1
|
Xie E, Wang Q, Yi H, Wang J, Liu X, Ye R, Lu L, Tian T, Chen A, Zheng G, Zhang G, Wang H. PRRSV Nsp4 induces ATGL protein degradation to promote viral replication and lipid droplet accumulation. Int J Biol Macromol 2025; 312:144097. [PMID: 40350128 DOI: 10.1016/j.ijbiomac.2025.144097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 05/07/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a prevalent disease caused by porcine reproductive and respiratory syndrome virus (PRRSV). Various viruses regulate lipid metabolism to promote their replication. In this study, we investigated the regulation of the host lipid metabolism by PRRSV. We observed that PRRSV infection induced an increase in intracellular triglyceride (TG) and the accumulation of lipid droplets (LDs). Notably, inhibiting TG synthesis with specific drugs suppressed both PRRSV replication and LD accumulation, whereas supplementation with oleic acid (OA), which increases lipid content, promoted PRRSV replication. Moreover, Western blotting assay revealed a marked reduction in adipose triglyceride lipase (ATGL) expression upon PRRSV infection. The overexpression of ATGL inhibited the increase in intracellular TG and LD accumulation while also suppressing PRRSV replication. In contrast, the knockdown of ATGL induced an increase in intracellular TG, promoting PRRSV replication and enhancing LD accumulation. Western blotting assay indicated that PRRSV infection downregulates the expression of endogenous ATGL. Immunofluorescence and co-immunoprecipitation experiments confirmed that Nsp4 bound to the patatin-like domain of ATGL and inducing its protein degradation. Finally, we demonstrated that Nsp4 induced an increase in intracellular TG and promoted OA-induced LD accumulation, whereas its co-expression with ATGL reduced intracellular TG. In conclusion, we propose that PRRSV Nsp4 induced an increase in intracellular TG by degrading ATGL, thereby promoting PRRSV replication and LD accumulation. These findings provided new insights into the infection mechanism of PRRSV.
Collapse
Affiliation(s)
- Ermin Xie
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510462, China
| | - Qiumei Wang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510462, China
| | - Heyou Yi
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jingyu Wang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510462, China
| | - Xing Liu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510462, China
| | - Ruirui Ye
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510462, China
| | - Lechen Lu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510462, China
| | - Tao Tian
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510462, China
| | - Anli Chen
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510462, China
| | - Guoxin Zheng
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510462, China
| | - Guihong Zhang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510462, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Heng Wang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510462, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Zhang L, Liu S, Zhao Q, Liu X, Zhang Q, Liu M, Zhao W. The role of ubiquitination and deubiquitination in the pathogenesis of non-alcoholic fatty liver disease. Front Immunol 2025; 16:1535362. [PMID: 40292292 PMCID: PMC12021615 DOI: 10.3389/fimmu.2025.1535362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/19/2025] [Indexed: 04/30/2025] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases and is closely associated with metabolic abnormalities. The causes of NAFLD are exceedingly complicated, and it is known that a variety of signaling pathways, endoplasmic reticulum stress, and mitochondrial dysfunction play a role in the pathogenesis of NAFLD. Recent studies have shown that ubiquitination and deubiquitination are involved in the regulation of the NAFLD pathophysiology. Protein ubiquitination is a dynamic and diverse post-translational alteration that affects various cellular biological processes. Numerous disorders, including NAFLD, exhibit imbalances in ubiquitination and deubiquitination. To highlight the significance of this post-translational modification in the pathogenesis of NAFLD and to aid in the development of new therapeutic approaches for the disease, we will discuss the role of enzymes involved in the processes of ubiquitination and deubiquitination, specifically E3 ubiquitin ligases and deubiquitinating enzymes that are important in the regulation of NAFLD.
Collapse
Affiliation(s)
- Lihui Zhang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan, China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou, Henan, China
| | - Sutong Liu
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan, China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou, Henan, China
| | - Qing Zhao
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaoyan Liu
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Qiang Zhang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Minghao Liu
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan, China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou, Henan, China
| | - Wenxiao Zhao
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan, China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou, Henan, China
| |
Collapse
|
3
|
Huang G, Yang X, Yu Q, Luo Q, Ju C, Zhang B, Chen Y, Liang Z, Xia S, Wang X, Xiang D, Zhong N, Tang XX. Overexpression of STX11 alleviates pulmonary fibrosis by inhibiting fibroblast activation via the PI3K/AKT/mTOR pathway. Signal Transduct Target Ther 2024; 9:306. [PMID: 39523374 PMCID: PMC11551190 DOI: 10.1038/s41392-024-02011-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 09/15/2024] [Accepted: 10/13/2024] [Indexed: 11/16/2024] Open
Abstract
Fibroblast activation plays an important role in the occurrence and development of idiopathic pulmonary fibrosis (IPF), which is a progressive, incurable, and fibrotic lung disease. However, the underlying mechanism of fibroblast activation in IPF remains elusive. Here, we showed that the expression levels of STX11 and SNAP25 were downregulated in the lung tissues from patients with IPF and mice with bleomycin (BLM)-induced lung fibrosis as well as in the activated fibroblasts. Upregulation of STX11 or SNAP25 suppressed TGF-β1-induced activation of human lung fibroblasts (HLFs) via promoting autophagy. However, they failed to suppress fibroblast actviation when autophagy was blocked with the use of chloroquine (CQ). In addition, STX11 or SNAP25 could inhibit TGF-β1-induced fibroblast proliferation and migration. In vivo, overexpression of STX11 exerted its protective role in the mice with BLM-induced lung fibrosis. STX11 and SNAP25 mutually promoted expression of each other. Co-IP assay indicated that STX11 has an interaction with SNAP25. Mechanistically, STX11-SNAP25 interaction activated fibroblast autophagy and further inhibited fibroblast activation via blocking the PI3K/AKT/mTOR pathway. Overall, the results suggested that STX11-SNAP25 interaction significantly inhibited lung fibrosis by promoting fibroblast autophagy and suppressing fibroblast activation via blocking the PI3K/ATK/mTOR signaling pathway. Therefore, STX11 serves as a promising therapeutic target in IPF.
Collapse
Affiliation(s)
- Guichuan Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiangsheng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qingyang Yu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qun Luo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chunrong Ju
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bangyan Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yijing Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zihan Liang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shu Xia
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaohua Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dong Xiang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangzhou Laboratory, Bio-island, Guangzhou, China.
| | - Xiao Xiao Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangzhou Laboratory, Bio-island, Guangzhou, China.
| |
Collapse
|
4
|
Datta S, Gupta A, Jagetiya KM, Tiwari V, Yamashita M, Ammann S, Shahrooei M, Yande AR, Sowdhamini R, Dani A, Prakriya M, Vig M. Syntaxin11 Deficiency Inhibits CRAC Channel Priming To Suppress Cytotoxicity And Gene Expression In FHLH4 Patient T Lymphocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620144. [PMID: 39484379 PMCID: PMC11527129 DOI: 10.1101/2024.10.25.620144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
CRAC channels enable calcium entry from the extracellular space in response to a variety of stimuli and are crucial for gene expression and granule exocytosis in lymphocytes. Here we find that Syntaxin11, a Q-SNARE, associated with FHLH4 disease in human patients, directly binds Orai1, the pore forming subunit of CRAC channels. Syntaxin11 depletion strongly inhibited SOCE, CRAC currents, IL-2 expression and cytotoxicity in cell lines and FHLH4 patient T lymphocytes. Constitutively active H134 Orai1 mutant completely reconstituted calcium entry in Syntaxin11 depleted cells and the defects of granule exocytosis as well as gene expression could be bypassed by ionomycin induced calcium influx in FHLH4 T lymphocytes. Our data reveal a Syntaxin11 induced pre-activation state of Orai which is necessary for its subsequent coupling and gating by the endoplasmic reticulum resident Stim protein. We propose that ion channel regulation by specific SNAREs is a primary and conserved function which may have preceded their role in vesicle fusion.
Collapse
Affiliation(s)
- Sritama Datta
- Tata Institute of Fundamental Research, Hyderabad, India
| | | | | | - Vikas Tiwari
- National Centre for Biological Sciences, Bangalore, India
| | - Megumi Yamashita
- Northwestern University, Feinberg School of Medicine, Chicago, USA
| | - Sandra Ammann
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute for Transfusion Medicine and Gene Therapy, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mohammad Shahrooei
- Department of Microbiology, Immunology and Transplantation, Clinical and Diagnostic Immunology, KU Leuven, Leuven, Belgium
| | | | | | - Adish Dani
- Tata Institute of Fundamental Research, Hyderabad, India
| | - Murali Prakriya
- Northwestern University, Feinberg School of Medicine, Chicago, USA
| | - Monika Vig
- Tata Institute of Fundamental Research, Hyderabad, India
| |
Collapse
|
5
|
Liu H, Dang R, Zhang W, Hong J, Li X. SNARE proteins: Core engines of membrane fusion in cancer. Biochim Biophys Acta Rev Cancer 2024:189148. [PMID: 38960006 DOI: 10.1016/j.bbcan.2024.189148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/23/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Vesicles are loaded with a variety of cargoes, including membrane proteins, secreted proteins, signaling molecules, and various enzymes, etc. Not surprisingly, vesicle transport is essential for proper cellular life activities including growth, division, movement and cellular communication. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) mediate membrane fusion of vesicles with their target compartments that is fundamental for cargo delivery. Recent studies have shown that multiple SNARE family members are aberrantly expressed in human cancers and actively contribute to malignant proliferation, invasion, metastasis, immune evasion and treatment resistance. Here, the localization and function of SNARE proteins in eukaryotic cells are firstly mapped. Then we summarize the expression and regulation of SNAREs in cancer, and describe their contribution to cancer progression and mechanisms, and finally we propose engineering botulinum toxin as a strategy to target SNAREs for cancer treatment.
Collapse
Affiliation(s)
- Hongyi Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Ruiyue Dang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Jidong Hong
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China.
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
6
|
Bao Y, Zhu L, Wang Y, Liu J, Liu Z, Li Z, Zhou A, Wu H. Gualou-Xiebai herb pair and its active ingredients act against atherosclerosis by suppressing VSMC-derived foam cell formation via regulating P2RY12-mediated lipophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155341. [PMID: 38518636 DOI: 10.1016/j.phymed.2024.155341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/28/2023] [Accepted: 01/06/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND Atherosclerosis (AS) is a chronic disease characterized by lipid accumulation in the aortic wall and the formation of foam cells overloaded with large lipids inclusions. Currently, Western medicine is primarily used to improve lipid metabolism disorders and reduce inflammatory reactions to delay AS progression, but these medicines come with serious side effects and drug resistance. Gualou-Xiebai (GLXB) is a renowned herb pair that has been proven effective against AS. However, the potential molecular mechanism through which GLXB exerts the anti-atherosclerotic effects of increasing lipophagy in vascular smooth muscle cells (VSMCs) remains unknown. PURPOSE This study aims to explore the role of lipophagy and the therapeutic mechanism of GLXB in AS. METHODS UPLC-Q-TOF-MS for the determination of the main components of GLXB-containing serum. An AS mouse model was established by feeding a high-fat diet (HFD) to ApoE-/- mice for 12 weeks. Ultrasonography monitoring was used to confirm the successful establishment of the AS model. Plaque areas and lipid deposition were evaluated using HE staining and aorta imagingafter GLXB treatment. Immunofluorescence staining and Western blotting were utilized to observe the P2RY12 and lipophagy levels in AS mice. VSMCs were stimulated with oxidized low-density lipoprotein (ox-LDL) to induce foam cell formation. The degree of lipophagy and the related molecular mechanisms were assessed after treating the VSMCs with GLXB-containing serum or si-P2RY12 transfection. The active components of GLXB-containing serum that act on P2RY12 were screened and verified by molecular docking and dual-luciferase reporter assays. RESULTS Seventeen components of GLXB were identified in rat serum by UPLC-Q-TOF-MS. GLXB significantly reduced lipid deposition in HFD-fed ApoE-/- mice and ox-LDL-induced VSMCs. GLXB strikingly increased lipophagy levels by downregulating P2RY12, p62, and plin2, upregulating LC3Ⅱ protein expression, and increasing the number of autophagosomes. Notably, the lipophagy inhibitor CQ and the P2RY12 receptor agonist ADPβ abolished the GLXB-induced increase in lipophagy. Last, we confirmed that albiflorin, apigenin, luteolin, kaempferol, 7,8-dihydroxyflavone, and hesperetin from GLXB significantly inhibited P2RY12. CONCLUSION GLXB activates lipophagy and inhibits lipid accumulation-associated VSMC-derived foam cell formation through suppressing P2RY12 activation, resulting in anti-atherosclerotic effects. The GLXB components albiflorin, apigenin, luteolin, kaempferol, 7,8-dihydroxyflavone, and hesperetin are the potential active effectors against P2RY12.
Collapse
MESH Headings
- Animals
- Atherosclerosis/drug therapy
- Foam Cells/drug effects
- Foam Cells/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Male
- Mice
- Drugs, Chinese Herbal/pharmacology
- Receptors, Purinergic P2Y12/metabolism
- Diet, High-Fat
- Mice, Inbred C57BL
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Rats
- Disease Models, Animal
- Autophagy/drug effects
- Rats, Sprague-Dawley
- Lipid Metabolism/drug effects
- Aorta/drug effects
- Lipoproteins, LDL/metabolism
Collapse
Affiliation(s)
- Youli Bao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; The Experimental Research Center, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Li Zhu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; The Experimental Research Center, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Yuting Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; The Experimental Research Center, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Jiahui Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; The Experimental Research Center, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Zijian Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; The Experimental Research Center, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Zhenglong Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; The Experimental Research Center, Anhui University of Chinese Medicine, Hefei 230038, China
| | - An Zhou
- The Experimental Research Center, Anhui University of Chinese Medicine, Hefei 230038, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, China.
| | - Hongfei Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; The Experimental Research Center, Anhui University of Chinese Medicine, Hefei 230038, China.
| |
Collapse
|
7
|
Bu T, Sun Z, Pan Y, Deng X, Yuan G. Glucagon-Like Peptide-1: New Regulator in Lipid Metabolism. Diabetes Metab J 2024; 48:354-372. [PMID: 38650100 PMCID: PMC11140404 DOI: 10.4093/dmj.2023.0277] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/01/2024] [Indexed: 04/25/2024] Open
Abstract
Glucagon-like peptide-1 (GLP-1) is a 30-amino acid peptide hormone that is mainly expressed in the intestine and hypothalamus. In recent years, basic and clinical studies have shown that GLP-1 is closely related to lipid metabolism, and it can participate in lipid metabolism by inhibiting fat synthesis, promoting fat differentiation, enhancing cholesterol metabolism, and promoting adipose browning. GLP-1 plays a key role in the occurrence and development of metabolic diseases such as obesity, nonalcoholic fatty liver disease, and atherosclerosis by regulating lipid metabolism. It is expected to become a new target for the treatment of metabolic disorders. The effects of GLP-1 and dual agonists on lipid metabolism also provide a more complete treatment plan for metabolic diseases. This article reviews the recent research progress of GLP-1 in lipid metabolism.
Collapse
Affiliation(s)
- Tong Bu
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Ziyan Sun
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yi Pan
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xia Deng
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Guoyue Yuan
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
8
|
Wang P, Tong K, Li Y, Li X, Zhang Y, Gu J, Lei P, Yan S, Hu P. The role and mechanism of HIF-1α-mediated glypican-3 secretion in hypoxia-induced tumor progression in hepatocellular carcinoma. Cell Signal 2024; 114:111007. [PMID: 38081444 DOI: 10.1016/j.cellsig.2023.111007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/19/2023] [Accepted: 12/08/2023] [Indexed: 01/01/2024]
Abstract
OBJECTIVE To explore the expression and secretion mechanism of glypican-3 (GPC3) in hepatocellular carcinoma (HCC) cells under hypoxic conditions, and its role in tumor progression. METHODS Huh7 cells with and without the knockdown of hypoxia-inducible factor 1-alpha (HIF-1α) were cultured under 1% O2 for varying durations to induce hypoxia. The expression levels of GPC3, HSP70, CD63, STX11 and SYT7 in the cytoplasm and exosomes of Huh7 cells were evaluated by western blotting and immunofluorescence. GPC3 protein expression was further measured in cells treated with GW4869 under hypoxic conditions. Huh7 cells and human umbilical vein endothelial cells (HUVECs) were cultured with the exosomes extracted from the control and GPC3-knockdown cells, the cell proliferation, migration, epithelial-mesenchymal transition (EMT), invasion, and in vitro angiogenesis were analyzed. Tumor xenografts were established to assess the role of GPC3-deficient exosomes in tumor growth. RESULTS Hypoxic culture conditions downregulated GPC3, STX11 and SYT7 protein levels in the Huh7 cells and upregulated GPC3 mRNA, and also increased GPC3 protein expression in the exosomes. HIF-1α knockdown, as well as treatment with GW4869, upregulated GPC3 protein in the Huh7 cells grown under 1% O2, but downregulated exosomal GPC3. Furthermore, exosomes derived from the GPC3-knockdown cells inhibited the proliferation and migration of Huh7 cells, decreased the expression of N-cadherin, vimentin, β-catenin, c-Myc and cyclin D1, and increased that of E-cadherin. Likewise, the GPC3-deficient exosomes also suppressed the invasion and tube formation ability of the HUVECs compared to that of control cells. Consistent with the in vitro results, the GPC3-deficient exosomes also repressed tumor growth in vivo. CONCLUSION Hypoxia promoted secretion of exosomal GPC3 through the activation of HIF-1α. GPC3-deficient exosomes inhibited the proliferation, migration and EMT of HCC cells via the Wnt/β-catenin signaling pathway, and suppressed the angiogenic potential of HUVECs. This provided a novel understanding of the role of exosomal GPC3 in HCC progression.
Collapse
Affiliation(s)
- Pingfeng Wang
- Department of Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000. China; Biomedical Engineering College, Hubei University of Medicine, Shiyan, Hubei, 442000. China; Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000. China
| | - Kun Tong
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000. China; Department of Laboratory Medicine, Huanggang Central Hospital, China
| | - Ying Li
- Department of Blood Transfusion, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000. China
| | - Xuejie Li
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000. China; Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of HCC, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000.China
| | - Yuan Zhang
- Biomedical Engineering College, Hubei University of Medicine, Shiyan, Hubei, 442000. China
| | - Jiangxue Gu
- Biomedical Engineering College, Hubei University of Medicine, Shiyan, Hubei, 442000. China
| | - Panwei Lei
- Hospital of Stomatology Wuhan University, Wuhan, Hubei, 430000. China
| | - Shirong Yan
- Department of Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000. China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, Hubei, 442000. China.
| | - Pei Hu
- Department of Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000. China; Biomedical Engineering College, Hubei University of Medicine, Shiyan, Hubei, 442000. China.
| |
Collapse
|
9
|
Zhang YF, Zhu HL, Xu XF, Zhang J, Ling Q, Zhang S, Chang W, Xiong YW, Xu DX, Wang H. Activation of Atg5-dependent placental lipophagy ameliorates cadmium-induced fetal growth restriction. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 328:121602. [PMID: 37031847 DOI: 10.1016/j.envpol.2023.121602] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 05/09/2023]
Abstract
Cadmium (Cd), an environmental contaminant, can result in placental non-selective autophagy activation and fetal growth restriction (FGR). However, the role of placental lipophagy, a selective autophagy, in Cd-induced FGR is unclear. This work uses case-control study, animal experiments and cultures of primary human placental trophoblast cells to explore the role of placental lipophagy in Cd-induced FGR. We found association of placental lipophagy and all-cause FGR. Meanwhile, pregnancy Cd exposure induced FGR and placental lipophgay. Inhibition of placental lipophagy by pharmacological and genetic means (Atg5-/- mice) exacerbated Cd-caused FGR. Inversely, activating of placental lipophagy relieved Cd-stimulated FGR. Subsequently, we found that activation of Atg5-dependent lipophagy degrades lipid droplets to produce free cholesterol, and promotes placental progesterone (P4) synthesis. Gestational P4 supplementation significantly reversed Cd-induced FGR. Altogether, activation of Atg5-dependent placental lipophagy ameliorates Cd-induced FGR.
Collapse
Affiliation(s)
- Yu-Feng Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hua-Long Zhu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Xiao-Feng Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui, China
| | - Jin Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Qing Ling
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Shuang Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Wei Chang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yong-Wei Xiong
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, China.
| |
Collapse
|
10
|
Fan Y, Lu J, Fan J, Guan S. 1,3-dichloro-2-propanol caused lipid droplets accumulation by suppressing neutral lipases via BMAL1 in hepatocytes. Food Chem Toxicol 2023; 174:113670. [PMID: 36805544 DOI: 10.1016/j.fct.2023.113670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/03/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023]
Abstract
Circadian rhythm regulates body physiology and metabolism to adapt to the external environment. 1,3-dichloro-2-propanol (1,3-DCP) is a food pollutant formed during food processing. Our study explored whether toxicity of 1,3-DCP was related to circadian rhythm. We discovered that 1,3-DCP caused lipid droplets (LDs) accumulation via suppression of neutral lipases ATGL and HSL in mice liver and HepG2 cells. Meanwhile, 1,3-DCP caused rhythmic disruption of key circadian rhythm molecules BMAL1/CLOCK at protein and mRNA levels in HepG2 cells. Studies have shown that BMAL1 regulates PPARα by binding to the promoter E-box. 1,3-DCP inhibited PPARα expression. A PPARα activator WY-14643 up-regulated ATGL and HSL expression. BMAL1 overexpression up-regulated PPARα, ATGL and HSL expression. WY-14643 or BMAL1 overexpression attenuated 1,3-DCP-caused LDs accumulation in HepG2 cells. The results revealed that 1,3-DCP caused LDs accumulation by neutral lipases suppression via inhibiting key circadian rhythm protein BMAL1, indicating that circadian rhythm can be related to the regulation of LDs accumulation caused by 1,3-DCP.
Collapse
Affiliation(s)
- Yong Fan
- College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Jing Lu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, People's Republic of China; Key Laboratory of Zoonosis, Ministry of Education College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Jinghui Fan
- Department of Pharmacy, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, 157011, People's Republic of China
| | - Shuang Guan
- College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, People's Republic of China; Key Laboratory of Zoonosis, Ministry of Education College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, People's Republic of China.
| |
Collapse
|
11
|
An L, Wirth U, Koch D, Schirren M, Drefs M, Koliogiannis D, Niess H, Andrassy J, Guba M, Bazhin AV, Werner J, Kühn F. Metabolic Role of Autophagy in the Pathogenesis and Development of NAFLD. Metabolites 2023; 13:metabo13010101. [PMID: 36677026 PMCID: PMC9864958 DOI: 10.3390/metabo13010101] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/31/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a spectrum of liver disease, ranging from simple steatosis to hepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Liver fibrosis, which portends a poor prognosis in NAFLD, is characterized by the excessive accumulation of extracellular matrix (ECM) proteins resulting from abnormal wound repair response and metabolic disorders. Various metabolic factors play crucial roles in the progression of NAFLD, including abnormal lipid, bile acid, and endotoxin metabolism, leading to chronic inflammation and hepatic stellate cell (HSC) activation. Autophagy is a conserved process within cells that removes unnecessary or dysfunctional components through a lysosome-dependent regulated mechanism. Accumulating evidence has shown the importance of autophagy in NAFLD and its close relation to NAFLD progression. Thus, regulation of autophagy appears to be beneficial in treating NAFLD and could become an important therapeutic target.
Collapse
|
12
|
Cell Junction and Vesicle Trafficking-Mediated Melanosome/Melanin Transfer Are Involved in the Dynamic Transformation of Goldfish Carassius auratus Skin Color. Int J Mol Sci 2022; 23:ijms232012214. [PMID: 36293071 PMCID: PMC9603685 DOI: 10.3390/ijms232012214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 11/21/2022] Open
Abstract
Goldfish are one of the most popular models for studying the genetic diversity of skin color. Transcriptome sequencing (RNA-seq) and whole genome bisulfate sequencing (WGBS) of skin tissues from the third filial (F3) cyan (CN), black (BK), and white (WH) goldfish were conducted to analyze the molecular mechanism of color transformation in fish. The RNA-seq yielded 56 Gb of clean data and 56,627 transcripts from nine skin samples. The DEGs (differentially expressed genes) were enriched in cell junction cellular components and the tight junction pathway. Ninety-five homologs of the claudin family were predicted and 16 claudins were identified in correlation with skin color transformation. WGBS yielded 1079 Gb of clean data from 15 samples. Both the DEGs and the DMRs (differentially methylated regions) in the BK_CN group were found to be enriched in cytoskeleton reorganization and vesicle trafficking. Masson staining and TEM (transmission electron microscopy) confirmed the varied distribution and processes of melanosome/melanin in skin tissues. Our results suggested that cytoskeleton reorganization, cell junction, and the vesicle trafficking system played key roles in the transfer of the melanosome/melanin, and it was the extracellular translocation rather than the biosynthesis or metabolism of the melanin process that resulted in the color transformation of cyan goldfish. The data will facilitate the understanding of the molecular mechanisms underlying dynamic skin color transformation in goldfish.
Collapse
|