1
|
Medina H, Child N. A Review of Developments in Carbon-Based Nanocomposite Electrodes for Noninvasive Electroencephalography. SENSORS (BASEL, SWITZERLAND) 2025; 25:2274. [PMID: 40218785 PMCID: PMC11991328 DOI: 10.3390/s25072274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/26/2025] [Accepted: 04/02/2025] [Indexed: 04/14/2025]
Abstract
Wearable biosensors have been of interest for their wide range of uses, varying from recording biological signals to measuring strain of bending joints. Carbon nanoparticles have been utilized in biocompatible polymers to create nanocomposites with highly tunable mechanical and electrical properties. These nanocomposites have been demonstrated to be highly effective as wearable sensors for recording physiological signals such as electroencephalography (EEG), offering advantages in mechanical and electrical properties and signal quality over commercially available sensors while maintaining feasibility and scalability in manufacturing. This review aims to provide a critical summary of the recent literature on the properties, design, fabrication, and performance of carbon-based nanocomposites for EEG electrodes. The goal of this review is to highlight the various design configurations and properties thereof, manufacturing methods, performance measurements, and related challenges associated with these promising noninvasive dry soft electrodes. While this technology offers many advantages over either other noninvasive or their invasive counterparts, there are still various challenges and opportunities for improvements and innovation. For example, the investigation of gradient composite structures, hybrid nanocomposite/composite materials, hierarchical contact surfaces, and the influence of loading and alignment of the dispersal phase in the performance of these electrodes could lead to novel and better designs. Finally, current practices for evaluating the performance of novel EEG electrodes are discussed and challenged, emphasizing the critical need for the development of standardized assessment protocols, which could provide reliability in the field, enable benchmarking, and hence promote innovation.
Collapse
Affiliation(s)
- Hector Medina
- School of Engineering, Liberty University, University Blvd, Lynchburg, VA 24515, USA;
| | | |
Collapse
|
2
|
Improta I, Rollo G, Buonocore GG, Del Ferraro S, Molinaro V, D’Addio G, De Rosa A, Lavorgna M. On the Enhancement of the Long-Term Washability of e-Textile Realized with Electrically Conductive Graphene-Based Inks. Polymers (Basel) 2025; 17:904. [PMID: 40219294 PMCID: PMC11991343 DOI: 10.3390/polym17070904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/10/2025] [Accepted: 03/25/2025] [Indexed: 04/14/2025] Open
Abstract
This research explores the development of highly durable flexible electronic textiles (e-textiles) for wearable electronics, focusing on improving their washability and performance. A conductive graphene-based ink was screen-printed onto a polyester textile. Water-based polyurethane (PU) coatings with variable crosslinker ratios and thickener were applied to solve washability issues. The results show that the PU coatings significantly enhanced the electrical stability and durability of the printed pathways after multiple washing cycles. The conductivity remained intact after 120 washing cycles, indicating that the final properties of the e-textile, which contained 6 wt% thickener and 3 wt% crosslinker, provided effective water protection. The results highlight the promise of these coated e-textiles for wearable electronics applications, especially in the occupational and healthcare sectors, where long-term flexibility and washability are critical.
Collapse
Affiliation(s)
- Ilaria Improta
- Institute of Polymers, Composites and Biomaterials, National Research Council, 80055 Portici, Italy; (I.I.); (G.G.B.); (M.L.)
| | - Gennaro Rollo
- Institute of Polymers, Composites and Biomaterials, National Research Council, 80055 Portici, Italy; (I.I.); (G.G.B.); (M.L.)
| | - Giovanna Giuliana Buonocore
- Institute of Polymers, Composites and Biomaterials, National Research Council, 80055 Portici, Italy; (I.I.); (G.G.B.); (M.L.)
| | - Simona Del Ferraro
- INAIL—DiMEILA—Laboratory of Ergonomics and Physiology, 00078 Monte Porzio Catone, Italy; (S.D.F.); (V.M.)
| | - Vincenzo Molinaro
- INAIL—DiMEILA—Laboratory of Ergonomics and Physiology, 00078 Monte Porzio Catone, Italy; (S.D.F.); (V.M.)
| | - Gianni D’Addio
- Bioengineering Unit, Institute of Care and Scientific Research Maugeri, 82037 Telese, Italy; (G.D.); or (A.D.R.)
| | - Anna De Rosa
- Bioengineering Unit, Institute of Care and Scientific Research Maugeri, 82037 Telese, Italy; (G.D.); or (A.D.R.)
- Engineering Department, University of Naples Parthenope, 80133 Napoli, Italy
| | - Marino Lavorgna
- Institute of Polymers, Composites and Biomaterials, National Research Council, 80055 Portici, Italy; (I.I.); (G.G.B.); (M.L.)
| |
Collapse
|
3
|
He G, Zhu C, Shi Y, Yu Y, Wu Y, Soutis C, Cao L, Liu X. Development of a mussel-inspired conductive graphene coated cotton yarn for wearable sensors. iScience 2025; 28:111711. [PMID: 39898041 PMCID: PMC11787537 DOI: 10.1016/j.isci.2024.111711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/10/2024] [Accepted: 12/27/2024] [Indexed: 02/04/2025] Open
Abstract
Graphene-based flexible yarn sensors are promising due to their exceptional conductivity and user-friendly properties, but ensuring stable graphene adsorption on fibers for long-term durability remains challenging. Herein, we produce a flexible polydopamine (PDA)-modified cotton yarn via a simple dip-coating process using a self-made sodium deoxycholate (SDC)-modified graphene dispersion, avoiding non-biodegradable, corrosion-prone metallic coatings. The resulting sensor exhibits low electrical resistance (as low as 21.1Ω ± 0.2/cm), high bending sensitivity (resistance change rate of 3.557 ± 0.002 for bending ranges from 40% to 100%), and outstanding durability over 2,000 flexural bending cycles. It can monitor various human body movements and physiological states and be integrated into wearable electronic textiles (e-textiles) for applications like monitoring knee movements, recognizing hand gestures, and detecting thoracic respiratory status. This work highlights the sensor's potential in personal and public healthcare applications.
Collapse
Affiliation(s)
- Guanliang He
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai, Shandong 264006, China
- Department of Materials, School of Natural Sciences, University of Manchester, Oxford Rd, Manchester M13 9PL, UK
| | - Chuang Zhu
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Yuze Shi
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai, Shandong 264006, China
| | - Yingjia Yu
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai, Shandong 264006, China
| | - Yi Wu
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai, Shandong 264006, China
| | - Constantinos Soutis
- Department of Materials, School of Natural Sciences, University of Manchester, Oxford Rd, Manchester M13 9PL, UK
| | - Le Cao
- School of Electric and Control Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
| | - Xuqing Liu
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai, Shandong 264006, China
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an, Shanxi 710072, China
| |
Collapse
|
4
|
Fernandes S, Ramos A, Vega-Barbas M, García-Vázquez C, Seoane F, Pau I. Smart Textile Technology for the Monitoring of Mental Health. SENSORS (BASEL, SWITZERLAND) 2025; 25:1148. [PMID: 40006377 PMCID: PMC11859436 DOI: 10.3390/s25041148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/05/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025]
Abstract
In recent years, smart devices have proven their effectiveness in monitoring mental health issues and have played a crucial role in providing therapy. The ability to embed sensors in fabrics opens new horizons for mental healthcare, addressing the growing demand for innovative solutions in monitoring and therapy. The objective of this review is to understand mental health, its impact on the human body, and the latest advancements in the field of smart textiles (sensors, electrodes, and smart garments) for monitoring physiological signals such as respiration rate (RR), electroencephalogram (EEG), electrodermal activity (EDA), electrocardiogram (ECG), and cortisol, all of which are associated with mental health disorders. Databases such as Web of Science (WoS) and Scopus were used to identify studies that utilized smart textiles to monitor specific physiological parameters. Research indicates that smart textiles provide promising results compared to traditional methods, offering enhanced comfort for long-term monitoring.
Collapse
Affiliation(s)
- Shonal Fernandes
- Facultad de Diseño y Tecnología, University of Design, Innovation and Technology, 28016 Madrid, Spain; (S.F.); (A.R.); (C.G.-V.)
- ETSIS de Telecomunicación, Universidad Politécnica de Madrid, Calle Nikola Tesla S/N, 28038 Madrid, Spain; (M.V.-B.); (I.P.)
| | - Alberto Ramos
- Facultad de Diseño y Tecnología, University of Design, Innovation and Technology, 28016 Madrid, Spain; (S.F.); (A.R.); (C.G.-V.)
- Textile Materials Technology, Department of Textile Technology, Faculty of Textiles, Engineering and Business Swedish School of Textiles, University of Borås, 503 32 Boras, Sweden
| | - Mario Vega-Barbas
- ETSIS de Telecomunicación, Universidad Politécnica de Madrid, Calle Nikola Tesla S/N, 28038 Madrid, Spain; (M.V.-B.); (I.P.)
| | - Carolina García-Vázquez
- Facultad de Diseño y Tecnología, University of Design, Innovation and Technology, 28016 Madrid, Spain; (S.F.); (A.R.); (C.G.-V.)
| | - Fernando Seoane
- Textile Materials Technology, Department of Textile Technology, Faculty of Textiles, Engineering and Business Swedish School of Textiles, University of Borås, 503 32 Boras, Sweden
- Institute for Clinical Science, Intervention and Technology, Karolinska Institutet, 141 83 Stockholm, Sweden
- Department of Medical Care Technology, Karolinska University Hospital, 141 57 Huddinge, Sweden
- Department of Clinical Physiology, Karolinska University Hospital, 141 57 Huddinge, Sweden
| | - Iván Pau
- ETSIS de Telecomunicación, Universidad Politécnica de Madrid, Calle Nikola Tesla S/N, 28038 Madrid, Spain; (M.V.-B.); (I.P.)
| |
Collapse
|
5
|
Dulal M, Afroj S, Islam MR, Zhang M, Yang Y, Hu H, Novoselov KS, Karim N. Closed-Loop Recycling of Wearable Electronic Textiles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407207. [PMID: 39359036 PMCID: PMC11636061 DOI: 10.1002/smll.202407207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/12/2024] [Indexed: 10/04/2024]
Abstract
Wearable electronic textiles (e-textiles) are transforming personalized healthcare through innovative applications. However, integrating electronics into textiles for e-textile manufacturing exacerbates the rapidly growing issues of electronic waste (e-waste) and textile recycling due to the complicated recycling and disposal processes needed for mixed materials, including textile fibers, electronic materials, and components. Here, first closed-loop recycling for wearable e-textiles is reported by incorporating the thermal-pyrolysis of graphene-based e-textiles to convert them into graphene-like electrically conductive recycled powders. A scalable pad-dry coating technique is then used to reproduce graphene-based wearable e-textiles and demonstrate their potential healthcare applications as wearable electrodes for capturing electrocardiogram (ECG) signals and temperature sensors. Additionally, recycled graphene-based textile supercapacitor highlights their potential as sustainable energy storage devices, maintaining notable durability and retaining ≈94% capacitance after 1000 cycles with an areal capacitance of 4.92 mF cm⁻2. Such sustainable closed-loop recycling of e-textiles showcases the potential for their repurposing into multifunctional applications, promoting a circular approach that potentially prevents negative environmental impact and reduces landfill disposal.
Collapse
Affiliation(s)
- Marzia Dulal
- Centre for Print ResearchThe University of the West of EnglandBristolBS16 1QYUK
- Department of Textile Engineering ManagementBangladesh University of Textiles (BUTEX)Tejgaon Industrial AreaDhaka1208Bangladesh
| | - Shaila Afroj
- Centre for Print ResearchThe University of the West of EnglandBristolBS16 1QYUK
- Faculty of Environment, Science and EconomyDepartment of EngineeringUniversity of ExeterExeterEX4 4QFUK
| | - Md Rashedul Islam
- Centre for Print ResearchThe University of the West of EnglandBristolBS16 1QYUK
- Department of Wet Process EngineeringBangladesh University of Textiles (BUTEX)Tejgaon Industrial AreaDhaka1208Bangladesh
| | - Minglonghai Zhang
- School of Fashion and Textilesthe Hong Kong Polytechnic UniversityKowloon999077Hong Kong
| | - Yadie Yang
- School of Fashion and Textilesthe Hong Kong Polytechnic UniversityKowloon999077Hong Kong
| | - Hong Hu
- School of Fashion and Textilesthe Hong Kong Polytechnic UniversityKowloon999077Hong Kong
| | - Kostya S. Novoselov
- Institute for Functional Intelligent MaterialsDepartment of Materials Science and EngineeringNational University of SingaporeSingapore117575Singapore
| | - Nazmul Karim
- Centre for Print ResearchThe University of the West of EnglandBristolBS16 1QYUK
- Nottingham School of Art and DesignNottingham Trent UniversityShakespeare StreetNottinghamNG1 4GGUK
- Department of Fashion and TextilesUniversity of SouthamptonSouthamptonSO23 8DLUK
| |
Collapse
|
6
|
Im H, Roh JS. Characterization of Silver Conductive Ink Screen-Printed Textile Circuits: Effects of Substrate, Mesh Density, and Overprinting. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4898. [PMID: 39410469 PMCID: PMC11477919 DOI: 10.3390/ma17194898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024]
Abstract
This study explores the intricate interaction between the properties of textile substrates and screen-printing parameters in shaping fabric circuits using silver conductive ink. Via analyzing key variables such as fabric type, mesh density, and the number of overprinted layers, the research revealed how the porous structure, large surface area, and fiber morphology of textile substrates influence ink absorption, ultimately enhancing the electrical connectivity of the printed circuits. Notably, the hydrophilic cotton staple fibers fabric effectively absorbed the conductive ink into the fabric substrate, demonstrating superior electrical performance compared with the hydrophobic polyester filament fabric after three overprinting, unlike the results observed after a single print. As mesh density decreased and the number of prints increased, the electrical resistance of the circuit gradually reduced, but ink bleeding on the fabric surface became more pronounced. Cotton fabric, via absorbing the ink deeply, exhibited less surface bleeding, while polyester fabric showed more noticeable ink spreading. These findings provide valuable insights for improving screen printing technology for textile circuits and contribute to the development of advanced fabric circuits that enhance the functionality of smart wearable technology.
Collapse
Affiliation(s)
- Hyobin Im
- Culture Technology Research Center, Sangmyung University, Seoul 03016, Republic of Korea;
| | - Jung-Sim Roh
- Department of Fashion and Textiles, Sangmyung University, Seoul 03016, Republic of Korea
| |
Collapse
|
7
|
Zhang M, Yang Y, Hu H, Zhao S, Song W, Karim N, Hu H. High-Performance Stretchable Strain Sensors Based on Auxetic Fabrics for Human Motion Detection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49845-49855. [PMID: 39248467 DOI: 10.1021/acsami.4c13402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Wearable strain sensors play a pivotal role in real-time human motion detection and health monitoring. Traditional fabric-based strain sensors, typically with a positive Poisson's ratio, face challenges in maintaining sensitivity and comfort during human motion due to conflicting resistance changes in different strain directions. In this work, high-performance stretchable strain sensors are developed based on graphene-modified auxetic fabrics (GMAF) for human motion detection in smart wearable devices. The proposed GMAF sensors, with a negative Poisson's ratio achieved through commercially available warp-knitting technology, exhibit an 8-fold improvement in sensitivity compared to conventional plain fabric sensors. The unique auxetic fabric structure enhances sensitivity by synchronizing resistance changes in both wale and course directions. The GMAF sensors demonstrate excellent washability, showing only slight degradation in auxeticity and an acceptable increase in resistance after 10 standard wash cycles. The GMAF sensors maintain stability under different strain levels and various motion frequencies, emphasizing their dynamic performance. The sensors exhibit superior conformability to joint movements, which effectively monitor a full range of motions, including joint bending, sports activities, and subtle actions like coughing and swallowing. The research underscores a promising approach to achieve industrial-scale production of wearable sensors with improved performance and comfort through fabric structure design.
Collapse
Affiliation(s)
- Minglonghai Zhang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Yadie Yang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Huiming Hu
- School of Art and Design, Guangdong University of Technology, Guangzhou 510062, China
| | - Shuaiquan Zhao
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Wenfang Song
- School of Art and Design, Guangdong University of Technology, Guangzhou 510062, China
| | - Nazmul Karim
- Nottingham School of Art and Design, Nottingham Trent University, Shakespeare Street, Nottingham NG1 4GG, U.K
| | - Hong Hu
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| |
Collapse
|
8
|
Ali I, Islam MR, Yin J, Eichhorn SJ, Chen J, Karim N, Afroj S. Advances in Smart Photovoltaic Textiles. ACS NANO 2024; 18:3871-3915. [PMID: 38261716 PMCID: PMC10851667 DOI: 10.1021/acsnano.3c10033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/25/2024]
Abstract
Energy harvesting textiles have emerged as a promising solution to sustainably power wearable electronics. Textile-based solar cells (SCs) interconnected with on-body electronics have emerged to meet such needs. These technologies are lightweight, flexible, and easy to transport while leveraging the abundant natural sunlight in an eco-friendly way. In this Review, we comprehensively explore the working mechanisms, diverse types, and advanced fabrication strategies of photovoltaic textiles. Furthermore, we provide a detailed analysis of the recent progress made in various types of photovoltaic textiles, emphasizing their electrochemical performance. The focal point of this review centers on smart photovoltaic textiles for wearable electronic applications. Finally, we offer insights and perspectives on potential solutions to overcome the existing limitations of textile-based photovoltaics to promote their industrial commercialization.
Collapse
Affiliation(s)
- Iftikhar Ali
- Centre
for Print Research (CFPR), The University
of the West of England, Frenchay Campus, Bristol BS16 1QY, U.K.
| | - Md Rashedul Islam
- Centre
for Print Research (CFPR), The University
of the West of England, Frenchay Campus, Bristol BS16 1QY, U.K.
| | - Junyi Yin
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Stephen J. Eichhorn
- Bristol
Composites Institute, School of Civil, Aerospace, and Design Engineering, The University of Bristol, University Walk, Bristol BS8 1TR, U.K.
| | - Jun Chen
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Nazmul Karim
- Centre
for Print Research (CFPR), The University
of the West of England, Frenchay Campus, Bristol BS16 1QY, U.K.
- Nottingham
School of Art and Design, Nottingham Trent
University, Shakespeare Street, Nottingham NG1 4GG, U.K.
| | - Shaila Afroj
- Centre
for Print Research (CFPR), The University
of the West of England, Frenchay Campus, Bristol BS16 1QY, U.K.
| |
Collapse
|
9
|
Islam MR, Afroj S, Yin J, Novoselov KS, Chen J, Karim N. Advances in Printed Electronic Textiles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304140. [PMID: 38009793 PMCID: PMC10853734 DOI: 10.1002/advs.202304140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/11/2023] [Indexed: 11/29/2023]
Abstract
Electronic textiles (e-textiles) have emerged as a revolutionary solution for personalized healthcare, enabling the continuous collection and communication of diverse physiological parameters when seamlessly integrated with the human body. Among various methods employed to create wearable e-textiles, printing offers unparalleled flexibility and comfort, seamlessly integrating wearables into garments. This has spurred growing research interest in printed e-textiles, due to their vast design versatility, material options, fabrication techniques, and wide-ranging applications. Here, a comprehensive overview of the crucial considerations in fabricating printed e-textiles is provided, encompassing the selection of conductive materials and substrates, as well as the essential pre- and post-treatments involved. Furthermore, the diverse printing techniques and the specific requirements are discussed, highlighting the advantages and limitations of each method. Additionally, the multitude of wearable applications made possible by printed e-textiles is explored, such as their integration as various sensors, supercapacitors, and heated garments. Finally, a forward-looking perspective is provided, discussing future prospects and emerging trends in the realm of printed wearable e-textiles. As advancements in materials science, printing technologies, and design innovation continue to unfold, the transformative potential of printed e-textiles in healthcare and beyond is poised to revolutionize the way wearable technology interacts and benefits.
Collapse
Affiliation(s)
- Md Rashedul Islam
- Centre for Print Research (CFPR)University of the West of EnglandFrenchay CampusBristolBS16 1QYUK
| | - Shaila Afroj
- Centre for Print Research (CFPR)University of the West of EnglandFrenchay CampusBristolBS16 1QYUK
| | - Junyi Yin
- Department of BioengineeringUniversity of CaliforniaLos AngelesCA90095USA
| | - Kostya S. Novoselov
- Institute for Functional Intelligent MaterialsDepartment of Materials Science and EngineeringNational University of SingaporeSingapore117575Singapore
| | - Jun Chen
- Department of BioengineeringUniversity of CaliforniaLos AngelesCA90095USA
| | - Nazmul Karim
- Centre for Print Research (CFPR)University of the West of EnglandFrenchay CampusBristolBS16 1QYUK
- Nottingham School of Art and DesignNottingham Trent UniversityShakespeare StreetNottinghamNG1 4GGUK
| |
Collapse
|
10
|
Katiyar AK, Hoang AT, Xu D, Hong J, Kim BJ, Ji S, Ahn JH. 2D Materials in Flexible Electronics: Recent Advances and Future Prospectives. Chem Rev 2024; 124:318-419. [PMID: 38055207 DOI: 10.1021/acs.chemrev.3c00302] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Flexible electronics have recently gained considerable attention due to their potential to provide new and innovative solutions to a wide range of challenges in various electronic fields. These electronics require specific material properties and performance because they need to be integrated into a variety of surfaces or folded and rolled for newly formatted electronics. Two-dimensional (2D) materials have emerged as promising candidates for flexible electronics due to their unique mechanical, electrical, and optical properties, as well as their compatibility with other materials, enabling the creation of various flexible electronic devices. This article provides a comprehensive review of the progress made in developing flexible electronic devices using 2D materials. In addition, it highlights the key aspects of materials, scalable material production, and device fabrication processes for flexible applications, along with important examples of demonstrations that achieved breakthroughs in various flexible and wearable electronic applications. Finally, we discuss the opportunities, current challenges, potential solutions, and future investigative directions about this field.
Collapse
Affiliation(s)
- Ajit Kumar Katiyar
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Anh Tuan Hoang
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Duo Xu
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Juyeong Hong
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Beom Jin Kim
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Seunghyeon Ji
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jong-Hyun Ahn
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
11
|
Hong W. Advances and Opportunities of Mobile Health in the Postpandemic Era: Smartphonization of Wearable Devices and Wearable Deviceization of Smartphones. JMIR Mhealth Uhealth 2024; 12:e48803. [PMID: 38252596 PMCID: PMC10823426 DOI: 10.2196/48803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 11/08/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Mobile health (mHealth) with continuous real-time monitoring is leading the era of digital medical convergence. Wearable devices and smartphones optimized as personalized health management platforms enable disease prediction, prevention, diagnosis, and even treatment. Ubiquitous and accessible medical services offered through mHealth strengthen universal health coverage to facilitate service use without discrimination. This viewpoint investigates the latest trends in mHealth technology, which are comprehensive in terms of form factors and detection targets according to body attachment location and type. Insights and breakthroughs from the perspective of mHealth sensing through a new form factor and sensor-integrated display overcome the problems of existing mHealth by proposing a solution of smartphonization of wearable devices and the wearable deviceization of smartphones. This approach maximizes the infinite potential of stagnant mHealth technology and will present a new milestone leading to the popularization of mHealth. In the postpandemic era, innovative mHealth solutions through the smartphonization of wearable devices and the wearable deviceization of smartphones could become the standard for a new paradigm in the field of digital medicine.
Collapse
Affiliation(s)
- Wonki Hong
- Department of Digital Healthcare, Daejeon University, Daejeon, Republic of Korea
| |
Collapse
|
12
|
Islam MR, Afroj S, Karim N. Scalable Production of 2D Material Heterostructure Textiles for High-Performance Wearable Supercapacitors. ACS NANO 2023; 17:18481-18493. [PMID: 37695696 PMCID: PMC10540263 DOI: 10.1021/acsnano.3c06181] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023]
Abstract
Wearable electronic textiles (e-textiles) have emerged as a promising platform for seamless integration of electronic devices into everyday life, enabling nonintrusive monitoring of human health. However, the development of efficient, flexible, and scalable energy storage solutions remains a significant challenge for powering such devices. Here, we address this challenge by leveraging the distinct properties of two-dimensional (2D) material based heterostructures to enhance the performance of wearable textile supercapacitors. We report a highly scalable and controllable synthesis method for graphene and molybdenum disulfide (MoS2) through a microfluidization technique. Subsequently, we employ an ultrafast and industry-scale hierarchical deposition approach using a pad-dry method to fabricate 2D heterostructure based textiles with various configurations suitable for wearable e-textiles applications. Comparative analyses reveal the superior performance of wearable textile supercapacitors based on 2D material heterostructures, demonstrating excellent areal capacitance (∼105.08 mF cm-2), high power density (∼1604.274 μW cm-2) and energy density (∼58.377 μWh cm-2), and outstanding capacitive retention (∼100% after 1000 cycles). Our findings highlight the pivotal role of 2D material based heterostructures in addressing the challenges of performance and scalability in wearable energy storage devices, facilitating large-scale production of high-performance wearable supercapacitors.
Collapse
Affiliation(s)
- Md Rashedul Islam
- Centre
for Print Research (CFPR), University of
the West of England (UWE), Frenchay Campus, Bristol BS16 1QY, U.K.
| | - Shaila Afroj
- Centre
for Print Research (CFPR), University of
the West of England (UWE), Frenchay Campus, Bristol BS16 1QY, U.K.
- National
Graphene Institute (NGI), University of
Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Nazmul Karim
- Centre
for Print Research (CFPR), University of
the West of England (UWE), Frenchay Campus, Bristol BS16 1QY, U.K.
- National
Graphene Institute (NGI), University of
Manchester, Oxford Road, Manchester M13 9PL, U.K.
- Advanced
Textiles Research Group, Nottingham Trent
University, Shakespeare Street, Nottingham NG1 4GG, U.K.
| |
Collapse
|
13
|
Islam MH, Afroj S, Karim N. Toward Sustainable Composites: Graphene-Modified Jute Fiber Composites with Bio-Based Epoxy Resin. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2300111. [PMID: 37745826 PMCID: PMC10517308 DOI: 10.1002/gch2.202300111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/23/2023] [Indexed: 09/26/2023]
Abstract
Sustainable natural fiber reinforced composites have attracted significant interest due to the growing environmental concerns with conventional synthetic fiber as well as petroleum-based resins. One promising approach to reducing the large carbon footprint of petroleum-based resins is the use of bio-based thermoset resins. However, current fiber-reinforced bio-based epoxy composites exhibit relatively lower mechanical properties such as tensile, flexural strength, and modulus, which limits their wider application. Here the fabrication of high-performance composites using jute fibers is reported, modified with graphene nanoplates (GNP) and graphene oxide (GO), and reinforced with bio-based epoxy resin. It is demonstrated that physical and chemical treatments of jute fibers significantly improve their fiber volume fraction (Vf) and matrix adhesion, leading to enhanced mechanical properties of the resulting Jute/Bio-epoxy (J/BE) composites. Furthermore, the incorporation of GNP and GO further increases the tensile and flexural strength of the J/BE composites. The study reveals the potential of graphene-based jute fiber-reinforced composites with bio-based epoxy resin as a sustainable and high-performance material for a wide range of applications. This work contributes to the development of sustainable composites that have the potential to reduce the negative environmental impact of conventional materials while also offering improved mechanical properties.
Collapse
Affiliation(s)
| | - Shaila Afroj
- Centre for Print ResearchThe University of the West of EnglandBristolBS16 1QYUK
| | - Nazmul Karim
- Centre for Print ResearchThe University of the West of EnglandBristolBS16 1QYUK
| |
Collapse
|
14
|
Newby S, Mirihanage W, Fernando A. Modern Developments for Textile-Based Supercapacitors. ACS OMEGA 2023; 8:12613-12629. [PMID: 37065039 PMCID: PMC10099440 DOI: 10.1021/acsomega.3c01176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Smart textiles are transforming the future of wearable technology, and due to that, there has been a great deal of new research looking for alternative energy storage. Supercapacitors offer high discharge rates, flexibility, and long life cycles and can be integrated fully into a textile. Optimization of these new systems includes utilizing electrically conductive materials, employing successful electrostatic charge and/or faradaic responses, and fabricating a textile-based energy storage system without disrupting comfort, washability, and life cycle. This paper examines recent developments in fabrication methods and materials used to create textile supercapacitors and what challenges still remain.
Collapse
|
15
|
Hossain MM, Lubna MM, Bradford PD. Multifunctional and Washable Carbon Nanotube-Wrapped Textile Yarns for Wearable E-Textiles. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3365-3376. [PMID: 36622361 DOI: 10.1021/acsami.2c19826] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Carbon nanotube (CNT) yarns are promising for wearable electronic applications due to their excellent electromechanical and thermal properties and structural flexibility. A spinning system was customized to produce CNT-wrapped textile yarns for wearable applications. By adjusting the spinning parameters and core yarn, a highly tailored hybrid CNT yarn could be produced for textile processing, e.g., knitting and weaving. The electrical resistance and mechanical properties of the yarn are influenced by the core yarn. The high flexibility of the yarn enabled state-of-the-art three-dimensional (3D) knitting of the CNT-wrapped yarn for the first time. Using the 3D knitted technology, CNT-wrapped textile yarns were seamlessly integrated into a wrist band and the index finger of a glove. The knitted structure exhibited a large resistance change under strain and precisely recorded the signal under the different movements of the finger and wrist. When the knitted fabric was connected to a power source, rapid heating above skin temperature was observed at a low voltage. This work presents a novel hybrid yarn for the first time, which sustained 30 washing cycles without performance degradation. By changing the core yarn, a highly stretchable and multimodal sensing system could be developed for wearable applications.
Collapse
Affiliation(s)
- Md Milon Hossain
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, North Carolina27606, United States
- Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York14850, United States
| | - Mostakima M Lubna
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, North Carolina27606, United States
| | - Philip D Bradford
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, North Carolina27606, United States
| |
Collapse
|
16
|
Dulal M, Afroj S, Ahn J, Cho Y, Carr C, Kim ID, Karim N. Toward Sustainable Wearable Electronic Textiles. ACS NANO 2022; 16:19755-19788. [PMID: 36449447 PMCID: PMC9798870 DOI: 10.1021/acsnano.2c07723] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/10/2022] [Indexed: 06/06/2023]
Abstract
Smart wearable electronic textiles (e-textiles) that can detect and differentiate multiple stimuli, while also collecting and storing the diverse array of data signals using highly innovative, multifunctional, and intelligent garments, are of great value for personalized healthcare applications. However, material performance and sustainability, complicated and difficult e-textile fabrication methods, and their limited end-of-life processability are major challenges to wide adoption of e-textiles. In this review, we explore the potential for sustainable materials, manufacturing techniques, and their end-of-the-life processes for developing eco-friendly e-textiles. In addition, we survey the current state-of-the-art for sustainable fibers and electronic materials (i.e., conductors, semiconductors, and dielectrics) to serve as different components in wearable e-textiles and then provide an overview of environmentally friendly digital manufacturing techniques for such textiles which involve less or no water utilization, combined with a reduction in both material waste and energy consumption. Furthermore, standardized parameters for evaluating the sustainability of e-textiles are established, such as life cycle analysis, biodegradability, and recyclability. Finally, we discuss the current development trends, as well as the future research directions for wearable e-textiles which include an integrated product design approach based on the use of eco-friendly materials, the development of sustainable manufacturing processes, and an effective end-of-the-life strategy to manufacture next generation smart and sustainable wearable e-textiles that can be either recycled to value-added products or decomposed in the landfill without any negative environmental impacts.
Collapse
Affiliation(s)
- Marzia Dulal
- Centre
for Print Research (CFPR), University of
the West of England, Frenchay Campus, BristolBS16 1QY, United
Kingdom
| | - Shaila Afroj
- Centre
for Print Research (CFPR), University of
the West of England, Frenchay Campus, BristolBS16 1QY, United
Kingdom
| | - Jaewan Ahn
- Department
of Materials Science and Engineering, Korea
Advanced Institute of Science and Technology (KAIST), Daejeon34141, Republic of Korea
| | - Yujang Cho
- Department
of Materials Science and Engineering, Korea
Advanced Institute of Science and Technology (KAIST), Daejeon34141, Republic of Korea
| | - Chris Carr
- Clothworkers’
Centre for Textile Materials Innovation for Healthcare, School of
Design, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Il-Doo Kim
- Department
of Materials Science and Engineering, Korea
Advanced Institute of Science and Technology (KAIST), Daejeon34141, Republic of Korea
| | - Nazmul Karim
- Centre
for Print Research (CFPR), University of
the West of England, Frenchay Campus, BristolBS16 1QY, United
Kingdom
| |
Collapse
|
17
|
Alhindawy IG, Mira HI, Youssef AO, Abdelwahab SM, Zaher AA, El-Said WA, Elshehy EA, Abdelkader AM. Cobalt doped titania-carbon nanosheets with induced oxygen vacancies for photocatalytic degradation of uranium complexes in radioactive wastes. NANOSCALE ADVANCES 2022; 4:5330-5342. [PMID: 36540120 PMCID: PMC9724698 DOI: 10.1039/d2na00467d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/05/2022] [Indexed: 06/03/2023]
Abstract
The photocatalytic degradation of uranium complexes is considered among the most efficient techniques for the efficient removal of uranium ions/complexes from radioactive wastewater. Described here is a nanostructured photocatalyst based on a cobalt-doped TiO2 composite with induced oxygen vacancies (Co@TiO2-C) for the photocatalytic removal of uranium complexes from contaminated water. The synergy between oxygen vacancies and Co-doping produced a material with a 1.7 eV bandgap, while the carbon network facilitates electron movement and hinders the e-h recombination. As a result, the new photocatalyst enables the decomposition of uranium-arsenazo iii complexes (U-ARZ3), followed by photocatalytic reduction of hexavalent uranium to insoluble tetravalent uranium. Combined with the nanosheet structure's high surface area, the photocatalytic decomposition, reduction efficiency, and kinetics were significantly enhanced, achieving almost complete U(vi) removal in less than 20 minutes from solution with a concentration as high as 1000 mL g-1. Moreover, the designed photocatalyst exhibits excellent stability and reusability without decreasing the photocatalytic performance after 5 cycles.
Collapse
Affiliation(s)
| | - Hamed I Mira
- Nuclear Materials Authority El Maadi Cairo Egypt
| | - Ahmed O Youssef
- Department of Chemistry, Faculty of Science, Ain Shams University Cairo Egypt
| | - Saad M Abdelwahab
- Department of Chemistry, Faculty of Science, Ain Shams University Cairo Egypt
| | - Ahmed A Zaher
- Department of Chemistry, Faculty of Science, Mansoura University Elmansoura Egypt
| | - Waleed A El-Said
- Department of Chemistry, Faculty of Science, Assiut University Assiut 71516 Egypt
- University of Jeddah, College of Science, Department of Chemistry PO Box 80327 Jeddah 21589 Saudi Arabia
| | | | - Amr M Abdelkader
- Department of Engineering, Bournemouth University Talbot Campus, Fern Barrow Poole BH12 5BB UK
| |
Collapse
|
18
|
Zeng X, He P, Hu M, Zhao W, Chen H, Liu L, Sun J, Yang J. Copper inks for printed electronics: a review. NANOSCALE 2022; 14:16003-16032. [PMID: 36301077 DOI: 10.1039/d2nr03990g] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Conductive inks have attracted tremendous attention owing to their adaptability and the convenient large-scale fabrication. As a new type of conductive ink, copper-based ink is considered to be one of the best candidate materials for the conductive layer in flexible printed electronics owing to its high conductivity and low price, and suitability for large-scale manufacturing processes. Recently, tremendous progress has been made in the preparation of cooper-based inks for electronic applications, but the antioxidation ability of copper-based nanomaterials within inks or films, that is, long-term reliability upon exposure to water and oxygen, still needs more exploration. In this review, we present a comprehensive overview of copper inks for printed electronics from ink preparation, printing methods and sintering, to antioxidation strategies and electronic applications. The review begins with an overview of the development of copper inks, followed by a demonstration of various preparation methods for copper inks. Then, the diverse printing techniques and post-annealing strategies used to fabricate conductive copper patterns are discussed. In addition, antioxidation strategies utilized to stabilize the mechanical and electrical properties of copper nanomaterials are summarized. Then the diverse applications of copper inks for electronic devices, such as transparent conductive electrodes, sensors, optoelectronic devices, and thin-film transistors, are discussed. Finally, the future development of copper-based inks and the challenges of their application in printed electronics are discussed.
Collapse
Affiliation(s)
- Xianghui Zeng
- Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, People's Republic of China.
| | - Pei He
- Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, People's Republic of China.
| | - Minglu Hu
- Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, People's Republic of China.
| | - Weikai Zhao
- Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, People's Republic of China.
| | - Huitong Chen
- Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, People's Republic of China.
| | - Longhui Liu
- Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, People's Republic of China.
| | - Jia Sun
- Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, People's Republic of China.
| | - Junliang Yang
- Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, People's Republic of China.
| |
Collapse
|
19
|
Islam MR, Afroj S, Novoselov KS, Karim N. Smart Electronic Textile-Based Wearable Supercapacitors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203856. [PMID: 36192164 PMCID: PMC9631069 DOI: 10.1002/advs.202203856] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/05/2022] [Indexed: 05/05/2023]
Abstract
Electronic textiles (e-textiles) have drawn significant attention from the scientific and engineering community as lightweight and comfortable next-generation wearable devices due to their ability to interface with the human body, and continuously monitor, collect, and communicate various physiological parameters. However, one of the major challenges for the commercialization and further growth of e-textiles is the lack of compatible power supply units. Thin and flexible supercapacitors (SCs), among various energy storage systems, are gaining consideration due to their salient features including excellent lifetime, lightweight, and high-power density. Textile-based SCs are thus an exciting energy storage solution to power smart gadgets integrated into clothing. Here, materials, fabrications, and characterization strategies for textile-based SCs are reviewed. The recent progress of textile-based SCs is then summarized in terms of their electrochemical performances, followed by the discussion on key parameters for their wearable electronics applications, including washability, flexibility, and scalability. Finally, the perspectives on their research and technological prospects to facilitate an essential step towards moving from laboratory-based flexible and wearable SCs to industrial-scale mass production are presented.
Collapse
Affiliation(s)
- Md Rashedul Islam
- Centre for Print Research (CFPR)The University of the West of EnglandFrenchay CampusBristolBS16 1QYUK
| | - Shaila Afroj
- Centre for Print Research (CFPR)The University of the West of EnglandFrenchay CampusBristolBS16 1QYUK
| | - Kostya S. Novoselov
- Institute for Functional Intelligent Materials, Department of Materials Science and EngineeringNational University of SingaporeSingapore117575Singapore
- Chongqing 2D Materials InstituteLiangjiang New AreaChongqing400714China
| | - Nazmul Karim
- Centre for Print Research (CFPR)The University of the West of EnglandFrenchay CampusBristolBS16 1QYUK
| |
Collapse
|
20
|
Urade AR, Lahiri I, Suresh KS. Graphene Properties, Synthesis and Applications: A Review. JOM (WARRENDALE, PA. : 1989) 2022; 75:614-630. [PMID: 36267692 PMCID: PMC9568937 DOI: 10.1007/s11837-022-05505-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/29/2022] [Indexed: 06/12/2023]
Abstract
We have evaluated some of the most recent breakthroughs in the synthesis and applications of graphene and graphene-based nanomaterials. This review includes three major categories. The first section consists of an overview of the structure and properties, including thermal, optical, and electrical transport. Recent developments in the synthesis techniques are elaborated in the second section. A number of top-down strategies for the synthesis of graphene, including exfoliation and chemical reduction of graphene oxide, are discussed. A few bottom-up synthesis methods for graphene are also covered, including thermal chemical vapor deposition, plasma-enhanced chemical vapor deposition, thermal decomposition of silicon, unzipping of carbon nanotubes, and others. The final section provides the recent innovations in graphene applications and the commercial availability of graphene-based devices.
Collapse
Affiliation(s)
- Akanksha R. Urade
- Centre of Excellence: Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667 India
| | - Indranil Lahiri
- Centre of Excellence: Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667 India
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667 India
| | - K. S. Suresh
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667 India
| |
Collapse
|
21
|
Yi P, Zou H, Yu Y, Li X, Li Z, Deng G, Chen C, Fang M, He J, Sun X, Liu X, Shui J, Yu R. MXene-Reinforced Liquid Metal/Polymer Fibers via Interface Engineering for Wearable Multifunctional Textiles. ACS NANO 2022; 16:14490-14502. [PMID: 36094895 DOI: 10.1021/acsnano.2c04863] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Stretchable conductive fibers are an important component of wearable electronic textiles, but often suffer from a decrease in conductivity upon stretching. The use of liquid metal (LM) droplets as conductive fillers in elastic fibers is a promising solution. However, there is an urgent need to develop effective strategies to achieve high adhesion of LM droplets to substrates and establish efficient electron transport paths between droplets. Here, we use large-sized MXene two-dimensional conductive materials to modify magnetic LM droplets and prepare MXene/magnetic LM/poly(styrene-butadiene-styrene) composite fibers (MLMS fibers). The MXene sheets decorated on the surface of magnetic LM droplets not only enhance the droplet adhesion to substrate but also bridge adjacent droplets to establish efficient conductive paths. MLMS fibers show several-fold improvements in tensile strength and elongation and a 30-fold increase in conductivity compared with pure LM-filled fibers. These conductive fibers can be easily woven into multifunctional textiles, which exhibit strong electromagnetic interference shielding and stable Joule heating performances even under large tensile deformation. In addition, other advantages of MLMS textiles, such as high gas/liquid permeability, strong chemical resistance (acid and alkaline conditions), high/low-temperature tolerance (-40-150 °C) and water washability, make them particularly suitable for wearable applications.
Collapse
Affiliation(s)
- Peng Yi
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, PR China
| | - Haihan Zou
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, PR China
| | - Yuanhang Yu
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, PR China
| | - Xufeng Li
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, PR China
| | - Zhenyang Li
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, PR China
| | - Gao Deng
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, PR China
| | - Chunyan Chen
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, PR China
| | - Ming Fang
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, PR China
| | - Junzhe He
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, PR China
- Science and Technology on Electromagnetic Scattering Laboratory, Beijing Institute of Environmental Features, Beijing 100854, PR China
| | - Xin Sun
- Science and Technology on Electromagnetic Scattering Laboratory, Beijing Institute of Environmental Features, Beijing 100854, PR China
| | - Xiaofang Liu
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, PR China
| | - Jianglan Shui
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, PR China
| | - Ronghai Yu
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, PR China
| |
Collapse
|
22
|
Shak Sadi M, Kumpikaitė E. Advances in the Robustness of Wearable Electronic Textiles: Strategies, Stability, Washability and Perspective. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2039. [PMID: 35745378 PMCID: PMC9229712 DOI: 10.3390/nano12122039] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/23/2022] [Accepted: 06/08/2022] [Indexed: 01/27/2023]
Abstract
Flexible electronic textiles are the future of wearable technology with a diverse application potential inspired by the Internet of Things (IoT) to improve all aspects of wearer life by replacing traditional bulky, rigid, and uncomfortable wearable electronics. The inherently prominent characteristics exhibited by textile substrates make them ideal candidates for designing user-friendly wearable electronic textiles for high-end variant applications. Textile substrates (fiber, yarn, fabric, and garment) combined with nanostructured electroactive materials provide a universal pathway for the researcher to construct advanced wearable electronics compatible with the human body and other circumstances. However, e-textiles are found to be vulnerable to physical deformation induced during repeated wash and wear. Thus, e-textiles need to be robust enough to withstand such challenges involved in designing a reliable product and require more attention for substantial advancement in stability and washability. As a step toward reliable devices, we present this comprehensive review of the state-of-the-art advances in substrate geometries, modification, fabrication, and standardized washing strategies to predict a roadmap toward sustainability. Furthermore, current challenges, opportunities, and future aspects of durable e-textiles development are envisioned to provide a conclusive pathway for researchers to conduct advanced studies.
Collapse
Affiliation(s)
| | - Eglė Kumpikaitė
- Department of Production Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentų Str. 56, LT-51424 Kaunas, Lithuania;
| |
Collapse
|