1
|
Kinsella S, Evandy CA, Cooper K, Iovino L, deRoos PC, Hopwo KS, Granadier DW, Smith CW, Rafii S, Dudakov JA. Attenuation of apoptotic cell detection triggers thymic regeneration after damage. Cell Rep 2021; 37:109789. [PMID: 34610317 PMCID: PMC8627669 DOI: 10.1016/j.celrep.2021.109789] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 07/02/2021] [Accepted: 09/10/2021] [Indexed: 01/21/2023] Open
Abstract
The thymus, which is the primary site of T cell development, is particularly sensitive to insult but also has a remarkable capacity for repair. However, the mechanisms orchestrating regeneration are poorly understood, and delayed repair is common after cytoreductive therapies. Here, we demonstrate a trigger of thymic regeneration, centered on detecting the loss of dying thymocytes that are abundant during steady-state T cell development. Specifically, apoptotic thymocytes suppressed production of the regenerative factors IL-23 and BMP4 via TAM receptor signaling and activation of the Rho-GTPase Rac1, the intracellular pattern recognition receptor NOD2, and micro-RNA-29c. However, after damage, when profound thymocyte depletion occurs, this TAM-Rac1-NOD2-miR29c pathway is attenuated, increasing production of IL-23 and BMP4. Notably, pharmacological inhibition of Rac1-GTPase enhanced thymic function after acute damage. These findings identify a complex trigger of tissue regeneration and offer a regenerative strategy for restoring immune competence in patients whose thymic function has been compromised.
Collapse
Affiliation(s)
- Sinéad Kinsella
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | - Cindy A Evandy
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Kirsten Cooper
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Lorenzo Iovino
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Paul C deRoos
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Kayla S Hopwo
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - David W Granadier
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Colton W Smith
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Shahin Rafii
- Department of Genetic Medicine and Ansary Stem Cell Institute, Weill Cornell Medical College, New York, NY 10021, USA
| | - Jarrod A Dudakov
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Immunology, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
2
|
Ijabi J, Afrisham R, Moradi-Sardareh H, Roozehdar P, Seifi F, Sahebkar A, Ijabi R. The Shift of HbF to HbA under Influence of SKA2 Gene; A Possible Link between Cortisol and Hematopoietic Maturation in Term and Preterm Newborns. Endocr Metab Immune Disord Drug Targets 2021; 21:485-494. [PMID: 32364083 DOI: 10.2174/1871530320666200504091354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND We hypothesized that the SKA2 gene can convert hemoglobin F to A leading to the maturity of the hematopoietic system by glucocorticoid hormone; so, the present study aimed to investigate the health outcome of newborns by using the effect of SKA2 gene on hematopoietic maturation. METHODS At first, 142 samples were divided into term and preterm. After sampling from the umbilical cord blood, the expression of SKA2 genes and HbA and F were evaluated by quantitative RT-PCR. The blood gases were measured by Campact 3 device. Finally, the cortisol level was measured by ELISA method and HbA and F levels were investigated by capillary electrophoresis. RESULTS The blood gases and Apgar scores were more favorable in term newborns (P <0.001). Levels of protein/expression of HbF in newborns with Apgar score greater than 7 was lower than that of the newborns with Apgar score below 7 (P <0.001). Cortisol and HbA levels were considerably higher in term newborns compared to the preterm ones (P <0.001). In the preterm and term groups, SKA2 gene expression had a positive and significant relationship with cortisol and HbA levels as well as a negative relationship with the HbF level. In the preterm group, a positive and significant relationship was observed between the expression of SKA2 and HbF genes. CONCLUSION The results revealed that the SKA2 gene affected hematopoietic maturation in preterm and term newborns and the health outcome of newborns improved by increasing HbA level.
Collapse
Affiliation(s)
- Janat Ijabi
- Department of Hematology, School of Allied Health, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Afrisham
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hemen Moradi-Sardareh
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Roozehdar
- Department of Medical Veterinary, Azad University, Garmsar Branch, Garmsar, Iran
| | - Fatemeh Seifi
- Counseling and Reproductive Health Research Centre, Golestan University of Medical Sciences, Gorgan, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Roghayeh Ijabi
- Counseling and Reproductive Health Research Centre, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
3
|
Granadier D, Iovino L, Kinsella S, Dudakov JA. Dynamics of thymus function and T cell receptor repertoire breadth in health and disease. Semin Immunopathol 2021; 43:119-134. [PMID: 33608819 PMCID: PMC7894242 DOI: 10.1007/s00281-021-00840-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/12/2021] [Indexed: 12/26/2022]
Abstract
T cell recognition of unknown antigens relies on the tremendous diversity of the T cell receptor (TCR) repertoire; generation of which can only occur in the thymus. TCR repertoire breadth is thus critical for not only coordinating the adaptive response against pathogens but also for mounting a response against malignancies. However, thymic function is exquisitely sensitive to negative stimuli, which can come in the form of acute insult, such as that caused by stress, infection, or common cancer therapies; or chronic damage such as the progressive decline in thymic function with age. Whether it be prolonged T cell deficiency after hematopoietic cell transplantation (HCT) or constriction in the breadth of the peripheral TCR repertoire with age; these insults result in poor adaptive immune responses. In this review, we will discuss the importance of thymic function for generation of the TCR repertoire and how acute and chronic thymic damage influences immune health. We will also discuss methods that are used to measure thymic function in patients and strategies that have been developed to boost thymic function.
Collapse
Affiliation(s)
- David Granadier
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA, USA
- Department of Molecular and Cellular Biology, University of Washington, Seattle, WA, USA
| | - Lorenzo Iovino
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sinéad Kinsella
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jarrod A Dudakov
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
- Department of Immunology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
4
|
Hun ML, Wong K, Gunawan JR, Alsharif A, Quinn K, Chidgey AP. Gender Disparity Impacts on Thymus Aging and LHRH Receptor Antagonist-Induced Thymic Reconstitution Following Chemotherapeutic Damage. Front Immunol 2020; 11:302. [PMID: 32194555 PMCID: PMC7062683 DOI: 10.3389/fimmu.2020.00302] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/06/2020] [Indexed: 11/28/2022] Open
Abstract
One of the main consequences of thymus aging is the decrease in naïve T cell output. This condition accelerates at the onset of puberty, and presents as a major clinical complication for cancer patients who require cytoablative therapy. Specifically, the extensive use of chemotherapeutics, such as cyclophosphamide, in such treatments damage thymic structure and eliminate the existing naïve T cell repertoire. The resulting immunodeficiency can lead to increased incidence of opportunistic infections, tumor growth relapse and/or autoimmune diseases, particularly in older patients. Thus, strategies aimed at rejuvenating the aged thymus following chemotherapeutic damage are required. Previous studies have revealed that sex hormone deprivation in male mice is capable of regenerating the thymic microenvironment following chemotherapy treatment, however, further investigation is crucial to identify gender-based differences, and the molecular mechanisms involved during thymus regeneration. Through phenotypic analyzes, we identified gender-specific alterations in thymocytes and thymic epithelial cell (TEC) subsets from the onset of puberty. By middle-age, females presented with a higher number of thymocytes in comparison to males, yet a decrease in their Aire+ medullary TEC/thymocyte ratio was observed. This reduction could be associated with an increased risk of autoimmune disease in middle-aged women. Given the concurrent increase in female Aire+ cTEC/thymocyte ratio, we proposed that there may be an impediment in Aire+ mTEChi differentiation, and Aire+ cTEChi as its upstream precursor. The regenerative effects of LHRH receptor antagonist, degarelix, on TEC subsets was also less pronounced in middle-aged females compared to males, possibly due to slower progression of thymic involution in the former, which presented with greater TEChi proportions. Furthermore, following cyclophosphamide treatment, degarelix enhanced thymocyte and mature TEC subset recovery, with faster recovery kinetics observed in females. These events were found to involve both reactivation and proliferation of thymic epithelial progenitor cells. Taken together, the findings from this study portray a relationship between gender disparity and thymus aging, and highlight the potential benefits of LHRH receptor antagonist treatment for thymic regeneration. Further research is required, however, to determine how gender may impact on the mechanisms underpinning these events.
Collapse
Affiliation(s)
- Michael Ly Hun
- Thymus Development, Ageing and T Cell Regeneration Laboratory, Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University Clayton, Melbourne, VIC, Australia
| | - Kahlia Wong
- Thymus Development, Ageing and T Cell Regeneration Laboratory, Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University Clayton, Melbourne, VIC, Australia
| | - Josephine Rahma Gunawan
- Thymus Development, Ageing and T Cell Regeneration Laboratory, Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University Clayton, Melbourne, VIC, Australia
| | - Abdulaziz Alsharif
- Thymus Development, Ageing and T Cell Regeneration Laboratory, Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University Clayton, Melbourne, VIC, Australia
| | - Kylie Quinn
- Quinn Laboratory, Translational Immunology and Nanotechnology Research Program, School of Health and Biomedical Research, RMIT University, Melbourne, VIC, Australia
| | - Ann P. Chidgey
- Thymus Development, Ageing and T Cell Regeneration Laboratory, Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University Clayton, Melbourne, VIC, Australia
| |
Collapse
|
5
|
Khong SML, Lee M, Kosaric N, Khong DM, Dong Y, Hopfner U, Aitzetmüller MM, Duscher D, Schäfer R, Gurtner GC. Single-Cell Transcriptomics of Human Mesenchymal Stem Cells Reveal Age-Related Cellular Subpopulation Depletion and Impaired Regenerative Function. Stem Cells 2019; 37:240-246. [PMID: 30412645 PMCID: PMC10257472 DOI: 10.1002/stem.2934] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 08/22/2018] [Accepted: 09/30/2018] [Indexed: 07/22/2023]
Abstract
Although bone marrow-derived mesenchymal stem cells (BM-MSCs) are widely recognized as promising therapeutic agents, the age-related impacts on cellular function remain largely uncharacterized. In this study, we found that BM-MSCs from young donors healed wounds in a xenograft model faster compared with their aged counterparts (p < .001). Given this significant healing advantage, we then used single-cell transcriptomic analysis to provide potential molecular insights into these observations. We found that the young cells contained a higher proportion of cells characterized by a higher expression of genes involved in tissue regeneration. In addition, we identified a unique, quiescent subpopulation that was exclusively present in young donor cells. Together, these findings may explain a novel mechanism for the enhanced healing capacity of young stem cells and may have implications for autologous cell therapy in the extremes of age. Stem Cells 2019;37:240-246.
Collapse
Affiliation(s)
- Sacha M L Khong
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Ming Lee
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
- Emory University School of Medicine, Atlanta, Georgia, USA
| | - Nina Kosaric
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Danika M Khong
- Massachusetts General Hospital, Harvard Medical School, Harvard University, Boston, Massachusetts, USA
| | - Yixiao Dong
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Ursula Hopfner
- Department of Plastic and Hand Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Matthias M Aitzetmüller
- Department of Plastic and Hand Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Dominik Duscher
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
- Department of Plastic and Hand Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Richard Schäfer
- Institute of Clinical and Experimental Transfusion Medicine (IKET), University Hospital Tübingen, Tübingen, Germany
| | - Geoffrey C Gurtner
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
6
|
Implications for thymus growth in childhood: histogenesis of cortex and medulla. Anat Sci Int 2018; 94:111-118. [PMID: 30155680 DOI: 10.1007/s12565-018-0456-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 08/16/2018] [Indexed: 10/28/2022]
Abstract
The increase in autoimmune diseases in recent years has drawn attention back to the thymus, with new approaches to improve and/or restore immune function being investigated. As the primary lymphoid organ responsible for functional T cell development, studies on the pre-/post-natal development of this organ and T lymphocytes in human and other species are of special interest. During our screening studies we observed structures that had not been described or mentioned previously, and named them "epitheliostromal sheaths". Associated with these unique structures were also small attached lobules (possibly reflecting the maturational stages of thymic lobules), which the authors consider as markers of histogenesis and the growth of the organ during early childhood; these findings are thus presented to researchers in this field. Approximately 1000 sections prepared from infantile thymic tissues of partial biopsy specimens were immunostained and examined. Specimens were taken from ten patients (with informed consent) in the age range of 4-9 years who underwent surgery due to congenital cardiovascular anomalies but were otherwise normal. Digital images of interest were captured to describe them in detail. Determining the immunophenotype of the compartments in these newly developing lobules assisted us greatly in defining compartments and their growth order. In summary, our findings suggest a niche-based thymus growth mechanism during childhood. We presented our findings, hoping to provide additional insight to researchers aiming to restore thymus function in adulthood and improve its immunological functions.
Collapse
|
7
|
Rodrigues PM, Ribeiro AR, Serafini N, Meireles C, Di Santo JP, Alves NL. Intrathymic Deletion of IL-7 Reveals a Contribution of the Bone Marrow to Thymic Rebound Induced by Androgen Blockade. THE JOURNAL OF IMMUNOLOGY 2018; 200:1389-1398. [DOI: 10.4049/jimmunol.1701112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Abstract
Despite the well-documented effect of castration in thymic regeneration, the singular contribution of the bone marrow (BM) versus the thymus to this process remains unclear. The chief role of IL-7 in pre- and intrathymic stages of T lymphopoiesis led us to investigate the impact of disrupting this cytokine during thymic rebound induced by androgen blockade. We found that castration promoted thymopoiesis in young and aged wild-type mice. In contrast, only young germline IL-7–deficient (Il7−/−) mice consistently augmented thymopoiesis after castration. The increase in T cell production was accompanied by the expansion of the sparse medullary thymic epithelial cell and the peripheral T cell compartment in young Il7−/− mice. In contrast to young Il7−/− and wild-type mice, the poor thymic response of aged Il7−/− mice after castration was associated with a defect in the expansion of BM hematopoietic progenitors. These findings suggest that BM-derived T cell precursors contribute to thymic rebound driven by androgen blockade. To assess the role of IL-7 within the thymus, we generated mice with conditional deletion of IL-7 (Il7 conditional knockout [cKO]) in thymic epithelial cells. As expected, Il7cKO mice presented a profound defect in T cell development while maintaining an intact BM hematopoietic compartment across life. Unlike Il7−/− mice, castration promoted the expansion of BM precursors and enhanced thymic activity in Il7cKO mice independently of age. Our findings suggest that the mobilization of BM precursors acts as a prime catalyst of castration-driven thymopoiesis.
Collapse
Affiliation(s)
- Pedro M. Rodrigues
- *Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- †Thymus Development and Function Laboratory, Institute for Molecular and Cellular Biology, 4200-135 Porto, Portugal
- ‡Doctoral Program in Biomedical Sciences, Abel Salazar Biomedical Sciences Institute, University of Porto, 4050-313 Porto, Portugal
| | - Ana R. Ribeiro
- *Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- †Thymus Development and Function Laboratory, Institute for Molecular and Cellular Biology, 4200-135 Porto, Portugal
| | - Nicolas Serafini
- §Innate Immunity Unit, Pasteur Institute, 75724 Paris, France; and
- ¶INSERM U1223, 75015 Paris, France
| | - Catarina Meireles
- *Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- †Thymus Development and Function Laboratory, Institute for Molecular and Cellular Biology, 4200-135 Porto, Portugal
| | - James P. Di Santo
- §Innate Immunity Unit, Pasteur Institute, 75724 Paris, France; and
- ¶INSERM U1223, 75015 Paris, France
| | - Nuno L. Alves
- *Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- †Thymus Development and Function Laboratory, Institute for Molecular and Cellular Biology, 4200-135 Porto, Portugal
| |
Collapse
|
8
|
Barsanti M, Lim JMC, Hun ML, Lister N, Wong K, Hammett MV, Lepletier A, Boyd RL, Giudice A, Chidgey AP. A novel Foxn1
eGFP/+
mouse model identifies Bmp4‐induced maintenance of
Foxn1
expression and thymic epithelial progenitor populations. Eur J Immunol 2016; 47:291-304. [DOI: 10.1002/eji.201646553] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 10/24/2016] [Accepted: 11/08/2016] [Indexed: 02/02/2023]
Affiliation(s)
- Marco Barsanti
- Department of Anatomy and Developmental Biology Monash University Melbourne Victoria Australia
| | - Joanna M. C. Lim
- Department of Anatomy and Developmental Biology Monash University Melbourne Victoria Australia
| | - Michael L. Hun
- Department of Anatomy and Developmental Biology Monash University Melbourne Victoria Australia
| | - Natalie Lister
- Department of Anatomy and Developmental Biology Monash University Melbourne Victoria Australia
| | - Kahlia Wong
- Department of Anatomy and Developmental Biology Monash University Melbourne Victoria Australia
| | - Maree V. Hammett
- Department of Anatomy and Developmental Biology Monash University Melbourne Victoria Australia
| | - Ailin Lepletier
- Department of Anatomy and Developmental Biology Monash University Melbourne Victoria Australia
| | - Richard L. Boyd
- Department of Anatomy and Developmental Biology Monash University Melbourne Victoria Australia
| | - Antonietta Giudice
- Department of Anatomy and Developmental Biology Monash University Melbourne Victoria Australia
| | - Ann P. Chidgey
- Department of Anatomy and Developmental Biology Monash University Melbourne Victoria Australia
| |
Collapse
|
9
|
Hamazaki Y. Adult thymic epithelial cell (TEC) progenitors and TEC stem cells: Models and mechanisms for TEC development and maintenance. Eur J Immunol 2015; 45:2985-93. [PMID: 26362014 DOI: 10.1002/eji.201545844] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/06/2015] [Accepted: 09/10/2015] [Indexed: 01/06/2023]
Abstract
The thymus is the primary lymphoid organ for generating self-restricted and self-tolerant functional T cells. Its two distinct anatomical regions, the cortex and the medulla, are involved in positive and negative selection, respectively. Thymic epithelial cells (TECs) constitute the framework of this tissue and function as major stromal components. Extensive studies for more than a decade have revealed how TECs are generated during organogenesis; progenitors specific for medullary TECs (mTECs) and cortical TECs (cTECs) as well as bipotent progenitors for both lineages have been identified, and the signaling pathways required for the development and maturation of mTECs have been elucidated. However, little is known about the initial commitment of mTECs and cTECs during ontogeny, and how regeneration of both lineages is sustained in the postnatal/adult thymus. Recently, stem cell activities in TECs have been demonstrated, and TEC progenitors have been identified in the postnatal thymus. In this review, recent advances in studying the development and maintenance of TECs are summarized, and the possible mechanisms of thymic regeneration and involution are discussed.
Collapse
Affiliation(s)
- Yoko Hamazaki
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
10
|
Lepletier A, Chidgey AP, Savino W. Perspectives for Improvement of the Thymic Microenvironment through Manipulation of Thymic Epithelial Cells: A Mini-Review. Gerontology 2015; 61:504-14. [DOI: 10.1159/000375160] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 01/13/2015] [Indexed: 11/19/2022] Open
|
11
|
Franckaert D, Schlenner SM, Heirman N, Gill J, Skogberg G, Ekwall O, Put K, Linterman MA, Dooley J, Liston A. Premature thymic involution is independent of structural plasticity of the thymic stroma. Eur J Immunol 2015; 45:1535-47. [PMID: 25627671 PMCID: PMC4670717 DOI: 10.1002/eji.201445277] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/22/2014] [Accepted: 01/23/2015] [Indexed: 12/14/2022]
Abstract
The thymus is the organ devoted to T-cell production. The thymus undergoes multiple rounds of atrophy and redevelopment before degenerating with age in a process known as involution. This process is poorly understood, despite the influence the phenomenon has on peripheral T-cell numbers. Here we have investigated the FVB/N mouse strain, which displays premature thymic involution. We find multiple architectural and cellular features that precede thymic involution, including disruption of the epithelial–endothelial relationship and a progressive loss of pro-T cells. The architectural features, reminiscent of the human thymus, are intrinsic to the nonhematopoietic compartment and are neither necessary nor sufficient for thymic involution. By contrast, the loss of pro-T cells is intrinsic to the hematopoietic compartment, and is sufficient to drive premature involution. These results identify pro-T-cell loss as the main driver of premature thymic involution, and highlight the plasticity of the thymic stroma, capable of maintaining function across diverse interstrain architectures.
Collapse
Affiliation(s)
- Dean Franckaert
- Autoimmune Genetics Laboratory, VIB, Leuven, Belgium.,Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Susan M Schlenner
- Autoimmune Genetics Laboratory, VIB, Leuven, Belgium.,Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Nathalie Heirman
- Autoimmune Genetics Laboratory, VIB, Leuven, Belgium.,Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Jason Gill
- Mechanisms of Cancer, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Gabriel Skogberg
- Department of Rheumatology and Inflammation Research, Göteborg University, Gothenburg, Sweden
| | - Olov Ekwall
- Department of Rheumatology and Inflammation Research, Göteborg University, Gothenburg, Sweden
| | - Karen Put
- Autoimmune Genetics Laboratory, VIB, Leuven, Belgium.,Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | | | - James Dooley
- Autoimmune Genetics Laboratory, VIB, Leuven, Belgium.,Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Adrian Liston
- Autoimmune Genetics Laboratory, VIB, Leuven, Belgium
| |
Collapse
|
12
|
Long-term persistence of functional thymic epithelial progenitor cells in vivo under conditions of low FOXN1 expression. PLoS One 2014; 9:e114842. [PMID: 25531271 PMCID: PMC4273964 DOI: 10.1371/journal.pone.0114842] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 11/14/2014] [Indexed: 01/01/2023] Open
Abstract
Normal thymus function reflects interactions between developing T-cells and several thymic stroma cell types. Within the stroma, key functions reside in the distinct cortical and medullary thymic epithelial cell (TEC) types. It has been demonstrated that, during organogenesis, all TECs can be derived from a common thymic epithelial progenitor cell (TEPC). The properties of this common progenitor are thus of interest. Differentiation of both cTEC and mTEC depends on the epithelial-specific transcription factor FOXN1, although formation of the common TEPC from which the TEC lineage originates does not require FOXN1. Here, we have used a revertible severely hypomorphic allele of Foxn1, Foxn1R, to test the stability of the common TEPC in vivo. By reactivating Foxn1 expression postnatally in Foxn1R/− mice we demonstrate that functional TEPCs can persist in the thymic rudiment until at least 6 months of age, and retain the potential to give rise to both cortical and medullary thymic epithelial cells (cTECs and mTECs). These data demonstrate that the TEPC-state is remarkably stable in vivo under conditions of low Foxn1 expression, suggesting that manipulation of FOXN1 activity may prove a valuable method for long term maintenance of TEPC in vitro.
Collapse
|
13
|
Leclercq C, Prunier A, Thomas F, Merlot E. Neonatal surgical castration of male pigs reduces thymic growth but has moderate consequences on thymocytes. J Anim Sci 2014; 92:2415-21. [PMID: 24668957 DOI: 10.2527/jas.2013-7202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Thymus integrates numerous signals from the neuroendocrine-immune system, including sex steroids, glucocorticoids, and catecholamines. Neonatal surgical castration, commonly practiced in pig husbandry, modifies thymic hormonal environment, for example, sex steroids and probably glucocorticoids and catecholamines, which are important modulators of thymic function. This study aimed at investigating, in pubescent male pigs, the consequences of neonatal suppression of testicular hormones on thymic T cell differentiation and hormonal control of thymocyte proliferation. A total of 34 male pigs were allocated to 2 experimental groups: control (CT) intact males and males surgically castrated (SC) at 5 or 6 d of age. At slaughter, thymus was weighed and thymic samples were collected to determine fat content and distribution of thymocyte subsets by identification of CD1, CD4, CD8, and γδ T cell receptor (TCR) cell surface markers and to measure thymocyte proliferation in presence of cortisol, norepinephrine, and sex steroids. Results showed that absolute and relative thymus weights were greater (P < 0.01 and P < 0.01, respectively) whereas thymic fat content was less (P < 0.01) in CT than in SC pigs. Surgical castration did not change the frequency of CD1+ immature thymocytes. The proportion of γδ T cells tended to be greater in CT than in SC pigs (P < 0.1) but the proportions of CD4+, CD8+, and CD4+CD8+ thymocytes were similar in both groups (P > 0.1) indicating that the Tαβ lineage was not influenced by early castration. Proliferation of thymocytes in response to concanavalin A (ConA) was greater in SC than in CT pigs (P < 0.05). Cortisol and norepinephrine decreased the ConA-induced proliferation in CT and SC pigs (P < 0.05). In addition, proliferation of thymocytes was less inhibited by norepinephrine in SC than in CT males (P < 0.05). The greatest concentration of testosterone (25 ng/mL) increased (SC males, P < 0.05) or tended to increase (CT males, P < 0.1) the proliferative responsiveness to ConA but the lowest dose (2.5 ng/mL) and the greatest dose of testosterone combined with estradiol had no significant effect (P > 0.1). Overall, our data show little effect of neonatal castration on thymocyte differentiation as well as of sex hormones on thymocyte proliferation. However, thymic cells seem to be more sensitive to the inhibitory influence of norepinephrine in CT than in CS pigs. The significance of such difference for animal health remains to be explored.
Collapse
Affiliation(s)
- C Leclercq
- INRA, UMR1348 PEGASE, F-35590 Saint-Gilles, France Agrocampus Ouest, UMR1348 PEGASE, F-35000 Rennes, France
| | - A Prunier
- INRA, UMR1348 PEGASE, F-35590 Saint-Gilles, France Agrocampus Ouest, UMR1348 PEGASE, F-35000 Rennes, France
| | - F Thomas
- INRA, UMR1348 PEGASE, F-35590 Saint-Gilles, France Agrocampus Ouest, UMR1348 PEGASE, F-35000 Rennes, France
| | - E Merlot
- INRA, UMR1348 PEGASE, F-35590 Saint-Gilles, France Agrocampus Ouest, UMR1348 PEGASE, F-35000 Rennes, France
| |
Collapse
|
14
|
Seach N, Wong K, Hammett M, Boyd RL, Chidgey AP. Purified enzymes improve isolation and characterization of the adult thymic epithelium. J Immunol Methods 2012; 385:23-34. [PMID: 22910002 DOI: 10.1016/j.jim.2012.07.023] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Revised: 07/28/2012] [Accepted: 07/31/2012] [Indexed: 11/30/2022]
Abstract
The reproducible isolation and accurate characterization of thymic epithelial cell (TEC) subsets is of critical importance to the ongoing study of thymopoiesis and its functional decline with age. The study of adult TEC, however, is significantly hampered due to the severely low stromal to hematopoietic cell ratio. Non-biased digestion and enrichment protocols are thus essential to ensure optimal cell yield and accurate representation of stromal subsets, as close as possible to their in vivo representation. Current digestion protocols predominantly involve diverse, relatively impure enzymatic variants of crude collagenase and collagenase/dispase (col/disp) preparations, which have variable efficacy and are often suboptimal in their ability to mediate complete digestion of thymus tissue. To address these issues we compared traditional col/disp preparations with the latest panel of Liberase products that contain a blend of highly purified collagenase and neutral protease enzymes. Liberase enzymes revealed a more rapid, complete dissociation of thymus tissue; minimizing loss of viability and increasing recovery of thymic stromal cell (TSC) elements. In particular, the recovery and viability of TEC, notably the rare cortical subsets, were significantly enhanced with Liberase products containing medium to high levels of thermolysin. The improved stromal dissociation led to numerically increased TEC yield and total TEC RNA isolated from pooled digests of adult thymus. Furthermore, the increased recovery of TEC enhanced resolution and quantification of TEC subsets in both adult and aged mice, facilitating flow cytometric analysis on a per thymus basis. We further refined the adult TEC phenotype by correlating surface expression of known TEC markers, with expression of intracellular epithelial lineage markers, Keratin 5 and Keratin 8. The data reveal more extensive expression of K8 than previously recognized and indicates considerable heterogeneity still exists within currently defined adult TEC subsets.
Collapse
Affiliation(s)
- Natalie Seach
- Monash Immunology and Stem Cell Laboratories, Level 3, STRIP-1, Building 75, Monash University, Wellington Rd. Clayton, Victoria 3800, Australia
| | | | | | | | | |
Collapse
|
15
|
Gilboa-Geffen A, Hartmann G, Soreq H. Stressing hematopoiesis and immunity: an acetylcholinesterase window into nervous and immune system interactions. Front Mol Neurosci 2012; 5:30. [PMID: 22448158 PMCID: PMC3305920 DOI: 10.3389/fnmol.2012.00030] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 02/22/2012] [Indexed: 01/08/2023] Open
Abstract
Hematopoietic stem cells (HSCs) differentiate and generate all blood cell lineages while maintaining self-renewal ability throughout life. Systemic responses to stressful insults, either psychological or physical exert both stimulating and down-regulating effects on these dynamic members of the immune system. Stress-facilitated division and re-oriented differentiation of progenitor cells modifies hematopoietic cell type composition, while enhancing cytokine production and promoting inflammation. Inversely, stress-induced increases in the neurotransmitter acetylcholine (ACh) act to mitigate inflammatory response and regain homeostasis. This signaling process is terminated when ACh is hydrolyzed by acetylcholinesterase (AChE). Alternative splicing, which is stress-modified, changes the composition of AChE variants, modifying their terminal sequences, susceptibility for microRNA suppression, and sub-cellular localizations. Intriguingly, the effects of stress and AChE variants on hematopoietic development and inflammation in health and disease are both subject to small molecule as well as oligonucleotide-mediated manipulations in vitro and in vivo. The therapeutic agents can thus be targeted to the enzyme protein, its encoding mRNA transcripts, or the regulator microRNA-132, opening new venues for therapeutic interference with multiple nervous and immune system diseases.
Collapse
Affiliation(s)
- Adi Gilboa-Geffen
- The Edmond and Lily Safra Center for Brain Sciences and the Institute of Life Sciences, The Hebrew University of Jerusalem Jerusalem, Israel
| | | | | |
Collapse
|
16
|
Zhao G, Moore DJ, Kim JI, Lee KM, O'Connor MR, Duff PE, Yang M, Lei J, Markmann JF, Deng S. Inhibition of transplantation tolerance by immune senescence is reversed by endocrine modulation. Sci Transl Med 2011; 3:87ra52. [PMID: 21677198 DOI: 10.1126/scitranslmed.3002270] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The senescent immune system responds poorly to new stimuli; thymic involution, accumulation of memory cells against other specificities, and general refractoriness to antigen signaling all may contribute to poor resistance to infection. These same changes may pose a significant clinical barrier to organ transplantation, as transplantation tolerance requires thymic participation and integrated, tolerance-promoting responses to novel antigens. We found that after the age of 12 months, mice became resistant to the tolerance-inducing capacity of the monoclonal antibody therapy anti-CD45RB. This resistance to tolerance to cardiac allografts could be overcome by surgical castration of male mice, a procedure that led to thymic regeneration and long-term graft acceptance. The potential for clinical translation of this endocrine-immune interplay was confirmed by the ability of Lupron Depot injections, which temporarily disrupt gonadal function, to restore tolerance in aged mice. Furthermore, we demonstrated that the restoration of tolerance after surgical or chemical castration depended on thymic production of regulatory T cells (T(regs)); thymectomy or T(reg) depletion abrogated tolerance restoration. The aging of the immune system ("immune senescence") is a significant barrier to immune tolerance, but this barrier can be overcome by targeting sex steroid production with commonly used clinical therapeutics.
Collapse
Affiliation(s)
- Gaoping Zhao
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Dudakov JA, van den Brink MRM. Greater than the sum of their parts: combination strategies for immune regeneration following allogeneic hematopoietic stem cell transplantation. Best Pract Res Clin Haematol 2011; 24:467-76. [PMID: 21925100 DOI: 10.1016/j.beha.2011.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cytoreductive conditioning regimes designed to allow for successful allogeneic hematopoietic stem cell transplantation (allo-HSCT) paradoxically are also detrimental to recovery of the immune system in general but lymphopoiesis in particular. Post-transplant immune depletion is particularly striking within the T cell compartment which is exquisitely sensitive to negative regulation, evidenced by the profound decline in thymic function with age. As a consequence, regeneration of the immune system remains a significant unmet clinical need. Over the past decade studies have revealed several promising therapeutic strategies to address ineffective lymphopoiesis and post-transplant immune deficiency. These include the use of cytokines such as IL-7, IL-12 and IL-15; growth factors and hormones like keratinocyte growth factor (KGF), insulin-like growth factor (IGF)-1 and growth hormone (GH); adoptive transfer of ex vivo-generated precursor T cells (pre-T) and sex steroid ablation (SSA). Moreover, recently several novel approaches have been proposed to generate whole thymii ex vivo using stem cell technologies and bioscaffolds. Increasingly, however, when transferred to the clinic, these strategies alone are not sufficient to restore thymopoiesis in all patients leading to the potential of combination strategies as a way to reign in non-responders. Synergistic enhancement in combination may be due to differential targets may therefore be effective in improving clinical outcomes in the transplant settings as well as in other lymphopenic states induced by high dose chemotherapy/radiation therapy or HIV, and may also be useful in improving responses to vaccination and augmenting anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Jarrod A Dudakov
- Department of Immunology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | |
Collapse
|
18
|
Calder AE, Hince MN, Dudakov JA, Chidgey AP, Boyd RL. Thymic involution: where endocrinology meets immunology. Neuroimmunomodulation 2011; 18:281-9. [PMID: 21952680 DOI: 10.1159/000329496] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The decline in immune function with aging represents a major clinical challenge in many disease conditions. It is manifest in many parameters but is essentially linked to the adaptive immune responses. The prediction would be that abnormalities in both T and B lymphocytes underlie the loss of cellular and humoral capacity, respectively. Somewhat surprisingly, this is not reflected in numerical losses but more in alterations at the population and single cell levels. There is a major reduction in naïve T cells with a proportional increase in memory cells, and also a generally reduced function of these cells. While bone marrow function reduces with age, the most obvious reason for the T cell defects is the severe atrophy of the thymus. This is closely aligned with puberty, thereby implicating a major aetiological role for sex steroids in both thymus and immune system deterioration with age. Accordingly surgical or chemical castration (utilizing luteinizing hormone-releasing hormone) blocks sex steroids resulting in profound rejuvenation of the immune system.
Collapse
Affiliation(s)
- Adrienne E Calder
- Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Vic., Australia
| | | | | | | | | |
Collapse
|
19
|
Chen Y, Qiao S, Tuckermann J, Okret S, Jondal M. Thymus‐derived glucocorticoids mediate androgen effects on thymocyte homeostasis. FASEB J 2010. [DOI: 10.1096/fj.10.168724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yongwen Chen
- Department of Biosciences and NutritionKarolinska Institutet Stockholm Sweden
- Department of Microbiology Tumor, and Cell BiologyKarolinska Institutet Stockholm Sweden
| | - Shengjun Qiao
- Department of Biosciences and NutritionKarolinska Institutet Stockholm Sweden
- Department of Microbiology Tumor, and Cell BiologyKarolinska Institutet Stockholm Sweden
| | - Jan Tuckermann
- Department of Biosciences and NutritionKarolinska Institutet Stockholm Sweden
- Leibnitz Institute for Age Research‐Fritz Lipmann Institute (FLI) Jena Germany
| | - Sam Okret
- Department of Biosciences and NutritionKarolinska Institutet Stockholm Sweden
| | - Mikael Jondal
- Department of Microbiology Tumor, and Cell BiologyKarolinska Institutet Stockholm Sweden
| |
Collapse
|
20
|
Chen Y, Qiao S, Tuckermann J, Okret S, Jondal M. Thymus-derived glucocorticoids mediate androgen effects on thymocyte homeostasis. FASEB J 2010; 24:5043-51. [PMID: 20798244 DOI: 10.1096/fj.10-168724] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Androgens contribute to the involution process of the aging thymus gland. However, molecular mechanisms behind this effect remain largely unknown. We have investigated the influence of testosterone on the ectopic synthesis of glucocorticoids (GCs) in thymocytes, an activity recently shown by us to be important for the homeostatic regulation of these cells. Castration, which leads to a strong increase in thymus tissue and function, was associated with a reduced GC release from thymocytes caused by down-regulated expression of several enzymes involved in GC synthesis, without affecting GC synthesis in the adrenals. Testosterone treatment of castrated male mice reversed these effects, also without affecting adrenal GC synthesis. The effects of testosterone in castrated mice on thymocyte homeostasis and GC release were strongly reduced in mice pretreated with the CYP11B1 enzyme inhibitor metyrapone, acting on the last step in the corticosterone synthesis. The androgen-induced thymic involution was dependent on GC action, because this was completely absent in mice lacking GC receptor (GR) expression specifically in thymocytes. We provide here an unrecognized mechanism how androgens contribute to thymic involution by stimulating local synthesis and release of GCs in the thymus.
Collapse
Affiliation(s)
- Yongwen Chen
- Department of Bioscience and Nutrition, Karolinska Institutet, SE-141 83 Huddinge, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|