1
|
Kuo PC, Zhao Z, Scofield BA, Paraiso HC, Yu ICI, Brown DA, Yen JHJ. Benzoylacetonitrile as a novel anti-inflammatory compound on attenuating microglia and encephalitogenic T cell activation in experimental autoimmune encephalomyelitis. J Neuroimmunol 2025; 401:578557. [PMID: 39983262 DOI: 10.1016/j.jneuroim.2025.578557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/23/2025] [Accepted: 02/16/2025] [Indexed: 02/23/2025]
Abstract
Multiple sclerosis (MS) is an autoimmune disorder and characterized by immune-mediated neuroinflammation and demyelination triggered by the CNS resident immune cells, microglia (MG), and CNS infiltrating pathogenic T cells. Experimental autoimmune encephalomyelitis (EAE) is an animal model of MS, and MG activation and pathogenic Th1/Th17 cell infiltration is responsible for EAE development and progression. We previously demonstrated that benzoylacetonitriles exerted neuro-immunomodulatory activity and identified compound 7a (referred to henceforth as BTA) as promising analog. Here, we investigated whether BTA possessed effects on modulating inflammatory responses in EAE and assessed its effects on MG activation and pathogenic Th1/Th17 differentiation and CNS infiltration in EAE. Our results showed BTA ameliorated disease severity in the chronic C57BL/6 EAE model. Further studies demonstrated BTA suppressed MG activation, attenuated CNS Th1/Th17 infiltration, and inhibited peripheral Th1/Th17 differentiation in EAE. Using protein array, we confirmed BTA inhibited MG activation by suppressing inflammatory cytokines/chemokine production. Furthermore, BTA suppressed Th1/Th17 polarization in vitro, indicating a direct suppressive effect of BTA on Th1/Th17 differentiation. Finally, our results showed that BTA prevented disease relapse in the relapsing-remitting SJL EAE model. In conclusion, our study demonstrates BTA possessed protective and therapeutic effects by ameliorating disease severity in the chronic EAE and mitigating relapse in the relapsing-remitting EAE, respectively. Further analysis revealed BTA exerted effects on inhibiting MG activation and Th1/Th17 differentiation, demonstrated by in vivo and in vitro studies. Altogether, our results suggest the benzoylacetonitrile scaffold could be developed as a novel therapeutic agent for MS/EAE treatment.
Collapse
Affiliation(s)
- Ping-Chang Kuo
- Department of Microbiology and Immunology, Indiana University School of Medicine, Fort Wayne, IN, United States
| | - Zixuan Zhao
- Doctor of Medicine Program, Indiana University School of Medicine, Fort Wayne, IN, United States
| | - Barbara A Scofield
- Department of Microbiology and Immunology, Indiana University School of Medicine, Fort Wayne, IN, United States
| | - Hallel C Paraiso
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Fort Wayne, IN, United States
| | - I-Chen Ivorine Yu
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Fort Wayne, IN, United States
| | - Dennis A Brown
- Department of Pharmaceutical and Graduate Life Sciences, Manchester University College of Health Professions, Nursing and Pharmacy, Fort Wayne, IN, United States
| | - Jui-Hung Jimmy Yen
- Department of Microbiology and Immunology, Indiana University School of Medicine, Fort Wayne, IN, United States.
| |
Collapse
|
2
|
Hu W, Tu H, Wadman MC, Li YL, Zhang D. Renal denervation achieves its antiarrhythmic effect through attenuating macrophage activation and neuroinflammation in stellate ganglia in chronic heart failure. Cardiovasc Res 2025; 120:2420-2433. [PMID: 39321201 PMCID: PMC11976725 DOI: 10.1093/cvr/cvae196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/22/2024] [Accepted: 06/19/2024] [Indexed: 09/27/2024] Open
Abstract
AIMS Renal denervation (RDN) is widely investigated in multiple studies of sympathetically driven cardiovascular diseases. While the therapeutic potential of RDN for ventricular arrhythmia has been reported, the mechanisms responsible for its antiarrhythmic effect are poorly understood. Our recent study showed that macrophage expansion-induced neuroinflammation in the stellate ganglion (SG) was a critical factor for cardiac sympathetic overactivation and ventricular arrhythmogenesis in chronic heart failure (CHF). This study investigates if and how RDN decreases ventricular arrhythmias by attenuating neuroinflammation in cardiac sympathetic post-ganglionic (CSP) neurons in CHF. METHODS AND RESULTS Rat CHF was induced by surgical ligation of the left anterior descending (LAD) coronary artery. At 12 weeks after LAD ligation, completed bilateral RDN was achieved by surgically cutting all the visible renal nerves around the renal artery and vein, followed by applying 70% ethanol around the vessels. Immunofluorescence staining and western blot data showed that expression of granulocyte-macrophage colony-stimulating factor (GM-CSF) and its receptor-α subunit in SGs was increased in CHF rats. RDN not only reduced CHF-elevated GM-CSF levels in kidney, serum, and SGs but also attenuated macrophage expansion and neuroinflammation in SGs from CHF rats. Using flow cytometry, we confirmed that RDN reduced the percentage of macrophages in SGs, which is pathologically increased in CHF. RDN also decreased CHF-enhanced N-type Ca2+ currents in CSP neurons and attenuated CHF-elevated cardiac sympathetic nerve activity. Electrocardiogram data from 24-h continuous telemetry recording in conscious rats revealed that RDN improved CHF-induced heterogeneity of ventricular electrical activities and reduced the duration of spontaneous ventricular tachyarrhythmias in CHF rats. CONCLUSION RDN alleviates cardiac sympathetic overactivation and ventricular arrhythmogenesis through attenuating GM-CSF-induced macrophage activation and neuroinflammation within SGs in CHF. This suggests that manipulation of the GM-CSF signalling pathway could be a novel strategy for achieving the antiarrhythmic effect of RDN in CHF.
Collapse
Affiliation(s)
- Wenfeng Hu
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Huiyin Tu
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Michael C Wadman
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yu-Long Li
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Dongze Zhang
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
3
|
Van Hove H, De Feo D, Greter M, Becher B. Central Nervous System Macrophages in Health and Disease. Annu Rev Immunol 2025; 43:589-613. [PMID: 40036702 DOI: 10.1146/annurev-immunol-082423-041334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
The central nervous system (CNS) has a unique set of macrophages that seed the tissue early during embryonic development. Microglia reside in the parenchyma, and border-associated macrophages are present in border regions, including the meninges, perivascular spaces, and choroid plexus. CNS-resident macrophages support brain homeostasis during development and steady state. In the diseased brain, however, the immune landscape is altered, with phenotypic and transcriptional changes in resident macrophages and the invasion of blood-borne monocytes, which differentiate into monocyte-derived macrophages upon entering the CNS. In this review, we focus on the fate and function of the macrophage compartment in health, neurodegenerative conditions such as amyloidosis, and neuroinflammation as observed in multiple sclerosis and infection. We discuss our current understanding that monocyte-derived macrophages contribute to neuropathology whereas native macrophages play a neuroprotective role in disease.
Collapse
Affiliation(s)
- Hannah Van Hove
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland;
| | - Donatella De Feo
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland;
| | - Melanie Greter
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland;
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland;
| |
Collapse
|
4
|
Liao S, Chen Y, Luo Y, Zhang M, Min J. The phenotypic changes of Schwann cells promote the functional repair of nerve injury. Neuropeptides 2024; 106:102438. [PMID: 38749170 DOI: 10.1016/j.npep.2024.102438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 06/17/2024]
Abstract
Functional recovery after nerve injury is a significant challenge due to the complex nature of nerve injury repair and the non-regeneration of neurons. Schwann cells (SCs), play a crucial role in the nerve injury repair process because of their high plasticity, secretion, and migration abilities. Upon nerve injury, SCs undergo a phenotypic change and redifferentiate into a repair phenotype, which helps in healing by recruiting phagocytes, removing myelin fragments, promoting axon regeneration, and facilitating myelin formation. However, the repair phenotype can be unstable, limiting the effectiveness of the repair. Recent research has found that transplantation of SCs can be an effective treatment option, therefore, it is essential to comprehend the phenotypic changes of SCs and clarify the related mechanisms to develop the transplantation therapy further.
Collapse
Affiliation(s)
- Shufen Liao
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Yan Chen
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Yin Luo
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Mengqi Zhang
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Jun Min
- Neurology Department, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China.
| |
Collapse
|
5
|
Caldarelli M, Rio P, Marrone A, Ocarino F, Chiantore M, Candelli M, Gasbarrini A, Gambassi G, Cianci R. Gut-Brain Axis: Focus on Sex Differences in Neuroinflammation. Int J Mol Sci 2024; 25:5377. [PMID: 38791415 PMCID: PMC11120930 DOI: 10.3390/ijms25105377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
In recent years, there has been a growing interest in the concept of the "gut-brain axis". In addition to well-studied diseases associated with an imbalance in gut microbiota, such as cancer, chronic inflammation, and cardiovascular diseases, research is now exploring the potential role of gut microbial dysbiosis in the onset and development of brain-related diseases. When the function of the intestinal barrier is altered by dysbiosis, the aberrant immune system response interacts with the nervous system, leading to a state of "neuroinflammation". The gut microbiota-brain axis is mediated by inflammatory and immunological mechanisms, neurotransmitters, and neuroendocrine pathways. This narrative review aims to illustrate the molecular basis of neuroinflammation and elaborate on the concept of the gut-brain axis by virtue of analyzing the various metabolites produced by the gut microbiome and how they might impact the nervous system. Additionally, the current review will highlight how sex influences these molecular mechanisms. In fact, sex hormones impact the brain-gut microbiota axis at different levels, such as the central nervous system, the enteric nervous one, and enteroendocrine cells. A deeper understanding of the gut-brain axis in human health and disease is crucial to guide diagnoses, treatments, and preventive interventions.
Collapse
Affiliation(s)
- Mario Caldarelli
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Pierluigi Rio
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Andrea Marrone
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Francesca Ocarino
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Monica Chiantore
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Marcello Candelli
- Department of Emergency, Anesthesiological and Reanimation Sciences, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Giovanni Gambassi
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Rossella Cianci
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| |
Collapse
|
6
|
Kallal N, Hugues S, Garnier L. Regulation of autoimmune-mediated neuroinflammation by endothelial cells. Eur J Immunol 2024; 54:e2350482. [PMID: 38335316 DOI: 10.1002/eji.202350482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
The CNS has traditionally been considered an immune-privileged organ, but recent studies have identified a plethora of immune cells in the choroid plexus, meninges, perivascular spaces, and cribriform plate. Although those immune cells are crucial for the maintenance of CNS homeostasis and for neural protection against infections, they can lead to neuroinflammation in some circumstances. The blood and the lymphatic vasculatures exhibit distinct structural and molecular features depending on their location in the CNS, greatly influencing the compartmentalization and the nature of CNS immune responses. In this review, we discuss how endothelial cells regulate the migration and the functions of T cells in the CNS both at steady-state and in murine models of neuroinflammation, with a special focus on the anatomical, cellular, and molecular mechanisms implicated in EAE.
Collapse
Affiliation(s)
- Neil Kallal
- Department of Pathology and Immunology, Geneva Medical School, Geneva, Switzerland
| | - Stephanie Hugues
- Department of Pathology and Immunology, Geneva Medical School, Geneva, Switzerland
| | - Laure Garnier
- Department of Pathology and Immunology, Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
7
|
Lum FM, Chan YH, Teo TH, Becht E, Amrun SN, Teng KW, Hartimath SV, Yeo NK, Yee WX, Ang N, Torres-Ruesta AM, Fong SW, Goggi JL, Newell EW, Renia L, Carissimo G, Ng LF. Crosstalk between CD64 +MHCII + macrophages and CD4 + T cells drives joint pathology during chikungunya. EMBO Mol Med 2024; 16:641-663. [PMID: 38332201 PMCID: PMC10940729 DOI: 10.1038/s44321-024-00028-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/10/2024] Open
Abstract
Communications between immune cells are essential to ensure appropriate coordination of their activities. Here, we observed the infiltration of activated macrophages into the joint-footpads of chikungunya virus (CHIKV)-infected animals. Large numbers of CD64+MHCII+ and CD64+MHCII- macrophages were present in the joint-footpad, preceded by the recruitment of their CD11b+Ly6C+ inflammatory monocyte precursors. Recruitment and differentiation of these myeloid subsets were dependent on CD4+ T cells and GM-CSF. Transcriptomic and gene ontology analyses of CD64+MHCII+ and CD64+MHCII- macrophages revealed 89 differentially expressed genes, including genes involved in T cell proliferation and differentiation pathways. Depletion of phagocytes, including CD64+MHCII+ macrophages, from CHIKV-infected mice reduced disease pathology, demonstrating that these cells play a pro-inflammatory role in CHIKV infection. Together, these results highlight the synergistic dynamics of immune cell crosstalk in driving CHIKV immunopathogenesis. This study provides new insights in the disease mechanism and offers opportunities for development of novel anti-CHIKV therapeutics.
Collapse
Affiliation(s)
- Fok-Moon Lum
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore.
| | - Yi-Hao Chan
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Teck-Hui Teo
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Etienne Becht
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, 138648, Singapore
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Siti Naqiah Amrun
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Karen Ww Teng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Siddesh V Hartimath
- Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Nicholas Kw Yeo
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Wearn-Xin Yee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Nicholas Ang
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Anthony M Torres-Ruesta
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Siew-Wai Fong
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Julian L Goggi
- Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Evan W Newell
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, 138648, Singapore
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Laurent Renia
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, 138648, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Guillaume Carissimo
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
| | - Lisa Fp Ng
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
- National Institute of Health Research, Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, L69 7BE, UK.
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7ZX, UK.
| |
Collapse
|
8
|
Pinto SN, Krenciute G. The Mechanisms of Altered Blood-Brain Barrier Permeability in CD19 CAR T-Cell Recipients. Int J Mol Sci 2024; 25:644. [PMID: 38203814 PMCID: PMC10779697 DOI: 10.3390/ijms25010644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
Cluster of differentiation 19 (CD19) chimeric antigen receptor (CAR) T cells are a highly effective immunotherapy for relapsed and refractory B-cell malignancies, but their utility can be limited by the development of immune effector cell-associated neurotoxicity syndrome (ICANS). The recent discovery of CD19 expression on the pericytes in the blood-brain barrier (BBB) suggests an important off-target mechanism for ICANS development. In addition, the release of systemic cytokines stimulated by the engagement of CD19 with the CAR T cells can cause endothelial activation and decreased expression of tight junction molecules, further damaging the integrity of the BBB. Once within the brain microenvironment, cytokines trigger a cytokine-specific cascade of neuroinflammatory responses, which manifest clinically as a spectrum of neurological changes. Brain imaging is frequently negative or nonspecific, and treatment involves close neurologic monitoring, supportive care, interleukin antagonists, and steroids. The goal of this review is to inform readers about the normal development and microstructure of the BBB, its unique susceptibility to CD19 CAR T cells, the role of individual cytokines on specific elements of the brain's microstructural environment, and the clinical and imaging manifestations of ICANS. Our review will link cellular pathophysiology with the clinical and radiological manifestations of a complex clinical entity.
Collapse
Affiliation(s)
- Soniya N. Pinto
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Giedre Krenciute
- Department of Bone Marrow Transplantation & Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| |
Collapse
|
9
|
Dong J, Huth WJ, Marcel N, Zhang Z, Lin LL, Lu LF. miR-15/16 clusters restrict effector Treg cell differentiation and function. J Exp Med 2023; 220:e20230321. [PMID: 37516921 PMCID: PMC10374942 DOI: 10.1084/jem.20230321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/27/2023] [Accepted: 07/14/2023] [Indexed: 07/31/2023] Open
Abstract
Effector regulatory T cells (eTregs) exhibit distinct homeostatic properties and superior suppressor capacities pivotal for controlling immune responses mediated by their conventional T cell counterpart. While the role of microRNAs (miRNAs) in Tregs has been well-established, how miRNAs regulate eTregs remains poorly understood. Here, we demonstrate that miR-15/16 clusters act as key regulators in limiting eTreg responses. Loss of miR-15/16 clusters leads to increased eTreg frequencies with enhanced suppressor function. Consequently, mice with Treg-specific ablation of miR-15/16 clusters display attenuated immune responses during neuroinflammation and upon both infectious and non-infectious challenges. Mechanistically, miR-15/16 clusters exert their regulatory effect in part through repressing IRF4, a transcription factor essential for eTreg differentiation and function. Moreover, miR-15/16 clusters also directly target neuritin, an IRF4-dependent molecule, known for its role in Treg-mediated regulation of plasma cell responses. Together, we identify an miRNA family that controls an important Treg subset and further demonstrate that eTreg responses are tightly regulated at both transcriptional and posttranscriptional levels.
Collapse
Affiliation(s)
- Jiayi Dong
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - William J. Huth
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Nimi Marcel
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Ziyue Zhang
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Ling-Li Lin
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Li-Fan Lu
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
10
|
Shao S, Chen C, Shi G, Zhou Y, Wei Y, Wu L, Sun L, Zhang T. JAK inhibition ameliorated experimental autoimmune encephalomyelitis by blocking GM-CSF-driven inflammatory signature of monocytes. Acta Pharm Sin B 2023; 13:4185-4201. [PMID: 37799385 PMCID: PMC10547959 DOI: 10.1016/j.apsb.2023.07.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/27/2023] [Accepted: 07/13/2023] [Indexed: 10/07/2023] Open
Abstract
Monocytes are key effectors in autoimmunity-related diseases in the central nervous system (CNS) due to the critical roles of these cells in the production of proinflammatory cytokines, differentiation of T-helper (Th) cells, and antigen presentation. The JAK-STAT signaling is crucial for initiating monocytes induced immune responses by relaying cytokines signaling. However, the role of this pathway in modulating the communication between monocytes and Th cells in the pathogenesis of multiple sclerosis (MS) is unclear. Here, we show that the JAK1/2/3 and STAT1/3/5/6 subtypes involved in the demyelination mediated by the differentiation of pathological Th1 and Th17 and the CNS-infiltrating inflammatory monocytes in experimental autoimmune encephalomyelitis (EAE), a model for MS. JAK inhibition prevented the CNS-infiltrating CCR2-dependent Ly6Chi monocytes and monocyte-derived dendritic cells in EAE mice. In parallel, the proportion of GM-CSF+CD4+ T cells and GM-CSF secretion were decreased in pathological Th17 cells by JAK inhibition, which in turns converted CNS-invading monocytes into antigen-presenting cells to mediate tissue damage. Together, our data highlight the therapeutic potential of JAK inhibition in treating EAE by blocking the GM-CSF-driven inflammatory signature of monocytes.
Collapse
Affiliation(s)
| | | | - Gaona Shi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yu Zhou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yazi Wei
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lei Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lan Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Tiantai Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
11
|
Alsaad AMS, Ansari MA, Nadeem A, Attia SM, Bakheet SA, Alomar HA, Ahmad SF. Histamine H4 Receptor Agonist, 4-Methylhistamine, Aggravates Disease Progression and Promotes Pro-Inflammatory Signaling in B Cells in an Experimental Autoimmune Encephalomyelitis Mouse Model. Int J Mol Sci 2023; 24:12991. [PMID: 37629172 PMCID: PMC10455358 DOI: 10.3390/ijms241612991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
We sought to assess the impact of 4-Methylhistamine (4-MeH), a specific agonist targeting the Histamine H4 Receptor (H4R), on the progression of experimental autoimmune encephalomyelitis (EAE) and gain insight into the underlying mechanism. EAE is a chronic autoimmune, inflammatory, and neurodegenerative disease of the central nervous system (CNS) characterized by demyelination, axonal damage, and neurodegeneration. Over the past decade, pharmacological research into the H4R has gained significance in immune and inflammatory disorders. For this study, Swiss Jim Lambert EAE mice were treated with 4-MeH (30 mg/kg/day) via intraperitoneal administration from days 14 to 42, and the control group was treated with a vehicle. Subsequently, we evaluated the clinical scores. In addition, flow cytometry was employed to estimate the impact of 4-Methylhistamine (4-MeH) on NF-κB p65, GM-CSF, MCP-1, IL-6, and TNF-α within CD19+ and CXCR5+ spleen B cells. Additionally, we investigated the effect of 4-MeH on the mRNA expression levels of Nf-κB p65, Gmcsf, Mcp1, Il6, and Tnfα in the brain of mice using RT-PCR. Notably, the clinical scores of EAE mice treated with 4-MeH showed a significant increase compared with those treated with the vehicle. The percentage of cells expressing CD19+NF-κB p65+, CXCR5+NF-κB p65+, CD19+GM-CSF+, CXCR5+GM-CSF+, CD19+MCP-1+, CXCR5+MCP-1+, CD19+IL-6+, CXCR5+IL-6+, CD19+TNF-α+, and CXCR5+TNF-α+ exhibited was more pronounced in 4-MeH-treated EAE mice when compared to vehicle-treated EAE mice. Moreover, the administration of 4-MeH led to increased expression of NfκB p65, Gmcsf, Mcp1, Il6, and Tnfα mRNA in the brains of EAE mice. This means that the H4R agonist promotes pro-inflammatory mediators aggravating EAE symptoms. Our results indicate the harmful role of H4R agonists in the pathogenesis of MS in an EAE mouse model.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
12
|
Kartjito MS, Yosia M, Wasito E, Soloan G, Agussalim AF, Basrowi RW. Defining the Relationship of Gut Microbiota, Immunity, and Cognition in Early Life-A Narrative Review. Nutrients 2023; 15:2642. [PMID: 37375546 DOI: 10.3390/nu15122642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/22/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Recently, the immune system has been identified as one of the possible main bridges which connect the gut-brain axis. This review aims to examine available evidence on the microbiota-immunity-cognitive relationship and its possible effects on human health early in life. This review was assembled by compiling and analyzing various literature and publications that document the gut microbiota-immune system-cognition interaction and its implications in the pediatric population. This review shows that the gut microbiota is a pivotal component of gut physiology, with its development being influenced by a variety of factors and, in return, supports the development of overall health. Findings from current research focus on the complex relationship between the central nervous system, gut (along with gut microbiota), and immune cells, highlighting the importance of maintaining a balanced interaction among these systems for preserving homeostasis, and demonstrating the influence of gut microbes on neurogenesis, myelin formation, the potential for dysbiosis, and alterations in immune and cognitive functions. While limited, evidence shows how gut microbiota affects innate and adaptive immunity as well as cognition (through HPA axis, metabolites, vagal nerve, neurotransmitter, and myelination).
Collapse
Affiliation(s)
| | - Mikhael Yosia
- Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Erika Wasito
- Medical and Science Affairs Division, Danone Specialized Nutrition Indonesia, Jakarta 12950, Indonesia
| | - Garry Soloan
- Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | | | - Ray Wagiu Basrowi
- Medical and Science Affairs Division, Danone Specialized Nutrition Indonesia, Jakarta 12950, Indonesia
| |
Collapse
|
13
|
Freer M, Darling N, Goncalves K, Mills KJ, Przyborski S. Development of a mammalian neurosensory full-thickness skin equivalent and its application to screen sensitizing stimuli. Bioeng Transl Med 2023; 8:e10484. [PMID: 37206205 PMCID: PMC10189474 DOI: 10.1002/btm2.10484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/06/2022] [Accepted: 12/21/2022] [Indexed: 01/04/2023] Open
Abstract
Human skin equivalents (HSEs) are an increasingly popular research tool due to limitations associated with animal testing for dermatological research. They recapitulate many aspects of skin structure and function, however, many only contain two basic cell types to model dermal and epidermal compartments, which limits their application. We describe advances in the field skin tissue modeling to produce a construct containing sensory-like neurons that is responsive to known noxious stimuli. Through incorporation of mammalian sensory-like neurons, we were able to recapitulate aspects of the neuroinflammatory response including secretion of substance P and a range of pro-inflammatory cytokines in response to a well-characterized neurosensitizing agent: capsaicin. We observed that neuronal cell bodies reside in the upper dermal compartment with neurites extending toward the keratinocytes of the stratum basale where they exist in close proximity to one another. These data suggest that we are able to model aspects of the neuroinflammatory response that occurs during exposure to dermatological stimuli including therapeutics and cosmetics. We propose that this skin construct can be considered a platform technology with a wide range of applications including screening of actives, therapeutics, modeling of inflammatory skin diseases, and fundamental approaches to probe underlying cell and molecular mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Stefan Przyborski
- Department of BiosciencesDurham UniversityDurhamUK
- Reprocell Europe LtdGlasgowUK
| |
Collapse
|
14
|
Wang C, Zhou Y, Feinstein A. Neuro-immune crosstalk in depressive symptoms of multiple sclerosis. Neurobiol Dis 2023; 177:106005. [PMID: 36680805 DOI: 10.1016/j.nbd.2023.106005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Depressive disorders can occur in up to 50% of people with multiple sclerosis in their lifetime. If left untreated, comorbid major depressive disorders may not spontaneously remit and is associated with an increased morbidity and mortality. Conversely, epidemiological evidence supports increased psychiatric visit as a significant prodromal event prior to diagnosis of MS. Are there common molecular pathways that contribute to the co-development of MS and psychiatric illnesses? We discuss immune cells that are dysregulated in MS and how such dysregulation can induce or protect against depressive symptoms. This is not meant to be a comprehensive review of all molecular pathways but rather a framework to guide future investigations of immune responses in depressed versus euthymic people with MS. Currently, there is weak evidence supporting the use of antidepressant medication in comorbid MS patients. It is our hope that by better understanding the neuroimmune crosstalk in the context of depression in MS, we can enhance the potential for future therapeutic options.
Collapse
Affiliation(s)
- Chao Wang
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Yulin Zhou
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Anthony Feinstein
- Department of Psychiatry, Sunnybrook Health Sciences Centre and University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
15
|
Pant H, Hercus TR, Tumes DJ, Yip KH, Parker MW, Owczarek CM, Lopez AF, Huston DP. Translating the biology of β common receptor-engaging cytokines into clinical medicine. J Allergy Clin Immunol 2023; 151:324-344. [PMID: 36424209 DOI: 10.1016/j.jaci.2022.09.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/16/2022] [Accepted: 09/29/2022] [Indexed: 11/23/2022]
Abstract
The family of cytokines that comprises IL-3, IL-5, and GM-CSF was discovered over 30 years ago, and their biological activities and resulting impact in clinical medicine has continued to expand ever since. Originally identified as bone marrow growth factors capable of acting on hemopoietic progenitor cells to induce their proliferation and differentiation into mature blood cells, these cytokines are also recognized as key mediators of inflammation and the pathobiology of diverse immunologic diseases. This increased understanding of the functional repertoire of IL-3, IL-5, and GM-CSF has led to an explosion of interest in modulating their functions for clinical management. Key to the successful clinical translation of this knowledge is the recognition that these cytokines act by engaging distinct dimeric receptors and that they share a common signaling subunit called β-common or βc. The structural determination of how IL-3, IL-5, and GM-CSF interact with their receptors and linking this to their differential biological functions on effector cells has unveiled new paradigms of cell signaling. This knowledge has paved the way for novel mAbs and other molecules as selective or pan inhibitors for use in different clinical settings.
Collapse
Affiliation(s)
- Harshita Pant
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia; Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Timothy R Hercus
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia
| | - Damon J Tumes
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia
| | - Kwok Ho Yip
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia
| | - Michael W Parker
- Bio 21 Institute, The University of Melbourne, Melbourne, Australia; St Vincent's Institute of Medical Research, Melbourne, Australia
| | | | - Angel F Lopez
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia; Adelaide Medical School, University of Adelaide, Adelaide, Australia.
| | - David P Huston
- Texas A&M University School of Medicine, Houston, Tex; Houston Methodist Hospital and Research Institute, Houston, Tex.
| |
Collapse
|
16
|
Sharma S, Borski C, Hanson J, Garcia MA, Link CD, Hoeffer C, Chatterjee A, Nagpal P. Identifying an Optimal Neuroinflammation Treatment Using a Nanoligomer Discovery Engine. ACS Chem Neurosci 2022; 13:3247-3256. [PMID: 36410860 DOI: 10.1021/acschemneuro.2c00365] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Acute activation of innate immune response in the brain, or neuroinflammation, protects this vital organ from a range of external pathogens and promotes healing after traumatic brain injury. However, chronic neuroinflammation leading to the activation of immune cells like microglia and astrocytes causes damage to the nervous tissue, and it is causally linked to a range of neurodegenerative diseases such as Alzheimer's diseases (AD), Multiple Sclerosis (MS), Parkinson's disease (PD), and many others. While neuroinflammation is a key target for a range of neuropathological diseases, there is a lack of effective countermeasures to tackle it, and existing experimental therapies require fairly invasive intracerebral and intrathecal delivery due to difficulty associated with the therapeutic crossover between the blood-brain barrier, making such treatments impractical to treat neuroinflammation long-term. Here, we present the development of an optimal neurotherapeutic using our Nanoligomer Discovery Engine, by screening downregulation of several proinflammatory cytokines (e.g., Interleukin-1β or IL-1β, tumor necrosis factor-alpha or TNF-α, TNF receptor 1 or TNFR1, Interleukin 6 or IL-6), inflammasomes (e.g., NLRP1), key transcription factors (e.g., nuclear factor kappa-B or NF-κβ) and their combinations, as upstream regulators and canonical pathway targets, to identify and validate the best-in-class treatment. Using our high-throughput drug discovery, target validation, and lead molecule identification via a bioinformatics and artificial intelligence-based ranking method to design sequence-specific peptide molecules to up- or downregulate gene expression of the targeted gene at will, we used our discovery engine to perturb and identify most effective upstream regulators and canonical pathways for therapeutic intervention to reverse neuroinflammation. The lead neurotherapeutic was a combination of Nanoligomers targeted to NF-κβ (SB.201.17D.8_NF-κβ1) and TNFR1 (SB.201.18D.6_TNFR1), which were identified using in vitro cell-based screening in donor-derived human astrocytes and further validated in vivo using a mouse model of lipopolysaccharide (LPS)-induced neuroinflammation. The combination treatment SB_NI_111 was delivered without any special formulation using a simple intraperitoneal injection of low dose (5 mg/kg) and was found to significantly suppress the expression of LPS-induced neuroinflammation in mouse hippocampus. These results point to the broader applicability of this approach towards the development of therapies for chronic neuroinflammation-linked neurodegenerative diseases, sleep countermeasures, and others, and the potential for further investigation of the lead neurotherapeutic molecule as reversible gene therapy.
Collapse
Affiliation(s)
- Sadhana Sharma
- Sachi Bioworks, Colorado Technology Center, 685 S Arthur AvenueLouisville, Colorado 80027, United States
| | - Curtis Borski
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado 80309, United States.,Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Jessica Hanson
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado 80309, United States.,Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Micklaus A Garcia
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Christopher D Link
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Charles Hoeffer
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado 80309, United States.,Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Anushree Chatterjee
- Sachi Bioworks, Colorado Technology Center, 685 S Arthur AvenueLouisville, Colorado 80027, United States
| | - Prashant Nagpal
- Sachi Bioworks, Colorado Technology Center, 685 S Arthur AvenueLouisville, Colorado 80027, United States
| |
Collapse
|
17
|
Nguyen TL, Choi Y, Im J, Shin H, Phan NM, Kim MK, Choi SW, Kim J. Immunosuppressive biomaterial-based therapeutic vaccine to treat multiple sclerosis via re-establishing immune tolerance. Nat Commun 2022; 13:7449. [PMID: 36460677 PMCID: PMC9718828 DOI: 10.1038/s41467-022-35263-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 11/25/2022] [Indexed: 12/04/2022] Open
Abstract
Current therapies for autoimmune diseases, such as multiple sclerosis (MS), induce broad suppression of the immune system, potentially promoting opportunistic infections. Here, we report an immunosuppressive biomaterial-based therapeutic vaccine carrying self-antigen and tolerance-inducing inorganic nanoparticles to treat experimental autoimmune encephalomyelitis (EAE), a mouse model mimicking human MS. Immunization with self-antigen-loaded mesoporous nanoparticles generates Foxp3+ regulatory T-cells in spleen and systemic immune tolerance in EAE mice, reducing central nervous system-infiltrating antigen-presenting cells (APCs) and autoreactive CD4+ T-cells. Introducing reactive oxygen species (ROS)-scavenging cerium oxide nanoparticles (CeNP) to self-antigen-loaded nanovaccine additionally suppresses activation of APCs and enhances antigen-specific immune tolerance, inducing recovery in mice from complete paralysis at the late, chronic stage of EAE, which shows similarity to chronic human MS. This study clearly shows that the ROS-scavenging capability of catalytic inorganic nanoparticles could be utilized to enhance tolerogenic features in APCs, leading to antigen-specific immune tolerance, which could be exploited in treating MS.
Collapse
Affiliation(s)
- Thanh Loc Nguyen
- grid.264381.a0000 0001 2181 989XSchool of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419 Republic of Korea
| | - Youngjin Choi
- grid.264381.a0000 0001 2181 989XSchool of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419 Republic of Korea ,grid.35541.360000000121053345Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792 Republic of Korea
| | - Jihye Im
- grid.264381.a0000 0001 2181 989XSchool of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419 Republic of Korea
| | - Hyunsu Shin
- grid.264381.a0000 0001 2181 989XSchool of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419 Republic of Korea
| | - Ngoc Man Phan
- grid.264381.a0000 0001 2181 989XSchool of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419 Republic of Korea
| | - Min Kyung Kim
- grid.264381.a0000 0001 2181 989XDepartment of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Seoul, 06355 Republic of Korea
| | - Seung Woo Choi
- grid.264381.a0000 0001 2181 989XDepartment of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Seoul, 06355 Republic of Korea ,grid.412480.b0000 0004 0647 3378Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, 13620 Republic of Korea
| | - Jaeyun Kim
- grid.264381.a0000 0001 2181 989XSchool of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419 Republic of Korea ,grid.264381.a0000 0001 2181 989XDepartment of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Seoul, 06355 Republic of Korea ,grid.264381.a0000 0001 2181 989XBiomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon, 16419 Republic of Korea ,grid.264381.a0000 0001 2181 989XInstitute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon, 16419 Republic of Korea
| |
Collapse
|
18
|
Mundt S, Greter M, Becher B. The CNS mononuclear phagocyte system in health and disease. Neuron 2022; 110:3497-3512. [PMID: 36327896 DOI: 10.1016/j.neuron.2022.10.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/21/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022]
Abstract
CNS-resident macrophages-including parenchymal microglia and border-associated macrophages (BAMs)-contribute to neuronal development and health, vascularization, and tissue integrity at steady state. Border-patrolling mononuclear phagocytes such as dendritic cells and monocytes confer important immune functions to the CNS, protecting it from pathogenic threats including aberrant cell growth and brain malignancies. Even though we have learned much about the contribution of lymphocytes to CNS pathologies, a better understanding of differential roles of tissue-resident and -invading phagocytes is slowly emerging. In this perspective, we propose that in CNS neuroinflammatory diseases, tissue-resident macrophages (TRMs) contribute to the clearing of debris and resolution of inflammation, whereas blood-borne phagocytes are drivers of immunopathology. We discuss the remaining challenges to resolve which specialized mononuclear phagocyte populations are driving or suppressing immune effector function, thereby potentially dictating the outcome of autoimmunity or brain cancer.
Collapse
Affiliation(s)
- Sarah Mundt
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Melanie Greter
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
19
|
Proinflammatory cytokines and their receptors as druggable targets to alleviate pathological pain. Pain 2022; 163:S79-S98. [DOI: 10.1097/j.pain.0000000000002737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/14/2022] [Indexed: 02/07/2023]
|
20
|
Rasouli J, Casella G, Zhang W, Xiao D, Kumar G, Fortina P, Zhang GX, Ciric B, Rostami A. Transcription Factor RUNX3 Mediates Plasticity of ThGM Cells Toward Th1 Phenotype. Front Immunol 2022; 13:912583. [PMID: 35860266 PMCID: PMC9289370 DOI: 10.3389/fimmu.2022.912583] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
GM-CSF-producing T helper (Th) cells play a crucial role in the pathogenesis of autoimmune diseases such as multiple sclerosis (MS). Recent studies have identified a distinct population of GM-CSF-producing Th cells, named ThGM cells, that also express cytokines TNF, IL-2, and IL-3, but lack expression of master transcription factors (TF) and signature cytokines of commonly recognized Th cell lineages. ThGM cells are highly encephalitogenic in a mouse model of MS, experimental autoimmune encephalomyelitis (EAE). Similar to Th17 cells, in response to IL-12, ThGM cells upregulate expression of T-bet and IFN-γ and switch their phenotype to Th1. Here we show that in addition to T-bet, TF RUNX3 also contributes to the Th1 switch of ThGM cells. T-bet-deficient ThGM cells in the CNS of mice with EAE had low expression of RUNX3, and knockdown of RUNX3 expression in ThGM cells abrogated the Th1-inducing effect of IL-12. Comparison of ThGM and Th1 cell transcriptomes showed that ThGM cells expressed a set of TFs known to inhibit the development of other Th lineages. Lack of expression of lineage-specific cytokines and TFs by ThGM cells, together with expression of TFs that inhibit the development of other Th lineages, suggests that ThGM cells are a non-polarized subset of Th cells with lineage characteristics.
Collapse
Affiliation(s)
- Javad Rasouli
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Giacomo Casella
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Weifeng Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Dan Xiao
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Gaurav Kumar
- Sidney Kimmel Cancer Center, Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Paolo Fortina
- Sidney Kimmel Cancer Center, Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Translation and Precision Medicine, Sapienza University, Rome, Italy
| | - Guang-Xian Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Bogoljub Ciric
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Abdolmohamad Rostami
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
- *Correspondence: Abdolmohamad Rostami,
| |
Collapse
|
21
|
Manenti S, Orrico M, Masciocchi S, Mandelli A, Finardi A, Furlan R. PD-1/PD-L Axis in Neuroinflammation: New Insights. Front Neurol 2022; 13:877936. [PMID: 35756927 PMCID: PMC9222696 DOI: 10.3389/fneur.2022.877936] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/29/2022] [Indexed: 12/27/2022] Open
Abstract
The approval of immune checkpoint inhibitors (ICIs) by the Food and Drug Administration (FDA) led to an improvement in the treatment of several types of cancer. The main targets of these drugs are cytotoxic T-lymphocyte antigen 4 (CTLA-4) and programmed cell death protein-1/programmed death-ligand 1 pathway (PD-1/PD-L1), which are important inhibitory molecules for the immune system. Besides being generally safer than common chemotherapy, the use of ICIs has been associated with several immune-related adverse effects (irAEs). Although rare, neurological adverse effects are reported within the irAEs in clinical trials, particularly in patients treated with anti-PD-1 antibodies or a combination of both anti-CTLA-4 and PD-1 drugs. The observations obtained from clinical trials suggest that the PD-1 axis may play a remarkable role in the regulation of neuroinflammation. Moreover, numerous studies in preclinical models have demonstrated the involvement of PD-1 in several neurological disorders. However, a comprehensive understanding of these cellular mechanisms remains elusive. Our review aims to summarize the most recent evidence concerning the regulation of neuroinflammation through PD-1/PD-L signaling, focusing on cell populations that are involved in this pathway.
Collapse
Affiliation(s)
- Susanna Manenti
- Clinical Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Mario Orrico
- Clinical Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Stefano Masciocchi
- Neuroimmunology Laboratory and Research Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Alessandra Mandelli
- Clinical Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Annamaria Finardi
- Clinical Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Roberto Furlan
- Clinical Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
22
|
Piper C, Hainstock E, Yin-Yuan C, Chen Y, Khatun A, Kasmani MY, Evans J, Miller JA, Gorski J, Cui W, Drobyski WR. Single-cell immune profiling reveals a developmentally distinct CD4+ GM-CSF+ T-cell lineage that induces GI tract GVHD. Blood Adv 2022; 6:2791-2804. [PMID: 35015822 PMCID: PMC9092418 DOI: 10.1182/bloodadvances.2021006084] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/29/2021] [Indexed: 11/20/2022] Open
Abstract
Gastrointestinal (GI) tract involvement is a major determinant for subsequent morbidity and mortality arising during graft-versus-host disease (GVHD). CD4+ T cells that produce granulocyte-macrophage colony stimulating factor (GM-CSF) have emerged as central mediators of inflammation in this tissue site as GM-CSF serves as a critical cytokine link between the adaptive and innate arms of the immune system. However, cellular heterogeneity within the CD4+ GM-CSF+ T-cell population due to the concurrent production of other inflammatory cytokines has raised questions as to whether these cells have a common ontology or if a unique CD4+ GM-CSF+ subset exists that differs from other defined T helper subtypes. Using single-cell RNA sequencing analysis (scRNAseq), we identified two CD4+ GM-CSF+ T-cell populations that arose during GVHD and were distinguishable according to the presence or absence of interferon-γ (IFN-γ) coexpression. CD4+ GM-CSF+ IFN-γ- T cells, which emerged preferentially in the colon, had a distinct transcriptional profile, used unique gene regulatory networks, and possessed a nonoverlapping T-cell receptor repertoire compared with CD4+ GM-CSF+ IFN-γ+ T cells as well as all other transcriptionally defined CD4+ T-cell populations in the colon. Functionally, this CD4+ GM-CSF+ T-cell population contributed to pathologic damage in the GI tract that was critically dependent on signaling through the interleukin-17 (IL-7) receptor but was independent of type 1 interferon signaling. Thus, these studies help to unravel heterogeneity within CD4+ GM-CSF+ T cells that arise during GVHD and define a developmentally distinct colitogenic T helper subtype GM-CSF+ subset that mediates immunopathology.
Collapse
Affiliation(s)
- Clint Piper
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Emma Hainstock
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Cheng Yin-Yuan
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Yao Chen
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
- Blood Research Institute, Versiti, Milwaukee, WI; and
| | - Achia Khatun
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
- Blood Research Institute, Versiti, Milwaukee, WI; and
| | - Moujtaba Y. Kasmani
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
- Blood Research Institute, Versiti, Milwaukee, WI; and
| | | | | | - Jack Gorski
- Blood Research Institute, Versiti, Milwaukee, WI; and
| | - Weiguo Cui
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
- Blood Research Institute, Versiti, Milwaukee, WI; and
| | - William R. Drobyski
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
23
|
Silberberg E, Filep JG, Ariel A. Weathering the Storm: Harnessing the Resolution of Inflammation to Limit COVID-19 Pathogenesis. Front Immunol 2022; 13:863449. [PMID: 35615359 PMCID: PMC9124752 DOI: 10.3389/fimmu.2022.863449] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/22/2022] [Indexed: 12/13/2022] Open
Abstract
The resolution of inflammation is a temporally and spatially coordinated process that in its innate manifestations, primarily involves neutrophils and macrophages. The shutdown of infection or injury-induced acute inflammation requires termination of neutrophil accumulation within the affected sites, neutrophil demise, and clearance by phagocytes (efferocytosis), such as tissue-resident and monocyte-derived macrophages. This must be followed by macrophage reprogramming from the inflammatory to reparative and consequently resolution-promoting phenotypes and the production of resolution-promoting lipid and protein mediators that limit responses in various cell types and promote tissue repair and return to homeostatic architecture and function. Recent studies suggest that these events, and macrophage reprogramming to pro-resolving phenotypes in particular, are not only important in the acute setting, but might be paramount in limiting chronic inflammation, autoimmunity, and various uncontrolled cytokine-driven pathologies. The SARS-CoV-2 (COVID-19) pandemic has caused a worldwide health and economic crisis. Severe COVID-19 cases that lead to high morbidity are tightly associated with an exuberant cytokine storm that seems to trigger shock-like pathologies, leading to vascular and multiorgan failures. In other cases, the cytokine storm can lead to diffuse alveolar damage that results in acute respiratory distress syndrome (ARDS) and lung failure. Here, we address recent advances on effectors in the resolution of inflammation and discuss how pro-resolution mechanisms with particular emphasis on macrophage reprogramming, might be harnessed to limit the universal COVID-19 health threat.
Collapse
Affiliation(s)
- Esther Silberberg
- Department of Biology and Human Biology, University of Haifa, Haifa, Israel
| | - János G. Filep
- Department of Pathology and Cell Biology, University of Montreal, Montreal, QC, Canada
- Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC, Canada
- *Correspondence: Amiram Ariel, ; János G. Filep,
| | - Amiram Ariel
- Department of Biology and Human Biology, University of Haifa, Haifa, Israel
- *Correspondence: Amiram Ariel, ; János G. Filep,
| |
Collapse
|
24
|
Ryu SH, Shin HS, Eum HH, Park JS, Choi W, Na HY, In H, Kim TG, Park S, Hwang S, Sohn M, Kim ED, Seo KY, Lee HO, Lee MG, Chu MK, Park CG. Granulocyte Macrophage-Colony Stimulating Factor Produces a Splenic Subset of Monocyte-Derived Dendritic Cells That Efficiently Polarize T Helper Type 2 Cells in Response to Blood-Borne Antigen. Front Immunol 2022; 12:767037. [PMID: 35069539 PMCID: PMC8778578 DOI: 10.3389/fimmu.2021.767037] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/06/2021] [Indexed: 12/24/2022] Open
Abstract
Dendritic cells (DCs) are key antigen-presenting cells that prime naive T cells and initiate adaptive immunity. Although the genetic deficiency and transgenic overexpression of granulocyte macrophage-colony stimulating factor (GM-CSF) signaling were reported to influence the homeostasis of DCs, the in vivo development of DC subsets following injection of GM-CSF has not been analyzed in detail. Among the treatment of mice with different hematopoietic cytokines, only GM-CSF generates a distinct subset of XCR1-33D1- DCs which make up the majority of DCs in the spleen after three daily injections. These GM-CSF-induced DCs (GMiDCs) are distinguished from classical DCs (cDCs) in the spleen by their expression of CD115 and CD301b and by their superior ability to present blood-borne antigen and thus to stimulate CD4+ T cells. Unlike cDCs in the spleen, GMiDCs are exceptionally effective to polarize and expand T helper type 2 (Th2) cells and able to induce allergic sensitization in response to blood-borne antigen. Single-cell RNA sequencing analysis and adoptive cell transfer assay reveal the sequential differentiation of classical monocytes into pre-GMiDCs and GMiDCs. Interestingly, mixed bone marrow chimeric mice of Csf2rb+/+ and Csf2rb-/- demonstrate that the generation of GMiDCs necessitates the cis expression of GM-CSF receptor. Besides the spleen, GMiDCs are generated in the CCR7-independent resident DCs of the LNs and in some peripheral tissues with GM-CSF treatment. Also, small but significant numbers of GMiDCs are generated in the spleen and other tissues during chronic allergic inflammation. Collectively, our present study identifies a splenic subset of CD115hiCD301b+ GMiDCs that possess a strong capacity to promote Th2 polarization and allergic sensitization against blood-borne antigen.
Collapse
Affiliation(s)
- Seul Hye Ryu
- Laboratory of Immunology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea.,Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences, Ewha Womans University, Seoul, South Korea
| | - Hyun Soo Shin
- Laboratory of Immunology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Hye Hyeon Eum
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Seoul, South Korea.,Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Ji Soo Park
- Laboratory of Immunology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Wanho Choi
- Laboratory of Immunology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Hye Young Na
- Laboratory of Immunology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.,Department of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyunju In
- Laboratory of Immunology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Tae-Gyun Kim
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Sejung Park
- Laboratory of Immunology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Soomin Hwang
- Laboratory of Immunology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Moah Sohn
- Laboratory of Immunology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Eun-Do Kim
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Kyoung Yul Seo
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Hae-Ock Lee
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Seoul, South Korea.,Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Min-Geol Lee
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Min Kyung Chu
- Department of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Chae Gyu Park
- Laboratory of Immunology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.,Therapeutic Antibody Research Center, Genuv Inc., Seoul, South Korea.,Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
25
|
IFNγ and GM-CSF control complementary differentiation programs in the monocyte-to-phagocyte transition during neuroinflammation. Nat Immunol 2022; 23:217-228. [DOI: 10.1038/s41590-021-01117-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 12/10/2021] [Indexed: 02/06/2023]
|
26
|
Cao W, Fan W, Wang F, Zhang Y, Wu G, Shi X, Shi JX, Gao F, Yan M, Guo R, Li Y, Li W, Du C, Jiang Z. GM-CSF impairs erythropoiesis by disrupting erythroblastic island formation via macrophages. J Transl Med 2022; 20:11. [PMID: 34980171 PMCID: PMC8721478 DOI: 10.1186/s12967-021-03214-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/22/2021] [Indexed: 02/08/2023] Open
Abstract
Anemia is a significant complication of chronic inflammation and may be related to dysregulated activities among erythroblastic island (EBI) macrophages. GM-CSF was reported to be upregulated and attracted as a therapeutic target in many inflammatory diseases. Among EBIs, we found that the GM-CSF receptor is preferentially and highly expressed among EBI macrophages but not among erythroblasts. GM-CSF treatment significantly decreases human EBI formation in vitro by decreasing the adhesion molecule expression of CD163. RNA-sequence analysis suggests that GM-CSF treatment impairs the supporting function of human EBI macrophages during erythropoiesis. GM-CSF treatment also polarizes human EBI macrophages from M2-like type to M1-like type. In addition, GM-CSF decreases mouse bone marrow (BM) erythroblasts as well as EBI macrophages, leading to a reduction in EBI numbers. In defining the molecular mechanism at work, we found that GM-CSF treatment significantly decreases the adhesion molecule expression of CD163 and Vcam1 in vivo. Importantly, GM-CSF treatment also decreases the phagocytosis rate of EBI macrophages in mouse BM as well as decreases the expression of the engulfment-related molecules Mertk, Axl, and Timd4. In addition, GM-CSF treatment polarizes mouse BM EBI macrophages from M2-like type to M1-like type. Thus, we document that GM-CSF impairs EBI formation in mice and humans. Our findings support that targeting GM-CSF or reprogramming EBI macrophages might be a novel strategy to treat anemia resulting from inflammatory diseases.
Collapse
Affiliation(s)
- Weijie Cao
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Wenjuan Fan
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Fang Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yinyin Zhang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Guanghua Wu
- The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xiaojing Shi
- Laboratory Animal Center, School of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jian Xiang Shi
- BGI College & Henan Institute of Medical and Pharmaceutical Sciences in Academy of Medical Science, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Fengcai Gao
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Meimei Yan
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, Henan, China
| | - Rong Guo
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yingmei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Wei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Laboratory Animal Center, School of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Chunyan Du
- Laboratory Animal Center, School of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Zhongxing Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
27
|
Gas6/TAM Signalling Negatively Regulates Inflammatory Induction of GM-CSF in Mouse Brain Microglia. Cells 2021; 10:cells10123281. [PMID: 34943789 PMCID: PMC8699038 DOI: 10.3390/cells10123281] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/17/2021] [Accepted: 11/21/2021] [Indexed: 12/16/2022] Open
Abstract
Microglia and astrocytes are the main CNS glial cells responsible for the neuroinflammatory response, where they release a plethora of cytokines into the CNS inflammatory milieu. The TAM (Tyro3, Axl, Mer) receptors and their main ligand Gas6 are regulators of this response, however, the underlying mechanisms remain to be determined. We investigated the ability of Gas6 to modulate the CNS glial inflammatory response to lipopolysaccharide (LPS), a strong pro-inflammatory agent, through a qPCR array that explored Toll-like receptor signalling pathway-associated genes in primary cultured mouse microglia. We identified the Csf2 gene, encoding granulocyte-macrophage colony-stimulating factor (GM-CSF), as a major Gas6 target gene whose induction by LPS was markedly blunted by Gas6. Both the Csf2 gene induction and the suppressive effect of Gas6 on this were emulated through measurement of GM-CSF protein release by cells. We found distinct profiles of GM-CSF induction in different glial cell types, with microglia being most responsive during inflammation. Also, Gas6 markedly inhibited the LPS-stimulated nuclear translocation of NF-κB p65 protein in microglia. These results illustrate microglia as a major resident CNS cellular source of GM-CSF as part of the neuroinflammatory response, and that Gas6/TAM signalling inhibits this response through suppression of NF-κB signalling.
Collapse
|
28
|
Abstract
Granulocyte macrophage-colony stimulating factor (GM-CSF) was originally identified as a growth factor for its ability to promote the proliferation and differentiation in vitro of bone marrow progenitor cells into granulocytes and macrophages. Many preclinical studies, using GM-CSF deletion or depletion approaches, have demonstrated that GM-CSF has a wide range of biological functions, including the mediation of inflammation and pain, indicating that it can be a potential target in many inflammatory and autoimmune conditions. This review provides a brief overview of GM-CSF biology and signaling, and summarizes the findings from preclinical models of a range of inflammatory and autoimmune disorders and the latest clinical trials targeting GM-CSF or its receptor in these disorders.
Collapse
Affiliation(s)
- Adrian A Achuthan
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050, Australia.
| | - Kevin M C Lee
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050, Australia
| | - John A Hamilton
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050, Australia; Australian Institute for Musculoskeletal Science, St Albans, Victoria 3021, Australia
| |
Collapse
|
29
|
Chen Z, Fan R, Liang J, Xiao Z, Dang J, Zhao J, Weng R, Zhu C, Zheng SG, Jiang Y. NFIL3 deficiency alleviates EAE through regulating different immune cell subsets. J Adv Res 2021; 39:225-235. [PMID: 35777910 PMCID: PMC9263648 DOI: 10.1016/j.jare.2021.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 10/19/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022] Open
Affiliation(s)
- Zhigang Chen
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, PR China; Department of Neurology, The Fifth Affiliated Hospital, Sun Yat-sen University, 52 Meihua East Road, Zhuhai, Guangdong 519000, PR China; Department of Clinical Immunology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, PR China
| | - Rong Fan
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, PR China; Department of General Intensive Care Unit of Lingnan Hospital, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, PR China
| | - Jie Liang
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, PR China
| | - Zexiu Xiao
- Department of Clinical Immunology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, PR China
| | - Junlong Dang
- Department of Clinical Immunology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, PR China
| | - Jun Zhao
- Department of Clinical Immunology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, PR China
| | - Ruihui Weng
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, PR China; Department of Neurology, The Third People's Hospital of Shenzhen, No. 29, Bulan Road, Longgang district, Shenzhen, Guangdong 518112, PR China
| | - Cansheng Zhu
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, PR China
| | - Song Guo Zheng
- Department of Clinical Immunology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, PR China.
| | - Ying Jiang
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, PR China.
| |
Collapse
|
30
|
Ghorbani S, Yong VW. The extracellular matrix as modifier of neuroinflammation and remyelination in multiple sclerosis. Brain 2021; 144:1958-1973. [PMID: 33889940 PMCID: PMC8370400 DOI: 10.1093/brain/awab059] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022] Open
Abstract
Remyelination failure contributes to axonal loss and progression of disability in multiple sclerosis. The failed repair process could be due to ongoing toxic neuroinflammation and to an inhibitory lesion microenvironment that prevents recruitment and/or differentiation of oligodendrocyte progenitor cells into myelin-forming oligodendrocytes. The extracellular matrix molecules deposited into lesions provide both an altered microenvironment that inhibits oligodendrocyte progenitor cells, and a fuel that exacerbates inflammatory responses within lesions. In this review, we discuss the extracellular matrix and where its molecules are normally distributed in an uninjured adult brain, specifically at the basement membranes of cerebral vessels, in perineuronal nets that surround the soma of certain populations of neurons, and in interstitial matrix between neural cells. We then highlight the deposition of different extracellular matrix members in multiple sclerosis lesions, including chondroitin sulphate proteoglycans, collagens, laminins, fibronectin, fibrinogen, thrombospondin and others. We consider reasons behind changes in extracellular matrix components in multiple sclerosis lesions, mainly due to deposition by cells such as reactive astrocytes and microglia/macrophages. We next discuss the consequences of an altered extracellular matrix in multiple sclerosis lesions. Besides impairing oligodendrocyte recruitment, many of the extracellular matrix components elevated in multiple sclerosis lesions are pro-inflammatory and they enhance inflammatory processes through several mechanisms. However, molecules such as thrombospondin-1 may counter inflammatory processes, and laminins appear to favour repair. Overall, we emphasize the crosstalk between the extracellular matrix, immune responses and remyelination in modulating lesions for recovery or worsening. Finally, we review potential therapeutic approaches to target extracellular matrix components to reduce detrimental neuroinflammation and to promote recruitment and maturation of oligodendrocyte lineage cells to enhance remyelination.
Collapse
Affiliation(s)
- Samira Ghorbani
- Hotchkiss Brain Institute and the Department of Clinical Neuroscience, University of Calgary, Calgary, Alberta, Canada
| | - V Wee Yong
- Hotchkiss Brain Institute and the Department of Clinical Neuroscience, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
31
|
Abstract
The CNS vasculature tightly regulates the passage of circulating molecules and leukocytes into the CNS. In the neuroinflammatory disease multiple sclerosis (MS), these regulatory mechanisms fail, and autoreactive T cells invade the CNS via blood vessels, leading to neurological deficits depending on where the lesions are located. The region-specific mechanisms directing the development of such lesions are not well understood. In this study, we investigated whether pericytes regulate CNS endothelial cell permissiveness toward leukocyte trafficking into the brain parenchyma. By using a pericyte-deficient mouse model, we show that intrinsic changes in the brain vasculature due to absence of pericytes facilitate the neuroinflammatory cascade and can influence the localization of the neuroinflammatory lesions. Pericytes regulate the development of organ-specific characteristics of the brain vasculature such as the blood–brain barrier (BBB) and astrocytic end-feet. Whether pericytes are involved in the control of leukocyte trafficking in the adult central nervous system (CNS), a process tightly regulated by CNS vasculature, remains elusive. Using adult pericyte-deficient mice (Pdgfbret/ret), we show that pericytes limit leukocyte infiltration into the CNS during homeostasis and autoimmune neuroinflammation. The permissiveness of the vasculature toward leukocyte trafficking in Pdgfbret/ret mice inversely correlates with vessel pericyte coverage. Upon induction of experimental autoimmune encephalomyelitis (EAE), pericyte-deficient mice die of severe atypical EAE, which can be reversed with fingolimod, indicating that the mortality is due to the massive influx of immune cells into the brain. Additionally, administration of anti-VCAM-1 and anti–ICAM-1 antibodies reduces leukocyte infiltration and diminishes the severity of atypical EAE symptoms of Pdgfbret/ret mice, indicating that the proinflammatory endothelium due to absence of pericytes facilitates exaggerated neuroinflammation. Furthermore, we show that the presence of myelin peptide-specific peripheral T cells in Pdgfbret/ret;2D2tg mice leads to the development of spontaneous neurological symptoms paralleled by the massive influx of leukocytes into the brain. These findings indicate that intrinsic changes within brain vasculature can promote the development of a neuroinflammatory disorder.
Collapse
|
32
|
Pfeil J, Simonetti M, Lauer U, von Thülen B, Durek P, Poulsen C, Pawlowska J, Kröger M, Krähmer R, Leenders F, Hoffmann U, Hamann A. Prevention of EAE by tolerogenic vaccination with PEGylated antigenic peptides. Ther Adv Chronic Dis 2021; 12:20406223211037830. [PMID: 34408824 PMCID: PMC8366199 DOI: 10.1177/20406223211037830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 07/13/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Therapeutic treatment options for chronic autoimmune disorders such as multiple sclerosis (MS) rely largely on the use of non-specific immunosuppressive drugs, which are not able to cure the disease. Presently, approaches to induce antigen-specific tolerance as a therapeutic approach; for example, by peptide-based tolerogenic 'inverse' vaccines have regained great interest. We have previously shown that coupling of peptides to carriers can enhance their capacity to induce regulatory T cells in vivo. METHOD In this present study, we investigated whether the tolerogenic potential of immunodominant myelin T-cell epitopes can be improved by conjugation to the synthetic carrier polyethylene glycol (PEG) in an experimental autoimmune encephalomyelitis (EAE) mouse model for chronic MS (MOG C57BL/6). RESULTS Preventive administration of the PEGylated antigenic peptide could strongly suppress the development of EAE, accompanied by reduced immune cell infiltration in the central nervous system (CNS). Depletion of regulatory T cells (Tregs) abrogated the protective effect indicating that Tregs play a crucial role in induction of antigen-specific tolerance in EAE. Treatment during the acute phase of disease was safe and did not induce immune activation. However, treatment at the peak of disease did not affect the disease course, suggesting that either induction of Tregs does not occur in the highly inflamed situation, or that the immune system is refractory to regulation in this condition. CONCLUSION PEGylation of antigenic peptides is an effective and feasible strategy to improve tolerogenic (Treg-inducing) peptide-based vaccines, but application for immunotherapy of overt disease might require modifications or combination therapies that simultaneously suppress effector mechanisms.
Collapse
Affiliation(s)
- Jennifer Pfeil
- Experimental Rheumatology, Deutsches Rheuma-Forschungszentrum, a Leibniz-Institute, Berlin, Germany
| | - Mario Simonetti
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin, Berlin, Germany
| | - Uta Lauer
- Experimental Rheumatology, Deutsches Rheuma-Forschungszentrum, a Leibniz-Institute, Berlin, Germany
| | | | - Pawel Durek
- Experimental Rheumatology, Deutsches Rheuma-Forschungszentrum, a Leibniz-Institute, Berlin, Germany
| | - Christina Poulsen
- Experimental Rheumatology, Deutsches Rheuma-Forschungszentrum, a Leibniz-Institute, Berlin, Germany
| | - Justyna Pawlowska
- Experimental Rheumatology, Deutsches Rheuma-Forschungszentrum, a Leibniz-Institute, Berlin, Germany
| | - Matthias Kröger
- Experimental Rheumatology, Deutsches Rheuma-Forschungszentrum, a Leibniz-Institute, Berlin, Germany
| | | | | | - Ute Hoffmann
- Experimental Rheumatology, Deutsches Rheuma-Forschungszentrum, a Leibniz-Institute, Berlin, Germany
| | - Alf Hamann
- Experimental Rheumatology, Deutsches Rheuma-Forschungszentrum Berlin, Charitéplatz 1, Berlin 10117, Germany
| |
Collapse
|
33
|
Abstract
Oligodendrocyte precursor cells (OPCs) retain the capacity to remyelinate axons upon demyelinating injury. However, mode of cell division and differentiation dynamics of individual OPCs in deep brain structures, such as the corpus callosum, remains unknown. Using in vivo two-photon imaging in a focal model of demyelination, we show that OPCs undergo several rounds of symmetric and asymmetric cell divisions before producing a subset of daughter cells that differentiates into myelinating oligodendrocytes. The data presented here characterize the behavior of OPC clones and delineate the cellular principles that lead to remyelination. Oligodendrocyte precursor cells (OPCs) retain the capacity to remyelinate axons in the corpus callosum (CC) upon demyelination. However, the dynamics of OPC activation, mode of cell division, migration, and differentiation on a single-cell level remain poorly understood due to the lack of longitudinal observations of individual cells within the injured brain. After inducing focal demyelination with lysophosphatidylcholin in the CC of adult mice, we used two-photon microscopy to follow for up to 2 mo OPCs and their differentiating progeny, genetically labeled through conditional recombination driven by the regulatory elements of the gene Achaete-scute homolog 1. OPCs underwent several rounds of symmetric and asymmetric cell divisions, producing a subset of daughter cells that differentiates into myelinating oligodendrocytes. While OPCs continue to proliferate, differentiation into myelinating oligodendrocytes declines with time, and death of OPC-derived daughter cells increases. Thus, chronic in vivo imaging delineates the cellular principles leading to remyelination in the adult brain, providing a framework for the development of strategies to enhance endogenous brain repair in acute and chronic demyelinating disease.
Collapse
|
34
|
Rasouli J, Casella G, Ishikawa LLW, Thome R, Boehm A, Ertel A, Melo-Silva CR, Mari ER, Porazzi P, Zhang W, Xiao D, Sigal LJ, Fortina P, Zhang GX, Rostami A, Ciric B. IFN-β Acts on Monocytes to Ameliorate CNS Autoimmunity by Inhibiting Proinflammatory Cross-Talk Between Monocytes and Th Cells. Front Immunol 2021; 12:679498. [PMID: 34149716 PMCID: PMC8213026 DOI: 10.3389/fimmu.2021.679498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/12/2021] [Indexed: 01/18/2023] Open
Abstract
IFN-β has been the treatment for multiple sclerosis (MS) for almost three decades, but understanding the mechanisms underlying its beneficial effects remains incomplete. We have shown that MS patients have increased numbers of GM-CSF+ Th cells in circulation, and that IFN-β therapy reduces their numbers. GM-CSF expression by myelin-specific Th cells is essential for the development of experimental autoimmune encephalomyelitis (EAE), an animal model of MS. These findings suggested that IFN-β therapy may function via suppression of GM-CSF production by Th cells. In the current study, we elucidated a feedback loop between monocytes and Th cells that amplifies autoimmune neuroinflammation, and found that IFN-β therapy ameliorates central nervous system (CNS) autoimmunity by inhibiting this proinflammatory loop. IFN-β suppressed GM-CSF production in Th cells indirectly by acting on monocytes, and IFN-β signaling in monocytes was required for EAE suppression. IFN-β increased IL-10 expression by monocytes, and IL-10 was required for the suppressive effects of IFN-β. IFN-β treatment suppressed IL-1β expression by monocytes in the CNS of mice with EAE. GM-CSF from Th cells induced IL-1β production by monocytes, and, in a positive feedback loop, IL-1β augmented GM-CSF production by Th cells. In addition to GM-CSF, TNF and FASL expression by Th cells was also necessary for IL-1β production by monocyte. IFN-β inhibited GM-CSF, TNF, and FASL expression by Th cells to suppress IL-1β secretion by monocytes. Overall, our study describes a positive feedback loop involving several Th cell- and monocyte-derived molecules, and IFN-β actions on monocytes disrupting this proinflammatory loop.
Collapse
MESH Headings
- Animals
- Antigen-Presenting Cells/immunology
- Antigen-Presenting Cells/metabolism
- Autoimmunity/drug effects
- Cell Communication/genetics
- Cell Communication/immunology
- Cytokines/metabolism
- Disease Models, Animal
- Disease Susceptibility/immunology
- Encephalomyelitis, Autoimmune, Experimental/etiology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Granulocyte-Macrophage Colony-Stimulating Factor/biosynthesis
- Interferon-beta/metabolism
- Interferon-beta/pharmacology
- Mice
- Mice, Knockout
- Monocytes/drug effects
- Monocytes/immunology
- Monocytes/metabolism
- T-Lymphocytes, Helper-Inducer/drug effects
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/metabolism
Collapse
Affiliation(s)
- Javad Rasouli
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Giacomo Casella
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | | | - Rodolfo Thome
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Alexandra Boehm
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Adam Ertel
- Sidney Kimmel Cancer Center, Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Carolina R. Melo-Silva
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Elisabeth R. Mari
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Patrizia Porazzi
- Sidney Kimmel Cancer Center, Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Weifeng Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Dan Xiao
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Luis J. Sigal
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Paolo Fortina
- Sidney Kimmel Cancer Center, Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Translation and Precision Medicine, Sapienza University, Rome, Italy
| | - Guang-Xian Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Abdolmohamad Rostami
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Bogoljub Ciric
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
35
|
Matejuk A, Vandenbark AA, Offner H. Cross-Talk of the CNS With Immune Cells and Functions in Health and Disease. Front Neurol 2021; 12:672455. [PMID: 34135852 PMCID: PMC8200536 DOI: 10.3389/fneur.2021.672455] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022] Open
Abstract
The immune system's role is much more than merely recognizing self vs. non-self and involves maintaining homeostasis and integrity of the organism starting from early development to ensure proper organ function later in life. Unlike other systems, the central nervous system (CNS) is separated from the peripheral immune machinery that, for decades, has been envisioned almost entirely as detrimental to the nervous system. New research changes this view and shows that blood-borne immune cells (both adaptive and innate) can provide homeostatic support to the CNS via neuroimmune communication. Neurodegeneration is mostly viewed through the lens of the resident brain immune populations with little attention to peripheral circulation. For example, cognition declines with impairment of peripheral adaptive immunity but not with the removal of microglia. Therapeutic failures of agents targeting the neuroinflammation framework (inhibiting immune response), especially in neurodegenerative disorders, call for a reconsideration of immune response contributions. It is crucial to understand cross-talk between the CNS and the immune system in health and disease to decipher neurodestructive and neuroprotective immune mechanisms for more efficient therapeutic strategies.
Collapse
Affiliation(s)
- Agata Matejuk
- Department of Immunology, Collegium Medicum, University of Zielona Góra, Zielona Góra, Poland
| | - Arthur A Vandenbark
- Neuroimmunology Research, VA Portland Health Care System, Portland, OR, United States.,Department of Neurology, Oregon Health and Science University, Portland, OR, United States.,Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, United States
| | - Halina Offner
- Neuroimmunology Research, VA Portland Health Care System, Portland, OR, United States.,Department of Neurology, Oregon Health and Science University, Portland, OR, United States.,Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
36
|
Weng WT, Kuo PC, Brown DA, Scofield BA, Furnas D, Paraiso HC, Wang PY, Yu IC, Yen JH. 4-Ethylguaiacol modulates neuroinflammation and Th1/Th17 differentiation to ameliorate disease severity in experimental autoimmune encephalomyelitis. J Neuroinflammation 2021; 18:110. [PMID: 33975618 PMCID: PMC8111955 DOI: 10.1186/s12974-021-02143-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/29/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a progressive autoimmune disease characterized by the accumulation of pathogenic inflammatory immune cells in the central nervous system (CNS) that subsequently causes focal inflammation, demyelination, axonal injury, and neuronal damage. Experimental autoimmune encephalomyelitis (EAE) is a well-established murine model that mimics the key features of MS. Presently, the dietary consumption of foods rich in phenols has been reported to offer numerous health benefits, including anti-inflammatory activity. One such compound, 4-ethylguaiacol (4-EG), found in various foods, is known to attenuate inflammatory immune responses. However, whether 4-EG exerts anti-inflammatory effects on modulating the CNS inflammatory immune responses remains unknown. Thus, in this study, we assessed the therapeutic effect of 4-EG in EAE using both chronic and relapsing-remitting animal models and investigated the immunomodulatory effects of 4-EG on neuroinflammation and Th1/Th17 differentiation in EAE. METHODS Chronic C57BL/6 EAE and relapsing-remitting SJL/J EAE were induced followed by 4-EG treatment. The effects of 4-EG on disease progression, peripheral Th1/Th17 differentiation, CNS Th1/Th17 infiltration, microglia (MG) activation, and blood-brain barrier (BBB) disruption in EAE were evaluated. In addition, the expression of MMP9, MMP3, HO-1, and Nrf2 was assessed in the CNS of C57BL/6 EAE mice. RESULTS Our results showed that 4-EG not only ameliorated disease severity in C57BL/6 chronic EAE but also mitigated disease progression in SJL/J relapsing-remitting EAE. Further investigations of the cellular and molecular mechanisms revealed that 4-EG suppressed MG activation, mitigated BBB disruption, repressed MMP3/MMP9 production, and inhibited Th1 and Th17 infiltration in the CNS of EAE. Furthermore, 4-EG suppressed Th1 and Th17 differentiation in the periphery of EAE and in vitro Th1 and Th17 cultures. Finally, we found 4-EG induced HO-1 expression in the CNS of EAE in vivo as well as in MG, BV2 cells, and macrophages in vitro. CONCLUSIONS Our work demonstrates that 4-EG confers protection against autoimmune disease EAE through modulating neuroinflammation and inhibiting Th1 and Th17 differentiation, suggesting 4-EG, a natural compound, could be potentially developed as a therapeutic agent for the treatment of MS/EAE.
Collapse
Affiliation(s)
- Wen-Tsan Weng
- Department of Microbiology and Immunology, Indiana University School of Medicine, 2101 E. Coliseum Boulevard, Fort Wayne, IN, 46805, USA
| | - Ping-Chang Kuo
- Department of Microbiology and Immunology, Indiana University School of Medicine, 2101 E. Coliseum Boulevard, Fort Wayne, IN, 46805, USA
| | - Dennis A Brown
- Department of Pharmaceutical Sciences, Manchester University College of Pharmacy, Natural and Health Sciences, Fort Wayne, IN, USA
| | - Barbara A Scofield
- Department of Microbiology and Immunology, Indiana University School of Medicine, 2101 E. Coliseum Boulevard, Fort Wayne, IN, 46805, USA
| | - Destin Furnas
- Department of Microbiology and Immunology, Indiana University School of Medicine, 2101 E. Coliseum Boulevard, Fort Wayne, IN, 46805, USA
| | - Hallel C Paraiso
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Fort Wayne, IN, USA
| | - Pei-Yu Wang
- Graduate Institute of Brain and Mind Science, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - I-Chen Yu
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Fort Wayne, IN, USA
| | - Jui-Hung Yen
- Department of Microbiology and Immunology, Indiana University School of Medicine, 2101 E. Coliseum Boulevard, Fort Wayne, IN, 46805, USA.
| |
Collapse
|
37
|
Comments on the ambiguity of selected surface markers, signaling pathways and omics profiles hampering the identification of myeloid-derived suppressor cells. Cell Immunol 2021; 364:104347. [PMID: 33838447 DOI: 10.1016/j.cellimm.2021.104347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022]
Abstract
Myeloid-derived suppressor cells (MDSC) are important immune-regulatory cells but their identification remains difficult. Here, we provide a critical view on selected surface markers, transcriptional and translational pathways commonly used to identify MDSC by specific, their developmental origin and new possibilities by transcriptional or proteomic profiling. Discrimination of MDSC from their non-suppressive counterparts is a prerequisite for the development of successful therapies. Understanding the switch mechanisms that direct granulocytic and monocytic development into a pro-inflammatory or anti-inflammatory direction will be crucial for therapeutic strategies. Manipulation of these myeloid checkpoints are exploited by tumors and pathogens, such as M. tuberculosis (Mtb), HIV or SARS-CoV-2, that induce MDSC for immune evasion. Thus, specific markers for MDSC identification may reveal also novel molecular candidates for therapeutic intervention at the level of MDSC.
Collapse
|
38
|
Mimouna S, Rollins DA, Shibu G, Tharmalingam B, Deochand DK, Chen X, Oliver D, Chinenov Y, Rogatsky I. Transcription cofactor GRIP1 differentially affects myeloid cell-driven neuroinflammation and response to IFN-β therapy. J Exp Med 2021; 218:e20192386. [PMID: 33045064 PMCID: PMC7555412 DOI: 10.1084/jem.20192386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 07/29/2020] [Accepted: 09/04/2020] [Indexed: 11/18/2022] Open
Abstract
Macrophages (MФ) and microglia (MG) are critical in the pathogenesis of multiple sclerosis (MS) and its mouse model, experimental autoimmune encephalomyelitis (EAE). Glucocorticoids (GCs) and interferon β (IFN-β) are frontline treatments for MS, and disrupting each pathway in mice aggravates EAE. Glucocorticoid receptor-interacting protein 1 (GRIP1) facilitates both GR and type I IFN transcriptional actions; hence, we evaluated the role of GRIP1 in neuroinflammation. Surprisingly, myeloid cell-specific loss of GRIP1 dramatically reduced EAE severity, immune cell infiltration of the CNS, and MG activation and demyelination specifically during the neuroinflammatory phase of the disease, yet also blunted therapeutic properties of IFN-β. MФ/MG transcriptome analyses at the bulk and single-cell levels revealed that GRIP1 deletion attenuated nuclear receptor, inflammatory and, interestingly, type I IFN pathways and promoted the persistence of a homeostatic MG signature. Together, these results uncover the multifaceted function of type I IFN in MS/EAE pathogenesis and therapy, and an unexpectedly permissive role of myeloid cell GRIP1 in neuroinflammation.
Collapse
Affiliation(s)
- Sanda Mimouna
- The David Z. Rosensweig Genomics Center, Hospital for Special Surgery Research Institute, New York, NY
| | - David A. Rollins
- The David Z. Rosensweig Genomics Center, Hospital for Special Surgery Research Institute, New York, NY
- Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY
| | - Gayathri Shibu
- The David Z. Rosensweig Genomics Center, Hospital for Special Surgery Research Institute, New York, NY
- Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY
| | - Bowranigan Tharmalingam
- The David Z. Rosensweig Genomics Center, Hospital for Special Surgery Research Institute, New York, NY
| | - Dinesh K. Deochand
- The David Z. Rosensweig Genomics Center, Hospital for Special Surgery Research Institute, New York, NY
| | - Xi Chen
- The David Z. Rosensweig Genomics Center, Hospital for Special Surgery Research Institute, New York, NY
- Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY
| | - David Oliver
- The David Z. Rosensweig Genomics Center, Hospital for Special Surgery Research Institute, New York, NY
| | - Yurii Chinenov
- The David Z. Rosensweig Genomics Center, Hospital for Special Surgery Research Institute, New York, NY
| | - Inez Rogatsky
- The David Z. Rosensweig Genomics Center, Hospital for Special Surgery Research Institute, New York, NY
- Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY
| |
Collapse
|
39
|
Arneth B. Contributions of T cells in multiple sclerosis: what do we currently know? J Neurol 2020; 268:4587-4593. [PMID: 33083867 DOI: 10.1007/s00415-020-10275-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is a complex autoimmune disorder characterized by neurologic dysfunction. The symptoms worsen as the disease progresses to the relapsing stage. AIM This study aimed to examine the role of T cells in MS pathogenesis. MATERIALS AND METHODS The review was performed based on articles obtained from PsycINFO, PubMed, Web of Science, and CINAHL. Search terms and phrases, such as "multiple sclerosis," "MS," "T cells," "development," "Dysregulated T cells," and "Effector T cells", were used to identify articles that could help explore the research topic. RESULTS The pathogenesis of MS is linked to the regulatory, inflammatory, suppressive, and effector roles of T cells. However, the actual roles of specific T cell subsets in MS development are not well understood. DISCUSSION The study revealed a significant link between MS and T cell activity. Targeting T cells is a potential strategy for the development of new therapies to manage MS. CONCLUSION MS is a complex demyelinating condition that affects several million people around the world. Research has revealed that various classes of T cells, including effector T cells and regulatory T cells, influence the development and progression of MS. Further investigations are required to elucidate the underlying mechanisms through which specific T cell populations influence MS pathogenesis.
Collapse
Affiliation(s)
- Borros Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg UKGM, Justus Liebig University Giessen, Feulgenstr 12, 35440, Giessen, Germany.
| |
Collapse
|
40
|
Brandão WN, De Oliveira MG, Andreoni RT, Nakaya H, Farias AS, Peron JPS. Neuroinflammation at single cell level: What is new? J Leukoc Biol 2020; 108:1129-1137. [PMID: 32779279 DOI: 10.1002/jlb.3mr0620-035r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/05/2020] [Accepted: 07/16/2020] [Indexed: 12/25/2022] Open
Abstract
Multiple sclerosis is a chronic and demyelinating disease of the central nervous system (CNS), most prevalent in women, and with an important social and economic cost worldwide. It is triggered by self-reacting lymphocytes that infiltrate the CNS and initiate neuroinflammation. Further, axonal loss and neuronal death takes place, leading to neurodegeneration and brain atrophy. The murine model for studying MS, experimental autoimmune encephalomyelitis (EAE), consists in immunizing mice with myelin-derived epitopes. APCs activate encephalitogenic T CD4 and CD8 lymphocytes that migrate mainly to the spinal cord resulting in neuroinflammation. Most of the knowledge on the pathophysiology and treatment of MS was obtained from EAE experiments, as Th17 cells, anti-alpha4 blocking Abs and the role of microbiota. Conversely, recent technology breakthroughs, such as CyTOF and single-cell RNA-seq, promise to revolutionize our understanding on the mechanisms involved both in MS and EAE. In fact, the importance of specific cellular populations and key molecules in MS/EAE is a constant matter of debate. It is well accepted that both Th1 and Th17 T CD4 lymphocytes play a relevant role in disease initiation after re-activation in situ. What is still under constant investigation, however, is the plasticity of the lymphocyte population, and the individual contribution of both resident and inflammatory cells for the progression or recovery of the disease. Thus, in this review, new findings obtained after single-cell analysis of blood and central nervous system infiltrating cells from MS/EAE and how they have contributed to a better knowledge on the cellular and molecular mechanisms of neuroinflammation are discussed.
Collapse
Affiliation(s)
- W N Brandão
- Neuroimmune Interactions Laboratory, Institute of Biomedical Sciences, Department of Immunology, University of Sao Paulo, São Paulo, Brazil
| | - M G De Oliveira
- Neuroimmune Interactions Laboratory, Institute of Biomedical Sciences, Department of Immunology, University of Sao Paulo, São Paulo, Brazil
| | - R T Andreoni
- Neuroimmune Interactions Laboratory, Institute of Biomedical Sciences, Department of Immunology, University of Sao Paulo, São Paulo, Brazil
| | - H Nakaya
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - A S Farias
- Autoimmune Research Laboratory, Department of Genetics, Microbiology and Immunology - Institute of Biology, University of Campinas, Campinas, Brazil.,Experimental Medicine Research Cluster (EMRC), Division of Immune-Mediated Diseases
| | - J P S Peron
- Neuroimmune Interactions Laboratory, Institute of Biomedical Sciences, Department of Immunology, University of Sao Paulo, São Paulo, Brazil.,Scientific Platform Pasteur, University of São Paulo, São Paulo, Brazil.,Immunopathology and Allergy Post Graduate Program, School of Medicine, University of São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
41
|
Hamilton JA. GM-CSF in inflammation. J Exp Med 2020; 217:jem.20190945. [PMID: 31611249 PMCID: PMC7037240 DOI: 10.1084/jem.20190945] [Citation(s) in RCA: 194] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/09/2019] [Accepted: 09/11/2019] [Indexed: 02/06/2023] Open
Abstract
GM-CSF is a potential therapeutic target in inflammation and autoimmunity. This study reviews the literature on the biology of GM-CSF, in particular that describing the research leading to clinical trials targeting GM-CSF and its receptor in numerous inflammatory/autoimmune conditions, such as rheumatoid arthritis. Granulocyte–macrophage colony-stimulating factor (GM-CSF) has many more functions than its original in vitro identification as an inducer of granulocyte and macrophage development from progenitor cells. Key features of GM-CSF biology need to be defined better, such as the responding and producing cell types, its links with other mediators, its prosurvival versus activation/differentiation functions, and when it is relevant in pathology. Significant preclinical data have emerged from GM-CSF deletion/depletion approaches indicating that GM-CSF is a potential target in many inflammatory/autoimmune conditions. Clinical trials targeting GM-CSF or its receptor have shown encouraging efficacy and safety profiles, particularly in rheumatoid arthritis. This review provides an update on the above topics and current issues/questions surrounding GM-CSF biology.
Collapse
Affiliation(s)
- John A Hamilton
- The University of Melbourne, Department of Medicine, Royal Melbourne Hospital, Parkville, Victoria, Australia.,Australian Institute for Musculoskeletal Science, The University of Melbourne and Western Health, St Albans, Victoria, Australia
| |
Collapse
|
42
|
Lang FM, Lee KMC, Teijaro JR, Becher B, Hamilton JA. GM-CSF-based treatments in COVID-19: reconciling opposing therapeutic approaches. Nat Rev Immunol 2020; 20:507-514. [PMID: 32576980 PMCID: PMC7309428 DOI: 10.1038/s41577-020-0357-7] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2020] [Indexed: 12/17/2022]
Abstract
Therapeutics against coronavirus disease 2019 (COVID-19) are urgently needed. Granulocyte–macrophage colony-stimulating factor (GM-CSF), a myelopoietic growth factor and pro-inflammatory cytokine, plays a critical role in alveolar macrophage homeostasis, lung inflammation and immunological disease. Both administration and inhibition of GM-CSF are currently being therapeutically tested in COVID-19 clinical trials. This Perspective discusses the pleiotropic biology of GM-CSF and the scientific merits behind these contrasting approaches. Recombinant granulocyte–macrophage colony-stimulating factor (GM-CSF) as well as antibodies targeted at GM-CSF or its receptor are being tested in clinical trials for coronavirus disease 2019 (COVID-19). This Perspective introduces the pleiotropic functions of GM-CSF and explores the rationale behind these different approaches.
Collapse
Affiliation(s)
| | - Kevin M-C Lee
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Melbourne, Victoria, Australia
| | - John R Teijaro
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA, USA
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - John A Hamilton
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Melbourne, Victoria, Australia. .,Australian Institute for Musculoskeletal Science, The University of Melbourne and Western Health, St Albans, Melbourne, Victoria, Australia.
| |
Collapse
|
43
|
Clarke J, Yaqubi M, Futhey NC, Sedaghat S, Baufeld C, Blain M, Baranzini S, Butovsky O, Antel J, White JH, Healy LM. Vitamin D Regulates MerTK-Dependent Phagocytosis in Human Myeloid Cells. THE JOURNAL OF IMMUNOLOGY 2020; 205:398-406. [PMID: 32540991 DOI: 10.4049/jimmunol.2000129] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/17/2020] [Indexed: 01/08/2023]
Abstract
Vitamin D deficiency is a major environmental risk factor for the development of multiple sclerosis. The major circulating metabolite of vitamin D (25-hydroxyvitamin D) is converted to the active form (calcitriol) by the hydroxylase enzyme CYP27B1 In multiple sclerosis lesions, the tyrosine kinase MerTK expressed by myeloid cells regulates phagocytosis of myelin debris and apoptotic cells that can accumulate and inhibit tissue repair and remyelination. In this study, we explored the effect of calcitriol on homeostatic (M-CSF, TGF-β-treated) and proinflammatory (GM-CSF-treated) human monocyte-derived macrophages and microglia using RNA sequencing. Transcriptomic analysis revealed significant calcitriol-mediated effects on both Ag presentation and phagocytosis pathways. Calcitriol downregulated MerTK mRNA and protein expression in both myeloid populations, resulting in reduced capacity of these cells to phagocytose myelin and apoptotic T cells. Proinflammatory myeloid cells expressed high levels of CYP27B1 compared with homeostatic myeloid cells. Only proinflammatory cells in the presence of TNF-α generated calcitriol from 25-hydroxyvitamin D, resulting in repression of MerTK expression and function. This selective production of calcitriol in proinflammatory myeloid cells has the potential to reduce the risk for autoantigen presentation while retaining the phagocytic ability of homeostatic myeloid cells.
Collapse
Affiliation(s)
- Jelani Clarke
- Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Moein Yaqubi
- Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Naomi C Futhey
- Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Sara Sedaghat
- Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Caroline Baufeld
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Manon Blain
- Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Sergio Baranzini
- Department of Neurology, Weill Institute for Neurosciences, University of California-San Francisco, San Francisco, CA 94115
| | - Oleg Butovsky
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Jack Antel
- Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - John H White
- Departments of Physiology and Medicine, McGill University, Montreal, Quebec H3A 0G4, Canada; and.,Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Luke M Healy
- Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 0G4, Canada;
| |
Collapse
|
44
|
Nishimura T, Saito Y, Washio K, Komori S, Respatika D, Kotani T, Murata Y, Ohnishi H, Mizobuchi S, Matozaki T. SIRPα on CD11c + cells induces Th17 cell differentiation and subsequent inflammation in the CNS in experimental autoimmune encephalomyelitis. Eur J Immunol 2020; 50:1560-1570. [PMID: 32438469 DOI: 10.1002/eji.201948410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 04/12/2020] [Indexed: 01/06/2023]
Abstract
Signal regulatory protein α (SIRPα) is expressed predominantly on type 2 conventional dendritic cells (cDC2s) and macrophages. We previously showed that mice systemically lacking SIRPα were resistant to experimental autoimmune encephalomyelitis (EAE). Here, we showed that deletion of SIRPα in CD11c+ cells of mice (SirpaΔDC mice) also markedly ameliorated the development of EAE. The frequency of cDCs and migratory DCs (mDCs), as well as that of Th17 cells, were significantly reduced in draining lymph nodes of SirpaΔDC mice at the onset of EAE. In addition, we found the marked reduction in the number of Th17 cells and DCs in the CNS of SirpaΔDC mice at the peak of EAE. Whereas inducible systemic ablation of SIRPα before the induction of EAE prevented disease development, that after EAE onset did not ameliorate the clinical signs of disease. We also found that EAE development was partially attenuated in mice with CD11c+ cell-specific ablation of CD47, a ligand of SIRPα. Collectively, our results suggest that SIRPα expressed on CD11c+ cells, such as cDC2s and mDCs, is indispensable for the development of EAE, being required for the priming of self-reactive Th17 cells in the periphery as well as for the inflammation in the CNS.
Collapse
Affiliation(s)
- Taichi Nishimura
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan.,Division of Anesthesiology, Department of Surgery Related, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Yasuyuki Saito
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Ken Washio
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Satomi Komori
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Datu Respatika
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan.,Division of Reconstruction, Oculoplasty, and Oncology, Department of Ophthalmology, Faculty of Medicine, Public Health, and Nursing, Gadjah Mada University, Yogyakarta, Indonesia
| | - Takenori Kotani
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Yoji Murata
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Hiroshi Ohnishi
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Gunma, Japan
| | - Satoshi Mizobuchi
- Division of Anesthesiology, Department of Surgery Related, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Takashi Matozaki
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| |
Collapse
|
45
|
Kuo PC, Weng WT, Scofield BA, Paraiso HC, Brown DA, Wang PY, Yu IC, Yen JH. Dimethyl itaconate, an itaconate derivative, exhibits immunomodulatory effects on neuroinflammation in experimental autoimmune encephalomyelitis. J Neuroinflammation 2020; 17:138. [PMID: 32349768 PMCID: PMC7191722 DOI: 10.1186/s12974-020-01768-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 03/06/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Inflammatory stimuli induce immunoresponsive gene 1 (IRG1) expression that in turn catalyzes the production of itaconate from the tricarboxylic acid cycle. Itaconate has recently emerged as a regulator of immune cell functions, especially in macrophages. Studies show that itaconate is required for the activation of anti-inflammatory transcription factor Nrf2 by LPS in mouse and human macrophages, and LPS-activated IRG1-/- macrophages that lack endogenous itaconate production exhibit augmented inflammatory responses. Moreover, dimethyl itaconate (DMI), an itaconate derivative, inhibits IL-17-induced IκBς activation in keratinocytes and modulates IL-17-IκBς pathway-mediated skin inflammation in an animal model of psoriasis. Currently, the effect of itaconate on regulating macrophage functions and peripheral inflammatory immune responses is well established. However, its effect on microglia (MG) and CNS inflammatory immune responses remains unexplored. Thus, we investigated whether itaconate possesses an immunomodulatory effect on regulating MG activation and CNS inflammation in animal models of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE). METHODS Chronic C57BL/6 EAE was induced followed by DMI treatment. The effect of DMI on disease severity, blood-brain barrier (BBB) disruption, MG activation, peripheral Th1/Th17 differentiation, and the CNS infiltration of Th1/Th17 cells in EAE was determined. Primary MG was cultured to study the effect of DMI on MG activation. Relapsing-remitting SJL/J EAE was induced to assess the therapeutic effect of DMI. RESULTS Our results show DMI ameliorated disease severity in the chronic C57BL/6 EAE model. Further analysis of the cellular and molecular mechanisms revealed that DMI mitigated BBB disruption, inhibited MMP3/MMP9 production, suppressed microglia activation, inhibited peripheral Th1/Th17 differentiation, and repressed the CNS infiltration of Th1 and Th17 cells. Strikingly, DMI also exhibited a therapeutic effect on alleviating severity of relapse in the relapsing-remitting SJL/J EAE model. CONCLUSIONS We demonstrate that DMI suppresses neuroinflammation and ameliorates disease severity in EAE through multiple cellular and molecular mechanisms, suggesting that DMI can be developed as a novel therapeutic agent for the treatment of MS/EAE through its immunomodulatory and anti-inflammatory properties.
Collapse
Affiliation(s)
- Ping-Chang Kuo
- Department of Microbiology and Immunology, Indiana University School of Medicine, 2101 E. Coliseum Boulevard, Fort Wayne, IN, 46805, USA
| | - Wen-Tsan Weng
- Department of Microbiology and Immunology, Indiana University School of Medicine, 2101 E. Coliseum Boulevard, Fort Wayne, IN, 46805, USA
| | - Barbara A Scofield
- Department of Microbiology and Immunology, Indiana University School of Medicine, 2101 E. Coliseum Boulevard, Fort Wayne, IN, 46805, USA
| | - Hallel C Paraiso
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Fort Wayne, IN, USA
| | - Dennis A Brown
- Department of Pharmaceutical Sciences, Manchester University College of Pharmacy, Natural and Health Sciences, Fort Wayne, IN, USA
| | - Pei-Yu Wang
- Graduate Institute of Brain and Mind Science, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - I-Chen Yu
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Fort Wayne, IN, USA
| | - Jui-Hung Yen
- Department of Microbiology and Immunology, Indiana University School of Medicine, 2101 E. Coliseum Boulevard, Fort Wayne, IN, 46805, USA.
| |
Collapse
|
46
|
SOCS3 Attenuates GM-CSF/IFN-γ-Mediated Inflammation During Spontaneous Spinal Cord Regeneration. Neurosci Bull 2020; 36:778-792. [PMID: 32306216 PMCID: PMC7340708 DOI: 10.1007/s12264-020-00493-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/06/2019] [Indexed: 12/13/2022] Open
Abstract
SOCS3, a feedback inhibitor of the JAK/STAT signal pathway, negatively regulates axonal regrowth and inflammation in the central nervous system (CNS). Here, we demonstrated a distinct role of SOCS3 in the injured spinal cord of the gecko following tail amputation. Severing the gecko spinal cord did not evoke an inflammatory cascade except for an injury-stimulated elevation of the granulocyte/macrophage colony-stimulating factor (GM-CSF) and interferon gamma (IFN-γ) cytokines. Simultaneously, the expression of SOCS3 was upregulated in microglia, and unexpectedly not in neurons. Enforced expression of SOCS3 was sufficient to suppress the GM-CSF/IFN-γ-driven inflammatory responses through its KIR domain by attenuating the activities of JAK1 and JAK2. SOCS3 was also linked to GM-CSF/IFN-γ-induced cross-tolerance. Transfection of adenovirus overexpressing SOCS3 in the injured cord resulted in a significant decrease of inflammatory cytokines. These results reveal a distinct role of SOCS3 in the regenerating spinal cord, and provide new hints for CNS repair in mammals.
Collapse
|
47
|
Monaghan KL, Wan EC. The Role of Granulocyte-Macrophage Colony-Stimulating Factor in Murine Models of Multiple Sclerosis. Cells 2020; 9:cells9030611. [PMID: 32143326 PMCID: PMC7140439 DOI: 10.3390/cells9030611] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 02/29/2020] [Accepted: 03/03/2020] [Indexed: 12/30/2022] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated disease that predominantly impacts the central nervous system (CNS). Animal models have been used to elucidate the underpinnings of MS pathology. One of the most well-studied models of MS is experimental autoimmune encephalomyelitis (EAE). This model was utilized to demonstrate that the cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) plays a critical and non-redundant role in mediating EAE pathology, making it an ideal therapeutic target. In this review, we will first explore the role that GM-CSF plays in maintaining homeostasis. This is important to consider, because any therapeutics that target GM-CSF could potentially alter these regulatory processes. We will then focus on current findings related to the function of GM-CSF signaling in EAE pathology, including the cell types that produce and respond to GM-CSF and the role of GM-CSF in both acute and chronic EAE. We will then assess the role of GM-CSF in alternative models of MS and comment on how this informs the understanding of GM-CSF signaling in the various aspects of MS immunopathology. Finally, we will examine what is currently known about GM-CSF signaling in MS, and how this has promoted clinical trials that directly target GM-CSF.
Collapse
Affiliation(s)
- Kelly L. Monaghan
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506, USA;
| | - Edwin C.K. Wan
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506, USA;
- Department of Neuroscience, West Virginia University, Morgantown, WV 26506, USA
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
- Correspondence: ; Tel.:+1-304-293-6293
| |
Collapse
|
48
|
Teixeira NB, Sant'Anna MB, Giardini AC, Araujo LP, Fonseca LA, Basso AS, Cury Y, Picolo G. Crotoxin down-modulates pro-inflammatory cells and alleviates pain on the MOG 35-55-induced experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. Brain Behav Immun 2020; 84:253-268. [PMID: 31843645 DOI: 10.1016/j.bbi.2019.12.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023] Open
Abstract
Multiple sclerosis (MS) is a Central Nervous System inflammatory demyelinating disease that has as primary symptoms losses of sensory and motor functions, including chronic pain. To date, however, few studies have investigated the mechanisms of chronic pain in animal models of MS since locomotor impairments render difficult its evaluation. It was previously demonstrated that in the MOG35-55-induced EAE, an animal model of MS, the hypernociception appears before the onset of motor disability, allowing for the study of these two phenomena separately. Here, we evaluated the effect of crotoxin (CTX), a neurotoxin isolated from the Crotalus durissus terrificus snake venom that displays, at non-toxic dose, antinociceptive, anti-inflammatory and immunomodulatory effects, in the pain and in symptoms progression of EAE. The pain threshold of female C57BL/6 mice decreased at the 4th day after immunization, while the first sign of disease appeared around the 11st-12nd days, coinciding with the onset of motor abnormalities. CTX (40 µg/kg, s.c.) administered in a single dose on the 5th day after immunization, induced a long-lasting analgesic effect (5 days), without interfering with the clinical signs of the disease. On the other hand, when crotoxin was administered for 5 consecutive days, from 5th-9th day after immunization, it induced analgesia and also reduced EAE progression. The antinociceptive effect of crotoxin was blocked by Boc-2 (0.5 mg/kg, i.p.), a selective antagonist of formyl peptide receptors, by NDGA (30 μg/kg, i.p.), a lipoxygenase inhibitor and by atropine sulfate (10 mg/kg, i.p.), an antagonist of muscarinic receptors, administered 30 min before CTX. CTX was also effective in decreasing EAE clinical signs even when administered after its onset. Regarding the interactions between neurons and immunocompetent cells, CTX, in vitro, was able to reduce T cell proliferation, decreasing Th1 and Th17 and increasing Treg cell differentiation. Furthermore, in EAE model, the treatment with 5 consecutive doses of CTX inhibited IFN-γ-producing T cells, GM-CSF-producing T cells, reduced the frequency of activated microglia/macrophages within the CNS and decreased the number of migrating cell to spinal cord and cerebellum at the peak of the disease. These results suggest that CTX is a potential treatment not only for pain alteration but also for clinical progression induced by the disease as well as an useful tool for the development of new therapeutic approaches for the multiple sclerosis control.
Collapse
Affiliation(s)
- N B Teixeira
- Laboratory of Pain and Signaling, Butantan Institute, Sao Paulo, Brazil
| | - M B Sant'Anna
- Laboratory of Pain and Signaling, Butantan Institute, Sao Paulo, Brazil
| | - A C Giardini
- Laboratory of Pain and Signaling, Butantan Institute, Sao Paulo, Brazil
| | - L P Araujo
- Department of Microbiology, Immunology and Parasitology, Paulista School of Medicine, Federal University of Sao Paulo, UNIFESP, Sao Paulo, Brazil
| | - L A Fonseca
- Laboratory of Pain and Signaling, Butantan Institute, Sao Paulo, Brazil
| | - A S Basso
- Department of Microbiology, Immunology and Parasitology, Paulista School of Medicine, Federal University of Sao Paulo, UNIFESP, Sao Paulo, Brazil
| | - Y Cury
- Laboratory of Pain and Signaling, Butantan Institute, Sao Paulo, Brazil
| | - G Picolo
- Laboratory of Pain and Signaling, Butantan Institute, Sao Paulo, Brazil.
| |
Collapse
|
49
|
Steiner J, Frodl T, Schiltz K, Dobrowolny H, Jacobs R, Fernandes BS, Guest PC, Meyer-Lotz G, Borucki K, Bahn S, Bogerts B, Falkai P, Bernstein HG. Innate Immune Cells and C-Reactive Protein in Acute First-Episode Psychosis and Schizophrenia: Relationship to Psychopathology and Treatment. Schizophr Bull 2020; 46:363-373. [PMID: 31504969 PMCID: PMC7442383 DOI: 10.1093/schbul/sbz068] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Innate immunity has been linked to initiation of Alzheimer's disease and multiple sclerosis. Moreover, risk of first-episode psychosis (FEP) and schizophrenia (Sz) is increased after various infections in predisposed individuals. Thus, we hypothesized an analogous role of innate immunity with increased C-reactive protein (CRP) in non-affective psychosis. Differential blood count, CRP, neutrophil and monocyte-macrophage activation markers, cortisol and psychotic symptoms (Positive and Negative Syndrome Scale [PANSS]) were assessed in controls (n = 294) and acutely ill unmedicated FEP (n = 129) and Sz (n = 124) patients at baseline and after 6 weeks treatment. Neutrophils, monocytes, and CRP were increased in patients vs controls at baseline (P < .001), and neutrophil and monocyte counts correlated positively with activation markers. Eosinophils were lower at baseline in FEP (P < .001) and Sz (P = .021) vs controls. Differences in neutrophils (P = .023), eosinophils (P < .001), and CRP (P < .001) were also present when controlling for smoking and cortisol, and partially remitted after antipsychotic treatment. FEP patients with high neutrophils (P = .048) or monocytes (P = .021) had higher PANSS-P scores at baseline but similar disease course. CRP correlated with PANSS-P at baseline (ρ = 0.204, P = .012). Improvement of positive symptoms after treatment correlated with declining neutrophils (ρ = 0.186, P = .015) or CRP (ρ = 0.237, P = .002) and rising eosinophils (ρ = -0.161, P = .036). In FEP, normalization of neutrophils (ρ = -0.231, P = .029) and eosinophils (ρ = 0.209, P = .048) correlated with drug dosage. In conclusion, innate immune system activation correlated with PANSS-P, supporting the immune hypothesis of psychosis. Neutrophil and monocyte counts and CRP levels may be useful markers of disease acuity, severity, and treatment response.
Collapse
Affiliation(s)
- Johann Steiner
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany,Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany,To whom correspondence should be addressed; tel: 49-391-67 15019, fax: 49-391-67 15223, e-mail:
| | - Thomas Frodl
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany,German Center for Neurogenerative Diseases (DZNE), Magdeburg, Germany
| | - Kolja Schiltz
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany,Department of Forensic Psychiatry, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Henrik Dobrowolny
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany,Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Roland Jacobs
- Department of Clinical Immunology and Rheumatology, Hannover Medical School (MHH), Hannover, Germany
| | | | - Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Gabriela Meyer-Lotz
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany,Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Katrin Borucki
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Sabine Bahn
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Bernhard Bogerts
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany,Salus Institute, Magdeburg, Germany
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Hans-Gert Bernstein
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany,Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| |
Collapse
|
50
|
Liver fibrosis and CD206 + macrophage accumulation are suppressed by anti-GM-CSF therapy. JHEP Rep 2020; 2:100062. [PMID: 32039403 PMCID: PMC7005658 DOI: 10.1016/j.jhepr.2019.11.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 02/06/2023] Open
Abstract
Background & Aims Chronic liver inflammation leads to fibrosis and cirrhosis and is associated with an accumulation of intrahepatic TNFα-secreting CD206+ macrophages, which may participate in maintaining chronic liver disease in a GM-CSF-dependent manner. We aimed to elucidate the exact role of GM-CSF in the development and progression of chronic liver disease. Methods Liver immunohistochemistry and serum quantification were performed in patients with viral and non-viral-related liver disease to compare CD206+ monocyte/macrophages, fibrosis and GM-CSF. This was followed by functional validations in vitro and in vivo in humanised mice. Results Using multiplex immunofluorescence and histo-cytometry, we show that highly fibrotic livers had a greater density of CD206+ macrophages that produced more TNFα and GM-CSF in the non-tumour liver regions of patients with hepatocellular carcinoma (n = 47), independent of aetiology. In addition, the absolute number of CD206+ macrophages strongly correlated with the absolute number of GM-CSF-producing macrophages. In non-HCC chronic HCV+ patients (n = 40), circulating GM-CSF levels were also increased in proportion to the degree of liver fibrosis and serum viral titres. We then demonstrated in vitro that monocytes converted to TNFα-producing CD206+ macrophage-like cells in response to bacterial products (lipopolysaccharide) in a GM-CSF-dependent manner, confirming the in vivo normalisation of serum GM-CSF concentration following oral antibiotic treatment observed in HBV-infected humanised mice. Finally, anti-GM-CSF neutralising antibody treatment reduced intrahepatic CD206+ macrophage accumulation and abolished liver fibrosis in HBV-infected humanised mice. Conclusions While the direct involvement of CD206+ macrophages in liver fibrosis remains to be demonstrated, these findings show that GM-CSF may play a central role in liver fibrosis and could guide the development of anti-GM-CSF antibody-based therapy for the management of patients with chronic liver disease. Lay summary Liver fibrosis is a major driver of liver disease progression. Herein, we have shown that granulocyte-macrophage colony-stimulating factor (GM-CSF) plays an important role in the development of liver fibrosis. Our findings support the use of anti-GM-CSF neutralising antibodies for the management of patients with chronic liver disease resulting from both viral and non-viral causes. GM-CSF and TNFα producing CD206+ macrophages accumulate in human fibrotic liver Serum GM-CSF is increased in HCV+ patients with higher liver fibrosis GM-CSF drives monocyte to CD206+ macrophage conversion Anti-GM-CSF therapy suppresses liver fibrosis and CD206+ macrophage accumulation
Collapse
Key Words
- ALT, alanine aminotransferase
- BAMBI, BMP and Activin Membrane-bound Inhibitor
- CD206+ macrophages
- DAA, direct-acting antiviral
- DC, dendritic cell
- FFPE, formalin-fixed paraffin-embedded
- GM-CSF
- GM-CSF, granulocyte-macrophage colony-stimulating factor
- HCC, hepatocellular carcinoma
- HCV
- HIER, heat-induced epitope retrieval
- HSC, hepatic stellate cells
- ICS, intracellular cytokine staining
- Intrahepatic macrophages
- LPS, lipopolysaccharide
- LSM, liver stiffness measurement
- MS, multiple sclerosis
- NASH
- NASH, non-alcoholic steatohepatitis
- PBMCs, peripheral blood mononuclear cells
- RA, rheumatoid arthritis
- SVR, sustained virological response
- TCR, T cell receptor
- TMA, tissue microarray
- TNFα, tumour necrosis factor-α
- TSA, tyramide signal amplification
- anti-GM-CSF neutralizing antibody
- fibrosis
- moMΦs, monocyte-derived macrophage-like cells
- t-SNE, t-distributed stochastic neighbour embedding
Collapse
|