1
|
Zhou X, Wu Y, Zhu Z, Lu C, Zhang C, Zeng L, Xie F, Zhang L, Zhou F. Mucosal immune response in biology, disease prevention and treatment. Signal Transduct Target Ther 2025; 10:7. [PMID: 39774607 PMCID: PMC11707400 DOI: 10.1038/s41392-024-02043-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/05/2024] [Accepted: 10/27/2024] [Indexed: 01/11/2025] Open
Abstract
The mucosal immune system, as the most extensive peripheral immune network, serves as the frontline defense against a myriad of microbial and dietary antigens. It is crucial in preventing pathogen invasion and establishing immune tolerance. A comprehensive understanding of mucosal immunity is essential for developing treatments that can effectively target diseases at their entry points, thereby minimizing the overall impact on the body. Despite its importance, our knowledge of mucosal immunity remains incomplete, necessitating further research. The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has underscored the critical role of mucosal immunity in disease prevention and treatment. This systematic review focuses on the dynamic interactions between mucosa-associated lymphoid structures and related diseases. We delve into the basic structures and functions of these lymphoid tissues during disease processes and explore the intricate regulatory networks and mechanisms involved. Additionally, we summarize novel therapies and clinical research advances in the prevention of mucosal immunity-related diseases. The review also addresses the challenges in developing mucosal vaccines, which aim to induce specific immune responses while maintaining tolerance to non-pathogenic microbes. Innovative therapies, such as nanoparticle vaccines and inhalable antibodies, show promise in enhancing mucosal immunity and offer potential for improved disease prevention and treatment.
Collapse
Affiliation(s)
- Xiaoxue Zhou
- School of Medicine, Hangzhou City University, Hangzhou, China
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yuchen Wu
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhipeng Zhu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Chu Lu
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Chunwu Zhang
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Linghui Zeng
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Feng Xie
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China.
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Fangfang Zhou
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
2
|
Schirm S, Nouailles G, Kirsten H, Trimpert J, Wyler E, Teixeira Alves LG, Landthaler M, Ahnert P, Suttorp N, Witzenrath M, Scholz M. A biomathematical model of SARS-CoV-2 in Syrian hamsters. Sci Rep 2024; 14:30541. [PMID: 39695178 DOI: 10.1038/s41598-024-80498-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 11/19/2024] [Indexed: 12/20/2024] Open
Abstract
When infected with SARS-CoV-2, Syrian hamsters (Mesocricetus auratus) develop moderate disease severity presenting key features of human COVID-19. We here develop a biomathematical model of the disease course by translating known biological mechanisms of virus-host interactions and immune responses into ordinary differential equations. We explicitly describe the dynamics of virus population, affected alveolar epithelial cells, and involved relevant immune cells comprising for example CD4+ T cells, CD8+ T cells, macrophages, natural killer cells and B cells. We also describe the humoral response dynamics of neutralising antibodies and major regulatory cytokines including CCL8 and CXCL10. The model is developed and parametrized based on experimental data collected at days 2, 3, 5, and 14 post infection. Pulmonary cell composition and their transcriptional profiles were obtained by lung single-cell RNA (scRNA) sequencing analysis. Parametrization of the model resulted in a good agreement of model and data. The model can be used to predict, for example, the time course of the virus population, immune cell dynamics, antibody production and regeneration of alveolar cells for different therapy scenarios or after multiple-infection events. We aim to translate this model to the human situation in the future.
Collapse
Affiliation(s)
- Sibylle Schirm
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig, 04107, Leipzig, Germany.
| | - Geraldine Nouailles
- Department of Infectious Diseases and Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
| | - Holger Kirsten
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig, 04107, Leipzig, Germany
| | - Jakob Trimpert
- Institute of Virology, Freie Universität Berlin, 14163, Berlin, Germany
| | - Emanuel Wyler
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 10115, Berlin, Germany
| | - Luiz Gustavo Teixeira Alves
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 10115, Berlin, Germany
| | - Markus Landthaler
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 10115, Berlin, Germany
- Institute for Biology, Humboldt-Universität zu Berlin, 10099, Berlin, Germany
| | - Peter Ahnert
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig, 04107, Leipzig, Germany
| | - Norbert Suttorp
- Department of Infectious Diseases and Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
| | - Martin Witzenrath
- Department of Infectious Diseases and Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
- German Center for Lung Research (DZL), Berlin, Germany
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig, 04107, Leipzig, Germany
| |
Collapse
|
3
|
Ward C, Schlichtholz B. Post-Acute Sequelae and Mitochondrial Aberration in SARS-CoV-2 Infection. Int J Mol Sci 2024; 25:9050. [PMID: 39201736 PMCID: PMC11354507 DOI: 10.3390/ijms25169050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/29/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
This review investigates links between post-acute sequelae of SARS-CoV-2 infection (PASC), post-infection viral persistence, mitochondrial involvement and aberrant innate immune response and cellular metabolism during SARS-CoV-2 infection. Advancement of proteomic and metabolomic studies now allows deeper investigation of alterations to cellular metabolism, autophagic processes and mitochondrial dysfunction caused by SARS-CoV-2 infection, while computational biology and machine learning have advanced methodologies of predicting virus-host gene and protein interactions. Particular focus is given to the interaction between viral genes and proteins with mitochondrial function and that of the innate immune system. Finally, the authors hypothesise that viral persistence may be a function of mitochondrial involvement in the sequestration of viral genetic material. While further work is necessary to understand the mechanisms definitively, a number of studies now point to the resolution of questions regarding the pathogenesis of PASC.
Collapse
Affiliation(s)
| | - Beata Schlichtholz
- Department of Biochemistry, Gdańsk University of Medicine, 80-210 Gdańsk, Poland;
| |
Collapse
|
4
|
Sumi T, Harada K. Vaccine and antiviral drug promise for preventing post-acute sequelae of COVID-19, and their combination for its treatment. Front Immunol 2024; 15:1329162. [PMID: 39185419 PMCID: PMC11341427 DOI: 10.3389/fimmu.2024.1329162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 07/17/2024] [Indexed: 08/27/2024] Open
Abstract
Introduction Most healthy individuals recover from acute SARS-CoV-2 infection, whereas a remarkable number continues to suffer from unexplained symptoms, known as Long COVID or post-acute COVID-19 syndrome (PACS). It is therefore imperative that methods for preventing and treating the onset of PASC be investigated with the utmost urgency. Methods A mathematical model of the immune response to vaccination and viral infection with SARS-CoV-2, incorporating immune memory cells, was developed. Results and discussion Similar to our previous model, persistent infection was observed by the residual virus in the host, implying the possibility of chronic inflammation and delayed recovery from tissue injury. Pre-infectious vaccination and antiviral medication administered during onset can reduce the acute viral load; however, they show no beneficial effects in preventing persistent infection. Therefore, the impact of these treatments on the PASC, which has been clinically observed, is mainly attributed to their role in preventing severe tissue damage caused by acute viral infections. For PASC patients with persistent infection, vaccination was observed to cause an immediate rapid increase in viral load, followed by a temporary decrease over approximately one year. The former was effectively suppressed by the coadministration of antiviral medications, indicating that this combination is a promising treatment for PASC.
Collapse
Affiliation(s)
- Tomonari Sumi
- Research Institute for Interdisciplinary Science, Okayama University, Okayama, Japan
- Department of Chemistry, Faculty of Science, Okayama University, Okayama, Japan
| | - Kouji Harada
- Department of Computer Science and Engineering, Toyohashi University of Technology, Toyohashi, Aichi, Japan
- Center for IT-Based Education, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| |
Collapse
|
5
|
Li Y, Tang L, Wang F, Gao C, Yang Q, Luo L, Wei J, Tang Q, Qi M. Hub genes identification and validation of ferroptosis in SARS-CoV-2 induced ARDS: perspective from transcriptome analysis. Front Immunol 2024; 15:1407924. [PMID: 39170609 PMCID: PMC11335500 DOI: 10.3389/fimmu.2024.1407924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/16/2024] [Indexed: 08/23/2024] Open
Abstract
Introduction Acute Respiratory Distress Syndrome (ARDS) poses a significant health challenge due to its high incidence and mortality rates. The emergence of SARS-CoV-2 has added complexity, with evidence suggesting a correlation between COVID-19 induced ARDS and post-COVID symptoms. Understanding the underlying mechanisms of ARDS in COVID-19 patients is crucial for effective clinical treatment. Method To investigate the potential role of ferroptosis in SARS-CoV-2 induced ARDS, we conducted a comprehensive analysis using bioinformatics methods. Datasets from the Gene Expression Omnibus (GEO) were utilized, focusing on COVID-19 patients with varying ARDS severity. We employed weighted gene co-expression network analysis (WGCNA), differential gene expression analysis, and single-cell sequencing to identify key genes associated with ferroptosis in ARDS. Hub genes were validated using additional GEO datasets and cell experiment. Result The analysis discerned 916 differentially expressed genes in moderate/severe ARDS patients compared to non-critical individuals. Weighted Gene Co-expression Network Analysis (WGCNA) unveiled two modules that exhibited a positive correlation with ARDS, subsequently leading to the identification of 15 hub genes associated with ferroptosis. Among the noteworthy hub genes were MTF1, SAT1, and TXN. Protein-protein interaction analysis, and pathway analysis further elucidated their roles. Immune infiltrating analysis highlighted associations between hub genes and immune cells. Validation in additional datasets confirmed the upregulation of MTF1, SAT1, and TXN in SARS-CoV-2-induced ARDS. This was also demonstrated by qRT-PCR results in the BEAS-2B cells vitro model, suggesting their potential as diagnostic indicators. Discussion This study identifies MTF1, SAT1, and TXN as hub genes associated with ferroptosis in SARS-CoV-2-induced ARDS. These findings provide novel insights into the molecular mechanisms underlying ARDS in COVID-19 patients and offer potential targets for immune therapy and targeted treatment. Further experimental validation is warranted to solidify these findings and explore therapeutic interventions for ARDS in the context of COVID-19.
Collapse
Affiliation(s)
- Yutang Li
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
- The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Li Tang
- The Second Hospital of Jilin University, Jilin University, Changchun, China
| | - Fang Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Chencheng Gao
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Qi Yang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Liyu Luo
- College of Sports Medicine and Physical Therapy, Beijing Sport University, Beijing, China
| | - Jiahang Wei
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Qiuyun Tang
- Department of Oncology, Health Center of Chicheng Town, Suining, China
| | - Mingran Qi
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
6
|
Livieratos A, Gogos C, Akinosoglou K. Impact of Prior COVID-19 Immunization and/or Prior Infection on Immune Responses and Clinical Outcomes. Viruses 2024; 16:685. [PMID: 38793566 PMCID: PMC11125779 DOI: 10.3390/v16050685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Cellular and humoral immunity exhibit dynamic adaptation to the mutating SARS-CoV-2 virus. It is noteworthy that immune responses differ significantly, influenced by whether a patient has received vaccination or whether there is co-occurrence of naturally acquired and vaccine-induced immunity, known as hybrid immunity. The different immune reactions, conditional on vaccination status and the viral variant involved, bear implications for inflammatory responses, patient outcomes, pathogen transmission rates, and lingering post-COVID conditions. Considering these developments, we have performed a review of recently published literature, aiming to disentangle the intricate relationships among immunological profiles, transmission, the long-term health effects post-COVID infection poses, and the resultant clinical manifestations. This investigation is directed toward understanding the variability in the longevity and potency of cellular and humoral immune responses elicited by immunization and hybrid infection.
Collapse
Affiliation(s)
| | - Charalambos Gogos
- Department of Medicine, University of Patras, 26504 Rio, Greece; (C.G.); (K.A.)
| | - Karolina Akinosoglou
- Department of Medicine, University of Patras, 26504 Rio, Greece; (C.G.); (K.A.)
- Department of Internal Medicine and Infectious Diseases, University General Hospital of Patras, 26504 Rio, Greece
| |
Collapse
|
7
|
Hou Q, Jiang J, Na K, Zhang X, Liu D, Jing Q, Yan C, Han Y. Potential therapeutic targets for COVID-19 complicated with pulmonary hypertension: a bioinformatics and early validation study. Sci Rep 2024; 14:9294. [PMID: 38653779 DOI: 10.1038/s41598-024-60113-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/18/2024] [Indexed: 04/25/2024] Open
Abstract
Coronavirus disease (COVID-19) and pulmonary hypertension (PH) are closely correlated. However, the mechanism is still poorly understood. In this article, we analyzed the molecular action network driving the emergence of this event. Two datasets (GSE113439 and GSE147507) from the GEO database were used for the identification of differentially expressed genes (DEGs).Common DEGs were selected by VennDiagram and their enrichment in biological pathways was analyzed. Candidate gene biomarkers were selected using three different machine-learning algorithms (SVM-RFE, LASSO, RF).The diagnostic efficacy of these foundational genes was validated using independent datasets. Eventually, we validated molecular docking and medication prediction. We found 62 common DEGs, including several ones that could be enriched for Immune Response and Inflammation. Two DEGs (SELE and CCL20) could be identified by machine-learning algorithms. They performed well in diagnostic tests on independent datasets. In particular, we observed an upregulation of functions associated with the adaptive immune response, the leukocyte-lymphocyte-driven immunological response, and the proinflammatory response. Moreover, by ssGSEA, natural killer T cells, activated dendritic cells, activated CD4 T cells, neutrophils, and plasmacytoid dendritic cells were correlated with COVID-19 and PH, with SELE and CCL20 showing the strongest correlation with dendritic cells. Potential therapeutic compounds like FENRETI-NIDE, AFLATOXIN B1 and 1-nitropyrene were predicted. Further molecular docking and molecular dynamics simulations showed that 1-nitropyrene had the most stable binding with SELE and CCL20.The findings indicated that SELE and CCL20 were identified as novel diagnostic biomarkers for COVID-19 complicated with PH, and the target of these two key genes, FENRETI-NIDE and 1-nitropyrene, was predicted to be a potential therapeutic target, thus providing new insights into the prediction and treatment of COVID-19 complicated with PH in clinical practice.
Collapse
Affiliation(s)
- Qingbin Hou
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Jinping Jiang
- Department of Cardiology, Shengjing Hospital Affiliated to China Medical University, Shenyang, China
| | - Kun Na
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Xiaolin Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Dan Liu
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Quanmin Jing
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Chenghui Yan
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China.
| | - Yaling Han
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China.
| |
Collapse
|
8
|
Amidei A, Dobrovolny HM. Virus-mediated cell fusion of SARS-CoV-2 variants. Math Biosci 2024; 369:109144. [PMID: 38224908 DOI: 10.1016/j.mbs.2024.109144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/25/2023] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
SARS-CoV-2 has the ability to form large multi-nucleated cells known as syncytia. Little is known about how syncytia affect the dynamics of the infection or severity of the disease. In this manuscript, we extend a mathematical model of cell-cell fusion assays to estimate both the syncytia formation rate and the average duration of the fusion phase for five strains of SARS-CoV-2. We find that the original Wuhan strain has the slowest rate of syncytia formation (6.4×10-4/h), but takes only 4.0 h to complete the fusion process, while the Alpha strain has the fastest rate of syncytia formation (0.36 /h), but takes 7.6 h to complete the fusion process. The Beta strain also has a fairly fast syncytia formation rate (9.7×10-2/h), and takes the longest to complete fusion (8.4 h). The D614G strain has a fairly slow syncytia formation rate (2.8×10-3/h), but completes fusion in 4.0 h. Finally, the Delta strain is in the middle with a syncytia formation rate of 3.2×10-2/h and a fusing time of 6.1 h. We note that for these SARS-CoV-2 strains, there appears to be a tradeoff between the ease of forming syncytia and the speed at which they complete the fusion process.
Collapse
Affiliation(s)
- Ava Amidei
- Department of Chemistry & Biochemistry, Texas Christian University, Fort Worth, TX, USA
| | - Hana M Dobrovolny
- Department of Physics & Astronomy, Texas Christian University, Fort Worth, TX, USA.
| |
Collapse
|
9
|
Liu S, Zhong M, Wu H, Su W, Wang Y, Li P. Potential Beneficial Effects of Naringin and Naringenin on Long COVID-A Review of the Literature. Microorganisms 2024; 12:332. [PMID: 38399736 PMCID: PMC10892048 DOI: 10.3390/microorganisms12020332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused a severe epidemic due to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Recent studies have found that patients do not completely recover from acute infections, but instead, suffer from a variety of post-acute sequelae of SARS-CoV-2 infection, known as long COVID. The effects of long COVID can be far-reaching, with a duration of up to six months and a range of symptoms such as cognitive dysfunction, immune dysregulation, microbiota dysbiosis, myalgic encephalomyelitis/chronic fatigue syndrome, myocarditis, pulmonary fibrosis, cough, diabetes, pain, reproductive dysfunction, and thrombus formation. However, recent studies have shown that naringenin and naringin have palliative effects on various COVID-19 sequelae. Flavonoids such as naringin and naringenin, commonly found in fruits and vegetables, have various positive effects, including reducing inflammation, preventing viral infections, and providing antioxidants. This article discusses the molecular mechanisms and clinical effects of naringin and naringenin on treating the above diseases. It proposes them as potential drugs for the treatment of long COVID, and it can be inferred that naringin and naringenin exhibit potential as extended long COVID medications, in the future likely serving as nutraceuticals or clinical supplements for the comprehensive alleviation of the various manifestations of COVID-19 complications.
Collapse
Affiliation(s)
- Siqi Liu
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Market Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (S.L.); (M.Z.); (H.W.); (W.S.); (Y.W.)
| | - Mengli Zhong
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Market Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (S.L.); (M.Z.); (H.W.); (W.S.); (Y.W.)
| | - Hao Wu
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Market Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (S.L.); (M.Z.); (H.W.); (W.S.); (Y.W.)
| | - Weiwei Su
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Market Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (S.L.); (M.Z.); (H.W.); (W.S.); (Y.W.)
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| | - Yonggang Wang
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Market Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (S.L.); (M.Z.); (H.W.); (W.S.); (Y.W.)
| | - Peibo Li
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Market Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (S.L.); (M.Z.); (H.W.); (W.S.); (Y.W.)
| |
Collapse
|
10
|
El-Baky NA, Amara AA, Uversky VN, Redwan EM. Intrinsic factors behind long COVID: III. Persistence of SARS-CoV-2 and its components. J Cell Biochem 2024; 125:22-44. [PMID: 38098317 DOI: 10.1002/jcb.30514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/27/2023] [Accepted: 12/07/2023] [Indexed: 01/16/2024]
Abstract
Considerable research has been done in investigating SARS-CoV-2 infection, its characteristics, and host immune response. However, debate is still ongoing over the emergence of post-acute sequelae of SARS-CoV-2 infection (PASC). A multitude of long-lasting symptoms have been reported several weeks after the primary acute SARS-CoV-2 infection that resemble several other viral infections. Thousands of research articles have described various post-COVID-19 conditions. Yet, the evidence around these ongoing health problems, the reasons behind them, and their molecular underpinnings are scarce. These persistent symptoms are also known as long COVID-19. The persistence of SARS-CoV-2 and/or its components in host tissues can lead to long COVID. For example, the presence of viral nucleocapsid protein and RNA was detected in the skin, appendix, and breast tissues of some long COVID patients. The persistence of viral RNA was reported in multiple anatomic sites, including non-respiratory tissues such as the adrenal gland, ocular tissue, small intestine, lymph nodes, myocardium, and sciatic nerve. Distinctive viral spike sequence variants were also found in non-respiratory tissues. Interestingly, prolonged detection of viral subgenomic RNA was observed across all tissues, sometimes in multiple tissues of the same patient, which likely reflects recent but defective viral replication. Moreover, the persistence of SARS-CoV-2 RNA was noticed throughout the brain at autopsy, as late as 230 days following symptom onset among unvaccinated patients who died of severe infection. Here, we review the persistence of SARS-CoV-2 and its components as an intrinsic factor behind long COVID. We also highlight the immunological consequences of this viral persistence.
Collapse
Affiliation(s)
- Nawal Abd El-Baky
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Egypt
| | - Amro A Amara
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Egypt
| | - Vladimir N Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Elrashdy M Redwan
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
11
|
Pongkunakorn T, Manosan T, Surawit A, Ophakas S, Mongkolsucharitkul P, Pumeiam S, Suta S, Pinsawas B, Sookrung N, Saelim N, Mahasongkram K, Prangtaworn P, Tungtrongchitr A, Tangjittipokin W, Mangmee S, Boonnak K, Narkdontri T, Teerawattanapong N, Wanitphadeedecha R, Mayurasakorn K. Immune Response after SARS-CoV-2 Infection with Residual Post-COVID Symptoms. Vaccines (Basel) 2023; 11:1413. [PMID: 37766091 PMCID: PMC10535557 DOI: 10.3390/vaccines11091413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Many patients develop post-acute COVID syndrome (long COVID (LC)). We compared the immune response of LC and individuals with post-COVID full recovery (HC) during the Omicron pandemic. Two hundred ninety-two patients with confirmed COVID infections from January to May 2022 were enrolled. We observed anti-SARS-CoV-2 receptor-binding domain immunoglobulin G, surrogate virus neutralization test, T cell subsets, and neutralizing antibodies against Wuhan, BA.1, and BA.5 viruses (NeuT). NeuT was markedly reduced against BA.1 and BA.5 in HC and LC groups, while antibodies were more sustained with three doses and an updated booster shot than ≤2-dose vaccinations. The viral neutralization ability declined at >84-days after COVID-19 onset (PC) in both groups. PD1-expressed central and effector memory CD4+ T cells, and central memory CD8+ T cells were reduced in the first months PC in LC. Therefore, booster vaccines may be required sooner after the most recent infection to rescue T cell function for people with symptomatic LC.
Collapse
Affiliation(s)
- Tanyaporn Pongkunakorn
- Siriraj Population Health and Nutrition Research Group, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (T.P.); (T.M.); (A.S.); (S.O.); (P.M.); (S.P.); (S.S.); (B.P.)
| | - Thamonwan Manosan
- Siriraj Population Health and Nutrition Research Group, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (T.P.); (T.M.); (A.S.); (S.O.); (P.M.); (S.P.); (S.S.); (B.P.)
| | - Apinya Surawit
- Siriraj Population Health and Nutrition Research Group, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (T.P.); (T.M.); (A.S.); (S.O.); (P.M.); (S.P.); (S.S.); (B.P.)
| | - Suphawan Ophakas
- Siriraj Population Health and Nutrition Research Group, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (T.P.); (T.M.); (A.S.); (S.O.); (P.M.); (S.P.); (S.S.); (B.P.)
| | - Pichanun Mongkolsucharitkul
- Siriraj Population Health and Nutrition Research Group, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (T.P.); (T.M.); (A.S.); (S.O.); (P.M.); (S.P.); (S.S.); (B.P.)
| | - Sureeporn Pumeiam
- Siriraj Population Health and Nutrition Research Group, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (T.P.); (T.M.); (A.S.); (S.O.); (P.M.); (S.P.); (S.S.); (B.P.)
| | - Sophida Suta
- Siriraj Population Health and Nutrition Research Group, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (T.P.); (T.M.); (A.S.); (S.O.); (P.M.); (S.P.); (S.S.); (B.P.)
| | - Bonggochpass Pinsawas
- Siriraj Population Health and Nutrition Research Group, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (T.P.); (T.M.); (A.S.); (S.O.); (P.M.); (S.P.); (S.S.); (B.P.)
| | - Nitat Sookrung
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (N.S.); (N.S.); (K.M.); (P.P.); (A.T.)
| | - Nawannaporn Saelim
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (N.S.); (N.S.); (K.M.); (P.P.); (A.T.)
| | - Kodchakorn Mahasongkram
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (N.S.); (N.S.); (K.M.); (P.P.); (A.T.)
| | - Pannathee Prangtaworn
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (N.S.); (N.S.); (K.M.); (P.P.); (A.T.)
| | - Anchalee Tungtrongchitr
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (N.S.); (N.S.); (K.M.); (P.P.); (A.T.)
| | - Watip Tangjittipokin
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (W.T.); (S.M.); (K.B.)
| | - Suthee Mangmee
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (W.T.); (S.M.); (K.B.)
| | - Kobporn Boonnak
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (W.T.); (S.M.); (K.B.)
| | - Tassanee Narkdontri
- Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (T.N.); (N.T.)
| | - Nipaporn Teerawattanapong
- Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (T.N.); (N.T.)
| | - Rungsima Wanitphadeedecha
- Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
| | - Korapat Mayurasakorn
- Siriraj Population Health and Nutrition Research Group, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (T.P.); (T.M.); (A.S.); (S.O.); (P.M.); (S.P.); (S.S.); (B.P.)
| |
Collapse
|
12
|
Lechuga GC, Morel CM, De-Simone SG. Hematological alterations associated with long COVID-19. Front Physiol 2023; 14:1203472. [PMID: 37565145 PMCID: PMC10411895 DOI: 10.3389/fphys.2023.1203472] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
Long COVID-19 is a condition characterized by persistent symptoms lasting beyond the acute phase of COVID-19. Long COVID-19 produces diverse symptomatology and can impact organs and systems, including the hematological system. Several studies have reported, in COVID-19 patients, hematological abnormalities. Most of these alterations are associated with a higher risk of severe disease and poor outcomes. This literature review identified studies reporting hematological parameters in individuals with Long COVID-19. Findings suggest that Long COVID-19 is associated with a range of sustained hematological alterations, including alterations in red blood cells, anemia, lymphopenia, and elevated levels of inflammatory markers such as ferritin, D-dimer, and IL-6. These alterations may contribute to a better understanding of the pathophysiology of Long COVID-19 and its associated symptoms. However, further research is needed to elucidate the underlying mechanisms and potential treatments for these hematological changes in individuals with Long COVID-19.
Collapse
Affiliation(s)
- Guilherme C. Lechuga
- Center for Technological Development in Health (CDTS)/ National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- Laboratory of Epidemiology and Molecular Systematics (LESM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- Laboratory of Cellular Ultrastructure, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Carlos M. Morel
- Center for Technological Development in Health (CDTS)/ National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Salvatore Giovanni De-Simone
- Center for Technological Development in Health (CDTS)/ National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- Laboratory of Epidemiology and Molecular Systematics (LESM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- Post-Graduation Program in Science and Biotechnology, Department of Molecular and Cellular Biology, Biology Institute, Federal Fluminense University, Niterói, Brazil
| |
Collapse
|
13
|
Miyata Y, Suzuki K, Nagano T, Iida K, Hasegawa T, Uga H, Matsuoka H. Cellular immunity reflects the persistent symptoms among COVID-19 recovered patients in Japan. Sci Rep 2023; 13:11071. [PMID: 37422499 PMCID: PMC10329673 DOI: 10.1038/s41598-023-35505-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/18/2023] [Indexed: 07/10/2023] Open
Abstract
Coronavirus disease (COVID-19) often causes persistent symptoms long after infection, referred to as "long COVID" or post-acute COVID-19 syndrome (PACS). This phenomenon has been studied primarily concerning B-cell immunity, while the involvement of T-cell immunity is still unclear. This retrospective study aimed to examine the relationship among the number of symptoms, cytokine levels, and the Enzyme-linked immunosorbent spot (ELISPOT) assay data in patients with COVID-19. To examine inflammatory conditions, plasma interleukin (IL)-6, IL-10, IL-18, chemokine ligand 9 (CXCL9), chemokine ligand 3 (CCL3), and vascular endothelial growth factor (VEGF) levels were analyzed using plasma obtained from COVID-19 recovery patients and healthy controls (HC). These levels were significantly higher in the COVID-19 group than those in the HC group. ELISPOT assays were performed to investigate the correlation between COVID-19 persistent symptoms and T-cell immunity. Cluster analysis of ELISPOT categorized COVID-19 recovery patients in the ELISPOT-high and -low groups, based on the values of S1, S2, and N. The number of persistent symptoms was significantly higher in the ELISPOT-low group than those in the ELISPOT-high group. Thus, T cell immunity is critical for the rapid elimination of COVID-19 persistent symptoms, and its measurement immediately after COVID-19 recovery might predict long-term COVID-19 or PACS.
Collapse
Affiliation(s)
- Yoshiharu Miyata
- Division of Bioresource Research and Development, Department of Social/Community Medicine and Health Science, Kobe University Graduate School of Medicine, 1-5-1 Minatojimanakamachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Kohjin Suzuki
- System Technologies Laboratory, Sysmex Corporation, 4-4-4 Takatsukadai, Nishi-ku, Kobe, 651-2271, Japan
| | - Tatsuya Nagano
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Keiji Iida
- Division of Diabetes and Endocrinology, Hyogo Prefectural Kakogawa Medical Center, 203, Kanno, Kanno-cho, Kakogawa, Hyogo, 675-8555, Japan
| | - Takehiro Hasegawa
- Research and Development Division, Sysmex R&D Centre Europe GmbH, Falkenried 88, 20251, Hamburg, Germany
| | - Hitoshi Uga
- Central Research Laboratories, Sysmex Corporation, 4-4-4 Takatsukadai, Nishi-ku, Kobe, 651-2271, Japan
| | - Hiroshi Matsuoka
- Division of Bioresource Research and Development, Department of Social/Community Medicine and Health Science, Kobe University Graduate School of Medicine, 1-5-1 Minatojimanakamachi, Chuo-ku, Kobe, 650-0047, Japan.
| |
Collapse
|
14
|
Ma D, Wang X, Li M, Hu C, Tang L. Reconsideration of interferon treatment for viral diseases: Lessons from SARS, MERS, and COVID-19. Int Immunopharmacol 2023; 121:110485. [PMID: 37348227 PMCID: PMC10272952 DOI: 10.1016/j.intimp.2023.110485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023]
Abstract
Periodic pandemics of coronavirus (CoV)-related pneumonia have been a major challenging issue since the outbreak of severe acute respiratory syndrome (SARS) in 2002 and Middle East respiratory syndrome (MERS) in 2012. The ongoing pandemic of CoV disease (COVID-19) poses a substantial threat to public health. As for the treatment options, only limited antiviral agents have been approved hitherto, and clinicians mainly focus on currently available drugs including the conventional antiviral interferons (IFNs). In clinical practice, IFNs, when used either alone or in combination with ribavirin and/or lopinavir/ritonavir, have shown promising outcomes, to some extent, in SARS-CoV or MERS-CoV treatment. Although the efficacy and safety of IFNs in COVID-19 treatment remain unclear, their possible use merits further evaluation. We present a review that summarizes current evidence of IFN treatment for COVID-19 and elaborates on other challenges in terms of the timing of IFN treatment initiation, treatment duration, and IFN type to be used. The review findings suggested that IFN acts by directly inhibiting viral replication and activating immune cell subsets. However, there is a lack of well-designed and controlled clinical trials providing firm evidence for the efficacy or safety of IFN therapy for CoVs. Additionally, critically ill patients with multiple immunosuppression-associated comorbidities may not benefit from IFN therapy, necessitating screening of those patients who would most benefit from IFN treatment.
Collapse
Affiliation(s)
- Dan Ma
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, GuiZhou, China; Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550004, GuiZhou, China
| | - Ximin Wang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Min Li
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Chujiao Hu
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550004, GuiZhou, China.
| | - Lei Tang
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550004, GuiZhou, China.
| |
Collapse
|
15
|
Soares SR, da Silva Torres MK, Lima SS, de Sarges KML, Santos EFD, de Brito MTFM, da Silva ALS, de Meira Leite M, da Costa FP, Cantanhede MHD, da Silva R, de Oliveira Lameira Veríssimo A, Vallinoto IMVC, Feitosa RNM, Quaresma JAS, Chaves TDSS, Viana GMR, Falcão LFM, Santos EJMD, Vallinoto ACR, da Silva ANMR. Antibody Response to the SARS-CoV-2 Spike and Nucleocapsid Proteins in Patients with Different COVID-19 Clinical Profiles. Viruses 2023; 15:v15040898. [PMID: 37112878 PMCID: PMC10141342 DOI: 10.3390/v15040898] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
The first case of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), in Brazil was diagnosed on February 26, 2020. Due to the important epidemiological impact of COVID-19, the present study aimed to analyze the specificity of IgG antibody responses to the S1, S2 and N proteins of SARS-CoV-2 in different COVID-19 clinical profiles. This study enrolled 136 individuals who were diagnosed with or without COVID-19 based on clinical findings and laboratory results and classified as asymptomatic or as having mild, moderate or severe disease. Data collection was performed through a semistructured questionnaire to obtain demographic information and main clinical manifestations. IgG antibody responses to the S1 and S2 subunits of the spike (S) protein and the nucleocapsid (N) protein were evaluated using an enzyme-linked immunosorbent assay (ELISA) according to the manufacturer’s instructions. The results showed that among the participants, 87.5% (119/136) exhibited IgG responses to the S1 subunit and 88.25% (120/136) to N. Conversely, only 14.44% of the subjects (21/136) displayed S2 subunit responses. When analyzing the IgG antibody response while considering the different proteins of the virus, patients with severe disease had significantly higher antibody responses to N and S1 than asymptomatic individuals (p ≤ 0.0001), whereas most of the participants had low antibody titers against the S2 subunit. In addition, individuals with long COVID-19 showed a greater IgG response profile than those with symptomatology of a short duration. Based on the results of this study, it is concluded that levels of IgG antibodies may be related to the clinical evolution of COVID-19, with high levels of IgG antibodies against S1 and N in severe cases and in individuals with long COVID-19.
Collapse
Affiliation(s)
- Sinei Ramos Soares
- Laboratório de Virologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil
| | - Maria Karoliny da Silva Torres
- Laboratório de Virologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil
- Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários, Universidade Federal do Pará, Belém 66075-110, Brazil
| | - Sandra Souza Lima
- Laboratório de Virologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil
| | - Kevin Matheus Lima de Sarges
- Laboratório de Genética de Doenças Complexas, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil
| | - Erika Ferreira dos Santos
- Laboratório de Genética de Doenças Complexas, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil
| | | | - Andréa Luciana Soares da Silva
- Laboratório de Genética de Doenças Complexas, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil
| | - Mauro de Meira Leite
- Laboratório de Genética de Doenças Complexas, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil
| | - Flávia Póvoa da Costa
- Laboratório de Genética de Doenças Complexas, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil
| | | | - Rosilene da Silva
- Laboratório de Genética de Doenças Complexas, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil
| | | | - Izaura Maria Vieira Cayres Vallinoto
- Laboratório de Virologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil
- Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários, Universidade Federal do Pará, Belém 66075-110, Brazil
| | - Rosimar Neris Martins Feitosa
- Laboratório de Virologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil
- Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários, Universidade Federal do Pará, Belém 66075-110, Brazil
| | - Juarez Antônio Simões Quaresma
- Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários, Universidade Federal do Pará, Belém 66075-110, Brazil
- Centro de Ciências Biológicas e da Saúde, Universidade do Estado do Pará, Belém 66050-540, Brazil
| | - Tânia do Socorro Souza Chaves
- Laboratório de Pesquisas Básicas em Malária em Malária, Seção de Parasitologia, Instituto Evandro Chagas, Secretaria de Ciência, Tecnologia e Insumos Estratégicos, Ministério da Saúde do Brasil, Ananindeua 70068-900, Brazil
| | - Giselle Maria Rachid Viana
- Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários, Universidade Federal do Pará, Belém 66075-110, Brazil
- Laboratório de Pesquisas Básicas em Malária em Malária, Seção de Parasitologia, Instituto Evandro Chagas, Secretaria de Ciência, Tecnologia e Insumos Estratégicos, Ministério da Saúde do Brasil, Ananindeua 70068-900, Brazil
| | - Luiz Fábio Magno Falcão
- Centro de Ciências Biológicas e da Saúde, Universidade do Estado do Pará, Belém 66050-540, Brazil
| | - Eduardo José Melo dos Santos
- Laboratório de Genética de Doenças Complexas, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil
| | | | - Andréa Nazaré Monteiro Rangel da Silva
- Laboratório de Virologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil
- Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários, Universidade Federal do Pará, Belém 66075-110, Brazil
| |
Collapse
|
16
|
Zhang HP, Sun YL, Wang YF, Yazici D, Azkur D, Ogulur I, Azkur AK, Yang ZW, Chen XX, Zhang AZ, Hu JQ, Liu GH, Akdis M, Akdis CA, Gao YD. Recent developments in the immunopathology of COVID-19. Allergy 2023; 78:369-388. [PMID: 36420736 PMCID: PMC10108124 DOI: 10.1111/all.15593] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/01/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
Abstract
There has been an important change in the clinical characteristics and immune profile of Coronavirus disease 2019 (COVID-19) patients during the pandemic thanks to the extensive vaccination programs. Here, we highlight recent studies on COVID-19, from the clinical and immunological characteristics to the protective and risk factors for severity and mortality of COVID-19. The efficacy of the COVID-19 vaccines and potential allergic reactions after administration are also discussed. The occurrence of new variants of concerns such as Omicron BA.2, BA.4, and BA.5 and the global administration of COVID-19 vaccines have changed the clinical scenario of COVID-19. Multisystem inflammatory syndrome in children (MIS-C) may cause severe and heterogeneous disease but with a lower mortality rate. Perturbations in immunity of T cells, B cells, and mast cells, as well as autoantibodies and metabolic reprogramming may contribute to the long-term symptoms of COVID-19. There is conflicting evidence about whether atopic diseases, such as allergic asthma and rhinitis, are associated with a lower susceptibility and better outcomes of COVID-19. At the beginning of pandemic, the European Academy of Allergy and Clinical Immunology (EAACI) developed guidelines that provided timely information for the management of allergic diseases and preventive measures to reduce transmission in the allergic clinics. The global distribution of COVID-19 vaccines and emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with reduced pathogenic potential dramatically decreased the morbidity, severity, and mortality of COVID-19. Nevertheless, breakthrough infection remains a challenge for disease control. Hypersensitivity reactions (HSR) to COVID-19 vaccines are low compared to other vaccines, and these were addressed in EAACI statements that provided indications for the management of allergic reactions, including anaphylaxis to COVID-19 vaccines. We have gained a depth knowledge and experience in the over 2 years since the start of the pandemic, and yet a full eradication of SARS-CoV-2 is not on the horizon. Novel strategies are warranted to prevent severe disease in high-risk groups, the development of MIS-C and long COVID-19.
Collapse
Affiliation(s)
- Huan-Ping Zhang
- Department of Allergology, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Yuan-Li Sun
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan-Fen Wang
- Department of Pediatrics, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Duygu Yazici
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Dilek Azkur
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, University of Kirikkale, Kirikkale, Turkey
| | - Ismail Ogulur
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Ahmet Kursat Azkur
- Department of Virology, Faculty of Veterinary Medicine, University of Kirikkale, Kirikkale, Turkey
| | - Zhao-Wei Yang
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiao-Xue Chen
- Department of Allergology, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Ai-Zhi Zhang
- Intensive Care Unit, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jia-Qian Hu
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Guang-Hui Liu
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Ya-Dong Gao
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
17
|
Vojdani A, Vojdani E, Saidara E, Maes M. Persistent SARS-CoV-2 Infection, EBV, HHV-6 and Other Factors May Contribute to Inflammation and Autoimmunity in Long COVID. Viruses 2023; 15:v15020400. [PMID: 36851614 PMCID: PMC9967513 DOI: 10.3390/v15020400] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
A novel syndrome called long-haul COVID or long COVID is increasingly recognized in a significant percentage of individuals within a few months after infection with SARS-CoV-2. This disorder is characterized by a wide range of persisting, returning or even new but related symptoms that involve different tissues and organs, including respiratory, cardiac, vascular, gastrointestinal, musculo-skeletal, neurological, endocrine and systemic. Some overlapping symptomatologies exist between long COVID and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Very much like with long ME/CFS, infections with herpes family viruses, immune dysregulation, and the persistence of inflammation have been reported as the most common pattern for the development of long COVID. This review describes several factors and determinants of long COVID that have been proposed, elaborating mainly on viral persistence, reactivation of latent viruses such as Epstein-Barr virus and human herpesvirus 6 which are also associated with the pathology of ME/CFS, viral superantigen activation of the immune system, disturbance in the gut microbiome, and multiple tissue damage and autoimmunity. Based on these factors, we propose diagnostic strategies such as the measurement of IgG and IgM antibodies against SARS-CoV-2, EBV, HHV-6, viral superantigens, gut microbiota, and biomarkers of autoimmunity to better understand and manage this multi-factorial disorder that continues to affect millions of people in the world.
Collapse
Affiliation(s)
- Aristo Vojdani
- Immunosciences Lab, Inc., Los Angeles, CA 90035, USA
- Cyrex Laboratories, LLC, Phoenix, AZ 85034, USA
- Correspondence: ; Tel.: +1-310-657-1077
| | | | - Evan Saidara
- Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Pathumwan, Bangkok 10330, Thailand
| |
Collapse
|