1
|
Zhang Y, Li J, Guan X, Wang S, Jiang N, Jiao S, Liu Y, Zhang W, Hu H, Wang G, Liu H, Wang X, Bai W, Zhou H, Jin S. Impact of lymph node metastasis on prognosis in colorectal cancer patients with liver metastasis and staging systems Refinement: An international multicenter retrospective cohort study. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2025; 51:110124. [PMID: 40393144 DOI: 10.1016/j.ejso.2025.110124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/10/2025] [Accepted: 05/04/2025] [Indexed: 05/22/2025]
Abstract
BACKGROUND The current AJCC staging for colorectal cancer liver metastasis (CRLM) classifies stages IVA, IVB, and IVC based on organ metastasis, disregarding lymph node metastasis (LNM). We evaluated the prognostic impact of LNM in CRLM and proposed incorporating LNM into staging criteria. METHODS Data were extracted from the SEER database (2010-2017) and a Chinese cohort (2009-2018), including 11,266 CRLM patients (9648 SEER; 1618 Chinese cohort). Kaplan-Meier and Cox regression analyses assessed cancer-specific survival (CSS) between LNM and non-LNM groups. Inverse probability treatment weighting (IPTW) was used for primary analysis, with subgroup analyses exploring LNM's prognostic impact. RESULTS In both the SEER and Chinese cohorts, patients with LNM were significantly associated with worse CSS than patients without LNM before and after IPTW/sIPTW (all p < 0.001). Furthermore, LNM in the M1a subgroup still led to poorer prognosis (all log-rank p < 0.001). In contrast, in the M1b subgroup, the prognostic difference between those with and without LNM was not significant (log-rank p = 0.031 and 0.037, respectively, in the SEER and Chinese cohorts) because the PFDR was set at 0.025. Additionally, in both cohorts, the 5-year CSS rates of M1a stage CRLM patients decreased with advancing N staging, regardless of the resectability of liver metastasis (all log-rank P < 0.001). CONCLUSION LNM has significant association with worse survival outcomes in CRLM patients, although this prognostic impact exhibits progressive attenuation with increasing liver metastatic burden. For patients with M1a stage CRLM, we suggest that incorporating N staging into their prognostic evaluation can further refine the AJCC TNM staging system.
Collapse
Affiliation(s)
- Yueyang Zhang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiale Li
- Department of Colorectal Surgery, Shanxi Province Cancer Hospital/Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Xu Guan
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Colorectal Surgery, Shanxi Province Cancer Hospital/Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Siyuan Wang
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, Key Laboratory of Digital Intelligence Hepatology, Ministry of Education, School of Clinical Medicine, Tsinghua University, Beijing, China; Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing, China
| | - Nan Jiang
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, Key Laboratory of Digital Intelligence Hepatology, Ministry of Education, School of Clinical Medicine, Tsinghua University, Beijing, China; Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing, China
| | - Shuai Jiao
- Department of Colorectal Surgery, Shanxi Province Cancer Hospital/Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Yunxiao Liu
- Department of Colorectal Cancer Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Weiyuan Zhang
- Department of Colorectal Cancer Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hanqing Hu
- Department of Colorectal Cancer Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guiyu Wang
- Department of Colorectal Cancer Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haiyi Liu
- Department of Colorectal Surgery, Shanxi Province Cancer Hospital/Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Xishan Wang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Colorectal Surgery, Shanxi Province Cancer Hospital/Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Wenqi Bai
- Department of Colorectal Surgery, Shanxi Province Cancer Hospital/Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China.
| | - Haitao Zhou
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Shuo Jin
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, Key Laboratory of Digital Intelligence Hepatology, Ministry of Education, School of Clinical Medicine, Tsinghua University, Beijing, China; Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
2
|
Jäger J, Thon M, Schimek K, Marx U, Gibbs S, Koning JJ. Differential biomarker expression of blood and lymphatic vasculature in multi-organ-chips. Sci Rep 2025; 15:14492. [PMID: 40281034 PMCID: PMC12032159 DOI: 10.1038/s41598-025-96367-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 03/27/2025] [Indexed: 04/29/2025] Open
Abstract
Since the blood and lymphatic endothelium regulates homeostasis and inflammation during health and disease, establishment of vascularized Organ-on-Chip platforms with blood and lymphatic endothelial cells (BEC/LEC) is a pre-requisite to further advance the field of tissue engineering. Here, we aimed to determine whether characteristics of BECs and LECs cultured under flow in a multi-organ-chip (MOC) are influenced by shear stress or inflammation. Dermis-derived primary BECs and LECs were used to endothelialize a MOC followed by culture for up to 14 days at lymphatic and blood flow rates. Under blood flow, both cell types changed morphology, aligned in flow direction, and showed close cell-cell contacts as in in vivo blood vasculature. Under lymphatic flow, neither BEC nor LEC aligned, and both showed a cobblestone-appearance with limited intercellular contacts similar to lymphatics. Cells retained their cell type-specific phenotype and cytokine secretion profiles. CCL21 expression in LECs was rescued by flow, but diminished again with TNFα exposure, together with the LEC-specific markers PROX1 and TFF3. Homeostatic cytokine secretion was higher in BECs, but the response to TNFα was more pronounced in LECs. Results indicate that BEC and LEC phenotype and cytokine secretion is mostly an intrinsic property with only morphology and CCL21 being influenced by flow.
Collapse
Affiliation(s)
- Jonas Jäger
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, 1081HV, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Inflammatory Diseases, Amsterdam, The Netherlands
| | - Maria Thon
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, 1081HV, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Inflammatory Diseases, Amsterdam, The Netherlands
| | | | | | - Susan Gibbs
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, 1081HV, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Inflammatory Diseases, Amsterdam, The Netherlands
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands
| | - Jasper J Koning
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, 1081HV, The Netherlands.
- Amsterdam Institute for Immunology and Infectious Diseases, Inflammatory Diseases, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Piao W, Lee ZL, Zapas G, Wu L, Jewell CM, Abdi R, Bromberg JS. Regulatory T cell and endothelial cell crosstalk. Nat Rev Immunol 2025:10.1038/s41577-025-01149-2. [PMID: 40169744 DOI: 10.1038/s41577-025-01149-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2025] [Indexed: 04/03/2025]
Abstract
Regulatory T (Treg) cells have a central role in the maintenance of immune surveillance and tolerance. They can migrate from lymphoid organs to blood and then into tissues and egress from tissues into draining lymph nodes. Specialized endothelial cells of blood and lymphatic vessels are the key gatekeepers for these processes. Treg cells that transmigrate across single-cell layers of endothelial cells engage in bidirectional crosstalk with these cells and regulate vascular permeability by promoting structural modifications of blood and lymphatic endothelial cells. In turn, blood and lymphatic endothelial cells can modulate Treg cell recirculation and residency. Here, we discuss recent insights into the cellular and molecular mechanisms of the crosstalk between Treg cells and endothelial cells and explore potential therapeutic strategies to target these interactions in autoimmunity, transplantation and cancer.
Collapse
Affiliation(s)
- Wenji Piao
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zachariah L Lee
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Gregory Zapas
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Long Wu
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Christopher M Jewell
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD, USA
| | - Reza Abdi
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jonathan S Bromberg
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA.
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
4
|
Zhang Y, Wu D, Zhang Z, Ma J, Jiao S, Ma X, Li J, Meng Y, Zhao Z, Chen H, Jiang Z, Wang G, Liu H, Xi Y, Zhou H, Wang X, Guan X. Impact of lymph node metastasis on immune microenvironment and prognosis in colorectal cancer liver metastasis: insights from multiomics profiling. Br J Cancer 2025; 132:513-524. [PMID: 39753715 PMCID: PMC11920064 DOI: 10.1038/s41416-024-02921-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/15/2024] [Accepted: 11/26/2024] [Indexed: 02/19/2025] Open
Abstract
BACKGROUND This study aimed to investigate the prognostic impact of lymph node metastasis (LNM) on patients with colorectal cancer liver metastasis (CRLM) and elucidate the underlying immune mechanisms using multiomics profiling. METHODS We enrolled patients with CRLM from the US Surveillance, Epidemiology, and End Results (SEER) cohort and a multicenter Chinese cohort, integrating bulk RNA sequencing, single-cell RNA sequencing and proteomics data. The cancer-specific survival (CSS) and immune profiles of the tumor-draining lymph nodes (TDLNs), primary tumors and liver metastasis were compared between patients with and without LNM. Pathological evaluations were used to assess immune cell infiltration and histological features. RESULTS The CRLM patients with LNM had significantly shorter CSS than patients without LNM in two large cohorts. Our results showed that nonmetastatic TDLNs exhibited a greater abundance of immune cells, including CD4+ T cells, CD8+ T cells, and CD19+ B cells, whereas metastatic TDLNs were enriched with fibroblasts, endothelial cells, and macrophages. Immunohistochemical analysis confirmed elevated levels of CD3+ T cells, CD8+ T cells, and CD19+ B cells in nonmetastatic TDLNs. The presence of nonmetastatic TDLNs was associated with enhanced antitumor immune responses in primary tumors, characterized by a higher Klintrup-Makinen (KM) grade and the presence of tertiary lymphoid structures. Furthermore, liver metastasis in patients with nonmetastatic TDLNs were predominantly of the desmoplastic growth pattern (dHGP), while those with metastatic TDLNs were predominantly of the replacement growth pattern (rHGP). CONCLUSIONS This research highlights the adverse prognostic impact of LNM on patients with CRLM and reveals potential related mechanisms through multiomics analysis. Our research paves the way for further refinement of the AJCC TNM staging system for CRLM in clinical practice.
Collapse
Affiliation(s)
- Yueyang Zhang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Deng Wu
- College of Biomedical Information and Engineering, Hainan Medical University, Haikou, China
| | - Zhen Zhang
- Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Jian Ma
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuai Jiao
- Department of Colorectal Surgery, Shanxi Province Cancer Hospital/Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Xiaolong Ma
- Department of Colorectal Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jiangtao Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongsheng Meng
- Department of Tumor Biobank, Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/ Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Zhixun Zhao
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haipeng Chen
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zheng Jiang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guiyu Wang
- Department of Colorectal Cancer Surgery, the Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, China
| | - Haiyi Liu
- Department of Colorectal Surgery, Shanxi Province Cancer Hospital/Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Yanfeng Xi
- Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China.
| | - Haitao Zhou
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Xishan Wang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Department of Colorectal Surgery, Shanxi Province Cancer Hospital/Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China.
| | - Xu Guan
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Department of Colorectal Surgery, Shanxi Province Cancer Hospital/Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
5
|
Zhao Y, Tian M, Tong X, Yang X, Gan L, Yong T. Emerging strategies in lymph node-targeted nano-delivery systems for tumor immunotherapy. Essays Biochem 2025; 69:EBC20253008. [PMID: 40159756 DOI: 10.1042/ebc20253008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/26/2025] [Indexed: 04/02/2025]
Abstract
The emergence of immunotherapy has led to the clinical approval of several related drugs. However, their efficacy against solid tumors remains limited. As the hub of immune activation, lymph nodes (LNs) play a critical role in tumor immunotherapy by initiating and amplifying immune responses. Nevertheless, the intricate physiological structure and barriers within LNs, combined with the immunosuppressive microenvironment induced by tumor cells, significantly impede the therapeutic efficacy of immunotherapy. Engineered nanoparticles (NPs) have shown great potential in overcoming these challenges by facilitating targeted drug transport to LNs and directly or indirectly activating T cells. This review systematically examines the structural features of LNs, key factors influencing the targeting efficiency of NPs, and current strategies for remodeling the immunosuppressive microenvironment of LNs. Additionally, it discusses future opportunities for optimizing NPs to enhance tumor immunotherapy, addressing challenges in clinical translation and safety evaluation.
Collapse
Affiliation(s)
- Yaoli Zhao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Muzi Tian
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xin Tong
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lu Gan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tuying Yong
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
6
|
Meloun A, León B. Beyond CCR7: dendritic cell migration in type 2 inflammation. Front Immunol 2025; 16:1558228. [PMID: 40093008 PMCID: PMC11906670 DOI: 10.3389/fimmu.2025.1558228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/13/2025] [Indexed: 03/19/2025] Open
Abstract
Conventional dendritic cells (cDCs) are crucial antigen-presenting cells that initiate and regulate T cell responses, thereby shaping immunity against pathogens, innocuous antigens, tumors, and self-antigens. The migration of cDCs from peripheral tissues to draining lymph nodes (dLNs) is essential for their function in immune surveillance. This migration allows cDCs to convey the conditions of peripheral tissues to antigen-specific T cells in the dLNs, facilitating effective immune responses. Migration is primarily mediated by chemokine receptor CCR7, which is upregulated in response to homeostatic and inflammatory cues, guiding cDCs to dLNs. However, during type 2 immune responses, such as those triggered by parasites or allergens, a paradox arises-cDCs exhibit robust migration to dLNs despite low CCR7 expression. This review discusses how type 2 inflammation relies on additional signaling pathways, including those induced by membrane-derived bioactive lipid mediators like eicosanoids, sphingolipids, and oxysterols, which cooperate with CCR7 to enhance cDC migration and T helper 2 (Th2) differentiation. We explore the potential regulatory mechanisms of cDC migration in type 2 immunity, offering insights into the differential control of cDC trafficking in diverse immune contexts and its impact on immune responses.
Collapse
Affiliation(s)
- Audrey Meloun
- Innate Cells and Th2 Immunity Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Beatriz León
- Innate Cells and Th2 Immunity Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
7
|
Maz MP, Reddy AL, Berthier CC, Tsoi LC, Colesa DJ, Wolf SJ, Shi H, Loftus SN, Moallemian R, Bogle R, Kretzler M, Jacob CO, Gudjonsson JE, Kahlenberg JM. Lupus-prone NZM2328 mice exhibit enhanced UV-induced myeloid cell recruitment and activation in a type I interferon dependent manner. J Autoimmun 2024; 149:103296. [PMID: 39241536 DOI: 10.1016/j.jaut.2024.103296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/10/2024] [Accepted: 07/22/2024] [Indexed: 09/09/2024]
Abstract
Though the exact causes of systemic lupus erythematosus (SLE) remain unknown, exposure to ultraviolet (UV) light is one of the few well-known triggers of cutaneous inflammation in SLE. However, the precise cell types which contribute to the early cutaneous inflammatory response in lupus, and the ways that UV dosing and interferons modulate these findings, have not been thoroughly dissected. Here, we explore these questions using the NZM2328 spontaneous murine model of lupus. In addition, we use iNZM mice, which share the NZM2328 background but harbor a whole-body knockout of the type I interferon (IFN) receptor, and wild-type BALB/c mice. 10-13-week-old female mice of each strain were treated with acute (300 mJ/cm2 x1), chronic (100 mJ/cm2 daily x5 days), or no UVB, and skin was harvested and processed for bulk RNA sequencing and flow cytometry. We identify that inflammatory pathways and gene signatures related to myeloid cells - namely neutrophils and monocyte-derived dendritic cells - are a shared feature of the acute and chronic UVB response in NZM skin greater than iNZM and wild-type skin. We also verify recruitment and activation of these cells by flow cytometry in both acutely and chronically irradiated NZM and WT mice and demonstrate that these processes are dependent on type I IFN signaling. Taken together, these data indicate a skewed IFN-driven inflammatory response to both acute and chronic UVB exposure in lupus-prone skin dominated by myeloid cells, suggesting both the importance of type I IFNs and myeloid cells as therapeutic targets for photosensitive patients and highlighting the risks of even moderate UV exposure in this patient population.
Collapse
Affiliation(s)
- Mitra P Maz
- Div. of Rheumatology, Dept. of Internal Medicine, University of Michigan, Ann Arbor, MI, USA; Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA; Immunology Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Alayka L Reddy
- Div. of Rheumatology, Dept. of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Celine C Berthier
- Div. of Nephrology, Dept. of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Deborah J Colesa
- Div. of Rheumatology, Dept. of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Sonya J Wolf
- Div. of Rheumatology, Dept. of Internal Medicine, University of Michigan, Ann Arbor, MI, USA; Immunology Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Hong Shi
- Div. of Rheumatology, Dept. of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Shannon N Loftus
- Div. of Rheumatology, Dept. of Internal Medicine, University of Michigan, Ann Arbor, MI, USA; Immunology Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Rezvan Moallemian
- Div. of Rheumatology, Dept. of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Rachael Bogle
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Matthias Kretzler
- Div. of Nephrology, Dept. of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Chaim O Jacob
- University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Johann E Gudjonsson
- Div. of Rheumatology, Dept. of Internal Medicine, University of Michigan, Ann Arbor, MI, USA; Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - J Michelle Kahlenberg
- Div. of Rheumatology, Dept. of Internal Medicine, University of Michigan, Ann Arbor, MI, USA; Department of Dermatology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
García-Silva S, Peinado H. Mechanisms of lymph node metastasis: An extracellular vesicle perspective. Eur J Cell Biol 2024; 103:151447. [PMID: 39116620 DOI: 10.1016/j.ejcb.2024.151447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/12/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
In several solid tumors such as breast cancer, prostate cancer, colorectal cancer or melanoma, tumor draining lymph nodes are the earliest tissues where colonization by tumor cells is detected. Lymph nodes act as sentinels of metastatic dissemination, the deadliest phase of tumor progression. Besides hematogenous dissemination, lymphatic spread of tumor cells has been demonstrated, adding more complexity to the mechanisms involved in metastasis. A network of blood and lymphatic vessels surrounds tumors providing routes for tumor soluble factors to mediate regional and long-distance effects. Additionally, extracellular vesicles (EVs), particularly small EVs/exosomes, have been shown to circulate through the blood and lymph, favoring the formation of pre-metastatic niches in the tumor-draining lymph nodes (TDLNs) and distant organs. In this review, we present an overview of the relevance of lymph node metastasis, the structural and immune changes occurring in TDLNs during tumor progression, and how extracellular vesicles contribute to modulating some of these alterations while promoting the formation of lymph node pre-metastatic niches.
Collapse
Affiliation(s)
- Susana García-Silva
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain.
| | - Héctor Peinado
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| |
Collapse
|
9
|
Wang Y, Ma L, Chen Y, Yun W, Yu J, Meng X. Prognostic effect of TCF1+ CD8+ T cell and TOX+ CD8+ T cell infiltration in lung adenocarcinoma. Cancer Sci 2024; 115:2184-2195. [PMID: 38590234 PMCID: PMC11247562 DOI: 10.1111/cas.16177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/10/2024] Open
Abstract
Recent studies have highlighted the pivotal roles of T cell transcription factors TCF-1 and TOX in modulating the immune response in cancer, with TCF-1 maintaining CD8+ T cell stemness and TOX promoting T cell exhaustion. The prognostic significance of these factors in lung adenocarcinoma (LUAD) remains a critical area of investigation. The retrospective study included 191 patients with LUAD who underwent surgery, of whom 83% were in stages II and III. These patients were divided into exploratory (n = 135) and validation (n = 56) groups based on the time of diagnosis. Multiplex fluorescence immunohistochemistry was used to examine the infiltration levels of CD8+ T cells, TCF1+ CD8+ T cells, and TOX+ CD8+ T cells. The percentage of CD8+ T cells in tumor was markedly lower than that in stroma (p < 0.05). In tumor-draining lymph nodes (TDLNs) invaded by tumor, the proportion of stem-like TCF1+ CD8+ T cells was significantly decreased (p < 0.01). Importantly, higher infiltration levels of CD8+ T cells and TCF1+ CD8+ T cells were associated with improved disease-free survival (DFS) (p = 0.009 and p = 0.006, respectively) and overall survival (OS) (p = 0.018 and p = 0.010, respectively). This study underscores the potential of TCF1+ CD8+ T cells as prognostic biomarkers in LUAD, providing insights into the tumor immune microenvironment and guiding future therapeutic strategies.
Collapse
Affiliation(s)
- Yao Wang
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
- Research Unit of Radiation OncologyChinese Academy of Medical SciencesJinanChina
| | - Lin Ma
- Research Unit of Radiation OncologyChinese Academy of Medical SciencesJinanChina
- Department of OncologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Yu Chen
- Research Unit of Radiation OncologyChinese Academy of Medical SciencesJinanChina
- Cheeloo College of MedicineShandong UniversityJinanChina
| | - Wenhua Yun
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
- Research Unit of Radiation OncologyChinese Academy of Medical SciencesJinanChina
| | - Jinming Yu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
- Research Unit of Radiation OncologyChinese Academy of Medical SciencesJinanChina
| | - Xiangjiao Meng
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
- Research Unit of Radiation OncologyChinese Academy of Medical SciencesJinanChina
| |
Collapse
|
10
|
Guan X, Cheng P, Wei R, Li J, Jiao S, Zhao Z, Chen H, Liu Z, Jiang Z, Zheng Z, Zou S, Wang X. Enlarged tumour-draining lymph node with immune-activated profile predict favourable survival in non-metastatic colorectal cancer. Br J Cancer 2024; 130:31-42. [PMID: 37957322 PMCID: PMC10781685 DOI: 10.1038/s41416-023-02473-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/07/2023] [Accepted: 10/17/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND The tumour-draining lymph node (TDLN) plays a pivotal role in the suppression of malignant tumour, however, the immunological profile and prognostic differences between large TDLN (L-TDLN) and small TDLN (S-TDLN) in colorectal cancer (CRC) remain unclear. METHODS We conducted a study using data from the Chinese National Cancer Center (CNCC) database, identifying 837 CRC patients with non-metastatic TDLN, and categorised them into L-TDLN and S-TDLN groups. The long-term survival outcomes and adjuvant therapy efficacy were compared between the two groups. Furthermore, we evaluated the differences in immune activation status and immune cell subsets between patients in L-TDLN and S-TDLN groups by RNA sequencing and immunohistochemical (IHC) staining. RESULTS Patients with L-TDLN demonstrated better long-term outcomes compared to those with S-TDLN. Among patients with L-TDLN, there was no significant difference in long-term outcomes between those who received adjuvant chemotherapy and those who did not. The RNA sequencing data revealed a wealth of immune-activating pathways explored in L-TDLN. Furthermore, IHC analysis demonstrated higher numbers of CD3+ and CD8 + T cells in L-TDLN and the corresponding CRC lesions, as compared to patients with S-TDLN. CONCLUSION Enlarged TDLN exhibited an activated anti-tumour immune profile and may serve as an indicator for favourable survival in non-metastatic CRC.
Collapse
Affiliation(s)
- Xu Guan
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Colorectal Surgery, Shanxi Province Cancer Hospital/Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Pu Cheng
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ran Wei
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jiangtao Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuai Jiao
- Department of Colorectal Surgery, Shanxi Province Cancer Hospital/Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Zhixun Zhao
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haipeng Chen
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zheng Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zheng Jiang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Zhaoxu Zheng
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Shuangmei Zou
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Xishan Wang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Department of Colorectal Surgery, Shanxi Province Cancer Hospital/Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
11
|
Jarvi NL, Balu-Iyer SV. A mechanistic marker-based screening tool to predict clinical immunogenicity of biologics. COMMUNICATIONS MEDICINE 2023; 3:174. [PMID: 38066254 PMCID: PMC10709359 DOI: 10.1038/s43856-023-00413-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 11/21/2023] [Indexed: 01/01/2024] Open
Abstract
BACKGROUND The efficacy and safety of therapeutic proteins are undermined by immunogenicity driven by anti-drug antibodies. Immunogenicity risk assessment is critically necessary during drug development, but current methods lack predictive power and mechanistic insight into antigen uptake and processing leading to immune response. A key mechanistic step in T-cell-dependent immune responses is the migration of mature dendritic cells to T-cell areas of lymphoid compartments, and this phenomenon is most pronounced in the immune response toward subcutaneously delivered proteins. METHODS The migratory potential of monocyte-derived dendritic cells is proposed to be a mechanistic marker for immunogenicity screening. Following exposure to therapeutic protein in vitro, dendritic cells are analyzed for changes in activation markers (CD40 and IL-12) in combination with levels of the chemokine receptor CXCR4 to represent migratory potential. Then a transwell assay captures the intensity of dendritic cell migration in the presence of a gradient of therapeutic protein and chemokine ligands. RESULTS Here, we show that an increased ability of the therapeutic protein to induce dendritic cell migration along a gradient of chemokine CCL21 and CXCL12 predicts higher immunogenic potential. Expression of the chemokine receptor CXCR4 on human monocyte-derived dendritic cells, in combination with activation markers CD40 and IL-12, strongly correlates with clinical anti-drug antibody incidence. CONCLUSIONS Mechanistic understanding of processes driving immunogenicity led to the development of a predictive tool for immunogenicity risk assessment of therapeutic proteins. These predictive markers could be adapted for immunogenicity screening of other biological modalities.
Collapse
Affiliation(s)
- Nicole L Jarvi
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, 14214, USA
| | - Sathy V Balu-Iyer
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, 14214, USA.
| |
Collapse
|
12
|
Fink C, Gevaert JJ, Barrett JW, Dikeakos JD, Foster PJ, Dekaban GA. In vivo tracking of adenoviral-transduced iron oxide-labeled bone marrow-derived dendritic cells using magnetic particle imaging. Eur Radiol Exp 2023; 7:42. [PMID: 37580614 PMCID: PMC10425309 DOI: 10.1186/s41747-023-00359-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/30/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND Despite widespread study of dendritic cell (DC)-based cancer immunotherapies, the in vivo postinjection fate of DC remains largely unknown. Due in part to a lack of quantifiable imaging modalities, this is troubling as the amount of DC migration to secondary lymphoid organs correlates with therapeutic efficacy. Magnetic particle imaging (MPI) has emerged as a suitable modality to quantify in vivo migration of superparamagnetic iron oxide (SPIO)-labeled DC. Herein, we describe a popliteal lymph node (pLN)-focused MPI scan to quantify DC in vivo migration accurately and consistently. METHODS Adenovirus (Ad)-transduced SPIO+ (Ad SPIO+) and SPIO+ C57BL/6 bone marrow-derived DC were generated and assessed for viability and phenotype, then fluorescently labeled and injected into mouse hind footpads (n = 6). Two days later, in vivo DC migration was quantified using whole animal, pLN-focused, and ex vivo pLN MPI scans. RESULTS No significant differences in viability, phenotype and in vivo pLN migration were noted for Ad SPIO+ and SPIO+ DC. Day 2 pLN-focused MPI quantified DC migration in all instances while whole animal MPI only quantified pLN migration in 75% of cases. Ex vivo MPI and fluorescence microscopy confirmed that pLN MPI signal was due to originally injected Ad SPIO+ and SPIO+ DC. CONCLUSION We overcame a reported limitation of MPI by using a pLN-focused MPI scan to quantify pLN-migrated Ad SPIO+ and SPIO+ DC in 100% of cases and detected as few as 1000 DC (4.4 ng Fe) in vivo. MPI is a suitable preclinical imaging modality to assess DC-based cancer immunotherapeutic efficacy. RELEVANCE STATEMENT Tracking the in vivo fate of DC using noninvasive quantifiable magnetic particle imaging can potentially serve as a surrogate marker of therapeutic effectiveness. KEY POINTS • Adenoviral-transduced and iron oxide-labeled dendritic cells are in vivo migration competent. • Magnetic particle imaging is a suitable modality to quantify in vivo dendritic cell migration. • Magnetic particle imaging focused field of view overcomes dynamic range limitation.
Collapse
Affiliation(s)
- Corby Fink
- Biotherapeutics Research Laboratory, Robarts Research Institute, London, ON, Canada
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| | - Julia J Gevaert
- Cellular and Molecular Imaging Group, Robarts Research Institute, London, ON, Canada
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
| | - John W Barrett
- Department of Otolaryngology-Head and Neck Surgery, University of Western Ontario, London, ON, Canada
| | - Jimmy D Dikeakos
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| | - Paula J Foster
- Cellular and Molecular Imaging Group, Robarts Research Institute, London, ON, Canada
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
| | - Gregory A Dekaban
- Biotherapeutics Research Laboratory, Robarts Research Institute, London, ON, Canada.
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
13
|
Jin Z, Xiang R, Qing K, Li D, Liu Z, Li X, Zhu H, Zhang Y, Wang L, Xue K, Liu H, Xu Z, Wang Y, Li J. Lenalidomide overcomes the resistance to third-generation CD19-CAR-T cell therapy in preclinical models of diffuse large B-cell lymphoma. Cell Oncol (Dordr) 2023; 46:1143-1157. [PMID: 37219767 DOI: 10.1007/s13402-023-00833-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2023] [Indexed: 05/24/2023] Open
Abstract
PURPOSE Chimeric antigen receptor (CAR)-T cells against CD19 have been proven to be effective in treating B-cell hematological malignancies. However, the efficacy of this promising therapy is limited by many factors. METHODS In this study, the germinal center B-cell-like diffuse large B-cell lymphoma (GCB-DLBCL) cell line OCI-Ly1, and patient-derived xenografted (PDX) mice (CY-DLBCL) were used as the CAR-T cell-resistant model. Meanwhile, the activated B-cell-like (ABC) DLBCL cell line OCI-Ly3 and PDX mice (ZML-DLBCL) were defined as the CAR-T sensitive model. The enhancement of CAR-T cell function by lenalidomide (LEN) was examined in vitro and in vivo. RESULTS Lenalidomide effectively enhanced the function of third-generation CD19-CAR-T cells by polarizing CD8+ CAR-T cells to CD8 early-differentiated stage and Th1 type, reducing CAR-T cell exhaustion and improving cell expansion. It was further demonstrated that CAR-T cells combined with LEN substantially reduce the tumor burden and prolong the survival time in various DLBCL mouse models. LEN was also found to promote the infiltration of CD19-CAR-T cells into the tumor site by modulating the tumor microenvironment. CONCLUSION In summary, the results of the present study suggest that LEN can improve the function of CD19-CAR-T cells, providing a basis for clinical trials using this combination therapy against DLBCL.
Collapse
Affiliation(s)
- Zhen Jin
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Rufang Xiang
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of General Practice, Ruijin Hospital affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Qing
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dan Li
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhao Liu
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyang Li
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hongming Zhu
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yunxiang Zhang
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lining Wang
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Xue
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Han Liu
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zizhen Xu
- Faculty of Medical Laboratory Science, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yingxiao Wang
- Department of Bioengineering & Institute of Engineering in Medicine, University of California San Diego, La Jolla, CA, USA
| | - Junmin Li
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
14
|
He A, Li X, Dai Z, Li Q, Zhang Y, Ding M, Wen ZF, Mou Y, Dong H. Nanovaccine-based strategies for lymph node targeted delivery and imaging in tumor immunotherapy. J Nanobiotechnology 2023; 21:236. [PMID: 37482608 PMCID: PMC10364424 DOI: 10.1186/s12951-023-01989-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/08/2023] [Indexed: 07/25/2023] Open
Abstract
Therapeutic tumor vaccines have attracted considerable attention in the past decade; they can induce tumor regression, eradicate minimal residual disease, establish lasting immune memory and avoid non-specific and adverse side effects. However, the challenge in the field of therapeutic tumor vaccines is ensuring the delivery of immune components to the lymph nodes (LNs) to activate immune cells. The clinical response rate of traditional therapeutic tumor vaccines falls short of expectations due to inadequate lymph node delivery. With the rapid development of nanotechnology, a large number of nanoplatform-based LN-targeting nanovaccines have been exploited for optimizing tumor immunotherapies. In addition, some nanovaccines possess non-invasive visualization performance, which is benefit for understanding the kinetics of nanovaccine exposure in LNs. Herein, we present the parameters of nanoplatforms, such as size, surface modification, shape, and deformability, which affect the LN-targeting functions of nanovaccines. The recent advances in nanoplatforms with different components promoting LN-targeting are also summarized. Furthermore, emerging LNs-targeting nanoplatform-mediated imaging strategies to both improve targeting performance and enhance the quality of LN imaging are discussed. Finally, we summarize the prospects and challenges of nanoplatform-based LN-targeting and /or imaging strategies, which optimize the clinical efficacy of nanovaccines in tumor immunotherapies.
Collapse
Affiliation(s)
- Ao He
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Xiaoye Li
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Zhuo Dai
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Qiang Li
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Yu Zhang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Meng Ding
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Zhi-Fa Wen
- Department of Clinical Laboratory, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China.
| | - Yongbin Mou
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China.
| | - Heng Dong
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China.
| |
Collapse
|
15
|
Daniel L, Counoupas C, Bhattacharyya ND, Triccas JA, Britton WJ, Feng CG. L-selectin-dependent and -independent homing of naïve lymphocytes through the lung draining lymph node support T cell response to pulmonary Mycobacterium tuberculosis infection. PLoS Pathog 2023; 19:e1011460. [PMID: 37405965 DOI: 10.1371/journal.ppat.1011460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 06/05/2023] [Indexed: 07/07/2023] Open
Abstract
Recruiting large numbers of naïve lymphocytes to lymph nodes is critical for mounting an effective adaptive immune response. While most naïve lymphocytes utilize homing molecule L-selectin to enter lymph nodes, some circulating cells can traffic to the lung-draining mediastinal lymph node (mLN) through lymphatics via the intermediate organ, lung. However, whether this alternative trafficking mechanism operates in infection and contributes to T cell priming are unknown. We report that in pulmonary Mycobacterium tuberculosis-infected mice, homing of circulating lymphocytes to the mLN is significantly less efficient than to non-draining lymph node. CD62L blockade only partially reduced the homing of naïve T lymphocytes, consistent with L-selectin-independent routing of naïve lymphocytes to the site. We further demonstrated that lymphatic vessels in infected mLN expanded significantly and inhibiting lymphangiogenesis with a vascular endothelial growth factor receptor 3 kinase inhibitor reduced the recruitment of intravenously injected naïve lymphocytes to the mLN. Finally, mycobacterium-specific T cells entering via the L-selectin-independent route were readily activated in the mLN. Our study suggests that both L-selectin-dependent and -independent pathways contribute to naïve lymphocyte entry into mLN during M. tuberculosis infection and the latter pathway may represent an important mechanism for orchestrating host defence in the lungs.
Collapse
Affiliation(s)
- Lina Daniel
- Immunology and Host Defence Group, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Centenary Institute, The University of Sydney, Sydney, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
| | - Claudio Counoupas
- Centenary Institute, The University of Sydney, Sydney, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
- Microbial Pathogenesis and Immunity Group, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Nayan D Bhattacharyya
- Immunology and Host Defence Group, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Centenary Institute, The University of Sydney, Sydney, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
| | - James A Triccas
- Centenary Institute, The University of Sydney, Sydney, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
- Microbial Pathogenesis and Immunity Group, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- The University of Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, Australia
| | - Warwick J Britton
- Centenary Institute, The University of Sydney, Sydney, Australia
- The University of Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, Australia
- Department of Clinical Immunology, Royal Prince Alfred Hospital, Camperdown, Sydney, Australia
| | - Carl G Feng
- Immunology and Host Defence Group, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Centenary Institute, The University of Sydney, Sydney, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
- The University of Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, Australia
| |
Collapse
|
16
|
Baker ML, Cantley LG. The Lymphatic System in Kidney Disease. KIDNEY360 2023; 4:e841-e850. [PMID: 37019177 PMCID: PMC10371377 DOI: 10.34067/kid.0000000000000120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/07/2023] [Indexed: 04/07/2023]
Abstract
The high-capacity vessels of the lymphatic system drain extravasated fluid and macromolecules from nearly every part of the body. However, far from merely a passive conduit for fluid removal, the lymphatic system also plays a critical and active role in immune surveillance and immune response modulation through the presentation of fluid, macromolecules, and trafficking immune cells to surveillance cells in regional draining lymph nodes before their return to the systemic circulation. The potential effect of this system in numerous disease states both within and outside of the kidney is increasingly being explored for their therapeutic potential. In the kidneys, the lymphatics play a critical role in both fluid and macromolecule removal to maintain oncotic and hydrostatic pressure gradients for normal kidney function, as well as in shaping kidney immunity, and potentially in balancing physiological pathways that promote healthy organ maintenance and responses to injury. In many states of kidney disease, including AKI, the demand on the preexisting lymphatic network increases for clearance of injury-related tissue edema and inflammatory infiltrates. Lymphangiogenesis, stimulated by macrophages, injured resident cells, and other drivers in kidney tissue, is highly prevalent in settings of AKI, CKD, and transplantation. Accumulating evidence points toward lymphangiogenesis being possibly harmful in AKI and kidney allograft rejection, which would potentially position lymphatics as another target for novel therapies to improve outcomes. However, the extent to which lymphangiogenesis is protective rather than maladaptive in the kidney in various settings remains poorly understood and thus an area of active research.
Collapse
Affiliation(s)
- Megan L Baker
- Section of Nephrology, Yale School of Medicine, New Haven, Connecticut
| | | |
Collapse
|
17
|
Oba M, Nakanishi Y, Mitsuhashi T, Sasaki K, Hatanaka KC, Sasaki M, Nange A, Okumura A, Hayashi M, Yoshida Y, Nitta T, Ueno T, Yamada T, Ono M, Kuwabara S, Okamura K, Tsuchikawa T, Nakamura T, Noji T, Asano T, Tanaka K, Takayama K, Hatanaka Y, Hirano S. CCR7 Mediates Cell Invasion and Migration in Extrahepatic Cholangiocarcinoma by Inducing Epithelial-Mesenchymal Transition. Cancers (Basel) 2023; 15:cancers15061878. [PMID: 36980764 PMCID: PMC10047000 DOI: 10.3390/cancers15061878] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
The epithelial-mesenchymal transition (EMT) contributes to the metastatic cascade in various tumors. C-C chemokine receptor 7 (CCR7) interacts with its ligand, chemokine (C-C motif) ligand 19 (CCL19), to promote EMT. However, the association between EMT and CCR7 in extrahepatic cholangiocarcinoma (EHCC) remains unknown. This study aimed to elucidate the prognostic impact of CCR7 expression and its association with clinicopathological features and EMT in EHCC. The association between CCR7 expression and clinicopathological features and EMT status was examined via the immunohistochemical staining of tumor sections from 181 patients with perihilar cholangiocarcinoma. This association was then investigated in TFK-1 and EGI-1 EHCC cell lines. High-grade CCR7 expression was significantly associated with a large number of tumor buds, low E-cadherin expression, and poor overall survival. TFK-1 showed CCR7 expression, and Western blotting revealed E-cadherin downregulation and vimentin upregulation in response to CCL19 treatment. The wound healing and Transwell invasion assays revealed that the activation of CCR7 by CCL19 enhanced the migration and invasion of TFK-1 cells, which were abrogated by a CCR7 antagonist. These results suggest that a high CCR7 expression is associated with an adverse postoperative prognosis via EMT induction and that CCR7 may be a potential target for adjuvant therapy in EHCC.
Collapse
Affiliation(s)
- Mitsunobu Oba
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo 060-8638, Japan
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo 060-8648, Japan
| | - Yoshitsugu Nakanishi
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo 060-8638, Japan
| | - Tomoko Mitsuhashi
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo 060-8648, Japan
| | - Katsunori Sasaki
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo 060-8638, Japan
| | - Kanako C Hatanaka
- Research Division of Genome Companion Diagnostics, Hokkaido University Hospital, Sapporo 060-8648, Japan
- Center for Development of Advanced Diagnostics (C-DAD), Hokkaido University Hospital, Sapporo 060-8648, Japan
| | - Masako Sasaki
- NB Health Laboratory Co. Ltd., Sapporo 001-0021, Japan
| | - Ayae Nange
- Research Division of Genome Companion Diagnostics, Hokkaido University Hospital, Sapporo 060-8648, Japan
| | - Asami Okumura
- Research Division of Genome Companion Diagnostics, Hokkaido University Hospital, Sapporo 060-8648, Japan
| | - Mariko Hayashi
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo 060-8638, Japan
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo 060-8648, Japan
| | - Yusuke Yoshida
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo 060-8638, Japan
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo 060-8648, Japan
| | - Takeo Nitta
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo 060-8638, Japan
| | - Takashi Ueno
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo 060-8638, Japan
| | - Toru Yamada
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo 060-8638, Japan
| | - Masato Ono
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo 060-8638, Japan
| | - Shota Kuwabara
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo 060-8638, Japan
| | - Keisuke Okamura
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo 060-8638, Japan
| | - Takahiro Tsuchikawa
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo 060-8638, Japan
| | - Toru Nakamura
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo 060-8638, Japan
| | - Takehiro Noji
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo 060-8638, Japan
| | - Toshimichi Asano
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo 060-8638, Japan
| | - Kimitaka Tanaka
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo 060-8638, Japan
| | | | - Yutaka Hatanaka
- Research Division of Genome Companion Diagnostics, Hokkaido University Hospital, Sapporo 060-8648, Japan
- Center for Development of Advanced Diagnostics (C-DAD), Hokkaido University Hospital, Sapporo 060-8648, Japan
| | - Satoshi Hirano
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo 060-8638, Japan
| |
Collapse
|
18
|
Gevaert JJ, Fink C, Dikeakos JD, Dekaban GA, Foster PJ. Magnetic Particle Imaging Is a Sensitive In Vivo Imaging Modality for the Detection of Dendritic Cell Migration. Mol Imaging Biol 2022; 24:886-897. [PMID: 35648316 DOI: 10.1007/s11307-022-01738-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 12/29/2022]
Abstract
PURPOSE The purpose of this study was to evaluate magnetic particle imaging (MPI) as a method for the in vivo tracking of dendritic cells (DC). DC are used in cancer immunotherapy and must migrate from the site of implantation to lymph nodes to be effective. The magnitude of the ensuing T cell response is proportional to the number of lymph node-migrated DC. With current protocols, less than 10% of DC are expected to reach target nodes. Therefore, imaging techniques for studying DC migration must be sensitive and quantitative. Here, we describe the first study using MPI to detect and track DC injected into the footpads of C57BL/6 mice migrating to the popliteal lymph nodes (pLNs). PROCEDURES DC were labelled with Synomag-D™ and injected into each hind footpad of C57BL/6 mice (n = 6). In vivo MPI was conducted immediately and repeated 48 h later. The MPI signal was measured from images and related to the signal from a known number of cells to calculate iron content. DC numbers were estimated by dividing iron content in the image by the iron per cell measured from a separate cell sample. The presence of SPIO-labeled DC in nodes was validated by ex vivo MPI, histology, and fluorescence microscopy. RESULTS Day 2 imaging showed a decrease in MPI signal in the footpads and an increase in signal at the pLNs, indicating DC migration. MPI signal was detected in the left pLN in four of the six mice and two of the six mice showed MPI signal in the right pLN. Ex vivo imaging detected signal in 11/12 nodes. We report a sensitivity of approximately 4000 cells (0.015 µg Fe) in vivo and 2000 cells (0.007 µg Fe) ex vivo. CONCLUSIONS Here, we describe the first study to use MPI to detect and track DC in a migration model with immunotherapeutic applications. We also bring attention to the issue of resolving unequal signals within close proximity, a challenge for any pre-clinical study using a highly concentrated tracer bolus that shadows nearby lower signals.
Collapse
Affiliation(s)
- Julia J Gevaert
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada. .,Cellular and Molecular Imaging Group, Robarts Research Institute, London, ON, Canada.
| | - Corby Fink
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada.,Biotherapeutics Research Laboratory, Robarts Research Institute, London, ON, Canada
| | - Jimmy D Dikeakos
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| | - Gregory A Dekaban
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada.,Biotherapeutics Research Laboratory, Robarts Research Institute, London, ON, Canada
| | - Paula J Foster
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada.,Cellular and Molecular Imaging Group, Robarts Research Institute, London, ON, Canada
| |
Collapse
|
19
|
Delgado M, Lennon-Duménil AM. How cell migration helps immune sentinels. Front Cell Dev Biol 2022; 10:932472. [PMID: 36268510 PMCID: PMC9577558 DOI: 10.3389/fcell.2022.932472] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/13/2022] [Indexed: 12/01/2022] Open
Abstract
The immune system relies on the migratory capacity of its cellular components, which must be mobile in order to defend the host from invading micro-organisms or malignant cells. This applies in particular to immune sentinels from the myeloid lineage, i.e. macrophages and dendritic cells. Cell migration is already at work during mammalian early development, when myeloid cell precursors migrate from the yolk sac, an extra embryonic structure, to colonize tissues and form the pool of tissue-resident macrophages. Later, this is accompanied by a migration wave of precursors and monocytes from the bone marrow to secondary lymphoid organs and the peripheral tissues. They differentiate into DCs and monocyte-derived macrophages. During adult life, cell migration endows immune cells with the ability to patrol their environment as well as to circulate between peripheral tissues and lymphoid organs. Hence migration of immune cells is key to building an efficient defense system for an organism. In this review, we will describe how cell migratory capacity regulates the various stages in the life of myeloid cells from development to tissue patrolling, and migration to lymph nodes. We will focus on the role of the actin cytoskeletal machinery and its regulators, and how it contributes to the establishment and function of the immune system.
Collapse
|
20
|
Abstract
To ensure proper immune function, most leukocytes constantly move within tissues or between them using the blood and lymphatic vessels as transport routes. While afferent lymphatic vessels transfer leukocytes from peripheral tissues to draining lymph nodes (dLNs), efferent lymphatics return lymphocytes from LNs back into the blood vascular circulation. Over the last decades, great progress has been made in our understanding of leukocyte migration into and within the lymphatic compartment, leading to the approval of new drugs targeting this process. In this review, we first introduce the anatomy of the lymphatic vasculature and the main cell types migrating through lymphatics. We primarily focus on dendritic cells (DCs) and T cells, the most prominent lymph-borne cell types, and discuss the functional significance as well as the main molecules and steps involved in their migration. Additionally, we provide an overview of the different techniques used to study lymphatic trafficking.
Collapse
Affiliation(s)
- Aline Bauer
- Institute of Pharmaceutical Sciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Hazal Tatliadim
- Institute of Pharmaceutical Sciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zurich, CH-8093 Zurich, Switzerland
| |
Collapse
|
21
|
Clark DN, Begg LR, Filiano AJ. Unique aspects of IFN-γ/STAT1 signaling in neurons. Immunol Rev 2022; 311:187-204. [PMID: 35656941 PMCID: PMC10120860 DOI: 10.1111/imr.13092] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/01/2022] [Accepted: 05/12/2022] [Indexed: 01/05/2023]
Abstract
The IFN-γ/STAT1 immune signaling pathway impacts many homeostatic and pathological aspects of neurons, beyond its canonical role in controlling intracellular pathogens. Well known for its potent pro-inflammatory and anti-viral functions in the periphery, the IFN-γ/STAT1 pathway is rapidly activated then deactivated to prevent excessive inflammation; however, neurons utilize unique IFN-γ/STAT1 activation patterns, which may contribute to the non-canonical neuron-specific downstream effects. Though it is now well-established that the immune system interacts and supports the CNS in health and disease, many aspects regarding IFN-γ production in the CNS and how neurons respond to IFN-γ are unclear. Additionally, it is not well understood how the diversity of the IFN-γ/STAT1 pathway is regulated in neurons to control homeostatic functions, support immune surveillance, and prevent pathologies. In this review, we discuss the neuron-specific mechanisms and kinetics of IFN-γ/STAT1 activation, the potential sources and entry sites of IFN-γ in the CNS, and the diverse set of homeostatic and pathological effects IFN-γ/STAT1 signaling in neurons has on CNS health and disease. We will also highlight the different contexts and conditions under which IFN-γ-induced STAT1 activation has been studied in neurons, and how various factors might contribute to the vast array of downstream effects observed.
Collapse
Affiliation(s)
- Danielle N. Clark
- Department of Immunology, Duke University, Durham, North Carolina, USA
- Marcus Center for Cellular Cures, Duke University, Durham, North Carolina, USA
| | - Lauren R. Begg
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Anthony J. Filiano
- Department of Immunology, Duke University, Durham, North Carolina, USA
- Marcus Center for Cellular Cures, Duke University, Durham, North Carolina, USA
- Department of Pathology, Duke University, Durham, North Carolina, USA
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
| |
Collapse
|
22
|
Sakarya AH, Huang C, Yang C, Hsiao H, Chang FC, Huang J. Vascularized lymph node transplantation successfully reverses lymphedema and maintains immunity in a rat lymphedema model. Bioeng Transl Med 2022; 7:e10301. [PMID: 36176614 PMCID: PMC9471995 DOI: 10.1002/btm2.10301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 11/26/2022] Open
Abstract
Vascularized lymph node transplantation (VLNT) has shown inspiring results for the treatment of lymphedema. Nevertheless, it remains unclear how VLNT restores lymphatic drainage and whether or not immunity recovers after surgery. Hindlimb lymphedema model was created using rats with extensive groin and popliteal lymph node removable following with radiotherapy, and the lymphedema was confirmed using indocyanine green (ICG) lymphangiography and micro-computer tomography for volume measurement. VLNT was performed 1 month later. Volume measurement, ICG lymphangiography, histology, and immune reaction were done 1 month after surgery. VLNT successfully reduced the volume of the lymphedema hindlimb, restored lymphatic drainage function with proven lymphatic channel, and reduced lymphedema-related inflammation and fibrosis. It promotes lymphangiogenesis shown from ICG lymphangiography, histology, and enhanced lymphangiogenesis gene expression. Dendritic cell trafficking via the regenerated lymphatic channels was successfully restored, and maintained systemic immune response was proved using dinitrofluorobenzene sensitization and challenge. VLNT effectively reduces lymphedema and promotes lymphatic regeneration in the capillary lymphatic but not the collecting lymphatic vessels. Along with the re-established lymphatic system was the restoration of immune function locally and systemically. This correlated to clinical experience regarding the reduction of swelling and infection episodes after VLNT in lymphedema patients.
Collapse
Affiliation(s)
- Ahmet Hamdi Sakarya
- Division of Reconstructive Microsurgery, Department of Plastic and Reconstructive SurgeryChang Gung Memorial Hospital, Linkou Medical CenterTaoyuanTaiwan
- College of MedicineChang Gung UniversityTaoyuanTaiwan
| | - Chi‐Wei Huang
- Division of Reconstructive Microsurgery, Department of Plastic and Reconstructive SurgeryChang Gung Memorial Hospital, Linkou Medical CenterTaoyuanTaiwan
| | - Chin‐Yu Yang
- Division of Reconstructive Microsurgery, Department of Plastic and Reconstructive SurgeryChang Gung Memorial Hospital, Linkou Medical CenterTaoyuanTaiwan
- Center for Tissue EngineeringChang Gung Memorial Hospital, Linkou Medical CenterTaoyuanTaiwan
| | - Hui‐Yi Hsiao
- Division of Reconstructive Microsurgery, Department of Plastic and Reconstructive SurgeryChang Gung Memorial Hospital, Linkou Medical CenterTaoyuanTaiwan
- Center for Tissue EngineeringChang Gung Memorial Hospital, Linkou Medical CenterTaoyuanTaiwan
| | - Frank Chun‐Shin Chang
- College of MedicineChang Gung UniversityTaoyuanTaiwan
- Division of Craniofacial Surgery, Department of Plastic and Reconstructive SurgeryChang Gung Memorial Hospital, Linkou Medical CenterTaoyuanTaiwan
| | - Jung‐Ju Huang
- Division of Reconstructive Microsurgery, Department of Plastic and Reconstructive SurgeryChang Gung Memorial Hospital, Linkou Medical CenterTaoyuanTaiwan
- College of MedicineChang Gung UniversityTaoyuanTaiwan
- Center for Tissue EngineeringChang Gung Memorial Hospital, Linkou Medical CenterTaoyuanTaiwan
| |
Collapse
|
23
|
Peng L, Ma M, Dong Y, Wu Q, An S, Cao M, Wang Y, Zhou C, Zhou M, Wang X, Liang Q, Wang Y. Kuoxin Decoction promotes lymphangiogenesis in zebrafish and in vitro based on network analysis. Front Pharmacol 2022; 13:915161. [PMID: 36105188 PMCID: PMC9465995 DOI: 10.3389/fphar.2022.915161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/14/2022] [Indexed: 11/21/2022] Open
Abstract
Background: Inadequate lymphangiogenesis is closely related to the occurrence of many kinds of diseases, and one of the important treatments is to promote lymphangiogenesis. Kuoxin Decoction (KXF) is an herbal formula from traditional Chinese medicine used to treat dilated cardiomyopathy (DCM), which is associated with lymphangiogenesis deficiency. In this study, we comprehensively verified whether KXF promotes lymphangiogenesis in zebrafish and in vitro based on network analysis. Methods: We performed virtual screening of the active compounds of KXF and potential targets regarding DCM based on network analysis. Tg (Flila: EGFP; Gata1: DsRed) transgenic zebrafish embryos were treated with different concentrations of KXF for 48 h with or without the pretreatment of MAZ51 for 6 h, followed by morphological observation of the lymphatic vessels and an assessment of lymphopoiesis. RT-qPCR was employed to identify VEGF-C, VEGF-A, PROX1, and LYVE-1 mRNA expression levels in different groups. After the treatment of lymphatic endothelial cells (LECs) with different concentrations of salvianolic acid B (SAB, the active ingredient of KXF), their proliferation, migration, and protein expression of VEGF-C and VEGFR-3 were compared by CCK-8 assay, wound healing assay, and western blot. Results: A total of 106 active compounds were identified constituting KXF, and 58 target genes of KXF for DCM were identified. There were 132 pathways generated from KEGG enrichment, including 5 signaling pathways related to lymphangiogenesis. Zebrafish experiments confirmed that KXF promoted lymphangiogenesis and increased VEGF-C and VEGF-A mRNA expression levels in zebrafish with or without MAZ51-induced thoracic duct injury. In LECs, SAB promoted proliferation and migration, and it could upregulate the protein expression of VEGF-C and VEGFR-3 in LECs after injury. Conclusion: The results of network analysis showed that KXF could regulate lymphangiogenesis through VEGF-C and VEGF-A, and experiments with zebrafish confirmed that KXF could promote lymphangiogenesis. Cell experiments confirmed that SAB could promote the proliferation and migration of LECs and upregulate the protein expression of VEGF-C and VEGFR-3. These results suggest that KXF promotes lymphangiogenesis by a mechanism related to the upregulation of VEGF-C/VEGFR-3, and the main component exerting this effect may be SAB.
Collapse
Affiliation(s)
- Longping Peng
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mengjiao Ma
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yidan Dong
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiong Wu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shiying An
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Cao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chang Zhou
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Maolin Zhou
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu Wang
- Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Qianqian Liang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Qianqian Liang, ; Youhua Wang,
| | - Youhua Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Qianqian Liang, ; Youhua Wang,
| |
Collapse
|
24
|
Alrumaihi F. The Multi-Functional Roles of CCR7 in Human Immunology and as a Promising Therapeutic Target for Cancer Therapeutics. Front Mol Biosci 2022; 9:834149. [PMID: 35874608 PMCID: PMC9298655 DOI: 10.3389/fmolb.2022.834149] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
An important hallmark of the human immune system is to provide adaptive immunity against pathogens but tolerance toward self-antigens. The CC-chemokine receptor 7 (CCR7) provides a significant contribution in guiding cells to and within lymphoid organs and is important for acquiring immunity and tolerance. The CCR7 holds great importance in establishing thymic architecture and function and naïve and regulatory T-cell homing in the lymph nodes. Similarly, the receptor is a key regulator in cancer cell migration and the movement of dendritic cells. This makes the CCR7 an important receptor as a drug and prognostic marker. In this review, we discussed several biological roles of the CCR7 and its importance as a drug and prognostic marker.
Collapse
Affiliation(s)
- Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
25
|
Ozawa M, Nakajima S, Kobayashi D, Tomii K, Li NJ, Watarai T, Suzuki R, Watanabe S, Kanda Y, Takeuchi A, Katakai T. Micro- and Macro-Anatomical Frameworks of Lymph Nodes Indispensable for the Lymphatic System Filtering Function. Front Cell Dev Biol 2022; 10:902601. [PMID: 35794860 PMCID: PMC9251010 DOI: 10.3389/fcell.2022.902601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/19/2022] [Indexed: 01/01/2023] Open
Abstract
In the lymphatic vascular system, lymph nodes (LNs) play a pivotal role in filtering and removing lymph-borne substances. The filtering function of LNs involves resident macrophages tightly associated with unique lymphatic sinus structures. Moreover, an intermittently arranged LN in the lymphatic pathway is considered to cooperatively prevent lymph-borne substances from entering blood circulation. However, the functional significance of tissue microarchitecture, cellular composition, and individual LNs in the “LN chain” system is not fully understood. To explore the mechanistic and histo-anatomical significance of LNs as lymph fluid filters, we subcutaneously injected fluorescent tracers into mice and examined the details of lymphatic transport to the LNs qualitatively and quantitatively. Lymph-borne tracers were selectively accumulated in the MARCO+ subcapsular-medullary sinus border (SMB) region of the LN, in which reticular lymphatic endothelial cells and CD169+F4/80+ medullary sinus macrophages construct a dense meshwork of the physical barrier, forming the main body to capture the tracers. We also demonstrated stepwise filtration via the LN chain in the lymphatic basin, which prevented tracer leakage into the blood. Furthermore, inflammatory responses that induce the remodeling of LN tissue as well as the lymphatic pathway reinforce the overall filtering capacity of the lymphatic basin. Taken together, specialized tissue infrastructure in the LNs and their systematic orchestration constitute an integrated filtering system for lymphatic recirculation.
Collapse
Affiliation(s)
- Madoka Ozawa
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shihori Nakajima
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Daichi Kobayashi
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Koichi Tomii
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Nan-Jun Li
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tomoya Watarai
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ryo Suzuki
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Satoshi Watanabe
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yasuhiro Kanda
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Arata Takeuchi
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Department of Immunology, Tokyo Medical University, Tokyo, Japan
| | - Tomoya Katakai
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- *Correspondence: Tomoya Katakai,
| |
Collapse
|
26
|
Okamura K, Nagayama S, Tate T, Chan HT, Kiyotani K, Nakamura Y. Lymphocytes in tumor-draining lymph nodes co-cultured with autologous tumor cells for adoptive cell therapy. J Transl Med 2022; 20:241. [PMID: 35606862 PMCID: PMC9125345 DOI: 10.1186/s12967-022-03444-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/16/2022] [Indexed: 11/28/2022] Open
Abstract
Background Tumor-draining lymph nodes (TDLNs) are primary sites, where anti-tumor lymphocytes are primed to tumor-specific antigens and play pivotal roles in immune responses against tumors. Although adoptive cell therapy (ACT) using lymphocytes isolated from TDLNs were reported, characterization of immune activity of lymphocytes in TDLNs to tumor cells was not comprehensively performed. Here, we demonstrate TDLNs to have very high potential as cell sources for immunotherapy. Methods Lymphocytes from TDLNs resected during surgical operation were cultured with autologous-tumor cells for 2 weeks and evaluated tumor-reactivity by IFNγ ELISPOT assay. We investigated the commonality of T cell receptor (TCR) clonotypes expanded by the co-culture with tumor cells with those of tumor infiltrating lymphocytes (TILs). Results We found that that TCR clonotypes of PD-1-expressing CD8+ T cells in lymph nodes commonly shared with those of TILs in primary tumors and lymphocytes having tumor-reactivity and TCR clonotypes shared with TILs could be induced from non-metastatic lymph nodes when they were co-cultured with autologous tumor cells. Conclusion Our results imply that tumor-reactive effector T cells were present even in pathologically non-metastatic lymph nodes and could be expanded in vitro in the presence of autologous tumor cells and possibly be applied for ACT. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03444-1.
Collapse
|
27
|
Perazzolo S, Shen DD, Ho RJY. Physiologically Based Pharmacokinetic Modeling of 3 HIV Drugs in Combination and the Role of Lymphatic System after Subcutaneous Dosing. Part 2: Model for the Drug-combination Nanoparticles. J Pharm Sci 2022; 111:825-837. [PMID: 34673094 PMCID: PMC9270959 DOI: 10.1016/j.xphs.2021.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 10/20/2022]
Abstract
We previously developed a mechanism-based pharmacokinetic (MBPK) model to characterize the PK of a lymphocyte-targeted, long-acting 3 HIV drug-combination nanoparticle (DcNP) formulation of lopinavir, ritonavir, and tenofovir. MBPK describes time-courses of plasma drug concentration and has provided an initial hypothesis for the lymphatic PK of DcNP. Because anatomical and physiological interpretation of MBPK is limited, in this Part 2, we report the development of a Physiologically Based Pharmacokinetic (PBPK) model for a detailed evaluation of the systemic and lymphatic PK of drugs associated with DcNP. The DcNP model is linked to the PBPK model presented earlier in Part 1 to account for the disposition of released free drugs. A key feature of the DcNP model is the uptake of the injected dose from the subcutaneous site to the adjacent lymphoid depot, routing through the nodes within and throughout the lymphatic network, and its subsequent passage into the blood circulation. Furthermore, the model accounts for DcNP transport to the lymph by lymphatic recirculation and mononuclear cell migration. The present PBPK model can be extended to other nano-drug combinations that target or transit through the lymphatic system. The PBPK model may allow scaling and prediction of DcNP PK in humans.
Collapse
Affiliation(s)
- Simone Perazzolo
- Department of Pharmaceutics, University of Washington, Seattle, WA, 98195, USA.
| | - Danny D Shen
- Department of Pharmaceutics, University of Washington, Seattle, WA, 98195, USA
| | - Rodney J Y Ho
- Department of Pharmaceutics, University of Washington, Seattle, WA, 98195, USA; Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
28
|
Shou Y, Johnson SC, Quek YJ, Li X, Tay A. Integrative lymph node-mimicking models created with biomaterials and computational tools to study the immune system. Mater Today Bio 2022; 14:100269. [PMID: 35514433 PMCID: PMC9062348 DOI: 10.1016/j.mtbio.2022.100269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 11/17/2022] Open
Abstract
The lymph node (LN) is a vital organ of the lymphatic and immune system that enables timely detection, response, and clearance of harmful substances from the body. Each LN comprises of distinct substructures, which host a plethora of immune cell types working in tandem to coordinate complex innate and adaptive immune responses. An improved understanding of LN biology could facilitate treatment in LN-associated pathologies and immunotherapeutic interventions, yet at present, animal models, which often have poor physiological relevance, are the most popular experimental platforms. Emerging biomaterial engineering offers powerful alternatives, with the potential to circumvent limitations of animal models, for in-depth characterization and engineering of the lymphatic and adaptive immune system. In addition, mathematical and computational approaches, particularly in the current age of big data research, are reliable tools to verify and complement biomaterial works. In this review, we first discuss the importance of lymph node in immunity protection followed by recent advances using biomaterials to create in vitro/vivo LN-mimicking models to recreate the lymphoid tissue microstructure and microenvironment, as well as to describe the related immuno-functionality for biological investigation. We also explore the great potential of mathematical and computational models to serve as in silico supports. Furthermore, we suggest how both in vitro/vivo and in silico approaches can be integrated to strengthen basic patho-biological research, translational drug screening and clinical personalized therapies. We hope that this review will promote synergistic collaborations to accelerate progress of LN-mimicking systems to enhance understanding of immuno-complexity.
Collapse
Key Words
- ABM, agent-based model
- APC, antigen-presenting cell
- BV, blood vessel
- Biomaterials
- CPM, Cellular Potts model
- Computational models
- DC, dendritic cell
- ECM, extracellular matrix
- FDC, follicular dendritic cell
- FRC, fibroblastic reticular cell
- Immunotherapy
- LEC, lymphatic endothelial cell
- LN, lymph node
- LV, lymphatic vessel
- Lymph node
- Lymphatic system
- ODE, ordinary differential equation
- PDE, partial differential equation
- PDMS, polydimethylsiloxane
Collapse
Affiliation(s)
- Yufeng Shou
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
| | - Sarah C. Johnson
- Department of Bioengineering, Stanford University, CA, 94305, USA
- Department of Bioengineering, Imperial College London, South Kensington, SW72AZ, UK
| | - Ying Jie Quek
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
- Singapore Immunology Network, Agency for Science, Technology and Research, 138648, Singapore
| | - Xianlei Li
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
| | - Andy Tay
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, 117599, Singapore
- NUS Tissue Engineering Program, National University of Singapore, 117510, Singapore
| |
Collapse
|
29
|
Nagasaki J, Inozume T, Sax N, Ariyasu R, Ishikawa M, Yamashita K, Kawazu M, Ueno T, Irie T, Tanji E, Morinaga T, Honobe A, Ohnuma T, Yoshino M, Iwata T, Kawase K, Sasaki K, Hanazawa T, Kochin V, Kawamura T, Matsue H, Hino M, Mano H, Suzuki Y, Nishikawa H, Togashi Y. PD-1 blockade therapy promotes infiltration of tumor-attacking exhausted T cell clonotypes. Cell Rep 2022; 38:110331. [PMID: 35108529 DOI: 10.1016/j.celrep.2022.110331] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 10/21/2021] [Accepted: 01/11/2022] [Indexed: 12/25/2022] Open
Abstract
PD-1 blockade exerts clinical efficacy against various types of cancer by reinvigorating T cells that directly attack tumor cells (tumor-specific T cells) in the tumor microenvironment (TME), and tumor-infiltrating lymphocytes (TILs) also comprise nonspecific bystander T cells. Here, using single-cell sequencing, we show that TILs include skewed T cell clonotypes, which are characterized by exhaustion (Tex) or nonexhaustion signatures (Tnon-ex). Among skewed clonotypes, those in the Tex, but not those in the Tnon-ex, cluster respond to autologous tumor cell lines. After PD-1 blockade, non-preexisting tumor-specific clonotypes in the Tex cluster appear in the TME. Tumor-draining lymph nodes (TDLNs) without metastasis harbor a considerable number of such clonotypes, whereas these clonotypes are rarely detected in peripheral blood. We propose that tumor-infiltrating skewed T cell clonotypes with an exhausted phenotype directly attack tumor cells and that PD-1 blockade can promote infiltration of such Tex clonotypes, mainly from TDLNs.
Collapse
Affiliation(s)
- Joji Nagasaki
- Chiba Cancer Center, Research Institute, 666-2 Nitona-cho, Chuo-ku, Chiba 260-8717, Japan; Division of Cancer Immunology, National Cancer Center, Research Institute, Exploratory Oncology Research and Clinical Trial Center (EPOC), 6-5-1 Kashiwanoha, Tokyo 104-0045, Kashiwa 277-8577, Japan; Department of Hematology, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan
| | - Takashi Inozume
- Chiba Cancer Center, Research Institute, 666-2 Nitona-cho, Chuo-ku, Chiba 260-8717, Japan; Department of Dermatology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; Department of Dermatology, University of Yamanashi, Chuo, Japan
| | - Nicolas Sax
- KOTAI Biotechnologies, Inc., Osaka 565-0871, Japan
| | - Ryo Ariyasu
- Division of Cancer Immunology, National Cancer Center, Research Institute, Exploratory Oncology Research and Clinical Trial Center (EPOC), 6-5-1 Kashiwanoha, Tokyo 104-0045, Kashiwa 277-8577, Japan
| | | | | | - Masahito Kawazu
- Division of Cellular Signaling, National Cancer Center, Research Institute, Tokyo 104-0045, Japan
| | - Toshihide Ueno
- Division of Cellular Signaling, National Cancer Center, Research Institute, Tokyo 104-0045, Japan
| | - Takuma Irie
- Division of Cancer Immunology, National Cancer Center, Research Institute, Exploratory Oncology Research and Clinical Trial Center (EPOC), 6-5-1 Kashiwanoha, Tokyo 104-0045, Kashiwa 277-8577, Japan
| | - Etsuko Tanji
- Chiba Cancer Center, Research Institute, 666-2 Nitona-cho, Chuo-ku, Chiba 260-8717, Japan
| | - Takao Morinaga
- Chiba Cancer Center, Research Institute, 666-2 Nitona-cho, Chuo-ku, Chiba 260-8717, Japan
| | - Akiko Honobe
- Department of Dermatology, University of Yamanashi, Chuo, Japan
| | - Takehiro Ohnuma
- Department of Dermatology, University of Yamanashi, Chuo, Japan
| | - Mitsuru Yoshino
- Department of Thoracic Surgery, Chiba Cancer Center, Chiba 260-8717, Japan
| | - Takekazu Iwata
- Department of Thoracic Surgery, Chiba Cancer Center, Chiba 260-8717, Japan
| | - Katsushige Kawase
- Chiba Cancer Center, Research Institute, 666-2 Nitona-cho, Chuo-ku, Chiba 260-8717, Japan; Department of Head and Neck Surgery, Chiba Cancer Center, Chiba 260-8717, Japan; Department of Otolaryngology, Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Keita Sasaki
- Department of Head and Neck Surgery, Chiba Cancer Center, Chiba 260-8717, Japan
| | - Toyoyuki Hanazawa
- Department of Otolaryngology, Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Vitaly Kochin
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | | | - Hiroyuki Matsue
- Department of Dermatology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Masayuki Hino
- Department of Hematology, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan
| | - Hiroyuki Mano
- Division of Cellular Signaling, National Cancer Center, Research Institute, Tokyo 104-0045, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8568, Japan
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, National Cancer Center, Research Institute, Exploratory Oncology Research and Clinical Trial Center (EPOC), 6-5-1 Kashiwanoha, Tokyo 104-0045, Kashiwa 277-8577, Japan; Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| | - Yosuke Togashi
- Chiba Cancer Center, Research Institute, 666-2 Nitona-cho, Chuo-ku, Chiba 260-8717, Japan; Division of Cancer Immunology, National Cancer Center, Research Institute, Exploratory Oncology Research and Clinical Trial Center (EPOC), 6-5-1 Kashiwanoha, Tokyo 104-0045, Kashiwa 277-8577, Japan; Department of Tumor Microenvironment, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-0932, Japan.
| |
Collapse
|
30
|
Peil J, Bock F, Kiefer F, Schmidt R, Heindl LM, Cursiefen C, Schlereth SL. New Therapeutic Approaches for Conjunctival Melanoma-What We Know So Far and Where Therapy Is Potentially Heading: Focus on Lymphatic Vessels and Dendritic Cells. Int J Mol Sci 2022; 23:1478. [PMID: 35163401 PMCID: PMC8835854 DOI: 10.3390/ijms23031478] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 11/25/2022] Open
Abstract
Conjunctival melanoma (CM) accounts for 5% of all ocular melanomas and arises from malignantly transformed melanocytes in the conjunctival epithelium. Current therapies using surgical excision in combination with chemo- or cryotherapy still have high rates for recurrences and metastatic disease. Lately, novel signal transduction-targeted and immune checkpoint inhibitors like cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) inhibitors, programmed cell death protein-1 (PD-1) receptor inhibitors, BRAF- or MEK-inhibitors for systemic treatment of melanoma have improved the outcome even for unresectable cutaneous melanoma, improving patient survival dramatically. The use of these therapies is now also recommended for CM; however, the immunological background of CM is barely known, underlining the need for research to better understand the immunological basics when treating CM patients with immunomodulatory therapies. Immune checkpoint inhibitors activate tumor defense by interrupting inhibitory interactions between tumor cells and T lymphocytes at the so-called checkpoints. The tumor cells exploit these inhibitory targets on T-cells that are usually used by dendritic cells (DCs). DCs are antigen-presenting cells at the forefront of immune response induction. They contribute to immune tolerance and immune defense but in the case of tumor development, immune tolerance is often prevalent. Enhancing the immune response via DCs, interfering with the lymphatic pathways during immune cell migration and tumor development and specifically targeting tumor cells is a major therapeutic opportunity for many tumor entities including CM. This review summarizes the current knowledge on the function of lymphatic vessels in tumor growth and immune cell transport and continues to compare DC subsets in CM with related melanomas, such as cutaneous melanoma and mucosal melanoma.
Collapse
Affiliation(s)
- Jennifer Peil
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (J.P.); (F.B.); (L.M.H.); (C.C.)
| | - Felix Bock
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (J.P.); (F.B.); (L.M.H.); (C.C.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
| | - Friedemann Kiefer
- European Institute for Molecular Imaging (EIMI), University of Münster, 48149 Münster, Germany;
| | - Rebecca Schmidt
- Department of Oral, Maxillofacial and Plastic Facial Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, 40225 Düsseldorf, Germany;
| | - Ludwig M. Heindl
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (J.P.); (F.B.); (L.M.H.); (C.C.)
| | - Claus Cursiefen
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (J.P.); (F.B.); (L.M.H.); (C.C.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
| | - Simona L. Schlereth
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (J.P.); (F.B.); (L.M.H.); (C.C.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
| |
Collapse
|
31
|
Frattolin J, Watson DJ, Bonneuil WV, Russell MJ, Fasanella Masci F, Bandara M, Brook BS, Nibbs RJB, Moore JE. The Critical Importance of Spatial and Temporal Scales in Designing and Interpreting Immune Cell Migration Assays. Cells 2021; 10:3439. [PMID: 34943947 PMCID: PMC8700135 DOI: 10.3390/cells10123439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 02/08/2023] Open
Abstract
Intravital microscopy and other direct-imaging techniques have allowed for a characterisation of leukocyte migration that has revolutionised the field of immunology, resulting in an unprecedented understanding of the mechanisms of immune response and adaptive immunity. However, there is an assumption within the field that modern imaging techniques permit imaging parameters where the resulting cell track accurately captures a cell's motion. This notion is almost entirely untested, and the relationship between what could be observed at a given scale and the underlying cell behaviour is undefined. Insufficient spatial and temporal resolutions within migration assays can result in misrepresentation of important physiologic processes or cause subtle changes in critical cell behaviour to be missed. In this review, we contextualise how scale can affect the perceived migratory behaviour of cells, summarise the limited approaches to mitigate this effect, and establish the need for a widely implemented framework to account for scale and correct observations of cell motion. We then extend the concept of scale to new approaches that seek to bridge the current "black box" between single-cell behaviour and systemic response.
Collapse
Affiliation(s)
- Jennifer Frattolin
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK; (J.F.); (D.J.W.); (W.V.B.)
| | - Daniel J. Watson
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK; (J.F.); (D.J.W.); (W.V.B.)
| | - Willy V. Bonneuil
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK; (J.F.); (D.J.W.); (W.V.B.)
| | - Matthew J. Russell
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (M.J.R.); (B.S.B.)
| | - Francesca Fasanella Masci
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK; (F.F.M.); (M.B.); (R.J.B.N.)
| | - Mikaila Bandara
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK; (F.F.M.); (M.B.); (R.J.B.N.)
| | - Bindi S. Brook
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (M.J.R.); (B.S.B.)
| | - Robert J. B. Nibbs
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK; (F.F.M.); (M.B.); (R.J.B.N.)
| | - James E. Moore
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK; (J.F.); (D.J.W.); (W.V.B.)
| |
Collapse
|
32
|
Bala N, McGurk AI, Zilch T, Rup AN, Carter EM, Leddon SA, Fowell DJ. T cell activation niches-Optimizing T cell effector function in inflamed and infected tissues. Immunol Rev 2021; 306:164-180. [PMID: 34859453 PMCID: PMC9218983 DOI: 10.1111/imr.13047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 11/06/2021] [Indexed: 12/29/2022]
Abstract
Successful immunity to infection, malignancy, and tissue damage requires the coordinated recruitment of numerous immune cell subsets to target tissues. Once within the target tissue, effector T cells rely on local chemotactic cues and structural cues from the tissue matrix to navigate the tissue, interact with antigen-presenting cells, and release effector cytokines. This highly dynamic process has been "caught on camera" in situ by intravital multiphoton imaging. Initial studies revealed a surprising randomness to the pattern of T cell migration through inflamed tissues, behavior thought to facilitate chance encounters with rare antigen-bearing cells. Subsequent tissue-wide visualization has uncovered a high degree of spatial preference when it comes to T cell activation. Here, we discuss the basic tenants of a successful effector T cell activation niche, taking cues from the dynamics of Tfh positioning in the lymph node germinal center. In peripheral tissues, steady-state microanatomical organization may direct the location of "pop-up" de novo activation niches, often observed as perivascular clusters, that support early effector T cell activation. These perivascular activation niches appear to be regulated by site-specific chemokines that coordinate the recruitment of dendritic cells and other innate cells for local T cell activation, survival, and optimized effector function.
Collapse
Affiliation(s)
- Noor Bala
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Alexander I McGurk
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Tiago Zilch
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Anastasia N Rup
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Evan M Carter
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Scott A Leddon
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Deborah J Fowell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
33
|
Kim J, Archer PA, Thomas SN. Innovations in lymph node targeting nanocarriers. Semin Immunol 2021; 56:101534. [PMID: 34836772 DOI: 10.1016/j.smim.2021.101534] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/11/2021] [Accepted: 11/18/2021] [Indexed: 12/19/2022]
Abstract
Lymph nodes are secondary lymphoid tissues in the body that facilitate the co-mingling of immune cells to enable and regulate the adaptive immune response. They are also tissues implicated in a variety of diseases, including but not limited to malignancy. The ability to access lymph nodes is thus attractive for a variety of therapeutic and diagnostic applications. As nanotechnologies are now well established for their potential in translational biomedical applications, their high relevance to applications that involve lymph nodes is highlighted. Herein, established paradigms of nanocarrier design to enable delivery to lymph nodes are discussed, considering the unique lymph node tissue structure as well as lymphatic system physiology. The influence of delivery mechanism on how nanocarrier systems distribute to different compartments and cells that reside within lymph nodes is also elaborated. Finally, current advanced nanoparticle technologies that have been developed to enable lymph node delivery are discussed.
Collapse
Affiliation(s)
- Jihoon Kim
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA
| | - Paul A Archer
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA; School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Susan N Thomas
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Dr NW, Atlanta, GA 30332, USA; Emory University, 201 Dowman Drive, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, 1365-C Clifton Road NE, Atlanta, GA 30322, USA.
| |
Collapse
|
34
|
Single-Cell RNA Sequencing Reveals Heterogeneity and Functional Diversity of Lymphatic Endothelial Cells. Int J Mol Sci 2021; 22:ijms222111976. [PMID: 34769408 PMCID: PMC8584409 DOI: 10.3390/ijms222111976] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 02/07/2023] Open
Abstract
Lymphatic endothelial cells (LECs) line the lymphatic vasculature and play a central role in the immune response. LECs have abilities to regulate immune transport, to promote immune cell survival, and to cross present antigens to dendritic cells. Single-cell RNA sequencing (scRNA) technology has accelerated new discoveries in the field of lymphatic vascular biology. This review will summarize these new findings in regard to embryonic development, LEC heterogeneity with associated functional diversity, and interactions with other cells. Depending on the organ, location in the lymphatic vascular tree, and micro-environmental conditions, LECs feature unique properties and tasks. Furthermore, adjacent stromal cells need the support of LECs for fulfilling their tasks in the immune response, such as immune cell transport and antigen presentation. Although aberrant lymphatic vasculature has been observed in a number of chronic inflammatory diseases, the knowledge on LEC heterogeneity and functional diversity in these diseases is limited. Combining scRNA sequencing data with imaging and more in-depth functional experiments will advance our knowledge of LECs in health and disease. Building the case, the LEC could be put forward as a new therapeutic target in chronic inflammatory diseases, counterweighting the current immune-cell focused therapies.
Collapse
|
35
|
Ravaud C, Ved N, Jackson DG, Vieira JM, Riley PR. Lymphatic Clearance of Immune Cells in Cardiovascular Disease. Cells 2021; 10:cells10102594. [PMID: 34685572 PMCID: PMC8533855 DOI: 10.3390/cells10102594] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022] Open
Abstract
Recent advances in our understanding of the lymphatic system, its function, development, and role in pathophysiology have changed our views on its importance. Historically thought to be solely involved in the transport of tissue fluid, lipids, and immune cells, the lymphatic system displays great heterogeneity and plasticity and is actively involved in immune cell regulation. Interference in any of these processes can be deleterious, both at the developmental and adult level. Preclinical studies into the cardiac lymphatic system have shown that invoking lymphangiogenesis and enhancing immune cell trafficking in ischaemic hearts can reduce myocardial oedema, reduce inflammation, and improve cardiac outcome. Understanding how immune cells and the lymphatic endothelium interact is also vital to understanding how the lymphatic vascular network can be manipulated to improve immune cell clearance. In this Review, we examine the different types of immune cells involved in fibrotic repair following myocardial infarction. We also discuss the development and function of the cardiac lymphatic vasculature and how some immune cells interact with the lymphatic endothelium in the heart. Finally, we establish how promoting lymphangiogenesis is now a prime therapeutic target for reducing immune cell persistence, inflammation, and oedema to restore heart function in ischaemic heart disease.
Collapse
Affiliation(s)
- Christophe Ravaud
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK; (C.R.); (N.V.); (J.M.V.)
| | - Nikita Ved
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK; (C.R.); (N.V.); (J.M.V.)
| | - David G. Jackson
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK;
| | - Joaquim Miguel Vieira
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK; (C.R.); (N.V.); (J.M.V.)
| | - Paul R. Riley
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK; (C.R.); (N.V.); (J.M.V.)
- Correspondence:
| |
Collapse
|
36
|
Askmyr D, Abolhalaj M, Gomez Jimenez D, Greiff L, Lindstedt M, Lundberg K. Pattern recognition receptor expression and maturation profile of dendritic cell subtypes in human tonsils and lymph nodes. Hum Immunol 2021; 82:976-981. [PMID: 34511272 DOI: 10.1016/j.humimm.2021.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/18/2021] [Accepted: 08/10/2021] [Indexed: 01/02/2023]
Abstract
Dendritic cells (DCs) with capacity of antigen cross-presentation are of key interest for immunotherapy against cancer as they can induce antigen-specific cytotoxic T lymphocyte (CTL) responses. This study describes frequencies of DC subtypes in human tonsils and lymph nodes, and phenotypic aspects that may be targeted by adjuvant measures. From human tonsils and neck lymph nodes, DCs were identified through flow cytometry, and subsets of plasmacytoid DCs (pDCs) and myeloid DCs (mDCs) were investigated. Maturity status was assessed and surface receptors with CTL-promoting potentials were studied. CD123+ pDCs as well as CD1c+, CD141+, and CD1c-CD141- mDCs were detected in tonsils and lymph nodes. Both sites featured a similar presence of DC subsets, with CD123+ pDC being dominant and CD141+ mDCs least frequent. Based on CD80/CD86 expression, all DC subtypes featured a low degree of maturation. Expression of pattern recognition receptors (PRRs) CD206, CD207, DC-SIGN, TLR2, and TLR4, as well as the chemokine receptor XCR1, indicated DC subset-specific receptor profiles. We conclude that tonsils and lymph nodes share common features in terms of DC subset frequency and maturation as well as PRR and XCR1 expression pattern. Our work suggests that both sites may be considered for vaccine deposition in DC-mediated immunotherapy.
Collapse
Affiliation(s)
- David Askmyr
- Department of ORL, Head & Neck Surgery, Skåne University Hospital, Lund, Sweden; Department of Clinical Sciences, Lund University, Lund, Sweden.
| | - Milad Abolhalaj
- Department of Immunotechnology, Lund University, Lund, Sweden.
| | | | - Lennart Greiff
- Department of ORL, Head & Neck Surgery, Skåne University Hospital, Lund, Sweden; Department of Clinical Sciences, Lund University, Lund, Sweden.
| | - Malin Lindstedt
- Department of Immunotechnology, Lund University, Lund, Sweden.
| | | |
Collapse
|
37
|
Rezzola S, Sigmund EC, Halin C, Ronca R. The lymphatic vasculature: An active and dynamic player in cancer progression. Med Res Rev 2021; 42:576-614. [PMID: 34486138 PMCID: PMC9291933 DOI: 10.1002/med.21855] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/29/2021] [Accepted: 08/26/2021] [Indexed: 12/16/2022]
Abstract
The lymphatic vasculature has been widely described and explored for its key functions in fluid homeostasis and in the organization and modulation of the immune response. Besides transporting immune cells, lymphatic vessels play relevant roles in tumor growth and tumor cell dissemination. Cancer cells that have invaded into afferent lymphatics are propagated to tumor‐draining lymph nodes (LNs), which represent an important hub for metastatic cell arrest and growth, immune modulation, and secondary dissemination to distant sites. In recent years many studies have reported new mechanisms by which the lymphatic vasculature affects cancer progression, ranging from induction of lymphangiogenesis to metastatic niche preconditioning or immune modulation. In this review, we provide an up‐to‐date description of lymphatic organization and function in peripheral tissues and in LNs and the changes induced to this system by tumor growth and progression. We will specifically focus on the reported interactions that occur between tumor cells and lymphatic endothelial cells (LECs), as well as on interactions between immune cells and LECs, both in the tumor microenvironment and in tumor‐draining LNs. Moreover, the most recent prognostic and therapeutic implications of lymphatics in cancer will be reported and discussed in light of the new immune‐modulatory roles that have been ascribed to LECs.
Collapse
Affiliation(s)
- Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Elena C Sigmund
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
38
|
Johnson LA, Jackson DG. Hyaluronan and Its Receptors: Key Mediators of Immune Cell Entry and Trafficking in the Lymphatic System. Cells 2021; 10:cells10082061. [PMID: 34440831 PMCID: PMC8393520 DOI: 10.3390/cells10082061] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 02/07/2023] Open
Abstract
Entry to the afferent lymphatics marks the first committed step for immune cell migration from tissues to draining lymph nodes both for the generation of immune responses and for timely resolution of tissue inflammation. This critical process occurs primarily at specialised discontinuous junctions in initial lymphatic capillaries, directed by chemokines released from lymphatic endothelium and orchestrated by adhesion between lymphatic receptors and their immune cell ligands. Prominent amongst the latter is the large glycosaminoglycan hyaluronan (HA) that can form a bulky glycocalyx on the surface of certain tissue-migrating leucocytes and whose engagement with its key lymphatic receptor LYVE-1 mediates docking and entry of dendritic cells to afferent lymphatics. Here we outline the latest insights into the molecular mechanisms by which the HA glycocalyx together with LYVE-1 and the related leucocyte receptor CD44 co-operate in immune cell entry, and how the process is facilitated by the unusual character of LYVE-1 • HA-binding interactions. In addition, we describe how pro-inflammatory breakdown products of HA may also contribute to lymphatic entry by transducing signals through LYVE-1 for lymphangiogenesis and increased junctional permeability. Lastly, we outline some future perspectives and highlight the LYVE-1 • HA axis as a potential target for immunotherapy.
Collapse
|
39
|
Inamori K, Togashi Y, Fukuoka S, Akagi K, Ogasawara K, Irie T, Motooka D, Kobayashi Y, Sugiyama D, Kojima M, Shiiya N, Nakamura S, Maruyama S, Suzuki Y, Ito M, Nishikawa H. Importance of lymph node immune responses in MSI-H/dMMR colorectal cancer. JCI Insight 2021; 6:137365. [PMID: 33755600 PMCID: PMC8262295 DOI: 10.1172/jci.insight.137365] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/18/2021] [Indexed: 01/21/2023] Open
Abstract
Patients with colorectal cancers (CRCs) generally exhibit improved survival through intensive lymph node (LN) dissection. However, recent progress in cancer immunotherapy revisits the potential importance of regional LNs, where T cells are primed to attack tumor cells. To elucidate the role of regional LN, we investigated the immunological status of nonmetastatic regional LN lymphocytes (LNLs) in comparison with those of the tumor microenvironment (tumor-infiltrating lymphocytes; TILs) using flow cytometry and next-generation sequencing. LNLs comprised an intermediate level of the effector T cell population between peripheral blood lymphocytes (PBLs) and TILs. Significant overlap of the T cell receptor (TCR) repertoire was observed in microsatellite instability–high/mismatch repair–deficient (MSI-H/dMMR) CRCs with high tumor mutation burden (TMB), although limited TCRs were shared between nonmetastatic LNs and primary tumors in microsatellite stable/MMR proficient (MSS/pMMR) CRC patients with low TMB. In line with the overlap of the TCR repertoire, an excessive LN dissection did not provide a positive impact on long-term prognosis in our MSI-H/dMMR CRC cohort (n = 130). We propose that regional LNs play an important role in antitumor immunity, particularly in MSI-H/dMMR CRCs with high TMB, requiring care to be taken regarding excessive nonmetastatic LN dissection in MSI-H/dMMR CRC patients.
Collapse
Affiliation(s)
- Koji Inamori
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo/Chiba, Japan.,Department of Colorectal Surgery, National Cancer Center Hospital East (NCCHE), Chiba, Japan.,Surgery 1, Divisions of cardiovascular, Thoracic, General Endoscopic and Breast Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yosuke Togashi
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo/Chiba, Japan
| | - Shota Fukuoka
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo/Chiba, Japan
| | - Kiwamu Akagi
- Division of Molecular Diagnosis and Cancer Prevention, Saitama Cancer Center (SCC), Saitama, Japan
| | - Kouetsu Ogasawara
- Department of Immunobiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Takuma Irie
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo/Chiba, Japan
| | - Daisuke Motooka
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yoichi Kobayashi
- Department of Immunology and.,Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | - Norihiko Shiiya
- Surgery 1, Divisions of cardiovascular, Thoracic, General Endoscopic and Breast Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Shota Nakamura
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shoichi Maruyama
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Masaaki Ito
- Department of Colorectal Surgery, National Cancer Center Hospital East (NCCHE), Chiba, Japan
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo/Chiba, Japan.,Department of Immunology and
| |
Collapse
|
40
|
Zou M, Wiechers C, Huehn J. Lymph node stromal cell subsets-Emerging specialists for tailored tissue-specific immune responses. Int J Med Microbiol 2021; 311:151492. [PMID: 33676241 DOI: 10.1016/j.ijmm.2021.151492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/04/2021] [Accepted: 02/23/2021] [Indexed: 12/17/2022] Open
Abstract
The effective priming of adaptive immune responses depends on the precise dispatching of lymphocytes and antigens into and within lymph nodes (LNs), which are strategically dispersed throughout the body. Over the past decade, a growing body of evidence has advanced our understanding of lymph node stromal cells (LNSCs) from viewing them as mere accessory cells to seeing them as critical cellular players for the modulation of adaptive immune responses. In this review, we summarize current advances on the pivotal roles that LNSCs play in orchestrating adaptive immune responses during homeostasis and infection, and highlight the imprinting of location-specific information by micro-environmental cues into LNSCs, thereby tailoring tissue-specific immune responses.
Collapse
Affiliation(s)
- Mangge Zou
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Carolin Wiechers
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Jochen Huehn
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| |
Collapse
|
41
|
Immunogenicity Challenges Associated with Subcutaneous Delivery of Therapeutic Proteins. BioDrugs 2021; 35:125-146. [PMID: 33523413 PMCID: PMC7848667 DOI: 10.1007/s40259-020-00465-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2020] [Indexed: 12/12/2022]
Abstract
The subcutaneous route of administration has provided convenient and non-inferior delivery of therapeutic proteins compared to intravenous infusion, but there is potential for enhanced immunogenicity toward subcutaneously administered proteins in a subset of patients. Unwanted anti-drug antibody response toward proteins or monoclonal antibodies upon repeated administration is shown to impact the pharmacokinetics and efficacy of multiple biologics. Unique immunogenicity challenges of the subcutaneous route have been realized through various preclinical and clinical examples, although subcutaneous delivery has often demonstrated comparable immunogenicity to intravenous administration. Beyond route of administration as a treatment-related factor of immunogenicity, certain product-related risk factors are particularly relevant to subcutaneously administered proteins. This review attempts to provide an overview of the mechanism of immune response toward proteins administered subcutaneously (subcutaneous proteins) and comments on product-related risk factors related to protein structure and stability, dosage form, and aggregation. A two-wave mechanism of antigen presentation in the immune response toward subcutaneous proteins is described, and interaction with dynamic antigen-presenting cells possessing high antigen processing efficiency and migratory activity may drive immunogenicity. Mitigation strategies for immunogenicity are discussed, including those in general use clinically and those currently in development. Mechanistic insights along with consideration of risk factors involved inspire theoretical strategies to provide antigen-specific, long-lasting effects for maintaining the safety and efficacy of therapeutic proteins.
Collapse
|
42
|
Abstract
Many labs have been developing cellular magnetic resonance imaging (MRI), using both superparamagnetic iron oxide nanoparticles (SPIONs) and fluorine-19 (19F)-based cell labels, to track immune and stem cells used for cellular therapies. Although SPION-based MRI cell tracking has very high sensitivity for cell detection, SPIONs are indirectly detected owing to relaxation effects on protons, producing negative magnetic resonance contrast with low signal specificity. Therefore, it is not possible to reliably quantify the local tissue concentration of SPION particles, and cell number cannot be determined. 19F-based cell tracking has high specificity for perfluorocarbon-labeled cells, and 19F signal is directly related to cell number. However, 19F MRI has low sensitivity. Magnetic particle imaging (MPI) is a new imaging modality that directly detects SPIONs. SPION-based cell tracking using MPI displays great potential for overcoming the challenges of MRI-based cell tracking, allowing for both high cellular sensitivity and specificity, and quantification of SPION-labeled cell number. Here we describe nanoparticle and MPI system factors that influence MPI sensitivity and resolution, quantification methods, and give our perspective on testing and applying MPI for cell tracking.
Collapse
Affiliation(s)
- Olivia C. Sehl
- Imaging Research Laboratories, Robarts Research Institute; and
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
| | - Julia J. Gevaert
- Imaging Research Laboratories, Robarts Research Institute; and
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
| | - Kierstin P. Melo
- Imaging Research Laboratories, Robarts Research Institute; and
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
| | - Natasha N. Knier
- Imaging Research Laboratories, Robarts Research Institute; and
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
| | - Paula J. Foster
- Imaging Research Laboratories, Robarts Research Institute; and
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
| |
Collapse
|
43
|
Tfh Cells in Health and Immunity: Potential Targets for Systems Biology Approaches to Vaccination. Int J Mol Sci 2020; 21:ijms21228524. [PMID: 33198297 PMCID: PMC7696930 DOI: 10.3390/ijms21228524] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022] Open
Abstract
T follicular helper (Tfh) cells are a specialised subset of CD4+ T cells that play a significant role in the adaptive immune response, providing critical help to B cells within the germinal centres (GC) of secondary lymphoid organs. The B cell receptors of GC B cells undergo multiple rounds of somatic hypermutation and affinity maturation within the GC response, a process dependent on cognate interactions with Tfh cells. B cells that receive sufficient help from Tfh cells form antibody-producing long-lived plasma and memory B cells that provide the basis of decades of effective and efficient protection and are considered the gold standard in correlates of protection post-vaccination. However, the T cell response to vaccination has been understudied, and over the last 10 years, exponential improvements in the technological underpinnings of sampling techniques, experimental and analytical tools have allowed multidisciplinary characterisation of the role of T cells and the immune system as a whole. Of particular interest to the field of vaccinology are GCs and Tfh cells, representing a unique target for improving immunisation strategies. Here, we discuss recent insights into the unique journey of Tfh cells from thymus to lymph node during differentiation and their role in the production of high-quality antibody responses as well as their journey back to the periphery as a population of memory cells. Further, we explore their function in health and disease and the power of next-generation sequencing techniques to uncover their potential as modulators of vaccine-induced immunity.
Collapse
|
44
|
Sawada J, Perrot CY, Chen L, Fournier-Goss AE, Oyer J, Copik A, Komatsu M. High Endothelial Venules Accelerate Naive T Cell Recruitment by Tumor Necrosis Factor-Mediated R-Ras Upregulation. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 191:396-414. [PMID: 33159887 DOI: 10.1016/j.ajpath.2020.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 10/08/2020] [Accepted: 10/14/2020] [Indexed: 01/01/2023]
Abstract
Recruitment of naive T cells to lymph nodes is essential for the development of adaptive immunity. Upon pathogen infection, lymph nodes promptly increase the influx of naive T cells from the circulation in order to screen and prime the T cells. The precise contribution of the lymph node vasculature to the regulation of this process remains unclear. Here we show a role for the Ras GTPase, R-Ras, in the functional adaptation of high endothelial venules to increase naive T cell trafficking to the lymph nodes. R-Ras is transiently up-regulated in the endothelium of high endothelial venules by the inflammatory cytokine tumor necrosis factor (TNF) within 24 hours of pathogen inoculation. TNF induces R-Ras upregulation in endothelial cells via JNK and p38 mitogen-activated protein kinase but not NF-κB. Studies of T cell trafficking found that the loss of function of endothelial R-Ras impairs the rapid acceleration of naive T cell recruitment to the lymph nodes upon inflammation. This defect diminished the ability of naive OT-1 T cells to develop antitumor activity against ovalbumin-expressing melanoma. Proteomic analyses suggest that endothelial R-Ras facilitates TNF-dependent transendothelial migration (diapedesis) of naive T cells by modulating molecular assembly the at T cell-endothelial cell interface. These findings give new mechanistic insights into the functional adaptation of high endothelial venules to accelerate naive T cell recruitment to the lymph nodes.
Collapse
Affiliation(s)
- Junko Sawada
- Cancer and Blood Disorders Institute and Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida; Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, St. Petersburg, Florida
| | - Carole Y Perrot
- Cancer and Blood Disorders Institute and Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida; Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, St. Petersburg, Florida
| | - Linyuan Chen
- Cancer and Blood Disorders Institute and Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida; Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, St. Petersburg, Florida
| | - Ashley E Fournier-Goss
- Cancer and Blood Disorders Institute and Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida; Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, St. Petersburg, Florida
| | - Jeremiah Oyer
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, St. Petersburg, Florida; Burnett School of Biomedical Sciences, University of Central Florida, Orlando Florida
| | - Alicja Copik
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando Florida
| | - Masanobu Komatsu
- Cancer and Blood Disorders Institute and Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida; Tumor Microenvironment and Cancer Immunology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla California.
| |
Collapse
|
45
|
Sex as a confounding factor in the effects of ageing on rat lymph node t cell compartment. Exp Gerontol 2020; 142:111140. [PMID: 33129930 DOI: 10.1016/j.exger.2020.111140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 01/20/2023]
Abstract
The study examined the influence of sex on the alterations occurring with ageing in rat lymph node (LN) T cell compartment. In female and male rats the decrease in LN T cell counts was followed by a shift in CD4+/CD8+ T cell ratio towards CD8+ T cells, which was more prominent in males than in females. With ageing, in both major LN T cell subpopulations naïve (recent thymic emigrants and mature naïve cells) to memory/activated T cell ratio shifted to the side of memory/activated cells in female, and particularly in male rats. The frequency of regulatory CD25+Foxp3+ cells increased among LN CD4+/CD8+ T cells with ageing, reflecting, at least partly, an enhanced conversion of effector T cells into regulatory cells. This was also more prominent in male rats. The more prounounced increase in LN oxidative damage and the expression levels of proinflammatory cytokines in male rats with ageing, most likely contributed to the greater frequency of proinflammatory, replicatively senescent CD28- cells expressing CD11b (innate cell marker), among T cells of old male rats compared with age-matched females. The increase in LN oxidation/proinflammatory state with ageing was also consistent with the accumulation of exhausted PD-1high cells among T lymphocytes, particularly prominent among CD8+ T cells from male rats. Finally, by calculating a summary score for the key ageing-relevant parameters (an ageing index), a faster development of the deleterious changes in the T cell compartment occurring with ageing was confirmed in male rat LNs. Additionally, the study pointed to indices of LN T cell compartment ageing which correlate with those in peripheral blood.
Collapse
|
46
|
Quantification and characterization of granulocyte macrophage colony-stimulating factor activated human peripheral blood mononuclear cells by fluorine-19 cellular MRI in an immunocompromised mouse model. Diagn Interv Imaging 2020; 101:577-588. [DOI: 10.1016/j.diii.2020.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 12/11/2022]
|
47
|
Lisk C, Yuen R, Kuniholm J, Antos D, Reiser ML, Wetzler LM. Toll-Like Receptor Ligand Based Adjuvant, PorB, Increases Antigen Deposition on Germinal Center Follicular Dendritic Cells While Enhancing the Follicular Dendritic Cells Network. Front Immunol 2020; 11:1254. [PMID: 32636846 PMCID: PMC7318107 DOI: 10.3389/fimmu.2020.01254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/18/2020] [Indexed: 01/01/2023] Open
Abstract
Vaccines are arguably one of the greatest advancements in modern medicine. Subunit vaccines comprise the majority of current preparations and consist of two main components-antigen and adjuvant. The antigen is a small molecule against which the vaccine induces an immune response to provide protection via the immunostimulatory ability of the adjuvant. Our laboratory has investigated the adjuvant properties of Toll-like receptor (TLR) ligand-based adjuvants, especially the outer membrane protein from Neisseria mengingitidis, PorB. In this current study we used PorB, along with CpG, an intracellular TLR9 agonist, and a non-TLR adjuvant, aluminum salts (Alum), to further investigate cellular mechanisms of adjuvanticity, focusing on the fate of intact antigen in the germinal center and association with follicular dendritic cells (FDCs). FDCs are located in the B cell light zone of the germinal center and are imperative for affinity maturation. They are stromal cells that retain whole intact antigen allowing recognition by the B cell receptor of the germinal center B cells. Our studies demonstrate that TLR ligands, but not Alum, increase the FDC network, while PorB and Alum increased colocalization of FDC and the model soluble antigen, ovalbumin (OVA). As PorB is the only adjuvant tested that induces both a higher number of FDCs and increased deposition of antigen on FDCs, it has the greatest ability to increase FDC-antigen interaction, essential for induction of B cell affinity maturation. These studies demonstrate a further mechanism and potential superiority of PorB as an adjuvant and its influence on antibody production.
Collapse
Affiliation(s)
- Christina Lisk
- Section of Infectious Diseases, Department of Medicine, Boston Medical Center, Boston, MA, United States
| | - Rachel Yuen
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States
| | - Jeff Kuniholm
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States
| | - Danielle Antos
- Department of Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | | | - Lee M Wetzler
- Section of Infectious Diseases, Department of Medicine, Boston Medical Center, Boston, MA, United States.,Department of Microbiology, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
48
|
Hashemi E, Malarkannan S. Tissue-Resident NK Cells: Development, Maturation, and Clinical Relevance. Cancers (Basel) 2020; 12:cancers12061553. [PMID: 32545516 PMCID: PMC7352973 DOI: 10.3390/cancers12061553] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/08/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022] Open
Abstract
Natural killer (NK) cells belong to type 1 innate lymphoid cells (ILC1) and are essential in killing infected or transformed cells. NK cells mediate their effector functions using non-clonotypic germ-line-encoded activation receptors. The utilization of non-polymorphic and conserved activating receptors promoted the conceptual dogma that NK cells are homogeneous with limited but focused immune functions. However, emerging studies reveal that NK cells are highly heterogeneous with divergent immune functions. A distinct combination of several activation and inhibitory receptors form a diverse array of NK cell subsets in both humans and mice. Importantly, one of the central factors that determine NK cell heterogeneity and their divergent functions is their tissue residency. Decades of studies provided strong support that NK cells develop in the bone marrow. However, evolving evidence supports the notion that NK cells also develop and differentiate in tissues. Here, we summarize the molecular basis, phenotypic signatures, and functions of tissue-resident NK cells and compare them with conventional NK cells.
Collapse
Affiliation(s)
- Elaheh Hashemi
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA;
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA;
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Correspondence:
| |
Collapse
|
49
|
Houssari M, Dumesnil A, Tardif V, Kivelä R, Pizzinat N, Boukhalfa I, Godefroy D, Schapman D, Hemanthakumar KA, Bizou M, Henry JP, Renet S, Riou G, Rondeaux J, Anouar Y, Adriouch S, Fraineau S, Alitalo K, Richard V, Mulder P, Brakenhielm E. Lymphatic and Immune Cell Cross-Talk Regulates Cardiac Recovery After Experimental Myocardial Infarction. Arterioscler Thromb Vasc Biol 2020; 40:1722-1737. [PMID: 32404007 PMCID: PMC7310303 DOI: 10.1161/atvbaha.120.314370] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Supplemental Digital Content is available in the text. Objective: Lymphatics play an essential pathophysiological role in promoting fluid and immune cell tissue clearance. Conversely, immune cells may influence lymphatic function and remodeling. Recently, cardiac lymphangiogenesis has been proposed as a therapeutic target to prevent heart failure after myocardial infarction (MI). We investigated the effects of gene therapy to modulate cardiac lymphangiogenesis post-MI in rodents. Second, we determined the impact of cardiac-infiltrating T cells on lymphatic remodeling in the heart. Approach and Results: Comparing adenoviral versus adeno-associated viral gene delivery in mice, we found that only sustained VEGF (vascular endothelial growth factor)-CC156S therapy, achieved by adeno-associated viral vectors, increased cardiac lymphangiogenesis, and led to reduced cardiac inflammation and dysfunction by 3 weeks post-MI. Conversely, inhibition of VEGF-C/-D signaling, through adeno-associated viral delivery of soluble VEGFR3 (vascular endothelial growth factor receptor 3), limited infarct lymphangiogenesis. Unexpectedly, this treatment improved cardiac function post-MI in both mice and rats, linked to reduced infarct thinning due to acute suppression of T-cell infiltration. Finally, using pharmacological, genetic, and antibody-mediated prevention of cardiac T-cell recruitment in mice, we discovered that both CD4+ and CD8+ T cells potently suppress, in part through interferon-γ, cardiac lymphangiogenesis post-MI. Conclusions: We show that resolution of cardiac inflammation after MI may be accelerated by therapeutic lymphangiogenesis based on adeno-associated viral gene delivery of VEGF-CC156S. Conversely, our work uncovers a major negative role of cardiac-recruited T cells on lymphatic remodeling. Our results give new insight into the interconnection between immune cells and lymphatics in orchestration of cardiac repair after injury.
Collapse
Affiliation(s)
- Mahmoud Houssari
- From the Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU REMOD-VHF, Rouen, France (H.M., A.D., V.T., I.B., J.P.H., S.R., J.R., S.F., V.R., P.M.)
| | - Anais Dumesnil
- From the Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU REMOD-VHF, Rouen, France (H.M., A.D., V.T., I.B., J.P.H., S.R., J.R., S.F., V.R., P.M.)
| | - Virginie Tardif
- From the Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU REMOD-VHF, Rouen, France (H.M., A.D., V.T., I.B., J.P.H., S.R., J.R., S.F., V.R., P.M.)
| | - Riikka Kivelä
- Wihuri Research Institute and Translational Cancer Biology Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Finland (R.K., K.A.H., K.A.)
| | - Nathalie Pizzinat
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Inserm UMR1048, Université de Toulouse III, France (N.P., M.B.)
| | - Ines Boukhalfa
- From the Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU REMOD-VHF, Rouen, France (H.M., A.D., V.T., I.B., J.P.H., S.R., J.R., S.F., V.R., P.M.)
| | - David Godefroy
- Normandy University, UniRouen, Inserm UMR1239 (DC2N Laboratory), Mont Saint Aignan, France (D.G., Y.A.)
| | - Damien Schapman
- Normandy University, UniRouen, PRIMACEN, Mont Saint Aignan, France (D.S.)
| | - Karthik A Hemanthakumar
- Wihuri Research Institute and Translational Cancer Biology Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Finland (R.K., K.A.H., K.A.)
| | - Mathilde Bizou
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Inserm UMR1048, Université de Toulouse III, France (N.P., M.B.)
| | - Jean-Paul Henry
- From the Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU REMOD-VHF, Rouen, France (H.M., A.D., V.T., I.B., J.P.H., S.R., J.R., S.F., V.R., P.M.)
| | - Sylvanie Renet
- From the Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU REMOD-VHF, Rouen, France (H.M., A.D., V.T., I.B., J.P.H., S.R., J.R., S.F., V.R., P.M.)
| | - Gaetan Riou
- Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1234 (PANTHER Laboratory), Rouen, France (G.R., S.A.)
| | - Julie Rondeaux
- From the Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU REMOD-VHF, Rouen, France (H.M., A.D., V.T., I.B., J.P.H., S.R., J.R., S.F., V.R., P.M.)
| | - Youssef Anouar
- Normandy University, UniRouen, Inserm UMR1239 (DC2N Laboratory), Mont Saint Aignan, France (D.G., Y.A.)
| | - Sahil Adriouch
- Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1234 (PANTHER Laboratory), Rouen, France (G.R., S.A.)
| | - Sylvain Fraineau
- From the Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU REMOD-VHF, Rouen, France (H.M., A.D., V.T., I.B., J.P.H., S.R., J.R., S.F., V.R., P.M.)
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Biology Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Finland (R.K., K.A.H., K.A.)
| | - Vincent Richard
- From the Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU REMOD-VHF, Rouen, France (H.M., A.D., V.T., I.B., J.P.H., S.R., J.R., S.F., V.R., P.M.)
| | - Paul Mulder
- From the Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU REMOD-VHF, Rouen, France (H.M., A.D., V.T., I.B., J.P.H., S.R., J.R., S.F., V.R., P.M.)
| | | |
Collapse
|
50
|
Robo4 contributes to the turnover of Peyer's patch B cells. Mucosal Immunol 2020; 13:245-256. [PMID: 31772321 DOI: 10.1038/s41385-019-0230-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 10/21/2019] [Accepted: 11/04/2019] [Indexed: 02/04/2023]
Abstract
All leukocytes can get entrance into the draining lymph nodes via the afferent lymphatics but only lymphoid cells can leave the nodes. The molecular mechanisms behind this phenomenon have remained unknown. We employed genome wide microarray analyses of the subcapsular sinus and lymphatic sinus (LS) endothelial cells and found Robo4 to be selectively expressed on LS lymphatics. Further analyses showed high Robo4 expression in lymphatic vessels of Peyer's patches, which only have efferent lymphatic vessels. In functional assays, Robo4-deficient animals showed accumulation of naïve B cells (CD19+/CD62Lhi/CD44lo) in Peyer's patches, whereas no difference was seen within other lymphocyte subtypes. Short-term lymphocyte homing via high endothelial venules to peripheral and mesenteric lymph nodes and Peyer's patches was also slightly impaired in Robo4 knockout animals. These results show for the first time, selective expression of Robo4 in the efferent arm of the lymphatics and its role in controlling the turnover of a subset of B lymphocytes from Peyer's patches.
Collapse
|