part of this milestone. In this review, we provide an insight into molecular mechanisms, particularly the recent concept in gut-brain axis, vascular dysfunction and autophagy, and current models used in the study of AD. Here, we emphasized the importance of therapeutic strategy targeting multiple mechanisms together with utilizing appropriate models for the discovery of novel effective AD therapy. This article is categorized under: Neurological Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Atsadang Theerasri
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand.,Natural Products for Neuroprotection and Anti-ageing Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Sakawrat Janpaijit
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand.,Natural Products for Neuroprotection and Anti-ageing Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-ageing Research Unit, Chulalongkorn University, Bangkok, Thailand.,Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Anchalee Prasansuklab
- Natural Products for Neuroprotection and Anti-ageing Research Unit, Chulalongkorn University, Bangkok, Thailand.,College of Public Health Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
24
|
Alvarez KLF, Aguilar-Pineda JA, Ortiz-Manrique MM, Paredes-Calderon MF, Cardenas-Quispe BC, Vera-Lopez KJ, Goyzueta-Mamani LD, Chavez-Fumagalli MA, Davila-Del-Carpio G, Peralta-Mestas A, Musolino PL, Lino Cardenas CL. Co-occurring pathogenic variants in 6q27 associated with dementia spectrum disorders in a Peruvian family. Front Mol Neurosci 2023; 16:1104585. [PMID: 36873109 PMCID: PMC9978490 DOI: 10.3389/fnmol.2023.1104585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/18/2023] [Indexed: 02/18/2023] Open
Abstract
Evidence suggests that there may be racial differences in risk factors associated with the development of Alzheimer's disease and related dementia (ADRD). We used whole-genome sequencing analysis and identified a novel combination of three pathogenic variants in the heterozygous state (UNC93A: rs7739897 and WDR27: rs61740334; rs3800544) in a Peruvian family with a strong clinical history of ADRD. Notably, the combination of these variants was present in two generations of affected individuals but absent in healthy members of the family. In silico and in vitro studies have provided insights into the pathogenicity of these variants. These studies predict that the loss of function of the mutant UNC93A and WDR27 proteins induced dramatic changes in the global transcriptomic signature of brain cells, including neurons, astrocytes, and especially pericytes and vascular smooth muscle cells, indicating that the combination of these three variants may affect the neurovascular unit. In addition, known key molecular pathways associated with dementia spectrum disorders were enriched in brain cells with low levels of UNC93A and WDR27. Our findings have thus identified a genetic risk factor for familial dementia in a Peruvian family with an Amerindian ancestral background.
Collapse
Affiliation(s)
- Karla Lucia F. Alvarez
- Laboratory of Genomics and Neurovascular Diseases, Universidad Católica de Santa María, Arequipa, Peru
| | | | | | | | - Bryan C. Cardenas-Quispe
- Division of Neurology, Psychiatry and Radiology of the National Hospital ESSALUD-HNCASE, Arequipa, Peru
| | - Karin Jannet Vera-Lopez
- Laboratory of Genomics and Neurovascular Diseases, Universidad Católica de Santa María, Arequipa, Peru
| | - Luis D. Goyzueta-Mamani
- Laboratory of Genomics and Neurovascular Diseases, Universidad Católica de Santa María, Arequipa, Peru
| | | | | | - Antero Peralta-Mestas
- Division of Neurology, Psychiatry and Radiology of the National Hospital ESSALUD-HNCASE, Arequipa, Peru
| | - Patricia L. Musolino
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States
| | | |
Collapse
|
25
|
Hayes G, Pinto J, Sparks SN, Wang C, Suri S, Bulte DP. Vascular smooth muscle cell dysfunction in neurodegeneration. Front Neurosci 2022; 16:1010164. [PMID: 36440263 PMCID: PMC9684644 DOI: 10.3389/fnins.2022.1010164] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/24/2022] [Indexed: 09/01/2023] Open
Abstract
Vascular smooth muscle cells (VSMCs) are the key moderators of cerebrovascular dynamics in response to the brain's oxygen and nutrient demands. Crucially, VSMCs may provide a sensitive biomarker for neurodegenerative pathologies where vasculature is compromised. An increasing body of research suggests that VSMCs have remarkable plasticity and their pathophysiology may play a key role in the complex process of neurodegeneration. Furthermore, extrinsic risk factors, including environmental conditions and traumatic events can impact vascular function through changes in VSMC morphology. VSMC dysfunction can be characterised at the molecular level both preclinically, and clinically ex vivo. However the identification of VSMC dysfunction in living individuals is important to understand changes in vascular function at the onset and progression of neurological disorders such as dementia, Alzheimer's disease, and Parkinson's disease. A promising technique to identify changes in the state of cerebral smooth muscle is cerebrovascular reactivity (CVR) which reflects the intrinsic dynamic response of blood vessels in the brain to vasoactive stimuli in order to modulate regional cerebral blood flow (CBF). In this work, we review the role of VSMCs in the most common neurodegenerative disorders and identify physiological systems that may contribute to VSMC dysfunction. The evidence collected here identifies VSMC dysfunction as a strong candidate for novel therapeutics to combat the development and progression of neurodegeneration, and highlights the need for more research on the role of VSMCs and cerebrovascular dynamics in healthy and diseased states.
Collapse
Affiliation(s)
- Genevieve Hayes
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Joana Pinto
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Sierra N. Sparks
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Congxiyu Wang
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| | - Sana Suri
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| | - Daniel P. Bulte
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
26
|
François M, Karpe AV, Liu JW, Beale DJ, Hor M, Hecker J, Faunt J, Maddison J, Johns S, Doecke JD, Rose S, Leifert WR. Multi-Omics, an Integrated Approach to Identify Novel Blood Biomarkers of Alzheimer's Disease. Metabolites 2022; 12:949. [PMID: 36295851 PMCID: PMC9610280 DOI: 10.3390/metabo12100949] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
The metabolomic and proteomic basis of mild cognitive impairment (MCI) and Alzheimer's disease (AD) is poorly understood, and the relationships between systemic abnormalities in metabolism and AD/MCI pathogenesis is unclear. This study compared the metabolomic and proteomic signature of plasma from cognitively normal (CN) and dementia patients diagnosed with MCI or AD, to identify specific cellular pathways and new biomarkers altered with the progression of the disease. We analysed 80 plasma samples from individuals with MCI or AD, as well as age- and gender-matched CN individuals, by utilising mass spectrometry methods and data analyses that included combined pathway analysis and model predictions. Several proteins clearly identified AD from the MCI and CN groups and included plasma actins, mannan-binding lectin serine protease 1, serum amyloid A2, fibronectin and extracellular matrix protein 1 and Keratin 9. The integrated pathway analysis showed various metabolic pathways were affected in AD, such as the arginine, alanine, aspartate, glutamate and pyruvate metabolism pathways. Therefore, our multi-omics approach identified novel plasma biomarkers for the MCI and AD groups, identified changes in metabolic processes, and may form the basis of a biomarker panel for stratifying dementia participants in future clinical trials.
Collapse
Affiliation(s)
- Maxime François
- CSIRO Health & Biosecurity, Human Health Program, Molecular Diagnostic Solutions Group, Adelaide, SA 5000, Australia
| | - Avinash V. Karpe
- CSIRO Land & Water, Metabolomics Unit, Ecosciences Precinct, Dutton Park, QLD 4001, Australia
| | - Jian-Wei Liu
- CSIRO Land & Water, Agricultural and Environmental Sciences Precinct, Acton, Canberra, ACT 2601, Australia
| | - David J. Beale
- CSIRO Land & Water, Metabolomics Unit, Ecosciences Precinct, Dutton Park, QLD 4001, Australia
| | - Maryam Hor
- CSIRO Health & Biosecurity, Human Health Program, Molecular Diagnostic Solutions Group, Adelaide, SA 5000, Australia
| | - Jane Hecker
- Department of Internal Medicine, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Jeff Faunt
- Department of General Medicine, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - John Maddison
- Aged Care Rehabilitation & Palliative Care, SA Health, Modbury Hospital, Modbury, SA 5092, Australia
| | - Sally Johns
- Aged Care Rehabilitation & Palliative Care, SA Health, Modbury Hospital, Modbury, SA 5092, Australia
| | - James D. Doecke
- Australian e-Health Research Centre, CSIRO, Level 7, Surgical Treatment and Rehabilitation Service—STARS, Herston, QLD 4029, Australia
| | - Stephen Rose
- Australian e-Health Research Centre, CSIRO, Level 7, Surgical Treatment and Rehabilitation Service—STARS, Herston, QLD 4029, Australia
| | - Wayne R. Leifert
- CSIRO Health & Biosecurity, Human Health Program, Molecular Diagnostic Solutions Group, Adelaide, SA 5000, Australia
| |
Collapse
|
27
|
Jullienne A, Quan R, Szu JI, Trinh MV, Behringer EJ, Obenaus A. Progressive Vascular Abnormalities in the Aging 3xTg-AD Mouse Model of Alzheimer’s Disease. Biomedicines 2022; 10:biomedicines10081967. [PMID: 36009514 PMCID: PMC9405684 DOI: 10.3390/biomedicines10081967] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Vascular dysfunction and structural abnormalities in Alzheimer’s disease (AD) are known to contribute to the progression of the pathology, and studies have tended to ignore the role of the vasculature in AD progression. We utilized the 3xTg-AD mouse model of AD to examine individual cerebral vessels and the cortical vascular network across the lifespan. Our vessel painting approach was used to label the entire cortical vasculature, followed by epifluorescence microscopy. The middle cerebral artery (MCA) tree was assessed with confocal microscopy, and a new method was developed to assess branching patterns as a measure of aging-related changes. We found that vascular remodeling was profoundly altered at 4–6 months of age, when the 3xTg-AD mouse is known to transition to cognitive impairment and Aβ deposition in both sexes. Analysis of vascular features (density, junctions, length) of the MCA territory highlighted sex-dependent differences across the 3xTg-AD mouse lifespan, with no alterations in branching patterns. Our current cerebrovascular angioarchitectural analyses demonstrate progressive alterations in individual cortical vessels, as well as in the vascular network of the cortex. These new findings advance our understanding of brain anatomy and physiology in the 3xTg-AD mouse, while potentially identifying unique diagnostic signatures of AD progression.
Collapse
Affiliation(s)
- Amandine Jullienne
- Department of Pediatrics, University of California, Irvine, CA 92697, USA
| | - Ryan Quan
- Department of Pediatrics, University of California, Irvine, CA 92697, USA
| | - Jenny I. Szu
- Department of Pediatrics, University of California, Irvine, CA 92697, USA
| | - Michelle V. Trinh
- Department of Pediatrics, University of California, Irvine, CA 92697, USA
| | - Erik J. Behringer
- Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92350, USA
| | - Andre Obenaus
- Department of Pediatrics, University of California, Irvine, CA 92697, USA
- Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92350, USA
- Correspondence:
| |
Collapse
|
28
|
Reducing PDK1/Akt Activity: An Effective Therapeutic Target in the Treatment of Alzheimer's Disease. Cells 2022; 11:cells11111735. [PMID: 35681431 PMCID: PMC9179555 DOI: 10.3390/cells11111735] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/16/2022] [Accepted: 05/24/2022] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is a common age-related neurodegenerative disease that leads to memory loss and cognitive function damage due to intracerebral neurofibrillary tangles (NFTs) and amyloid-β (Aβ) protein deposition. The phosphoinositide-dependent protein kinase (PDK1)/protein kinase B (Akt) signaling pathway plays a significant role in neuronal differentiation, synaptic plasticity, neuronal survival, and neurotransmission via the axon–dendrite axis. The phosphorylation of PDK1 and Akt rises in the brain, resulting in phosphorylation of the TNF-α-converting enzyme (TACE) at its cytoplasmic tail (the C-terminal end), changing its internalization as well as its trafficking. The current review aimed to explain the mechanisms of the PDK1/Akt/TACE signaling axis that exerts its modulatory effect on AD physiopathology. We provide an overview of the neuropathological features, genetics, Aβ aggregation, Tau protein hyperphosphorylation, neuroinflammation, and aging in the AD brain. Additionally, we summarized the phosphoinositide 3-kinase (PI3K)/PDK1/Akt pathway-related features and its molecular mechanism that is dependent on TACE in the pathogenesis of AD. This study reviewed the relationship between the PDK1/Akt signaling pathway and AD, and discussed the role of PDK1/Akt in resisting neuronal toxicity by suppressing TACE expression in the cell membrane. This work also provides a perspective for developing new therapeutics targeting PDK1/Akt and TACE for the treatment of AD.
Collapse
|
29
|
Protocol to assess the effects of dysfunctional human vascular smooth muscle cells on other brain cells using in vitro models of Alzheimer’s disease. STAR Protoc 2022; 3:101149. [PMID: 35141568 PMCID: PMC8814650 DOI: 10.1016/j.xpro.2022.101149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we present a protocol to culture primary human vascular smooth muscle cells (VSMCs) under Alzheimer's disease (AD)-like conditions, including steps for morphological characterization with microscopy. We then describe functional assays, including wound healing, transwell, coculture, and supernatant assays, to evaluate the effect of dysfunctional VSMCs on the induction of the AD-associated microglial phenotype. Our approach can be applied to assess the effects of dysfunctional VSMCs on other cerebral cell lines including pericytes, astrocytes, and neurons under AD-like conditions in vitro. For complete details on the use and execution of this protocol, please refer to Aguilar-Pineda et al. (2021). Detailed protocol to induce dysfunctional human VSMCs Characterization of dysfunctional human VSMCs by PCR and fluorescence microscopy Effects of dysfunctional human VSMCs on the Alzheimer-associated microglia phenotype Applicable to study VSMC effects on other brain cells under AD-like conditions in vitro
Collapse
|
30
|
Goyzueta-Mamani LD, Barazorda-Ccahuana HL, Chávez-Fumagalli MA, F. Alvarez KL, Aguilar-Pineda JA, Vera-Lopez KJ, Lino Cardenas CL. In Silico Analysis of Metabolites from Peruvian Native Plants as Potential Therapeutics against Alzheimer's Disease. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030918. [PMID: 35164183 PMCID: PMC8838509 DOI: 10.3390/molecules27030918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/19/2022]
Abstract
Background: Despite research on the molecular bases of Alzheimer’s disease (AD), effective therapies against its progression are still needed. Recent studies have shown direct links between AD progression and neurovascular dysfunction, highlighting it as a potential target for new therapeutics development. In this work, we screened and evaluated the inhibitory effect of natural compounds from native Peruvian plants against tau protein, amyloid beta, and angiotensin II type 1 receptor (AT1R) pathologic AD markers. Methods: We applied in silico analysis, such as virtual screening, molecular docking, molecular dynamics simulation (MD), and MM/GBSA estimation, to identify metabolites from Peruvian plants with inhibitory properties, and compared them to nicotinamide, telmisartan, and grapeseed extract drugs in clinical trials. Results: Our results demonstrated the increased bioactivity of three plants’ metabolites against tau protein, amyloid beta, and AT1R. The MD simulations indicated the stability of the AT1R:floribundic acid, amyloid beta:rutin, and tau:brassicasterol systems. A polypharmaceutical potential was observed for rutin due to its high affinity to AT1R, amyloid beta, and tau. The metabolite floribundic acid showed bioactivity against the AT1R and tau, and the metabolite brassicasterol showed bioactivity against the amyloid beta and tau. Conclusions: This study has identified molecules from native Peruvian plants that have the potential to bind three pathologic markers of AD.
Collapse
Affiliation(s)
- Luis Daniel Goyzueta-Mamani
- Laboratory of Genomics and Neurovascular Diseases, Universidad Católica de Santa María, Urb. San José s/n—Umacollo, Arequipa 04000, Peru; (M.A.C.-F.); (K.L.F.A.); (J.A.A.-P.); (K.J.V.-L.)
- Correspondence: (L.D.G.-M.); (C.L.L.C.)
| | - Haruna Luz Barazorda-Ccahuana
- Vicerrectorado de Investigación, Universidad Católica de Santa María, Urb. San José s/n—Umacollo, Arequipa 04000, Peru;
| | - Miguel Angel Chávez-Fumagalli
- Laboratory of Genomics and Neurovascular Diseases, Universidad Católica de Santa María, Urb. San José s/n—Umacollo, Arequipa 04000, Peru; (M.A.C.-F.); (K.L.F.A.); (J.A.A.-P.); (K.J.V.-L.)
| | - Karla Lucia F. Alvarez
- Laboratory of Genomics and Neurovascular Diseases, Universidad Católica de Santa María, Urb. San José s/n—Umacollo, Arequipa 04000, Peru; (M.A.C.-F.); (K.L.F.A.); (J.A.A.-P.); (K.J.V.-L.)
| | - Jorge Alberto Aguilar-Pineda
- Laboratory of Genomics and Neurovascular Diseases, Universidad Católica de Santa María, Urb. San José s/n—Umacollo, Arequipa 04000, Peru; (M.A.C.-F.); (K.L.F.A.); (J.A.A.-P.); (K.J.V.-L.)
| | - Karin Jannet Vera-Lopez
- Laboratory of Genomics and Neurovascular Diseases, Universidad Católica de Santa María, Urb. San José s/n—Umacollo, Arequipa 04000, Peru; (M.A.C.-F.); (K.L.F.A.); (J.A.A.-P.); (K.J.V.-L.)
| | - Christian Lacks Lino Cardenas
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Correspondence: (L.D.G.-M.); (C.L.L.C.)
| |
Collapse
|
31
|
Sorrentino S, Polini A, Arima V, Romano A, Quattrini A, Gigli G, Mozetic P, Moroni L. Neurovascular signals in amyotrophic lateral sclerosis. Curr Opin Biotechnol 2021; 74:75-83. [PMID: 34800850 DOI: 10.1016/j.copbio.2021.10.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/24/2021] [Accepted: 10/22/2021] [Indexed: 12/21/2022]
Abstract
The neurovascular system (NVS) is a complex anatomic-functional unit that synergically works to maintain organs/tissues homeostasis of the entire body. NVS alterations have recently emerged as a common distinct feature in the pathogenesis of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Despite their undeniable involvement, neurovascular signalling pathways remain still far unknown in ALS. This review underlines the importance of endothelial, mural, and fibroblast cells as novel targets for ALS investigation and identifies in the interplay between neuronal and vascular systems the way to disclose novel molecular mechanisms behind the pathogenesis of ALS.
Collapse
Affiliation(s)
- Stefano Sorrentino
- CNR Nanotec - Institute of Nanotechnology, Campus Ecotekne, via Monteroni, Lecce, 73100, Italy
| | - Alessandro Polini
- CNR Nanotec - Institute of Nanotechnology, Campus Ecotekne, via Monteroni, Lecce, 73100, Italy
| | - Valentina Arima
- CNR Nanotec - Institute of Nanotechnology, Campus Ecotekne, via Monteroni, Lecce, 73100, Italy
| | - Alessandro Romano
- San Raffaele Hospital, Division of Neuroscience, Institute of Experimental Neurology, San Rafaele Scientifc Institute, Via Olgettina, 60, 20132, Milan, Italy
| | - Angelo Quattrini
- San Raffaele Hospital, Division of Neuroscience, Institute of Experimental Neurology, San Rafaele Scientifc Institute, Via Olgettina, 60, 20132, Milan, Italy
| | - Giuseppe Gigli
- CNR Nanotec - Institute of Nanotechnology, Campus Ecotekne, via Monteroni, Lecce, 73100, Italy; Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, via Arnesano, 73100, Lecce, Italy
| | - Pamela Mozetic
- CNR Nanotec - Institute of Nanotechnology, Campus Ecotekne, via Monteroni, Lecce, 73100, Italy; San Raffaele Hospital, Division of Neuroscience, Institute of Experimental Neurology, San Rafaele Scientifc Institute, Via Olgettina, 60, 20132, Milan, Italy
| | - Lorenzo Moroni
- CNR Nanotec - Institute of Nanotechnology, Campus Ecotekne, via Monteroni, Lecce, 73100, Italy; Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Universiteitssingel 40, 6229ER, Maastricht, The Netherlands.
| |
Collapse
|