1
|
Lovewell RR, Langermann S, Flies DB. Immune inhibitory receptor agonist therapeutics. Front Immunol 2025; 16:1566869. [PMID: 40207220 PMCID: PMC11979287 DOI: 10.3389/fimmu.2025.1566869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 03/07/2025] [Indexed: 04/11/2025] Open
Abstract
The immune system maintains the health of an organism through complex sensing and communication mechanisms. Receptors on the surface of immune cells respond to stimuli resulting in activity described at its most basic as inhibitory or stimulatory. Significant progress in therapeutic intervention has occurred by modulating these pathways, yet much remains to be accomplished. Therapeutics that antagonize, or block, immune inhibitory receptor (IIR) pathways, such as checkpoint inhibitors in cancer are a key example. Antagonism of immune stimulatory receptors (ISRs) for dysregulated inflammation and autoimmunity have received significant attention. An alternative strategy is to agonize, or induce signaling, in immune pathways to treat disease. Agonism of ISRs has been employed with some success in disease settings, but agonist therapeutics of IIRs have great, untapped potential. This review discusses and highlights recent advances in pre-clinical and clinical therapeutics designed to agonize IIR pathways to treat diseases. In addition, an understanding of IIR agonists based on activity at a cellular level as either agonist suppression of stimulatory cells (SuSt), or a new concept, agonist suppression of suppressive cells (SuSu) is proposed.
Collapse
|
2
|
Karpenko DV. Immune modulatory stem cells represent a significant component of the immune system. Front Immunol 2025; 16:1543495. [PMID: 40098974 PMCID: PMC11911480 DOI: 10.3389/fimmu.2025.1543495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/18/2025] [Indexed: 03/19/2025] Open
|
3
|
Peh HY, Chen J. Pro-resolving lipid mediators and therapeutic innovations in resolution of inflammation. Pharmacol Ther 2025; 265:108753. [PMID: 39566561 DOI: 10.1016/j.pharmthera.2024.108753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/07/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
This review summarizes findings presented at the 19th World Congress of Basic & Clinical Pharmacology 2023 (Glasgow, Scotland, July 3rd to 7th, 2023) from 8 speakers in the field of resolution of inflammation, resolution pharmacology and resolution biology. It is now accepted that the acute inflammatory response is protective to defend the host against infection or tissue injury. Acute inflammation is self-limited and programmed to be limited in space and time: this is achieved through endogenous resolution processes that ensure return to homeostasis. Resolution is brought about by agonist mediators that include specialized pro-resolving lipid mediators (SPMs) and pro-resolving proteins and peptides such as annexin A1 and angiotensin-(1-7), all acting to initiate anti-inflammatory and pro-resolving processes. If the inflammatory reaction remains unchecked through dysfunctional resolution mechanism, it can become chronic and contribute to a plethora of human diseases, including respiratory, cardiovascular, metabolic, allergic diseases, and arthritis. Herein, we discuss how non-resolving inflammation plays a role in the pathogenesis of these diseases. In addition to SPMs, we highlight the discovery, biosynthesis, biofunctions, and latest research updates on innovative therapeutics (including annexin-A1 peptide-mimetic RTP-026, small molecule FPR2 agonist BM-986235/LAR-1219, biased agonist for FPR1/FPR2 Cmpd17b, lipoxin mimetics AT-01-KG and AT-02-CT, melanocortin receptor agonist AP1189, gold nanoparticles, angiotensin-(1-7), and CD300a) that can promote resolution of inflammation directly or through modulation of SPMs production. Drug development strategies based on the biology of the resolution of inflammation can offer novel therapeutic means and/or add-on therapies for the treatment of chronic diseases.
Collapse
Affiliation(s)
- Hong Yong Peh
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, Department of Pharmacology, Singapore; Immunology Programme and Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore; Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Jianmin Chen
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom; Centre for inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
4
|
Miao N, Wang J. New insights into the role of the immune inhibitory receptor VSTM1 in autoimmune disease. Cell Mol Immunol 2024; 21:95-96. [PMID: 37935837 PMCID: PMC10757710 DOI: 10.1038/s41423-023-01097-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023] Open
Affiliation(s)
- Naijun Miao
- Center for Immune-related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Wang
- Center for Immune-related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Redondo-García S, Barritt C, Papagregoriou C, Yeboah M, Frendeus B, Cragg MS, Roghanian A. Human leukocyte immunoglobulin-like receptors in health and disease. Front Immunol 2023; 14:1282874. [PMID: 38022598 PMCID: PMC10679719 DOI: 10.3389/fimmu.2023.1282874] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/20/2023] [Indexed: 12/01/2023] Open
Abstract
Human leukocyte immunoglobulin (Ig)-like receptors (LILR) are a family of 11 innate immunomodulatory receptors, primarily expressed on lymphoid and myeloid cells. LILRs are either activating (LILRA) or inhibitory (LILRB) depending on their associated signalling domains (D). With the exception of the soluble LILRA3, LILRAs mediate immune activation, while LILRB1-5 primarily inhibit immune responses and mediate tolerance. Abnormal expression and function of LILRs is associated with a range of pathologies, including immune insufficiency (infection and malignancy) and overt immune responses (autoimmunity and alloresponses), suggesting LILRs may be excellent candidates for targeted immunotherapies. This review will discuss the biology and clinical relevance of this extensive family of immune receptors and will summarise the recent developments in targeting LILRs in disease settings, such as cancer, with an update on the clinical trials investigating the therapeutic targeting of these receptors.
Collapse
Affiliation(s)
- Silvia Redondo-García
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Christopher Barritt
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
- Lister Department of General Surgery, Glasgow Royal Infirmary, Glasgow, United Kingdom
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, United Kingdom
| | - Charys Papagregoriou
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Muchaala Yeboah
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Björn Frendeus
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
- BioInvent International AB, Lund, Sweden
| | - Mark S. Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Ali Roghanian
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
6
|
Rishiq A, Bsoul R, Pick O, Mandelboim O. Studying TIGIT activity against tumors through the generation of knockout mice. Oncoimmunology 2023; 12:2217735. [PMID: 37261087 PMCID: PMC10228407 DOI: 10.1080/2162402x.2023.2217735] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/02/2023] Open
Abstract
The use of antibodies to block inhibitory receptors, primarily anti-PD1 and CTLA4 (known as checkpoint therapy) revolutionized cancer treatment. However, despite these successes, the majority of cancer patients do not respond to the checkpoint treatment, emphasizing the need for development of additional therapies, which are based on other inhibitory receptors. Human TIGIT is an inhibitory receptor expressed by Natural Killer (NK) and T cells and is mainly known to interact with PVR, Nectin-2, Nectin-3, and Nectin-4. Whether mouse TIGIT interacts with all of these ligands is still unclear. Additionally, the in vivo function of TIGIT against tumors is not completely understood. Here, we demonstrate that mouse TIGIT interacts with and is inhibited by mPVR only. Using CRISPR-Cas9 technology, we generated TIGIT-deficient mice and demonstrated that NK cell cytotoxicity and degranulation against two tumor types were lower in WT mice when compared to the TIGIT KO mice. Moreover, in vivo tumor progression was slower in TIGIT KO than in WT mice. Taken together, our data established that mTIGIT has only one ligand, PVR, and that in the absence of TIGIT tumors are killed better both in vitro and in vivo.
Collapse
Affiliation(s)
- Ahmed Rishiq
- The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel Canada (IMRIC), Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Reem Bsoul
- The Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Ophir Pick
- The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel Canada (IMRIC), Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Ofer Mandelboim
- The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel Canada (IMRIC), Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
7
|
Crider J, Wilson M, Felch KL, Dupre RA, Quiniou SMA, Bengtén E. A subset of leukocyte immune-type receptors (LITRs) regulates phagocytosis in channel catfish (Ictalurus punctatus) leukocytes. Mol Immunol 2023; 154:33-44. [PMID: 36586386 DOI: 10.1016/j.molimm.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/31/2022]
Abstract
Channel catfish, Ictalurus punctatus, leukocyte immune-type receptors (LITRs) constitute a large family of paired, immunoregulatory receptors unique to teleosts. A role for LITRs in phagocytosis has been proposed based on studies in mammalian cell lines; however, LITR-mediated phagocytosis has not been examined in the catfish model. In this study, we use two anti-LITR monoclonal antibodies, CC41 and 125.2, to contrast the effects of crosslinking subsets of inhibitory and activating LITRs. Briefly, LITRs expressed by catfish γδ T cells, αβ T cells, and macrophage cell lines were crosslinked using mAb-conjugated fluorescent microbeads, and bead uptake was evaluated by flow cytometry and confirmed by confocal microscopy. A clear difference in the uptake of 125.2- and CC41-conjugated beads was observed. Crosslinking LITRs with mAb 125.2 resulted in efficient bead internalization, while mAb CC41 crosslinking of inhibitory LITRs resulted predominantly in a capturing phenotype. Pretreating catfish macrophages with mAb CC41 resulted in a marked decrease in LITR-mediated phagocytosis of 125.2-conjugated beads. Overall, these findings provide insight into fish immunobiology and validate LITRs as regulators of phagocytosis in catfish macrophages and γδ T cells.
Collapse
Affiliation(s)
- Jonathan Crider
- Center for Immunology and Microbial Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA; Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA.
| | - Melanie Wilson
- Center for Immunology and Microbial Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA; Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA.
| | - Kristianna L Felch
- Center for Immunology and Microbial Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA; Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA.
| | - Rebecca A Dupre
- Oak Ridge Institute for Science and Education, US Department of Energy, 1299 Bethel Valley Rd, Oak Ridge, TN 37831-0117, USA; Food Processing and Sensory Quality Unit, USDA-ARS, 1100 Allen Toussaint Blvd, New Orleans, LA 70124, USA.
| | - Sylvie M A Quiniou
- Warmwater Aquaculture Research Unit, USDA-ARS-WARU, P.O. BOX 38, Stoneville, MS 38776, USA.
| | - Eva Bengtén
- Center for Immunology and Microbial Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA; Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA.
| |
Collapse
|
8
|
Differential trafficking of ligands trogocytosed via CD28 versus CTLA4 promotes collective cellular control of co-stimulation. Nat Commun 2022; 13:6459. [PMID: 36309492 PMCID: PMC9617924 DOI: 10.1038/s41467-022-34156-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 10/14/2022] [Indexed: 12/25/2022] Open
Abstract
Intercellular communication is crucial for collective regulation of cellular behaviors. While clustering T cells have been shown to mutually control the production of key communication signals, it is unclear whether they also jointly regulate their availability and degradation. Here we use newly developed reporter systems, bioinformatic analyses, protein structure modeling and genetic perturbations to assess this. We find that T cells utilize trogocytosis by competing antagonistic receptors to differentially control the abundance of immunoregulatory ligands. Specifically, ligands trogocytosed via CD28 are shuttled to the T cell surface, enabling them to co-stimulate neighboring T cells. In contrast, CTLA4-mediated trogocytosis targets ligands for degradation. Mechanistically, this fate separation is controlled by different acid-sensitivities of receptor-ligand interactions and by the receptor intracellular domains. The ability of CD28 and CTLA4 to confer different fates to trogocytosed ligands reveals an additional layer of collective regulation of cellular behaviors and promotes the robustness of population dynamics.
Collapse
|
9
|
Dao L, Zhao Q, Hu J, Xia X, Yang Q, Li S. A microfluidics-based method for isolation and visualization of cells based on receptor-ligand interactions. PLoS One 2022; 17:e0274601. [PMID: 36201506 PMCID: PMC9536614 DOI: 10.1371/journal.pone.0274601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 08/31/2022] [Indexed: 11/21/2022] Open
Abstract
Receptor-ligand binding has been analyzed at the protein level using isothermal titration calorimetry and surface plasmon resonance and at the cellular level using interaction-associated downstream gene induction/suppression. However, no currently available technique can characterize this interaction directly through visualization. In addition, all available assays require a large pool of cells; no assay capable of analyzing receptor-ligand interactions at the single-cell level is publicly available. Here, we describe a new microfluidic chip-based technique for analyzing and visualizing these interactions at the single-cell level. First, a protein is immobilized on a glass slide and a low-flow-rate pump is used to isolate cells that express receptors that bind to the immobilized ligand. Specifically, we demonstrate the efficacy of this technique by immobilizing biotin-conjugated FGL2 on an avidin-coated slide chip and passing a mixture of GFP-labeled wild-type T cells and RFP-labeled FcγRIIB-knockout T cells through the chip. Using automated scanning and counting, we found a large number of GFP+ T cells with binding activity but significantly fewer RFP+ FcγRIIB-knockout T cells. We further isolated T cells expressing a membrane-anchored, tumor-targeted IL-12 based on the receptor's affinity to vimentin to confirm the versatility of our technique. This protocol allows researchers to isolate receptor-expressing cells in about 4 hours for further downstream processing.
Collapse
Affiliation(s)
- Long Dao
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Qingnan Zhao
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Jiemiao Hu
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Xueqing Xia
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Qing Yang
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Shulin Li
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| |
Collapse
|
10
|
Li Y, Lv C, Yu Y, Wu B, Zhang Y, Lang Q, Liang Z, Zhong C, Shi Y, Han S, Xu F, Tian Y. KIR3DL3-HHLA2 and TMIGD2-HHLA2 pathways: The dual role of HHLA2 in immune responses and its potential therapeutic approach for cancer immunotherapy. J Adv Res 2022; 47:137-150. [PMID: 35933091 PMCID: PMC10173190 DOI: 10.1016/j.jare.2022.07.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 06/15/2022] [Accepted: 07/29/2022] [Indexed: 10/16/2022] Open
Abstract
BACKGROUND T cells and natural killer (NK) cells are essential components of the immune system and are regulated by coinhibitory and costimulatory molecules in which the B7 family and CD28 family play significant roles. Previous immune checkpoint studies on B7/CD28 family members, such as PD-1, have led to remarkable success in cancer immunotherapy. However, there is still a need to find new immune checkpoint molecules. Recent studies have demonstrated that HHLA2 exerts inhibitory and stimulatory functions on the immune system by binding to different receptors on different sites. However, the pathways between HHLA2 and its two receptors on T cells and NK cells remain controversial. AIM OF REVIEW Here, we reviewed recent studies about HHLA2 ligand interactions with KIR3DL3 and TMIGD2. We focused on elucidating the pathways between KIR3DL3/TMIGD2 and HHLA2 as well as their function in tumour progression. We also addressed the relationship between HHLA2 expression and the clinical prognosis of cancer patients. KEY SCIENTIFIC CONCEPTS OF REVIEW KIR3DL3/TMIGD2-HHLA2 may represent novel pathways within the tumour microenvironment and serve as crucial immune checkpoints for developing novel therapeutic drugs against human cancer.
Collapse
Affiliation(s)
- Yang Li
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Chao Lv
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Yang Yu
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, Liaoning Province, China
| | - Baokang Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Yizhou Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Qi Lang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Zhiyun Liang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Chongli Zhong
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Yu Shi
- The First Clinical College of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Shukun Han
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Feng Xu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China.
| |
Collapse
|
11
|
Kotzur R, Duev-Cohen A, Kol I, Reches A, Mandelboim O, Stein N. NK-92 cells retain vitality and functionality when grown in standard cell culture conditions. PLoS One 2022; 17:e0264897. [PMID: 35294457 PMCID: PMC8926178 DOI: 10.1371/journal.pone.0264897] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 02/19/2022] [Indexed: 11/19/2022] Open
Abstract
NK-92 cells are an off-the-shelf, cell-based immunotherapy currently in clinical trials for a variety of cancer types. As the most 'NK-like' cell line available, it is also an important research tool. To date, NK-92 cells have been cultivated in a costly and time-consumingly prepared specialized medium, complicating research with these cells. Here we show that NK-92 cells grow in the comparatively user-friendly RPMI medium supplemented with IL-2. We demonstrate that their metabolic activity and replication rates are even improved in RPMI. Furthermore, they can be grown in cell culture dishes and do not need to be expanded in ventilated flasks. We show that in RPMI the cells retain functional characteristics relating to receptor expression, IFN-γ secretion, and killing. Our findings will enable more researchers to work with and manipulate this cell line, hopefully leading to further discoveries and improved therapies.
Collapse
Affiliation(s)
- Rebecca Kotzur
- The Lautenberg Center for General and Tumor Immunology, Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Alexandra Duev-Cohen
- The Lautenberg Center for General and Tumor Immunology, Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Inbal Kol
- The Lautenberg Center for General and Tumor Immunology, Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Adi Reches
- The Lautenberg Center for General and Tumor Immunology, Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Ofer Mandelboim
- The Lautenberg Center for General and Tumor Immunology, Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
- * E-mail: (OM); (NS)
| | - Natan Stein
- The Lautenberg Center for General and Tumor Immunology, Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
- * E-mail: (OM); (NS)
| |
Collapse
|
12
|
Singh R, Anand A, Rawat AK, Saini S, Mahapatra B, Singh NK, Mishra AK, Singh S, Singh N, Kishore D, Kumar V, Das P, Singh RK. CD300a Receptor Blocking Enhances Early Clearance of Leishmania donovani From Its Mammalian Host Through Modulation of Effector Functions of Phagocytic and Antigen Experienced T Cells. Front Immunol 2022; 12:793611. [PMID: 35116028 PMCID: PMC8803664 DOI: 10.3389/fimmu.2021.793611] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/27/2021] [Indexed: 12/17/2022] Open
Abstract
The parasites of the genus Leishmania survive and proliferate in the host phagocytic cells by taking control over their microbicidal functions. The parasite also promotes differentiation of antigen-specific anti-inflammatory cytokines producing effector T cells, which eventually results in disease pathogenesis. The mechanisms that parasites employ to dominate host adaptive immunity are largely unknown. For the first time, we report that L. donovani, which causes visceral leishmaniasis in the Indian subcontinent, upregulates the expression of an immune inhibitory receptor i.e., CD300a on antigen presenting and phagocytic cells to dampen their effector functions. The blocking of CD300a signals in leishmania antigens activated macrophages and dendritic cells enhanced the production of nitric oxide, pro-inflammatory cytokines along with MHCI/II genes expression, and reduced parasitic uptake. Further, the abrogation of CD300a signals in Leishmania infected mice benefited antigen-experienced, i.e., CD4+CD44+ and CD8+CD44+ T cells to acquire more pro-inflammatory cytokines producing phenotypes and helped in the early clearance of parasites from their visceral organs. The CD300a receptor blocking also enhanced the conversion of CD4+ T effectors cells to their memory phenotypes i.e., CCR7high CD62Lhigh up to 1.6 and 1.9 fold after 14 and 21 days post-infection, respectively. These findings implicate that CD300a is an important determinant of host phagocytic cells functions and T cells differentiation against Leishmania antigens.
Collapse
Affiliation(s)
- Rajan Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Anshul Anand
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Arun K. Rawat
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Shashi Saini
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Baishakhi Mahapatra
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Naveen K. Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Alok K. Mishra
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Samer Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Science, Banaras Hindu University, Varanasi, India
| | - Nisha Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Dhiraj Kishore
- Department of Medicine, Institute of Medical Science, Banaras Hindu University, Varanasi, India
| | - Vinod Kumar
- Department of Molecular Biology, Rajendra Memorial Research Institute, Patna, India
| | - Pradeep Das
- Department of Molecular Biology, Rajendra Memorial Research Institute, Patna, India
| | - Rakesh K. Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
- *Correspondence: Rakesh K. Singh,
| |
Collapse
|
13
|
Paavola KJ, Roda JM, Lin VY, Chen P, O'Hollaren KP, Ventura R, Crawley SC, Li B, Chen HIH, Malmersjö S, Sharkov NA, Horner G, Guo W, Kutach AK, Mondal K, Zhang Z, Lichtman JS, Song C, Rivera LB, Liu W, Luo J, Wang Y, Solloway MJ, Allan BB, Kekatpure A, Starck SR, Haldankar R, Fan B, Chu C, Tang J, Molgora M, Colonna M, Kaplan DD, Hsu JY. The Fibronectin-ILT3 Interaction Functions as a Stromal Checkpoint that Suppresses Myeloid Cells. Cancer Immunol Res 2021; 9:1283-1297. [PMID: 34426457 PMCID: PMC9414285 DOI: 10.1158/2326-6066.cir-21-0240] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/09/2021] [Accepted: 08/17/2021] [Indexed: 01/07/2023]
Abstract
Suppressive myeloid cells inhibit antitumor immunity by preventing T-cell responses. Immunoglobulin-like transcript 3 (ILT3; also known as LILRB4) is highly expressed on tumor-associated myeloid cells and promotes their suppressive phenotype. However, the ligand that engages ILT3 within the tumor microenvironment and renders tumor-associated myeloid cells suppressive is unknown. Using a screening approach, we identified fibronectin as a functional ligand for ILT3. The interaction of fibronectin with ILT3 polarized myeloid cells toward a suppressive state, and these effects were reversed with an ILT3-specific antibody that blocked the interaction of ILT3 with fibronectin. Furthermore, ex vivo treatment of human tumor explants with anti-ILT3 reprogrammed tumor-associated myeloid cells toward a stimulatory phenotype. Thus, the ILT3-fibronectin interaction represents a "stromal checkpoint" through which the extracellular matrix actively suppresses myeloid cells. By blocking this interaction, tumor-associated myeloid cells may acquire a stimulatory phenotype, potentially resulting in increased antitumor T-cell responses.
Collapse
Affiliation(s)
| | - Julie M. Roda
- NGM Biopharmaceuticals, South San Francisco, California
| | - Vicky Y. Lin
- NGM Biopharmaceuticals, South San Francisco, California
| | - Peirong Chen
- NGM Biopharmaceuticals, South San Francisco, California
| | | | | | | | - Betty Li
- NGM Biopharmaceuticals, South San Francisco, California
| | | | | | | | | | - Wei Guo
- NGM Biopharmaceuticals, South San Francisco, California
| | | | | | - Zhen Zhang
- NGM Biopharmaceuticals, South San Francisco, California
| | | | | | - Lee B. Rivera
- NGM Biopharmaceuticals, South San Francisco, California
| | - Wenhui Liu
- NGM Biopharmaceuticals, South San Francisco, California
| | - Jian Luo
- NGM Biopharmaceuticals, South San Francisco, California
| | - Yan Wang
- NGM Biopharmaceuticals, South San Francisco, California
| | | | | | | | | | - Raj Haldankar
- NGM Biopharmaceuticals, South San Francisco, California
| | - Bin Fan
- NGM Biopharmaceuticals, South San Francisco, California
| | - Chun Chu
- NGM Biopharmaceuticals, South San Francisco, California
| | - Jie Tang
- NGM Biopharmaceuticals, South San Francisco, California
| | - Martina Molgora
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | | | - Jer-Yuan Hsu
- NGM Biopharmaceuticals, South San Francisco, California.,Corresponding Author: Jer-Yuan Hsu, NGM Biopharmaceuticals, 333 Oyster Point Boulevard, South San Francisco, CA 94080. Phone: 650-243-5579; Fax: 650-583-1646; E-mail:
| |
Collapse
|
14
|
Wei Y, Ren X, Galbo PM, Moerdler S, Wang H, Sica RA, Etemad-Gilbertson B, Shi L, Zhu L, Tang X, Lin Q, Peng M, Guan F, Zheng D, Chinai JM, Zang X. KIR3DL3-HHLA2 is a human immunosuppressive pathway and a therapeutic target. Sci Immunol 2021; 6:eabf9792. [PMID: 34244312 PMCID: PMC9744578 DOI: 10.1126/sciimmunol.abf9792] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/22/2021] [Accepted: 05/28/2021] [Indexed: 12/15/2022]
Abstract
The B7 family ligand HERV-H LTR-associating protein 2 (HHLA2) is an attractive target for cancer immunotherapy because of its coinhibitory function, overexpression in human cancers, and association with poor prognoses. However, the knowledge of the HHLA2 pathway is incomplete. HHLA2 has an established positive receptor transmembrane and immunoglobulin (Ig) domain containing 2 (TMIGD2) but a poorly characterized negative receptor human killer cell Ig-like receptor, three Ig domains, and long cytoplasmic tail (KIR3DL3). Here, KIR3DL3 and TMIGD2 simultaneously bound to different sites of HHLA2. KIR3DL3 was mainly expressed on CD56dim NK and terminally differentiated effector memory CD8+ T (CD8+ TEMRA) cells. KIR3DL3+ CD8+ TEMRA acquired an NK-like phenotype and function. HHLA2 engagement recruited KIR3DL3 to the immunological synapse and coinhibited CD8+ T and NK cell function and killing, inducing immune-evasive HHLA2+ tumors. KIR3DL3 recruited SHP-1 and SHP-2 to attenuate Vav1, ERK1/2, AKT, and NF-κB signaling. HHLA2+ tumors from human kidney, lung, gallbladder, and stomach were infiltrated by KIR3DL3+ immune cells. KIR3DL3 blockade inhibited tumor growth in multiple humanized mouse models. Thus, our findings elucidated the molecular and cellular basis for the inhibitory function of KIR3DL3, demonstrating that the KIR3DL3-HHLA2 pathway is a potential immunotherapeutic target for cancer.
Collapse
Affiliation(s)
- Yao Wei
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Xiaoxin Ren
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Phillip M Galbo
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Scott Moerdler
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Pediatrics, Children's Hospital, Montefiore Medical Center, Bronx, NY 10461, USA
| | - Hao Wang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - R Alejandro Sica
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA
| | | | - Lei Shi
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Liqiang Zhu
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Xudong Tang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Qi Lin
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Mou Peng
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Fangxia Guan
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Departments of Neurology and Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jordan M Chinai
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Xingxing Zang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
- Department of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA
- Department of Urology, Montefiore Medical Center, Bronx, NY 10461, USA
| |
Collapse
|
15
|
Cao Y, Wang X, Jin T, Tian Y, Dai C, Widarma C, Song R, Xu F. Immune checkpoint molecules in natural killer cells as potential targets for cancer immunotherapy. Signal Transduct Target Ther 2020; 5:250. [PMID: 33122640 PMCID: PMC7596531 DOI: 10.1038/s41392-020-00348-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/13/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022] Open
Abstract
Recent studies have demonstrated the potential of natural killer (NK) cells in immunotherapy to treat multiple types of cancer. NK cells are innate lymphoid cells that play essential roles in tumor surveillance and control that efficiently kill the tumor and do not require the major histocompatibility complex. The discovery of the NK's potential as a promising therapeutic target for cancer is a relief to oncologists as they face the challenge of increased chemo-resistant cancers. NK cells show great potential against solid and hematologic tumors and have progressively shown promise as a therapeutic target for cancer immunotherapy. The effector role of these cells is reliant on the balance of inhibitory and activating signals. Understanding the role of various immune checkpoint molecules in the exhaustion and impairment of NK cells when their inhibitory receptors are excessively expressed is particularly important in cancer immunotherapy studies and clinical implementation. Emerging immune checkpoint receptors and molecules have been found to mediate NK cell dysfunction in the tumor microenvironment; this has brought up the need to explore further additional NK cell-related immune checkpoints that may be exploited to enhance the immune response to refractory cancers. Accordingly, this review will focus on the recent findings concerning the roles of immune checkpoint molecules and receptors in the regulation of NK cell function, as well as their potential application in tumor immunotherapy.
Collapse
Affiliation(s)
- Yuqing Cao
- Department of General Surgery, Shengjing Hospital of China Medical University, 110004, Shenyang, China
| | - Xiaoyu Wang
- College of Life and Health Science, Northeastern University, 110819, Shenyang, China
| | - Tianqiang Jin
- Department of General Surgery, Shengjing Hospital of China Medical University, 110004, Shenyang, China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, 110004, Shenyang, China
| | - Chaoliu Dai
- Department of General Surgery, Shengjing Hospital of China Medical University, 110004, Shenyang, China
| | - Crystal Widarma
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Rui Song
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.
| | - Feng Xu
- Department of General Surgery, Shengjing Hospital of China Medical University, 110004, Shenyang, China.
| |
Collapse
|
16
|
Wang S, Zhou D, Xu Z, Song J, Qian X, Lv X, Luan J. Anti-tumor Drug Targets Analysis: Current Insight and Future Prospect. Curr Drug Targets 2020; 20:1180-1202. [PMID: 30947670 DOI: 10.2174/1389450120666190402145325] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 12/13/2022]
Abstract
The incidence and mortality of malignant tumors are on the rise, which has become the second leading cause of death in the world. At present, anti-tumor drugs are one of the most common methods for treating cancer. In recent years, with the in-depth study of tumor biology and related disciplines, it has been gradually discovered that the essence of cell carcinogenesis is the infinite proliferation of cells caused by the disorder of cell signal transduction pathways, followed by a major shift in the concept of anti-tumor drugs research and development. The focus of research and development is shifting from traditional cytotoxic drugs to a new generation of anti-tumor drugs targeted at abnormal signaling system targets in tumor cells. In this review, we summarize the targets of anti-tumor drugs and analyse the molecular mechanisms of their effects, which lay a foundation for subsequent treatment, research and development.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Pharmacy, Yijishan Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Dexi Zhou
- Department of Pharmacy, Yijishan Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Zhenyu Xu
- Department of Pharmacy, Yijishan Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Jing Song
- Department of Pharmacy, Yijishan Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Xueyi Qian
- Department of Pharmacy, Yijishan Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Xiongwen Lv
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, Institute for Liver Disease of Anhui Medical University, Hefei, Anhui Province, China
| | - Jiajie Luan
- Department of Pharmacy, Yijishan Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| |
Collapse
|
17
|
Rumpret M, Drylewicz J, Ackermans LJE, Borghans JAM, Medzhitov R, Meyaard L. Functional categories of immune inhibitory receptors. Nat Rev Immunol 2020; 20:771-780. [PMID: 32612208 DOI: 10.1038/s41577-020-0352-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2020] [Indexed: 12/29/2022]
Abstract
The human genome encodes more than 300 potential immune inhibitory receptors. The reason for this large number of receptors remains unclear. We suggest that inhibitory receptors operate as two distinct functional categories: receptors that control the signalling threshold for immune cell activation and receptors involved in the negative feedback of immune cell activation. These two categories have characteristic receptor expression patterns: 'threshold' receptors are expressed at steady state and their expression remains high or is downregulated upon activation, whereas 'negative feedback' receptors are induced upon immune cell activation. We use mathematical models to illustrate their possible modes of operation in different scenarios for different purposes. We discuss how this categorization may impact the choice of therapeutic targets for immunotherapy of malignant, infectious and autoimmune diseases.
Collapse
Affiliation(s)
- Matevž Rumpret
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Oncode Institute, Utrecht, Netherlands
| | - Julia Drylewicz
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Laura J E Ackermans
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - José A M Borghans
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Ruslan Medzhitov
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Linde Meyaard
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands. .,Oncode Institute, Utrecht, Netherlands.
| |
Collapse
|
18
|
Vitallé J, Terrén I, Orrantia A, Bilbao A, Gamboa PM, Borrego F, Zenarruzabeitia O. The Expression and Function of CD300 Molecules in the Main Players of Allergic Responses: Mast Cells, Basophils and Eosinophils. Int J Mol Sci 2020; 21:ijms21093173. [PMID: 32365988 PMCID: PMC7247439 DOI: 10.3390/ijms21093173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/17/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023] Open
Abstract
Allergy is the host immune response against non-infectious substances called allergens. The prevalence of allergic diseases is increasing worldwide. However, while some drugs counteract the symptomatology caused by allergic reactions, no completely effective treatments for allergic diseases have been developed yet. In this sense, the ability of surface activating and inhibitory receptors to modulate the function of the main effector cells of allergic responses makes these molecules potential pharmacological targets. The CD300 receptor family consists of members with activating and inhibitory capabilities mainly expressed on the surface of immune cells. Multiple studies in the last few years have highlighted the importance of CD300 molecules in several pathological conditions. This review summarizes the literature on CD300 receptor expression, regulation and function in mast cells, basophils and eosinophils, the main players of allergic responses. Moreover, we review the involvement of CD300 receptors in the pathogenesis of certain allergic diseases, as well as their prospective use as therapeutic targets for the treatment of IgE-dependent allergic responses.
Collapse
Affiliation(s)
- Joana Vitallé
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (J.V.); (I.T.); (A.O.); (A.B.); (P.M.G.); (F.B.)
| | - Iñigo Terrén
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (J.V.); (I.T.); (A.O.); (A.B.); (P.M.G.); (F.B.)
| | - Ane Orrantia
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (J.V.); (I.T.); (A.O.); (A.B.); (P.M.G.); (F.B.)
| | - Agurtzane Bilbao
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (J.V.); (I.T.); (A.O.); (A.B.); (P.M.G.); (F.B.)
- Pediatrics Service, Cruces University Hospital, 48903 Barakaldo, Spain
| | - Pedro M. Gamboa
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (J.V.); (I.T.); (A.O.); (A.B.); (P.M.G.); (F.B.)
- Allergology Service, Cruces University Hospital, 48903 Barakaldo, Spain
| | - Francisco Borrego
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (J.V.); (I.T.); (A.O.); (A.B.); (P.M.G.); (F.B.)
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Olatz Zenarruzabeitia
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (J.V.); (I.T.); (A.O.); (A.B.); (P.M.G.); (F.B.)
- Correspondence: ; Tel.: +34-699-227-735
| |
Collapse
|
19
|
Tronik-Le Roux D, Sautreuil M, Bentriou M, Vérine J, Palma MB, Daouya M, Bouhidel F, Lemler S, LeMaoult J, Desgrandchamps F, Cournède PH, Carosella ED. Comprehensive landscape of immune-checkpoints uncovered in clear cell renal cell carcinoma reveals new and emerging therapeutic targets. Cancer Immunol Immunother 2020; 69:1237-1252. [PMID: 32166404 DOI: 10.1007/s00262-020-02530-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 02/18/2020] [Indexed: 12/18/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) constitutes the most common renal cell carcinoma subtype and has long been recognized as an immunogenic cancer. As such, significant attention has been directed toward optimizing immune-checkpoints (IC)-based therapies. Despite proven benefits, a substantial number of patients remain unresponsive to treatment, suggesting that yet unreported, immunosuppressive mechanisms coexist within tumors and their microenvironment. Here, we comprehensively analyzed and ranked forty-four immune-checkpoints expressed in ccRCC on the basis of in-depth analysis of RNAseq data collected from the TCGA database and advanced statistical methods designed to obtain the group of checkpoints that best discriminates tumor from healthy tissues. Immunohistochemistry and flow cytometry confirmed and enlarged the bioinformatics results. In particular, by using the recursive feature elimination method, we show that HLA-G, B7H3, PDL-1 and ILT2 are the most relevant genes that characterize ccRCC. Notably, ILT2 expression was detected for the first time on tumor cells. The levels of other ligand-receptor pairs such as CD70:CD27; 4-1BB:4-1BBL; CD40:CD40L; CD86:CTLA4; MHC-II:Lag3; CD200:CD200R; CD244:CD48 were also found highly expressed in tumors compared to adjacent non-tumor tissues. Collectively, our approach provides a comprehensible classification of forty-four IC expressed in ccRCC, some of which were never reported before to be co-expressed in ccRCC. In addition, the algorithms used allowed identifying the most relevant group that best discriminates tumor from healthy tissues. The data can potentially assist on the choice of valuable immune-therapy targets which hold potential for the development of more effective anti-tumor treatments.
Collapse
Affiliation(s)
- Diana Tronik-Le Roux
- Commissariat à L'Energie Atomique Et Aux Energies Alternatives (CEA), Direction de La Recherche Fondamentale (DRF), Service de Recherche en Hémato-Immunologie (SRHI), Hôpital Saint-Louis, Paris, France. .,Université de paris, U976 HIPI Unit, Institut de Recherche Saint-Louis, 75010, Paris, France. .,CEA, Direction de La Recherche Fondamentale, Service de Recherche en Hémato-Immunologie, Hôpital Saint-Louis, IUH, 1, avenue Claude Vellefaux, 75010, Paris, France.
| | - Mathilde Sautreuil
- Laboratory of Mathematics and Informatics (MICS), CentraleSupélec, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Mahmoud Bentriou
- Laboratory of Mathematics and Informatics (MICS), CentraleSupélec, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Jérôme Vérine
- Commissariat à L'Energie Atomique Et Aux Energies Alternatives (CEA), Direction de La Recherche Fondamentale (DRF), Service de Recherche en Hémato-Immunologie (SRHI), Hôpital Saint-Louis, Paris, France.,Service D'Anatomo-Pathologie, AP-HP, Hôpital Saint-Louis, Paris, France
| | - Maria Belén Palma
- Cátedra de Citología, Histología Y Embriología A, Facultad de Ciencias Médicas, UNLP, Buenos Aires, Argentina
| | - Marina Daouya
- Commissariat à L'Energie Atomique Et Aux Energies Alternatives (CEA), Direction de La Recherche Fondamentale (DRF), Service de Recherche en Hémato-Immunologie (SRHI), Hôpital Saint-Louis, Paris, France.,Université de paris, U976 HIPI Unit, Institut de Recherche Saint-Louis, 75010, Paris, France
| | - Fatiha Bouhidel
- Service D'Anatomo-Pathologie, AP-HP, Hôpital Saint-Louis, Paris, France
| | - Sarah Lemler
- Laboratory of Mathematics and Informatics (MICS), CentraleSupélec, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Joel LeMaoult
- Commissariat à L'Energie Atomique Et Aux Energies Alternatives (CEA), Direction de La Recherche Fondamentale (DRF), Service de Recherche en Hémato-Immunologie (SRHI), Hôpital Saint-Louis, Paris, France.,Université de paris, U976 HIPI Unit, Institut de Recherche Saint-Louis, 75010, Paris, France
| | - François Desgrandchamps
- Commissariat à L'Energie Atomique Et Aux Energies Alternatives (CEA), Direction de La Recherche Fondamentale (DRF), Service de Recherche en Hémato-Immunologie (SRHI), Hôpital Saint-Louis, Paris, France.,Service D'Urologie, AP-HP, Hôpital Saint-Louis, Paris, France
| | - Paul-Henry Cournède
- Laboratory of Mathematics and Informatics (MICS), CentraleSupélec, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Edgardo D Carosella
- Commissariat à L'Energie Atomique Et Aux Energies Alternatives (CEA), Direction de La Recherche Fondamentale (DRF), Service de Recherche en Hémato-Immunologie (SRHI), Hôpital Saint-Louis, Paris, France.,Université de paris, U976 HIPI Unit, Institut de Recherche Saint-Louis, 75010, Paris, France
| |
Collapse
|
20
|
Holmes VM, Maluquer de Motes C, Richards PT, Roldan J, Bhargava AK, Orange JS, Krummenacher C. Interaction between nectin-1 and the human natural killer cell receptor CD96. PLoS One 2019; 14:e0212443. [PMID: 30759143 PMCID: PMC6373967 DOI: 10.1371/journal.pone.0212443] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 02/01/2019] [Indexed: 12/17/2022] Open
Abstract
Regulation of Natural Killer (NK) cell activity is achieved by the integration of both activating and inhibitory signals acquired at the immunological synapse with potential target cells. NK cells express paired receptors from the immunoglobulin family which share common ligands from the nectin family of adhesion molecules. The activating receptor CD226 (DNAM-1) binds to nectin-2 and CD155, which are also recognized by the inhibitory receptor TIGIT. The third receptor in this family is CD96, which is less well characterized and may have different functions in human and mouse models. Human CD96 interacts with CD155 and ligation of this receptor activates NK cells, while in mice the presence of CD96 correlates with decreased NK cell activation. Mouse CD96 also binds nectin-1, but the effect of this interaction has not yet been determined. Here we show that human nectin-1 directly interacts with CD96 in vitro. The binding site for CD96 is located on the nectin-1 V-domain, which comprises a canonical interface that is shared by nectins to promote cell adhesion. The affinity of nectin-1 for CD96 is lower than for other nectins such as nectin-3 and nectin-1 itself. However, the affinity of nectin-1 for CD96 is similar to its affinity for herpes simplex virus glycoprotein D (HSV gD), which binds the nectin-1 V-domain during virus entry. The affinity of human CD96 for nectin-1 is lower than for its known activating ligand CD155. We also found that human erythroleukemia K562 cells, which are commonly used as susceptible targets to assess NK cell cytotoxicity did not express nectin-1 on their surface and were resistant to HSV infection. When expressed in K562 cells, nectin-1-GFP accumulated at cell contacts and allowed HSV entry. Furthermore, overexpression of nectin-1-GFP led to an increased susceptibility of K562 cells to NK-92 cell cytotoxicity.
Collapse
Affiliation(s)
- Veronica M. Holmes
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | | | - Paige T. Richards
- Department of Biological Sciences, Rowan University, Glassboro, New Jersey, United States of America
| | - Jessenia Roldan
- Department of Biological Sciences, Rowan University, Glassboro, New Jersey, United States of America
| | - Arjun K. Bhargava
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jordan S. Orange
- Department of Pediatrics, Columbia University, New York, New York, United States of America
| | - Claude Krummenacher
- Department of Biological Sciences, Rowan University, Glassboro, New Jersey, United States of America
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, New Jersey, United States of America
| |
Collapse
|
21
|
Cancer immunotherapy with check point inhibitor can cause autoimmune adverse events due to loss of Treg homeostasis. Semin Cancer Biol 2019; 64:29-35. [PMID: 30716481 DOI: 10.1016/j.semcancer.2019.01.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/24/2019] [Accepted: 01/31/2019] [Indexed: 01/05/2023]
Abstract
Regulatory T-cells (Tregs) can facilitate immune evasion by tumor cells by dampening anti-tumor immunity. Reduced Teff/Treg ratio and enhanced Treg functional activity have been observed in patients suffering from different types of cancers, and attenuated Treg numbers/functions can serve as prognostic indicators. Normally, Tregs play an essential role in the maintenance of immune tolerance and prevention of autoimmunity. The most common immune checkpoint blockers (ICB) targeting co-inhibitory receptors such as anti-CTLA4 (ipilimumab and tremelimumab) and anti-PD1 (pembrolizumab and nivolumab)/anti-PD-L1 (atezolizumab) have achieved unprecedented success in cancer treatment by facilitating an effective anti-tumor immune response, at least in part, by blocking Treg mediated immunosuppression. While ICBs have shown remarkable success in cancer immunotherapy, immune-related adverse events (IRAEs) arising from ICB have forced consideration of ways to maintain immune homeostasis post ICB treatment. Preclinical models of IRAEs have shown a negative correlation between Treg numbers and IRAEs. Therefore, understanding the "ying-yang" role of Tregs in the regulation of autoimmunity and anti-tumor immunity is critical to provoking an effective anti-tumor response while maintaining immune homeostasis. Studies aimed at developing effective approaches to minimize IRAEs without compromising anti-tumor immunity are underway. Herein, we discuss 1) the critical role of key co-inhibitory receptors on Treg homeostasis and tumor tolerance; 2) how co-receptor blockade by cancer immunotherapy can lead to autoimmune adverse events; and 3) recently emerging management strategies to minimize autoimmune adverse events arising from ICB.
Collapse
|
22
|
Vitallé J, Terrén I, Orrantia A, Zenarruzabeitia O, Borrego F. CD300 receptor family in viral infections. Eur J Immunol 2018; 49:364-374. [DOI: 10.1002/eji.201847951] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/02/2018] [Accepted: 11/26/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Joana Vitallé
- Immunopathology GroupBiocruces Bizkaia Health Research Institute Barakaldo Bizkaia Spain
| | - Iñigo Terrén
- Immunopathology GroupBiocruces Bizkaia Health Research Institute Barakaldo Bizkaia Spain
| | - Ane Orrantia
- Immunopathology GroupBiocruces Bizkaia Health Research Institute Barakaldo Bizkaia Spain
| | - Olatz Zenarruzabeitia
- Immunopathology GroupBiocruces Bizkaia Health Research Institute Barakaldo Bizkaia Spain
| | - Francisco Borrego
- Immunopathology GroupBiocruces Bizkaia Health Research Institute Barakaldo Bizkaia Spain
- IkerbasqueBasque Foundation for Science Bilbao Bizkaia Spain
- Basque Center for Transfusion and Human Tissues Galdakao Spain
| |
Collapse
|