1
|
Dora D, Szőcs E, Soós Á, Halasy V, Somodi C, Mihucz A, Rostás M, Mógor F, Lohinai Z, Nagy N. From bench to bedside: an interdisciplinary journey through the gut-lung axis with insights into lung cancer and immunotherapy. Front Immunol 2024; 15:1434804. [PMID: 39301033 PMCID: PMC11410641 DOI: 10.3389/fimmu.2024.1434804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/20/2024] [Indexed: 09/22/2024] Open
Abstract
This comprehensive review undertakes a multidisciplinary exploration of the gut-lung axis, from the foundational aspects of anatomy, embryology, and histology, through the functional dynamics of pathophysiology, to implications for clinical science. The gut-lung axis, a bidirectional communication pathway, is central to understanding the interconnectedness of the gastrointestinal- and respiratory systems, both of which share embryological origins and engage in a continuous immunological crosstalk to maintain homeostasis and defend against external noxa. An essential component of this axis is the mucosa-associated lymphoid tissue system (MALT), which orchestrates immune responses across these distant sites. The review delves into the role of the gut microbiome in modulating these interactions, highlighting how microbial dysbiosis and increased gut permeability ("leaky gut") can precipitate systemic inflammation and exacerbate respiratory conditions. Moreover, we thoroughly present the implication of the axis in oncological practice, particularly in lung cancer development and response to cancer immunotherapies. Our work seeks not only to synthesize current knowledge across the spectrum of science related to the gut-lung axis but also to inspire future interdisciplinary research that bridges gaps between basic science and clinical application. Our ultimate goal was to underscore the importance of a holistic understanding of the gut-lung axis, advocating for an integrated approach to unravel its complexities in human health and disease.
Collapse
Affiliation(s)
- David Dora
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Emőke Szőcs
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Ádám Soós
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Viktória Halasy
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Csenge Somodi
- Translational Medicine Institute, Semmelweis University, Budapest, Hungary
| | - Anna Mihucz
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Melinda Rostás
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Fruzsina Mógor
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Zoltan Lohinai
- Translational Medicine Institute, Semmelweis University, Budapest, Hungary
| | - Nándor Nagy
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
2
|
Zhang Q, Wu S. Tertiary lymphoid structures are critical for cancer prognosis and therapeutic response. Front Immunol 2023; 13:1063711. [PMID: 36713409 PMCID: PMC9875059 DOI: 10.3389/fimmu.2022.1063711] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
Tertiary lymphoid structures (TLSs) are ectopic lymphocyte aggregates that form at sites of chronic inflammation, including cancers, in non-lymphoid tissues. Although the formation of TLSs is similar to that of secondary lymphoid organs, the pathogenic factors leading to TLS formation in cancerous tissues and the mechanisms underlying the role of these structures in the intra-tumoral adaptive antitumor immune response are not fully understood. The presence of TLSs may impact patient prognosis and treatment outcomes. This review examines the current understanding of TLSs in cancers, including their composition and formation as well as their potential to predict prognosis and therapeutic efficacy. We also summarize strategies to induce TLS formation for cancer treatment.
Collapse
Affiliation(s)
| | - Suhui Wu
- Department of Obstetrics and Gynecology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
3
|
Stehle C, Rückert T, Fiancette R, Gajdasik DW, Willis C, Ulbricht C, Durek P, Mashreghi MF, Finke D, Hauser AE, Withers DR, Chang HD, Zimmermann J, Romagnani C. T-bet and RORα control lymph node formation by regulating embryonic innate lymphoid cell differentiation. Nat Immunol 2021; 22:1231-1244. [PMID: 34556887 PMCID: PMC7614953 DOI: 10.1038/s41590-021-01029-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 08/12/2021] [Indexed: 11/09/2022]
Abstract
The generation of lymphoid tissues during embryogenesis relies on group 3 innate lymphoid cells (ILC3) displaying lymphoid tissue inducer (LTi) activity and expressing the master transcription factor RORγt. Accordingly, RORγt-deficient mice lack ILC3 and lymphoid structures, including lymph nodes (LN). Whereas T-bet affects differentiation and functions of ILC3 postnatally, the role of T-bet in regulating fetal ILC3 and LN formation remains completely unknown. Using multiple mouse models and single-cell analyses of fetal ILCs and ILC progenitors (ILCP), here we identify a key role for T-bet during embryogenesis and show that its deficiency rescues LN formation in RORγt-deficient mice. Mechanistically, T-bet deletion skews the differentiation fate of fetal ILCs and promotes the accumulation of PLZFhi ILCP expressing central LTi molecules in a RORα-dependent fashion. Our data unveil an unexpected role for T-bet and RORα during embryonic ILC function and highlight that RORγt is crucial in counteracting the suppressive effects of T-bet.
Collapse
Affiliation(s)
- Christina Stehle
- Innate Immunity, German Rheumatism Research Centre-a Leibniz Institute, Berlin, Germany
| | - Timo Rückert
- Innate Immunity, German Rheumatism Research Centre-a Leibniz Institute, Berlin, Germany
| | - Rémi Fiancette
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Dominika W Gajdasik
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Claire Willis
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Carolin Ulbricht
- Immune Dynamics, German Rheumatism Research Centre-a Leibniz Institute, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany
| | - Pawel Durek
- Cell Biology, German Rheumatism Research Centre-a Leibniz Institute, Berlin, Germany
| | - Mir-Farzin Mashreghi
- Therapeutic Gene Regulation, German Rheumatism Research Centre-a Leibniz Institute, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Daniela Finke
- Department of Biomedicine and University Children's Hospital of Basel, University of Basel, Basel, Switzerland
| | - Anja Erika Hauser
- Immune Dynamics, German Rheumatism Research Centre-a Leibniz Institute, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany
| | - David R Withers
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Hyun-Dong Chang
- Schwiete Laboratory for Microbiota and Inflammation, German Rheumatism Research Centre-a Leibniz Institute, Berlin, Germany
- Department of Cytometry, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Jakob Zimmermann
- Maurice Müller Laboratories, Universitätsklinik für Viszerale Chirurgie und Medizin Inselspital, University of Bern, Bern, Switzerland
| | - Chiara Romagnani
- Innate Immunity, German Rheumatism Research Centre-a Leibniz Institute, Berlin, Germany.
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases, Rheumatology, Berlin, Germany.
- Leibniz-Science Campus Chronic Inflammation, Berlin, Germany.
| |
Collapse
|
4
|
Perez-Shibayama C, Gil-Cruz C, Ludewig B. Fibroblastic reticular cells at the nexus of innate and adaptive immune responses. Immunol Rev 2020; 289:31-41. [PMID: 30977192 PMCID: PMC6850313 DOI: 10.1111/imr.12748] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 01/25/2019] [Indexed: 12/11/2022]
Abstract
Lymphoid organs guarantee productive immune cell interactions through the establishment of distinct microenvironmental niches that are built by fibroblastic reticular cells (FRC). These specialized immune‐interacting fibroblasts coordinate the migration and positioning of lymphoid and myeloid cells in lymphoid organs and provide essential survival and differentiation factors during homeostasis and immune activation. In this review, we will outline the current knowledge on FRC functions in secondary lymphoid organs such as lymph nodes, spleen and Peyer's patches and will discuss how FRCs contribute to the regulation of immune processes in fat‐associated lymphoid clusters. Moreover, recent evidence indicates that FRC critically impact immune regulatory processes, for example, through cytokine deprivation during immune activation or through fostering the induction of regulatory T cells. Finally, we highlight how different FRC subsets integrate innate immunological signals and molecular cues from immune cells to fulfill their function as nexus between innate and adaptive immune responses.
Collapse
Affiliation(s)
| | - Cristina Gil-Cruz
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| |
Collapse
|
5
|
Onder L, Ludewig B. A Fresh View on Lymph Node Organogenesis. Trends Immunol 2018; 39:775-787. [DOI: 10.1016/j.it.2018.08.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/07/2018] [Accepted: 08/07/2018] [Indexed: 01/18/2023]
|
6
|
Lymphatic Endothelial Cells Control Initiation of Lymph Node Organogenesis. Immunity 2017; 47:80-92.e4. [DOI: 10.1016/j.immuni.2017.05.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 04/14/2017] [Accepted: 05/26/2017] [Indexed: 10/19/2022]
|
7
|
Barone F, Gardner DH, Nayar S, Steinthal N, Buckley CD, Luther SA. Stromal Fibroblasts in Tertiary Lymphoid Structures: A Novel Target in Chronic Inflammation. Front Immunol 2016; 7:477. [PMID: 27877173 PMCID: PMC5100680 DOI: 10.3389/fimmu.2016.00477] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 10/20/2016] [Indexed: 12/14/2022] Open
Abstract
Tertiary lymphoid structures (TLS) are organized aggregates of lymphocytes, myeloid, and stromal cells that provide ectopic hubs for acquired immune responses. TLS share phenotypical and functional features with secondary lymphoid organs (SLO); however, they require persistent inflammatory signals to arise and are often observed at target sites of autoimmune disease, chronic infection, cancer, and organ transplantation. Over the past 10 years, important progress has been made in our understanding of the role of stromal fibroblasts in SLO development, organization, and function. A complex and stereotyped series of events regulate fibroblast differentiation from embryonic life in SLOs to lymphoid organ architecture observed in adults. In contrast, TLS-associated fibroblasts differentiate from postnatal, locally activated mesenchyme, predominantly in settings of inflammation and persistent antigen presentation. Therefore, there are critical differences in the cellular and molecular requirements that regulate SLO versus TLS development that ultimately impact on stromal and hematopoietic cell function. These differences may contribute to the pathogenic nature of TLS in the context of chronic inflammation and malignant transformation and offer a window of opportunity for therapeutic interventions in TLS associated pathologies.
Collapse
Affiliation(s)
- Francesca Barone
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham , Birmingham , UK
| | - David H Gardner
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham , Birmingham , UK
| | - Saba Nayar
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham , Birmingham , UK
| | - Nathalie Steinthal
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham , Birmingham , UK
| | - Christopher D Buckley
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham , Birmingham , UK
| | - Sanjiv A Luther
- Department of Biochemistry, Center for Immunity and Infection, University of Lausanne , Lausanne , Switzerland
| |
Collapse
|
8
|
Jing F, Choi EY. Potential of Cells and Cytokines/Chemokines to Regulate Tertiary Lymphoid Structures in Human Diseases. Immune Netw 2016; 16:271-280. [PMID: 27799872 PMCID: PMC5086451 DOI: 10.4110/in.2016.16.5.271] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/22/2016] [Accepted: 08/27/2016] [Indexed: 02/06/2023] Open
Abstract
Tertiary lymphoid structures (TLS) are ectopic lymphoid tissues involved in chronic inflammation, autoimmune diseases, transplant rejection and cancer. They exhibit almost all the characteristics of secondary lymphoid organs (SLO), which are associated with adaptive immune responses; as such, they contain organized B-cell follicles with germinal centers, distinct areas containing T cells and dendritic cells, high endothelial venules, and lymphatics. In this review, we briefly describe the formation of SLO, and describe the cellular subsets and molecular cues involved in the formation and maintenance of TLS. Finally, we discuss the associations of TLS with human diseases, especially autoimmune diseases, and the potential for therapeutic targeting.
Collapse
Affiliation(s)
- Feifeng Jing
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Eun Young Choi
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea
| |
Collapse
|
9
|
Development of immune organs and functioning in humans and test animals: Implications for immune intervention studies. Reprod Toxicol 2016; 64:180-90. [PMID: 27282947 DOI: 10.1016/j.reprotox.2016.06.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/10/2016] [Accepted: 06/03/2016] [Indexed: 12/23/2022]
Abstract
A healthy immune status is mostly determined during early life stages and many immune-related diseases may find their origin in utero and the first years of life. Therefore, immune health optimization may be most effective during early life. This review is an inventory of immune organ maturation events in relation to developmental timeframes in minipig, rat, mouse and human. It is concluded that time windows of immune organ development in rodents can be translated to human, but minipig reflects the human timeframes better; however the lack of prenatal maternal-fetal immune interaction in minipig may cause less responsiveness to prenatal intervention. It is too early to conclude which immune parameters are most appropriate, because there are not enough comparative immune parameters. Filling these gaps will increase the predictability of results observed in experimental animals, and guide future intervention studies by assessing relevant parameters in the right corresponding developmental time frames.
Collapse
|
10
|
Influence of nutrient-derived metabolites on lymphocyte immunity. Nat Med 2015; 21:709-18. [PMID: 26121194 DOI: 10.1038/nm.3894] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/01/2015] [Indexed: 12/13/2022]
Abstract
Organisms need to protect themselves against potential dangers from their surroundings, yet they require constant and intimate interactions with the same environment for their survival. The immune system is instrumental for protection against invading organisms and their toxins. The immune system consists of many cell types and is highly integrated within other tissues. Immune activity is particularly enriched at surfaces that separate the host from its environment, such as the skin and the gastrointestinal tract. This enables protection at sites directly at risk but also enables environmental factors to influence the maturation and function of immune structures and cells. Recent work has indicated that the diet in particular is able to influence the immune system and thus affect the development of inflammatory disease. This review aims to highlight recent work on how external factors, with a focus on those derived from the diet such as vitamin A, can have a direct or indirect deterministic influence on the activity and function of immunity.
Collapse
|
11
|
Van Praet JT, Donovan E, Vanassche I, Drennan MB, Windels F, Dendooven A, Allais L, Cuvelier CA, van de Loo F, Norris PS, Kruglov AA, Nedospasov SA, Rabot S, Tito R, Raes J, Gaboriau-Routhiau V, Cerf-Bensussan N, Van de Wiele T, Eberl G, Ware CF, Elewaut D. Commensal microbiota influence systemic autoimmune responses. EMBO J 2015; 34:466-74. [PMID: 25599993 PMCID: PMC4331001 DOI: 10.15252/embj.201489966] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/12/2014] [Accepted: 12/01/2014] [Indexed: 12/22/2022] Open
Abstract
Antinuclear antibodies are a hallmark feature of generalized autoimmune diseases, including systemic lupus erythematosus and systemic sclerosis. However, the processes underlying the loss of tolerance against nuclear self-constituents remain largely unresolved. Using mice deficient in lymphotoxin and Hox11, we report that approximately 25% of mice lacking secondary lymphoid organs spontaneously develop specific antinuclear antibodies. Interestingly, we find this phenotype is not caused by a defect in central tolerance. Rather, cell-specific deletion and in vivo lymphotoxin blockade link these systemic autoimmune responses to the formation of gut-associated lymphoid tissue in the neonatal period of life. We further demonstrate antinuclear antibody production is influenced by the presence of commensal gut flora, in particular increased colonization with segmented filamentous bacteria, and IL-17 receptor signaling. Together, these data indicate that neonatal colonization of gut microbiota influences generalized autoimmunity in adult life.
Collapse
Affiliation(s)
- Jens T Van Praet
- Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Ghent University Hospital, Ghent, Belgium
| | - Erin Donovan
- Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Ghent University Hospital, Ghent, Belgium
| | - Inge Vanassche
- Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Ghent University Hospital, Ghent, Belgium
| | - Michael B Drennan
- Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Ghent University Hospital, Ghent, Belgium
| | - Fien Windels
- Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Ghent University Hospital, Ghent, Belgium
| | - Amélie Dendooven
- Department of Pathology, University Medical Center, Utrecht, the Netherlands
| | - Liesbeth Allais
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | | | - Fons van de Loo
- Department of Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Paula S Norris
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - Andrey A Kruglov
- German Rheumatism Research Center (DRFZ), A Leibniz Institute, Berlin, Germany Belozersky Institute of Physico-Chemical Biology and Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Sergei A Nedospasov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, and Lomonosov Moscow State University, Moscow, Russia
| | - Sylvie Rabot
- INRA, UMR1319 Micalis, Jouy-en-Josas, France AgroParisTech Micalis, Jouy-en-Josas, France
| | - Raul Tito
- Bioinformatics and (eco-)systems Biology Laboratory, Department of Microbiology and Immunology, Rega Institute VIB Center for the Biology of Disease, KU Leuven, Belgium
| | - Jeroen Raes
- Bioinformatics and (eco-)systems Biology Laboratory, Department of Microbiology and Immunology, Rega Institute VIB Center for the Biology of Disease, KU Leuven, Belgium
| | - Valerie Gaboriau-Routhiau
- INRA, UMR1319 Micalis, Jouy-en-Josas, France INSERM UMR1163, Laboratory of Intestinal Immunity, Université Paris Descartes-Sorbonne Paris Cité and Institut Imagine, Paris, France
| | - Nadine Cerf-Bensussan
- INSERM UMR1163, Laboratory of Intestinal Immunity, Université Paris Descartes-Sorbonne Paris Cité and Institut Imagine, Paris, France
| | - Tom Van de Wiele
- Laboratory of Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| | - Gérard Eberl
- Lymphoid Tissue Development Group, Institut Pasteur, Paris, France
| | - Carl F Ware
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - Dirk Elewaut
- Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Ghent University Hospital, Ghent, Belgium VIB Inflammation Research Center Ghent University, Ghent, Belgium
| |
Collapse
|
12
|
The use of BLT humanized mice to investigate the immune reconstitution of the gastrointestinal tract. J Immunol Methods 2014; 410:28-33. [PMID: 24952245 DOI: 10.1016/j.jim.2014.06.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/14/2014] [Accepted: 06/10/2014] [Indexed: 02/07/2023]
Abstract
The gastrointestinal (GI) track represents an important battlefield where pathogens first try to gain entry into a host. It is also a universe where highly diverse and ever changing inhabitants co-exist in an exceptional equilibrium without parallel in any other organ system of the body. The gut as an organ has its own well-developed and fully functional immune organization that is similar and yet different in many important ways to the rest of the immune system. Both a compromised and an overactive immune system in the gut can have dire and severe consequences to human health. It has therefore been of great interest to develop animal models that recapitulate key aspects of the human condition to better understand the interplay of the host immune system with its friends and its foes. However, reconstitution of the GI tract in humanized mice has been difficult and highly variable in different systems. A better molecular understanding of the development of the gut immune system in mice has provided critical cues that have been recently used to develop novel humanized mouse models that fully recapitulate the genesis and key functions of the gut immune system of humans. Of particular interest is the presence of human gut-associated lymphoid tissue (GALT) aggregates in the gut of NOD/SCID BLT humanized mice that demonstrate the faithful development of bona fide human plasma cells capable of migrating to the lamina propria and producing human IgA1 and IgA2.
Collapse
|
13
|
Abstract
Tertiary lymphoid organs (TLOs) are accumulations of lymphoid cells in chronic inflammation that resemble LNs in their cellular content and organization, high endothelial venules, and lymphatic vessels (LVs). Although acute inflammation can result in defective LVs, TLO LVs appear to function normally in that they drain fluid and transport cells that respond to chemokines and sphingosine-1-phosphate (S1P) gradients. Molecular regulation of TLO LVs differs from lymphangiogenesis in ontogeny with a dependence on cytokines and hematopoietic cells. Ongoing work to elucidate the function and molecular regulation of LVs in TLOs is providing insight into therapies for conditions as diverse as lymphedema, autoimmunity, and cancer.
Collapse
|
14
|
Paradis M, Mindt BC, Duerr CU, Rojas OL, Ng D, Boulianne B, McCarthy DD, Yu MD, Summers deLuca LE, Ward LA, Waldron JB, Philpott DJ, Gommerman JL, Fritz JH. A TNF-α–CCL20–CCR6 Axis Regulates Nod1-Induced B Cell Responses. THE JOURNAL OF IMMUNOLOGY 2014; 192:2787-99. [DOI: 10.4049/jimmunol.1203310] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
15
|
Abstract
The nuclear hormone receptor retinoid-related orphan receptor γt (RORγt) induces a pro-inflammatory program in lymphoid cells, culminating in the expression of interleukin-6 (IL-6), IL-17, IL-22, granulocyte-macrophage colony-stimulating factor, and tumor necrosis factor. During ontogeny, the first type of cells expressing RORγt are lymphoid tissue inducer cells, a type of innate lymphoid cell (ILC) generated in mammalian fetuses to induce the development of lymph nodes and Peyer's patches. After birth, RORγt(+) ILCs and RORγt(+) T cells are involved in the defense of epithelial surfaces against extracellular microbes and play an important role in the intestinal homeostasis with symbiotic microbiota. The development and evolution of RORγt(+) cells is intimately associated with the construction of a stable host-microbe interface.
Collapse
Affiliation(s)
- Gérard Eberl
- Lymphoid Tissue Development Unit, Institut Pasteur, Paris, France. CNRS, URA1961, Paris, France.
| |
Collapse
|
16
|
Cherrier M, Sawa S, Eberl G. Notch, Id2, and RORγt sequentially orchestrate the fetal development of lymphoid tissue inducer cells. ACTA ACUST UNITED AC 2012; 209:729-40. [PMID: 22430492 PMCID: PMC3328368 DOI: 10.1084/jem.20111594] [Citation(s) in RCA: 195] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Lymphoid tissue development is initiated during embryogenesis by the migration of lymphoid tissue inducer (LTi) cells from the fetal liver to the periphery, where they induce the formation of lymph nodes and Peyer's patches. In the fetal liver, a subset of common lymphoid progenitors (CLPs) that expresses the integrin α4β7 gives rise to LTi cells, a process strictly dependent on the expression of the transcriptional repressor Id2 and the nuclear hormone receptor retinoic acid-related orphan receptor γ t (RORγt). In this study, we show that Id2 and RORγt are sequentially up-regulated during LTi cell development, matching two waves of differentiation with opposite requirements for Notch signaling. Both the expression of Id2 and Notch are required for the generation of α4β7(+) RORγt(-) fetal progenitors, but Notch subsequently blocks progression to the RORγt(+) stage and final maturation of LTi cells. Notch is therefore a necessary switch to engage the LTi developmental pathway, but needs to be turned off later to avoid diversion to the T cell fate.
Collapse
Affiliation(s)
- Marie Cherrier
- Lymphoid Tissue Development Unit, Institut Pasteur, 75724 Paris, France
| | | | | |
Collapse
|
17
|
Cherrier M, Eberl G. The development of LTi cells. Curr Opin Immunol 2012; 24:178-83. [PMID: 22386930 DOI: 10.1016/j.coi.2012.02.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 01/20/2012] [Accepted: 02/06/2012] [Indexed: 12/17/2022]
Abstract
Lymphoid tissue inducer (LTi) cells are programmed by the mammalian fetus to induce the development of lymph nodes and Peyer's patches. LTi cells share a pro-inflammatory profile with Th17 cells, as well as their requirement for the transcription factor RORγt. We discuss here the latest data on the fetal and post-natal development of LTi cells, and their relationship with the larger family of innate lymphoid cells (ILCs). We suggest that the re-programming of RORγt in a subset of common lymphoid progenitors allowed mammals to develop lymphoid organs before birth, whereas other vertebrates only develop such organs in response to infection or injury.
Collapse
Affiliation(s)
- Marie Cherrier
- Institut Pasteur, Lymphoid Tissue Development Unit, Paris 75724, France
| | | |
Collapse
|
18
|
|
19
|
Milićević NM, Klaperski K, Nohroudi K, Milićević Ž, Bieber K, Baraniec B, Blessenohl M, Kalies K, Ware CF, Westermann J. TNF receptor-1 is required for the formation of splenic compartments during adult, but not embryonic life. THE JOURNAL OF IMMUNOLOGY 2010; 186:1486-94. [PMID: 21187446 DOI: 10.4049/jimmunol.1000740] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lymphotoxin β-receptor (LTβR) and TNF receptor-1 (TNFR1) are important for the development of secondary lymphoid organs during embryonic life. The significance of LTβR and TNFR1 for the formation of lymphoid tissue during adult life is not well understood. Immunohistochemistry, morphometry, flow cytometry, and laser microdissection were used to compare wild-type, LTβR(-/-), TNFR1(-/-) spleens with splenic tissue that has been newly formed 8 wk after avascular implantation into adult mice. During ontogeny, LTβR is sufficient to induce formation of the marginal zone, similar-sized T and B cell zones, and a mixed T/B cell zone that completely surrounded the T cell zone. Strikingly, in adult mice, the formation of splenic compartments required both LTβR and TNFR1 expression, demonstrating that the molecular requirements for lymphoid tissue formation are different during embryonic and adult life. Thus, interfering with the TNFR1 pathway offers the possibility to selectively block the formation of ectopic lymphoid tissue and at the same time to spare secondary lymphoid organs such as spleen and lymph nodes. This opens a new perspective for the treatment of autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Novica M Milićević
- Institute of Histology and Embryology, Faculty of Medicine, University of Beograd, 11000 Beograd, Serbia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Hofmann J, Greter M, Du Pasquier L, Becher B. B-cells need a proper house, whereas T-cells are happy in a cave: the dependence of lymphocytes on secondary lymphoid tissues during evolution. Trends Immunol 2010; 31:144-53. [PMID: 20181529 DOI: 10.1016/j.it.2010.01.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 01/11/2010] [Accepted: 01/14/2010] [Indexed: 12/24/2022]
Abstract
A fundamental tenet of immunology is that adaptive immune responses are initiated in secondary lymphoid tissues. This dogma has been challenged by several recent reports. We discuss how successful T cell-mediated immunity can be initiated outside of such dedicated structures, whereas they are required for adaptive humoral immunity. This resembles an ancient immune pathway in the oldest cold-blooded vertebrates, which lack lymph nodes and sophisticated B-cell responses including optimal affinity maturation. The T-cell, however, has retained the capacity to recognize antigen in a lymph node-free environment. Besides bone marrow and lung, the liver is one organ that can potentially serve as a surrogate lymphoid organ and could represent a remnant from the time before lymph nodes developed.
Collapse
Affiliation(s)
- Janin Hofmann
- Division of Neuroimmunology, Inst. Exp. Immunology, Department of Pathology, University Hospital of Zurich, 8057 Zurich, Switzerland
| | | | | | | |
Collapse
|
21
|
Manzo A, Bombardieri M, Humby F, Pitzalis C. Secondary and ectopic lymphoid tissue responses in rheumatoid arthritis: from inflammation to autoimmunity and tissue damage/remodeling. Immunol Rev 2010; 233:267-85. [DOI: 10.1111/j.0105-2896.2009.00861.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Eberl G, Lochner M. The development of intestinal lymphoid tissues at the interface of self and microbiota. Mucosal Immunol 2009; 2:478-85. [PMID: 19741595 DOI: 10.1038/mi.2009.114] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Intestinal lymphoid tissues face the challenging task of inducing adaptive immunity to pathogens, yet maintaining homeostasis with the enormous commensal microbiota. To that aim, the ancient partnership between self and flora has resulted in the generation of a unique set of lymphoid tissues capable of constant large-scale reformatting. A first set of lymphoid tissues, the mesenteric lymph nodes and Peyer's patches, are programmed to develop in the sterile environment of the fetus, whereas a second set of lymphoid tissues, the tertiary lymphoid tissues, are induced to form by the microbiota and inflammation. The diversity of intestinal lymphoid tissues confers the flexibility required to adapt the number of immune inductive sites to the size of the flora and the extent of the pathogenic threat. The result is a functional superorganism combining self and microbes for the best possible symbiosis.
Collapse
Affiliation(s)
- G Eberl
- Institut Pasteur, Laboratory of Lymphoid Tissue Development, CNRS URA1961, Paris, France.
| | | |
Collapse
|
23
|
|
24
|
Peduto L, Dulauroy S, Lochner M, Späth GF, Morales MA, Cumano A, Eberl G. Inflammation recapitulates the ontogeny of lymphoid stromal cells. THE JOURNAL OF IMMUNOLOGY 2009; 182:5789-99. [PMID: 19380827 DOI: 10.4049/jimmunol.0803974] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Stromal cells in lymphoid tissues regulate lymphocyte recruitment and survival through the expression of specific chemokines and cytokines. During inflammation, the same signals recruit lymphocytes to the site of injury; however, the "lymphoid" stromal (LS) cells producing these signals remain poorly characterized. We find that mouse inflammatory lesions and tumors develop gp38(+) LS cells, in recapitulation of the development of LS cells early during the ontogeny of lymphoid organs and the intestine, and express a set of genes that promotes the development of lymphocyte-permissive tissues. These gp38(+) LS cells are induced by a robust pathway that requires myeloid cells but not known Toll- or NOD-like receptors, the inflammasome, or adaptive immunity. Parabiosis and inducible genetic cell fate mapping experiments indicate that local precursors, presumably resident fibroblasts rather that circulating precursors, massively proliferate and give rise to LS cells during inflammation. Our results show that LS cells are both programmed during ontogeny and reinduced during inflammation.
Collapse
Affiliation(s)
- Lucie Peduto
- Laboratory of Lymphoid Tissue Development, Institut Pasteur, Centre National de la Recherche Scientifique, Unité de Recherche Associée 1961, Paris, France
| | | | | | | | | | | | | |
Collapse
|
25
|
Nascimbeni R, Villanacci V, Bassotti G, Fisogni S, Gervasi M, Rossi E, Di Lorenzo D. Colonic lymphoid follicles and NOD2/CARD15 mutational status in Crohn's disease. Br J Surg 2009; 96:655-662. [PMID: 19434699 DOI: 10.1002/bjs.6615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Interactions between the colonic lymphoid system and the genetic background in Crohn's disease are unexplored. This study analysed variations of colonic lymphoid follicles (CLFs) according to the nucleotide-binding oligomerization domain 2 (NOD2) and caspase recruitment domain-containing protein 15 (CARD15) gene in patients with Crohn's disease. METHODS CLFs were characterized by histology and immunohistochemistry in the specimens of 41 patients undergoing colonic resection for Crohn's disease. Variants of the NOD2/CARD15 gene were assessed by denaturing high performance liquid chromatography and confirmed by DNA sequencing. RESULTS Eleven patients had a heterozygous variant of the NOD2/CARD15 gene. The uninvolved colon of mutants had significantly lower CLF density (0.9 versus 2.7 follicles per cm(2); P < 0.001) and proportion of those with a germinal centre (9 versus 22 per cent; P = 0.040) than in non-mutants. In active disease, CLF density increased similarly in patients with and without the mutation. The proportion of extramucosal CLFs was higher in mutants than in non-mutants (34 versus 22 per cent; P = 0.030). No significant difference between groups was recorded for cellular profile and proliferation. CONCLUSION Patients with Crohn's disease and the NOD2/CARD15 mutation show a remodelling of CLFs in both uninvolved and actively inflamed intestines. These subjects may have a defective immune response by organized lymphoid structures.
Collapse
Affiliation(s)
- R Nascimbeni
- Department of Medical and Surgical Sciences, University of Brescia, Brescia, Italy.
| | | | | | | | | | | | | |
Collapse
|
26
|
Satoh-Takayama N, Vosshenrich CAJ, Lesjean-Pottier S, Sawa S, Lochner M, Rattis F, Mention JJ, Thiam K, Cerf-Bensussan N, Mandelboim O, Eberl G, Di Santo JP. Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity 2008; 29:958-70. [PMID: 19084435 DOI: 10.1016/j.immuni.2008.11.001] [Citation(s) in RCA: 909] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 11/13/2008] [Accepted: 11/19/2008] [Indexed: 12/24/2022]
Abstract
Natural killer (NK) cells are innate lymphocytes with spontaneous antitumor activity, and they produce interferon-gamma (IFN-gamma) that primes immune responses. Whereas T helper cell subsets differentiate from naive T cells via specific transcription factors, evidence for NK cell diversification is limited. In this report, we characterized intestinal lymphocytes expressing the NK cell natural cytotoxicity receptor NKp46. Gut NKp46+ cells were distinguished from classical NK cells by limited IFN-gamma production and absence of perforin, whereas several subsets expressed the nuclear hormone receptor retinoic acid receptor-related orphan receptor t (RORgammat) and interleukin-22 (IL-22). Intestinal NKp46+IL-22+ cells were generated via a local process that was conditioned by commensal bacteria and required RORgammat. Mice lacking IL-22-producing NKp46+ cells showed heightened susceptibility to the pathogen Citrobacter rodentium, consistent with a role for intestinal NKp46+ cells in immune protection. RORgammat-driven diversification of intestinal NKp46+ cells thereby specifies an innate cellular defense mechanism that operates at mucosal surfaces.
Collapse
MESH Headings
- Animals
- Antigens, Ly/immunology
- Antigens, Ly/metabolism
- Citrobacter rodentium/immunology
- Enterobacteriaceae Infections/immunology
- Enterobacteriaceae Infections/microbiology
- Immunity, Innate
- Immunity, Mucosal/immunology
- Interleukins/immunology
- Interleukins/metabolism
- Intestinal Mucosa/metabolism
- Intestines/immunology
- Intestines/microbiology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Natural Cytotoxicity Triggering Receptor 1/immunology
- Natural Cytotoxicity Triggering Receptor 1/metabolism
- Nuclear Receptor Subfamily 1, Group F, Member 3
- Perforin/immunology
- Perforin/metabolism
- Receptors, Retinoic Acid/immunology
- Receptors, Retinoic Acid/metabolism
- Receptors, Thyroid Hormone/immunology
- Receptors, Thyroid Hormone/metabolism
- Signal Transduction/immunology
- Interleukin-22
Collapse
Affiliation(s)
- Naoko Satoh-Takayama
- Cytokines and Lymphoid Development Unit, Institut Pasteur, Paris F-75724, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Junt T, Scandella E, Ludewig B. Form follows function: lymphoid tissue microarchitecture in antimicrobial immune defence. Nat Rev Immunol 2008; 8:764-75. [PMID: 18825130 DOI: 10.1038/nri2414] [Citation(s) in RCA: 209] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Secondary lymphoid organs (SLOs) are tissues that facilitate the induction of adaptive immune responses. These organs capture pathogens to limit their spread throughout the body, bring antigen-presenting cells into productive contact with their cognate lymphocytes and provide niches for the differentiation of immune effector cells. Therefore, the microanatomy of SLOs defines the ability of an organism to respond to pathogens. SLO microarchitecture is, at the same time, extremely adaptable to environmental changes. In this Review, we discuss recent insights into the function and plasticity of the SLO microenvironment with regards to antimicrobial immune defence.
Collapse
Affiliation(s)
- Tobias Junt
- Novartis Institutes for BioMedical Research, 4002 Basel, Switzerland.
| | | | | |
Collapse
|
28
|
Blei F. Literature watch: Lineage tracing demonstrates the venous origin of the mammalian lymphatic vasculature. Lymphat Res Biol 2008; 5:275-6. [PMID: 18370919 DOI: 10.1089/lrb.2007.5402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|