1
|
Shi L, Liu S, Chen J, Wang H, Wang Z. Microglial polarization pathways and therapeutic drugs targeting activated microglia in traumatic brain injury. Neural Regen Res 2026; 21:39-56. [PMID: 39665832 PMCID: PMC12094552 DOI: 10.4103/nrr.nrr-d-24-00810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/03/2024] [Accepted: 11/14/2024] [Indexed: 12/13/2024] Open
Abstract
Traumatic brain injury can be categorized into primary and secondary injuries. Secondary injuries are the main cause of disability following traumatic brain injury, which involves a complex multicellular cascade. Microglia play an important role in secondary injury and can be activated in response to traumatic brain injury. In this article, we review the origin and classification of microglia as well as the dynamic changes of microglia in traumatic brain injury. We also clarify the microglial polarization pathways and the therapeutic drugs targeting activated microglia. We found that regulating the signaling pathways involved in pro-inflammatory and anti-inflammatory microglia, such as the Toll-like receptor 4 /nuclear factor-kappa B, mitogen-activated protein kinase, Janus kinase/signal transducer and activator of transcription, phosphoinositide 3-kinase/protein kinase B, Notch, and high mobility group box 1 pathways, can alleviate the inflammatory response triggered by microglia in traumatic brain injury, thereby exerting neuroprotective effects. We also reviewed the strategies developed on the basis of these pathways, such as drug and cell replacement therapies. Drugs that modulate inflammatory factors, such as rosuvastatin, have been shown to promote the polarization of anti-inflammatory microglia and reduce the inflammatory response caused by traumatic brain injury. Mesenchymal stem cells possess anti-inflammatory properties, and clinical studies have confirmed their significant efficacy and safety in patients with traumatic brain injury. Additionally, advancements in mesenchymal stem cell-delivery methods-such as combinations of novel biomaterials, genetic engineering, and mesenchymal stem cell exosome therapy-have greatly enhanced the efficiency and therapeutic effects of mesenchymal stem cells in animal models. However, numerous challenges in the application of drug and mesenchymal stem cell treatment strategies remain to be addressed. In the future, new technologies, such as single-cell RNA sequencing and transcriptome analysis, can facilitate further experimental studies. Moreover, research involving non-human primates can help translate these treatment strategies to clinical practice.
Collapse
Affiliation(s)
- Liping Shi
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Shuyi Liu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Jialing Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Hong Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Zhengbo Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| |
Collapse
|
2
|
Stanley N, Dhawka L, Jaikumar S, Huang YC, Zannas AS. Microglia Single-Cell RNA-Seq Enables Robust and Applicable Markers of Biological Aging. Aging Cell 2025:e70095. [PMID: 40371813 DOI: 10.1111/acel.70095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/27/2025] [Accepted: 04/21/2025] [Indexed: 05/16/2025] Open
Abstract
"Biological aging clocks"-composite molecular markers thought to capture an individual's biological age-have been traditionally developed through bulk-level analyses of mixed cells and tissues. However, recent evidence highlights the importance of gaining single-cell-level insights into the aging process. Microglia are key immune cells in the brain shown to adapt functionally in aging and disease. Recent studies have generated single-cell RNA-sequencing (scRNA-seq) datasets that transcriptionally profile microglia during aging and development. Leveraging such datasets in humans and mice, we develop and compare computational approaches for generating transcriptome-wide summaries from microglia to establish robust and applicable aging clocks. Our results reveal that unsupervised, frequency-based summarization approaches, which encode distributions of cells across molecular subtypes, strike a balance in accuracy, interpretability, and computational efficiency. Notably, our computationally derived microglia markers achieve strong accuracy in predicting chronological age across three diverse single-cell datasets, suggesting that microglia exhibit characteristic changes in gene expression during aging and development that can be computationally summarized to create robust markers of biological aging. We further extrapolate and demonstrate the applicability of single-cell-based microglia clocks to readily available bulk RNA-seq data with an environmental input (early life stress), indicating the potential for broad utility of our models across genomic modalities and for testing hypotheses about how environmental inputs affect brain age. Such single-cell-derived markers can yield insights into the determinants of brain aging, ultimately promoting interventions that beneficially modulate health and disease trajectories.
Collapse
Affiliation(s)
- Natalie Stanley
- Department of Computer Science and Computational Medicine Program, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Luvna Dhawka
- Department of Computer Science and Computational Medicine Program, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Curriculum in Bioinformatics and Computational Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sneha Jaikumar
- Department of Computer Science and Computational Medicine Program, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yu-Chen Huang
- Curriculum in Bioinformatics and Computational Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Anthony S Zannas
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
3
|
Zhang Z, Wang H, Tao B, Shi X, Chen G, Ma H, Peng R, Zhang J. Attenuation of Blood-Brain Barrier Disruption in Traumatic Brain Injury via Inhibition of NKCC1 Cotransporter: Insights into the NF-κB/NLRP3 Signaling Pathway. J Neurotrauma 2025; 42:814-831. [PMID: 39879999 DOI: 10.1089/neu.2023.0580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
Following traumatic brain injury (TBI), inhibition of the Na+-K+-Cl- cotransporter1 (NKCC1) has been observed to alleviate damage to the blood-brain barrier (BBB). However, the underlying mechanism for this effect remains unclear. This study aimed to investigate the mechanisms by which inhibiting the NKCC1 attenuates disruption of BBB integrity in TBI. The TBI model was induced in C57BL/6 mice through a controlled cortical impact device, and an in vitro BBB model was established using Transwell chambers. Western blot (WB) analysis was used to evaluate NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome and nuclear factor-kappaB (NF-κB) pathway proteins. Flow cytometry and transendothelial electrical resistance (TEER) were employed to assess endothelial cell apoptosis levels and BBB integrity. ELISA was utilized to measure cytokines interleukin-1β (IL-1β) and matrix metalloproteinase-9 (MMP-9). Immunofluorescence techniques were used to evaluate protein levels and the nuclear translocation of the rela (p65) subunit. The Evans blue dye leakage assay and the brain wet-dry weight method were utilized to assess BBB integrity and brain swelling. Inhibition of NKCC1 reduced the level of NLRP3 inflammasome and the secretion of IL-1β and MMP-9 in microglia. Additionally, NKCC1 inhibition suppressed the activation of the NF-κB signaling pathway, which in turn decreased the level of NLRP3 inflammasome. The presence of NLRP3 inflammasome in BV2 cells led to compromised BBB integrity within an inflammatory milieu. Following TBI, an upregulation of NLRP3 inflammasome was observed in microglia, astrocytes, vascular endothelial cells, and neurons. Furthermore, inhibiting NKCC1 resulted in a decrease in the positive rate of NLRP3 inflammasome in microglia and the levels of inflammatory cytokines IL-1β and MMP-9 after TBI, which correlated with BBB damage and the development of cerebral edema. These findings demonstrate that the suppression of the NKCC1 cotransporter protein alleviates BBB disruption through the NF-κB/NLRP3 signaling pathway following TBI.
Collapse
Affiliation(s)
- Zehan Zhang
- Department of Neurosurgery, PLA Air Force Hospital of Southern Theatre Command, Guangzhou, China
| | - Hui Wang
- Department of Experimental Pathology, Institute of Radiation Medicine, Beijing, China
| | - Bingyan Tao
- Department of Neurosurgery, 961th Hospital of Joint Logistics Support Force, Qiqihaer, China
| | - Xudong Shi
- Medical School of Chinese People's Liberation Army, Beijing, China
- Department of Neurosurgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Guilin Chen
- Medical School of Chinese People's Liberation Army, Beijing, China
- Department of Neurosurgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Hengchao Ma
- Medical School of Chinese People's Liberation Army, Beijing, China
- Department of Neurosurgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Ruiyun Peng
- Department of Experimental Pathology, Institute of Radiation Medicine, Beijing, China
| | - Jun Zhang
- Department of Neurosurgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
4
|
Hours C, Vayssière P, Gressens P, Laforge M. Immunity in neuromodulation: probing neural and immune pathways in brain disorders. J Neuroinflammation 2025; 22:122. [PMID: 40296049 PMCID: PMC12038965 DOI: 10.1186/s12974-025-03440-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 04/08/2025] [Indexed: 04/30/2025] Open
Abstract
Immunity finely regulates brain function. It is directly involved in the pathological processes of neurodegenerative diseases such as Parkinson's and Alzheimer's disease, post-stroke conditions, multiple sclerosis, traumatic brain injury, and psychiatric disorders (mood disorders, major depressive disorder (MDD), anxiety disorders, psychosis disorders and schizophrenia, and neurodevelopmental disorders (NDD)). Neuromodulation is currently a leading therapeutic strategy for the treatment of these disorders, but little is yet known about its immune impact on neuronal function and its precise beneficial or harmful consequences. We review relevant clinical and preclinical studies and identify several specific immune modifications. These data not only provide insights into how neuromodulation acts to optimize immune-brain interactions, but also pave the way for a better understanding of these interactions in pathological processes.
Collapse
Affiliation(s)
- C Hours
- Université Paris Cité, NeuroDiderot, Inserm, Paris, France.
- Service de Neurochirurgie, Hôpital Fondation Adolphe de Rothschild, Paris, France.
| | - Pia Vayssière
- Service de Neurochirurgie, Hôpital Fondation Adolphe de Rothschild, Paris, France
| | - P Gressens
- Université Paris Cité, NeuroDiderot, Inserm, Paris, France
| | - M Laforge
- Université Paris Cité, NeuroDiderot, Inserm, Paris, France
| |
Collapse
|
5
|
Han T, Jia Z, Zhang X, Wu H, Li Q, Cheng S, Zhang Y, Wang Y. The basal cisternostomy for management of severe traumatic brain injury: A retrospective study. Chin J Traumatol 2025; 28:118-123. [PMID: 39632242 PMCID: PMC11973650 DOI: 10.1016/j.cjtee.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 09/02/2024] [Accepted: 09/13/2024] [Indexed: 12/07/2024] Open
Abstract
PURPOSE Traumatic brain injury (TBI) is a significant public health issue that impacts individuals all over the world and is one of the main causes of mortality and morbidity. Decompressive craniectomy is the usual course of treatment. Basal cisternostomy has been shown to be highly effective as an alternative procedure to decompressive craniectomy. METHODS We conducted a retrospective cohort of patients who received surgery for severe TBI between January 2019 and March 2023. Inclusion criterias were patients between the ages of 18 and 70 years who met the diagnostic criteria for severe TBI at first presentation and who underwent surgical intervention. The exclusion criteria were patients who have severe multiple injuries at the time of admission; preoperative intracranial pressure > 60 mmHg; cognitive impairment before the onset of the disease; hematologic disorders; or impaired functioning of the heart, liver, kidneys, or other visceral organs. Depending on the surgical approach, the patients were categorized into decompressive craniectomy group as well as basal cisternostomy group. General data and postoperative indicators, including Glasgow coma scale, intracranial pressure, etc., were recorded for both groups of patients. Among them, the Glasgow outcome scale extended assessment at 6 months served as the primary outcome. After that, the data were statistically analyzed using SPSS software. RESULTS The trial enrolled 41 patients (32 men and 9 women) who met the inclusion criteria. Among them, 25 patients received decompressive decompressive craniectomy, and 16 patients received basal cisternostomy. Three days postoperative intracranial pressure levels were 10.07 ± 2.94 mmHg and 17.15 ± 14.65 mmHg (p = 0.013), respectively. The 6 months following discharge Glasgow outcome scale extended of patients was 4.73 ± 2.28 and 3.14 ± 2.15 (p = 0.027), respectively. CONCLUSION Our study reveals that basal cisternostomy in patients with surgically treated severe TBI has demonstrated significant efficacy in reducing intracranial pressure as well as patient prognosis follow-up and avoids removal of the bone flap. The efficacy of cisternostomy has to be studied in larger, multi-clinical center randomized trials.
Collapse
Affiliation(s)
- Tangrui Han
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Zhiqiang Jia
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Xiaokai Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Hao Wu
- Department of Neurosurgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Qiang Li
- Department of Neurosurgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Shiqi Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330009, China
| | - Yan Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330009, China
| | - Yonghong Wang
- Department of Neurosurgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
| |
Collapse
|
6
|
Michalaki E, Pulliam AN, Datta Roy PM, Dixon JB, LaPlaca MC. Near-Infrared Imaging of Glymphatic Clearance in a Pre-Clinical Model of Repetitive Closed Head Traumatic Brain Injury. Neurotrauma Rep 2025; 6:115-128. [PMID: 39990707 PMCID: PMC11839536 DOI: 10.1089/neur.2024.0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025] Open
Abstract
Traumatic brain injury (TBI) is a major health disorder for which there are few treatments. The glymphatic system is the brain's inbuilt lymphatic-like system that is thought to be responsible for clearing waste products from the brain to the lymph nodes. Although there is evidence that glymphatic drainage is crucial for brain homeostasis, its role in TBI pathogenesis remains elusive. Here, we investigated how glymphatic clearance is altered following TBI in rats using real-time non-invasive imaging. Twenty-four hours following repetitive closed-head TBI or sham conditions, we injected infrared dye intraventricularly and used near-infrared (NIR) imaging to quantify signal intensity, intensity over time, and appearance time of NIR dye in different brain regions. TBI yielded a lower NIR signal and lower rate of NIR dye change in the lateral ventricle and surrounding parietal cortex compared with sham conditions, indicating reduced cerebrospinal fluid perfusion. NIR dye appearance took significantly longer to reach the anterior regions of the brain, while perfusion to the posterior of the brain was faster in TBI compared with sham animals. Aquaporin-4 (AQP4) expression was reduced 24 h after TBI across all cortical regions examined in the posterior of the brain and in the ventral cortex at all coronal levels, suggesting a complex relationship between AQP4 and glymph function. Furthermore, NIR imaging revealed that NIR dye was detectable in the cervical lymph nodes (CLNs) of sham animals but not in TBI animals, yet there was evidence of blood accumulation in the CLNs of TBI animals, suggesting that TBI-related extravascular blood is removed through the glymph system. These data indicate that TBI disrupts normal brain efflux kinetics and reduces glymphatic drainage to the CLNs, demonstrating that restoring glymphatic function may be a promising therapeutic target.
Collapse
Affiliation(s)
- Eleftheria Michalaki
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Alexis N. Pulliam
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Pooja M. Datta Roy
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - J. Brandon Dixon
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Michelle C. LaPlaca
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| |
Collapse
|
7
|
Kursancew ACS, Faller CJ, Bortoluzzi DP, Niero LB, Brandão B, Danielski LG, Petronilho F, Generoso JS. Neuroinflammatory Response in the Traumatic Brain Injury: An Update. Neurochem Res 2024; 50:64. [PMID: 39718667 DOI: 10.1007/s11064-024-04316-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/25/2024] [Accepted: 12/09/2024] [Indexed: 12/25/2024]
Abstract
The central nervous system (CNS) comprises membranes and barriers that are vital to brain homeostasis. Membranes form a robust shield around neural structures, ensuring protection and structural integrity. At the same time, barriers selectively regulate the exchange of substances between blood and brain tissue, which is essential for maintaining homeostasis. Another highlight is the glymphatic system, which cleans metabolites and waste from the brain. Traumatic brain injury (TBI) represents a significant cause of disability and mortality worldwide, resulting from the application of direct mechanical force to the head that results in a primary injury. Therefore, this review aims to elucidate the mechanisms associated with the secondary injury cascade, in which there is intense activation of glial cells, dysfunction of the glymphatic system, glutamatergic neurotoxicity, additional molecular and biochemical changes that lead to a neuroinflammatory process, and oxidative stress and in which way they can be associated with cognitive damage that is capable of lasting for an extended period.
Collapse
Affiliation(s)
- Amanda C S Kursancew
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Cristiano Julio Faller
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Daniel Paulo Bortoluzzi
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Luana Budny Niero
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Beatriz Brandão
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Lucineia Gainski Danielski
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Jaqueline S Generoso
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
8
|
Zou K, Deng Q, Zhang H, Huang C. Glymphatic system: a gateway for neuroinflammation. Neural Regen Res 2024; 19:2661-2672. [PMID: 38595285 PMCID: PMC11168510 DOI: 10.4103/1673-5374.391312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/15/2023] [Accepted: 11/09/2023] [Indexed: 04/11/2024] Open
Abstract
The glymphatic system is a relatively recently identified fluid exchange and transport system in the brain. Accumulating evidence indicates that glymphatic function is impaired not only in central nervous system disorders but also in systemic diseases. Systemic diseases can trigger the inflammatory responses in the central nervous system, occasionally leading to sustained inflammation and functional disturbance of the central nervous system. This review summarizes the current knowledge on the association between glymphatic dysfunction and central nervous system inflammation. In addition, we discuss the hypothesis that disease conditions initially associated with peripheral inflammation overwhelm the performance of the glymphatic system, thereby triggering central nervous system dysfunction, chronic neuroinflammation, and neurodegeneration. Future research investigating the role of the glymphatic system in neuroinflammation may offer innovative therapeutic approaches for central nervous system disorders.
Collapse
Affiliation(s)
- Kailu Zou
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Qingwei Deng
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Hong Zhang
- Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Changsheng Huang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
9
|
Rigo YR, Benvenutti R, Portela LV, Strogulski NR. Neurogenic potential of NG2 in neurotrauma: a systematic review. Neural Regen Res 2024; 19:2673-2683. [PMID: 38595286 PMCID: PMC11168526 DOI: 10.4103/nrr.nrr-d-23-01031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/20/2023] [Accepted: 02/07/2024] [Indexed: 04/11/2024] Open
Abstract
Regenerative approaches towards neuronal loss following traumatic brain or spinal cord injury have long been considered a dogma in neuroscience and remain a cutting-edge area of research. This is reflected in a large disparity between the number of studies investigating primary and secondary injury as therapeutic targets in spinal cord and traumatic brain injuries. Significant advances in biotechnology may have the potential to reshape the current state-of-the-art and bring focus to primary injury neurotrauma research. Recent studies using neural-glial factor/antigen 2 (NG2) cells indicate that they may differentiate into neurons even in the developed brain. As these cells show great potential to play a regenerative role, studies have been conducted to test various manipulations in neurotrauma models aimed at eliciting a neurogenic response from them. In the present study, we systematically reviewed the experimental protocols and findings described in the scientific literature, which were peer-reviewed original research articles (1) describing preclinical experimental studies, (2) investigating NG2 cells, (3) associated with neurogenesis and neurotrauma, and (4) in vitro and/or in vivo, available in PubMed/MEDLINE, Web of Science or SCOPUS, from 1998 to 2022. Here, we have reviewed a total of 1504 papers, and summarized findings that ultimately suggest that NG2 cells possess an inducible neurogenic potential in animal models and in vitro. We also discriminate findings of NG2 neurogenesis promoted by different pharmacological and genetic approaches over functional and biochemical outcomes of traumatic brain injury and spinal cord injury models, and provide mounting evidence for the potential benefits of manipulated NG2 cell ex vivo transplantation in primary injury treatment. These findings indicate the feasibility of NG2 cell neurogenesis strategies and add new players in the development of therapeutic alternatives for neurotrauma.
Collapse
Affiliation(s)
- Yuri R. Rigo
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Radharani Benvenutti
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Luis V. Portela
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Nathan R. Strogulski
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| |
Collapse
|
10
|
Zhang Y, Deng T, Ding X, Ma X, Wang Y, Yang H, Ding R, Wang D, Li H, Zheng M. Panaroma of microglia in traumatic brain injury: a bibliometric analysis and visualization study during 2000-2023. Front Cell Neurosci 2024; 18:1495542. [PMID: 39575155 PMCID: PMC11578739 DOI: 10.3389/fncel.2024.1495542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/14/2024] [Indexed: 11/24/2024] Open
Abstract
Background Traumatic brain injury (TBI) is a critical global health concern characterized by elevated rates of both morbidity and mortality. The pathological and physiological changes after TBI are closely related to microglia. Microglia, the primary immune cells in the brain, are closely linked to the mechanisms and treatment of TBI. With increasing research in this area, this study employs bibliometric analysis to identify current research hotspots and predict future trends. Objective We decided to perform a bibliometric analysis to provide a comprehensive overview of the advancements in microglia research related to traumatic brain injury. We aim to offer researchers insights into current trends and future research directions. Method We collected all articles and reviews related to microglia and traumatic brain injury published between 2000 and 2023 from the Web of Science Core Collection. These records were analyzed using VOSviewer, CiteSpace, and the R package "bibliometrix". Results We retrieved 665 publications from 25 countries, with the majority contributed by the United States and China. The number of publications on traumatic brain injury and microglia has been steadily increasing each year. Our analysis highlighted the Journal of Neurotrauma and the Journal of Neuroinflammation as the most influential journals in this field. Alan I. Faden and David J. Loane are recognized as leading contributors. Keyword analysis indicates that neuroinflammation, microglial polarization, and neurodegenerative diseases are pivotal areas for future research. Conclusion In recent years, research on TBI-related microglia has proliferated, with current studies primarily focusing on microglial involvement in neuroinflammation, neurodegenerative changes, and microglial polarization following TBI. Since neuroinflammation and neurodegeneration are two hallmark features of TBI, targeting microglia in TBI treatment may become a central focus for future research.
Collapse
Affiliation(s)
- Yuhang Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Neurosurgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Tingzhen Deng
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Neurosurgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiao Ding
- Department of Neurosurgery, Armed Police Hospital of Chongqing, Chongqing, China
| | - Xingyuan Ma
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Neurosurgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yatao Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Neurosurgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Haijun Yang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Neurosurgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Ruiwen Ding
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Neurosurgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Dawen Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Neurosurgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Haotian Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Neurosurgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Maohua Zheng
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Neurosurgery, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
11
|
Stanley N, Dhawka L, Jaikumar S, Huang YC, Zannas AS. Leveraging Single-Cell RNA-Seq to Generate Robust Microglia Aging Clocks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.05.616811. [PMID: 39554035 PMCID: PMC11566008 DOI: 10.1101/2024.10.05.616811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
'Biological aging clocks' - composite molecular markers thought to capture an individual's biological age - have been traditionally developed through bulk-level analyses of mixed cells and tissues. However, recent evidence highlights the importance of gaining single-cell-level insights into the aging process. Microglia are key immune cells in the brain shown to adapt functionally in aging and disease. Recent studies have generated single-cell RNA sequencing (scRNA-seq) datasets that transcriptionally profile microglia during aging and development. Leveraging such datasets, we develop and compare computational approaches for generating transcriptome-wide summaries to establish robust microglia aging clocks. Our results reveal that unsupervised, frequency-based featurization approaches strike a balance in accuracy, interpretability, and computational efficiency. We further extrapolate and demonstrate applicability of such microglia clocks to readily available bulk RNA-seq data with environmental inputs. Single-cell-derived clocks can yield insights into the determinants of brain aging, ultimately promoting interventions that beneficially modulate health and disease trajectories.
Collapse
Affiliation(s)
- Natalie Stanley
- Department of Computer Science and Computational Medicine Program, The University of North Carolina at Chapel Hill
- Department of Genetics, The University of North Carolina at Chapel Hill
| | - Luvna Dhawka
- Department of Computer Science and Computational Medicine Program, The University of North Carolina at Chapel Hill
- Curriculum in Bioinformatics and Computational Biology, The University of North Carolina at Chapel Hill
| | - Sneha Jaikumar
- Department of Computer Science and Computational Medicine Program, The University of North Carolina at Chapel Hill
| | - Yu-Chen Huang
- Curriculum in Bioinformatics and Computational Biology, The University of North Carolina at Chapel Hill
| | - Anthony S Zannas
- Department of Psychiatry, The University of North Carolina at Chapel Hill
- Department of Genetics, The University of North Carolina at Chapel Hill
| |
Collapse
|
12
|
Wu J, Ren R, Chen T, Su LD, Tang T. Neuroimmune and neuroinflammation response for traumatic brain injury. Brain Res Bull 2024; 217:111066. [PMID: 39241894 DOI: 10.1016/j.brainresbull.2024.111066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/18/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Traumatic brain injury (TBI) is one of the major diseases leading to mortality and disability, causing a serious disease burden on individuals' ordinary lives as well as socioeconomics. In primary injury, neuroimmune and neuroinflammation are both responsible for the TBI. Besides, extensive and sustained injury induced by neuroimmune and neuroinflammation also prolongs the course and worsens prognosis of TBI. Therefore, this review aims to explore the role of neuroimmune, neuroinflammation and factors associated them in TBI as well as the therapies for TBI. Thus, we conducted by searching PubMed, Scopus, and Web of Science databases for articles published between 2010 and 2023. Keywords included "traumatic brain injury," "neuroimmune response," "neuroinflammation," "astrocytes," "microglia," and "NLRP3." Articles were selected based on relevance and quality of evidence. On this basis, we provide the cellular and molecular mechanisms of TBI-induced both neuroimmune and neuroinflammation response, as well as the different factors affecting them, are introduced based on physiology of TBI, which supply a clear overview in TBI-induced chain-reacting, for a better understanding of TBI and to offer more thoughts on the future therapies for TBI.
Collapse
Affiliation(s)
- Junyun Wu
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang 310009, China
| | - Reng Ren
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang 310009, China
| | - Tao Chen
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang 310009, China
| | - Li-Da Su
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang 310009, China.
| | - Tianchi Tang
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|
13
|
Ke JP, He BD, Gong ML, Yan ZZ, Du HZ, Teng ZQ, Liu CM. Loss of microglial Arid1a exacerbates microglial scar formation via elevated CCL5 after traumatic brain injury. Cell Commun Signal 2024; 22:467. [PMID: 39350161 PMCID: PMC11443815 DOI: 10.1186/s12964-024-01852-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
Traumatic brain injury (TBI) is an acquired insult to the brain caused by an external mechanical force, potentially resulting in temporary or permanent impairment. Microglia, the resident immune cells of the central nervous system, are activated in response to TBI, participating in tissue repair process. However, the underlying epigenetic mechanisms in microglia during TBI remain poorly understood. ARID1A (AT-Rich Interaction Domain 1 A), a pivotal subunit of the multi-protein SWI/SNF chromatin remodeling complex, has received little attention in microglia, especially in the context of brain injury. In this study, we generated a Arid1a cKO mouse line to investigate the potential roles of ARID1A in microglia in response to TBI. We found that glial scar formation was exacerbated due to increased microglial migration and a heightened inflammatory response in Arid1a cKO mice following TBI. Mechanistically, loss of ARID1A led to an up-regulation of the chemokine CCL5 in microglia upon the injury, while the CCL5-neutralizing antibody reduced migration and inflammatory response of LPS-stimulated Arid1a cKO microglia. Importantly, administration of auraptene (AUR), an inhibitor of CCL5, repressed the microglial migration and inflammatory response, as well as the glial scar formation after TBI. These findings suggest that ARID1A is critical for microglial response to injury and that AUR has a therapeutic potential for the treatment of TBI.
Collapse
Affiliation(s)
- Jin-Peng Ke
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Bao-Dong He
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Mao-Lei Gong
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Zhong-Ze Yan
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Hong-Zhen Du
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Zhao-Qian Teng
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
| | - Chang-Mei Liu
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
| |
Collapse
|
14
|
Dong S, Zhao H, Nie M, Sha Z, Feng J, Liu M, Lv C, Chen Y, Jiang W, Yuan J, Qian Y, Wan H, Gao C, Jiang R. Cannabidiol Alleviates Neurological Deficits After Traumatic Brain Injury by Improving Intracranial Lymphatic Drainage. J Neurotrauma 2024; 41:e2009-e2025. [PMID: 38553903 DOI: 10.1089/neu.2023.0539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2024] Open
Abstract
Traumatic brain injury (TBI) persists as a substantial clinical dilemma, largely because of the absence of effective treatments. This challenge is exacerbated by the hindered clearance of intracranial metabolic byproducts and the continual accrual of deleterious proteins. The glymphatic system (GS) and meningeal lymphatic vessels (MLVs), key elements of the intracranial lymphatic network, play critical roles in the clearance of harmful substances. Cannabidiol (CBD) has shown promise in reducing metabolite overload and bolstering cognitive performance in various neurodegenerative diseases. The precise mechanisms attributing to its beneficial effects in TBI scenarios, however, are yet to be distinctly understood. Utilizing a fluid percussion injury paradigm, our research adopted a multifaceted approach, encompassing behavioral testing, immunofluorescence and immunohistochemical analyses, laser speckle imaging, western blot techniques, and bilateral cervical efferent lymphatic ligation. This methodology aimed to discern the influence of CBD on both neurological outcomes and intracranial lymphatic clearance in a murine TBI model. We observed that CBD administration notably ameliorated motor, memory, and cognitive functions, concurrently with a significant reduction in the concentration of phosphorylated tau protein and amyloid-β. In addition, CBD expedited the turnover and elimination of intracranial tracers, increased cerebral blood flow, and enhanced the efficacy of fluorescent tracer migration from MLVs to deep cervical lymph nodes (dCLNs). Remarkably, CBD treatment also induced a reversion in aquaporin-4 (AQP-4) polarization and curtailed neuroinflammatory indices. A pivotal discovery was that the surgical interruption of efferent lymphatic conduits in the neck nullified CBD's positive contributions to intracranial waste disposal and cognitive improvement, yet the anti-neuroinflammatory actions remained unaffected. These insights suggest that CBD may enhance intracranial metabolite clearance, potentially via the regulation of the intracranial lymphatic system, thereby offering neurofunctional prognostic improvement in TBI models. Our findings underscore the potential therapeutic applicability of CBD in TBI interventions, necessitating further comprehensive investigations and clinical validations to substantiate these initial conclusions.
Collapse
Affiliation(s)
- Shiying Dong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Hongwei Zhao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, China
| | - Meng Nie
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Zhuang Sha
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Jiancheng Feng
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Mingqi Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Chuanxiang Lv
- Department of Neurosurgery, The First Clinical Hospital, Jilin University, Changchun, China
| | - Yupeng Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Weiwei Jiang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Jiangyuan Yuan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Yu Qian
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Honggang Wan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Chuang Gao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Rongcai Jiang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
- State Key Laboratory of Experimental Hematology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
15
|
Marino AL, Rex TS, Harrison FE. Modulation of microglia activation by the ascorbic acid transporter SVCT2. Brain Behav Immun 2024; 120:557-570. [PMID: 38972487 PMCID: PMC11458066 DOI: 10.1016/j.bbi.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/04/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024] Open
Abstract
Neuroinflammation is a major characteristic of pathology in several neurodegenerative diseases. Microglia, the brain's resident myeloid cells, shift between activation states under neuroinflammatory conditions, both responding to, but also driving damage in the brain. Vitamin C (ascorbate) is an essential antioxidant for central nervous system function that may have a specific role in the neuroinflammatory response. Uptake of ascorbate throughout the central nervous system is facilitated by the sodium-dependent vitamin C transporter 2 (SVCT2). SVCT2 transports the reduced form of ascorbate into neurons and microglia, however the contribution of altered SVCT2 expression to the neuroinflammatory response in microglia is not well understood. In this study we demonstrate that SVCT2 expression modifies microglial response, as shown through changes in cell morphology and mRNA expression, following a mild traumatic brain injury (mTBI) in mice with decreased or increased expression of SVCT2. Results were supported by in vitro studies in an immortalized microglial cell line and in primary microglial cultures derived from SVCT2-heterozygous and transgenic animals. Overall, this work demonstrates the importance of SVCT2 and ascorbate in modulating the microglial response to mTBI and suggests a potential role for both in response to neuroinflammatory challenges.
Collapse
Affiliation(s)
- Amanda L Marino
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States
| | - Tonia S Rex
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States; Division of Ophthalmology & Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Fiona E Harrison
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States; Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States.
| |
Collapse
|
16
|
Dooley J, Hughes JG, Needham EJ, Palios KA, Liston A. The potential of gene delivery for the treatment of traumatic brain injury. J Neuroinflammation 2024; 21:183. [PMID: 39069631 DOI: 10.1186/s12974-024-03156-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/17/2024] [Indexed: 07/30/2024] Open
Abstract
Therapeutics for traumatic brains injuries constitute a global unmet medical need. Despite the advances in neurocritical care, which have dramatically improved the survival rate for the ~ 70 million patients annually, few treatments have been developed to counter the long-term neuroinflammatory processes and accompanying cognitive impairments, frequent among patients. This review looks at gene delivery as a potential therapeutic development avenue for traumatic brain injury. We discuss the capacity of gene delivery to function in traumatic brain injury, by producing beneficial biologics within the brain. Gene delivery modalities, promising vectors and key delivery routes are discussed, along with the pathways that biological cargos could target to improve long-term outcomes for patients. Coupling blood-brain barrier crossing with sustained local production, gene delivery has the potential to convert proteins with useful biological properties, but poor pharmacodynamics, into effective therapeutics. Finally, we review the limitations and health economics of traumatic brain injury, and whether future gene delivery approaches will be viable for patients and health care systems.
Collapse
Affiliation(s)
- James Dooley
- Department of Pathology, University of Cambridge, Cambridge, UK.
| | - Jasmine G Hughes
- Department of Pathology, University of Cambridge, Cambridge, UK
- Department of Clinical Neuroscience, University of Cambridge, Cambridge, UK
| | - Edward J Needham
- Department of Clinical Neuroscience, University of Cambridge, Cambridge, UK
| | | | - Adrian Liston
- Department of Pathology, University of Cambridge, Cambridge, UK
| |
Collapse
|
17
|
Zhang H, Duan X, Zhang Y, Zhuang G, Cao D, Meng W, Yan M, Qi W. Association Between Monocyte-to-Lymphocyte Ratio and Hematoma Progression After Cerebral Contusion. Neurocrit Care 2024; 40:953-963. [PMID: 37848656 PMCID: PMC11147937 DOI: 10.1007/s12028-023-01857-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/06/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND The objective of this research was to examine the impact of the monocyte-to-lymphocyte ratio (MLR) on the advancement of hematoma after cerebral contusion. METHODS The clinical information and laboratory test findings of people with cerebral contusion were retrospectively analyzed. Using the tertiles of MLR, the study participants were categorized into three groups, enabling the evaluation of the correlation between MLR and the advancement of hematoma after cerebral contusion. RESULTS Among the cohort of patients showing progression, MLR levels were significantly higher compared with the nonprogress group (P < 0.001). The high MLR group had a significantly higher proportion of patients with hematoma progression compared with the medium and low MLR groups. However, the medium MLR group had a lower proportion of patients with hematoma progression compared with the low MLR group. High MLR levels were independently linked to a higher risk of hematoma progression (Odds Ratio 3.546, 95% Confidence Interval 1.187-10.597, P = 0.024). By incorporating factors such as Glasgow Coma Scale score on admission, anticoagulant/antiplatelet therapy, white blood cell count, and MLR into the model, the predictive performance of the model significantly improved (area under the curve 0.754). CONCLUSIONS Our study suggests that MLR may serve as a potential indicator for predicting the progression of hematoma after cerebral contusion. Further research is necessary to investigate the underlying pathological and physiological mechanisms that contribute to the association between MLR and the progression of hematoma after cerebral contusion and to explore its clinical implications.
Collapse
Affiliation(s)
- Huajun Zhang
- Department of Neurosurgery, Affiliated Hospital of Yangzhou University, 45 Taizhou Road, Guangling District, Yangzhou City, Jiangsu Province, China
- Graduate School of Dalian Medical University, Dalian, Liaoning, China
| | - Xiaochun Duan
- Department of Neurosurgery, Affiliated Hospital of Yangzhou University, 45 Taizhou Road, Guangling District, Yangzhou City, Jiangsu Province, China
| | - Yimiao Zhang
- Graduate School of Shaanxi, University of Traditional Chinese Medicine, Xianyang, Shaanxi, China
| | - Guoquan Zhuang
- Department of Neurosurgery, Affiliated Hospital of Yangzhou University, 45 Taizhou Road, Guangling District, Yangzhou City, Jiangsu Province, China
- Graduate School of Dalian Medical University, Dalian, Liaoning, China
| | - Demao Cao
- Department of Neurosurgery, Affiliated Hospital of Yangzhou University, 45 Taizhou Road, Guangling District, Yangzhou City, Jiangsu Province, China
| | - Wei Meng
- Department of Urology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Muyang Yan
- Graduate School of Dalian Medical University, Dalian, Liaoning, China
| | - Wentao Qi
- Department of Neurosurgery, Affiliated Hospital of Yangzhou University, 45 Taizhou Road, Guangling District, Yangzhou City, Jiangsu Province, China.
| |
Collapse
|
18
|
Han Y, Han Z, Huang X, Li S, Jin G, Feng J, Wu D, Liu H. An injectable refrigerated hydrogel for inducing local hypothermia and neuroprotection against traumatic brain injury in mice. J Nanobiotechnology 2024; 22:251. [PMID: 38750597 PMCID: PMC11095020 DOI: 10.1186/s12951-024-02454-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/01/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Hypothermia is a promising therapy for traumatic brain injury (TBI) in the clinic. However, the neuroprotective outcomes of hypothermia-treated TBI patients in clinical studies are inconsistent due to several severe side effects. Here, an injectable refrigerated hydrogel was designed to deliver 3-iodothyronamine (T1AM) to achieve a longer period of local hypothermia for TBI treatment. Hydrogel has four advantages: (1) It can be injected into injured sites after TBI, where it forms a hydrogel and avoids the side effects of whole-body cooling. (2) Hydrogels can biodegrade and be used for controlled drug release. (3) Released T1AM can induce hypothermia. (4) This hydrogel has increased medical value given its simple operation and ability to achieve timely treatment. METHODS Pol/T hydrogels were prepared by a low-temperature mixing method and characterized. The effect of the Pol/T hydrogel on traumatic brain injury in mice was studied. The degradation of the hydrogel at the body level was observed with a small animal imager. Brain temperature and body temperature were measured by brain thermometer and body thermometer, respectively. The apoptosis of peripheral nerve cells was detected by immunohistochemical staining. The protective effect of the hydrogels on the blood-brain barrier (BBB) after TBI was evaluated by the Evans blue penetration test. The protective effect of hydrogel on brain edema after injury in mice was detected by Magnetic resonance (MR) in small animals. The enzyme linked immunosorbent assay (ELISA) method was used to measure the levels of inflammatory factors. The effects of behavioral tests on the learning ability and exercise ability of mice after injury were evaluated. RESULTS This hydrogel was able to cool the brain to hypothermia for 12 h while maintaining body temperature within the normal range after TBI in mice. More importantly, hypothermia induced by this hydrogel leads to the maintenance of BBB integrity, the prevention of cell death, the reduction of the inflammatory response and brain edema, and the promotion of functional recovery after TBI in mice. This cooling method could be developed as a new approach for hypothermia treatment in TBI patients. CONCLUSION Our study showed that injectable and biodegradable frozen Pol/T hydrogels to induce local hypothermia in TBI mice can be used for the treatment of traumatic brain injury.
Collapse
Affiliation(s)
- Yuhan Han
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
- Brain Injury Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Head Trauma, Shanghai, 200127, China
| | - Zhengzhong Han
- Department of Neurosurgery, Xuzhou Children's Hospital, Xuzhou, 221000, Jiangsu, China
| | - Xuyang Huang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China
- Department of Intensive Care Medicine, The Second Hospital of Jiaxing, Jiaxing, 314000, Zhejiang, China
| | - Shanshan Li
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China
| | - Guoliang Jin
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China
| | - Junfeng Feng
- Brain Injury Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Head Trauma, Shanghai, 200127, China.
| | - Decheng Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.
| | - Hongmei Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
19
|
Chang M, Lei Y, Zhang J, Xu J, Wu H, Tang S, Yang H. Effect of Naoxintong Capsule on Microglia and Proteomics of Cortex After Myocardial Infarction in Rats. Mol Neurobiol 2024; 61:2904-2920. [PMID: 37948003 DOI: 10.1007/s12035-023-03724-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/16/2023] [Indexed: 11/12/2023]
Abstract
Neuroinflammation caused by microglia in the central nervous system (CNS) is observed after myocardial infarction (MI). However, the inflammatory response mechanism remains unclear. BuChang Naoxintong capsule (NXT) is a Chinese medicine for treating ischemic cardio-cerebrovascular diseases, requiring more studies to understand the pharmacodynamic mechanism. Permanent ligation of the left anterior descending coronary artery (LAD) was performed in rats. Additionally, histopathological staining in the left ventricular (LV) and immunofluorescence within the brain cortex after 1 d and 7 d of MI were performed to determine the NXT pharmacodynamic action and best administration dosage. Proteomics helped obtain the essential proteins related to neuroinflammation and MI in the heart and brain tissue after 7 d of MI. Based on TTC, HE, Masson, and immunofluorescence staining results of CD206 and IBA-1, NXT demonstrated a better pharmacodynamic action towards myocardial injury and neuroinflammation after 7 d of MI. Moreover, the human equivalent dosage of NXT (220 mg/kg) became the best administration dose. The proteome bioinformatics analysis in the LV and brain cortex was performed. Thus, the elongation of very long-chain fatty acids protein 5 (ELOVL5) and ATP-binding cassette subfamily G member 4 (ABCG4) became critical proteins related to MI and neuroinflammation. The western blotting results indicated that ABCG4 expression possessed the same trend as the proteomics results. The auto-dock results revealed that ABCG4 had a good binding ability with Ferulic acid, Paeoniflorin, and Tanshinone II A, the key ingredients of NXT. The cellular thermal shift assay results demonstrated that ABCG4 showed better thermal stability post-NXT treatment. NXT can improve myocardial injury, such as heart infarct size, pathological injury, myocardial fibrosis, and inflammatory cell infiltration. Additionally, brain neuroinflammation induced by microglia after MI affects the expression and structure of ABCG4. Thus, ABCG4 could be the key protein associated with MI and neuroinflammation.
Collapse
Affiliation(s)
- Mengli Chang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yuxin Lei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jing Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jing Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Hongwei Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Shihuan Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Hongjun Yang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
20
|
张 军, 李 明, 王 超, 徐 倩, 张 书, 朱 艳. [Repair effect of different doses of human umbilical cord mesenchymal stem cells on white matter injury in neonatal rats]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2024; 26:394-402. [PMID: 38660904 PMCID: PMC11057307 DOI: 10.7499/j.issn.1008-8830.2310081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/23/2024] [Indexed: 04/26/2024]
Abstract
OBJECTIVES To compare the repair effects of different doses of human umbilical cord mesenchymal stem cells (hUC-MSCs) on white matter injury (WMI) in neonatal rats. METHODS Two-day-old Sprague-Dawley neonatal rats were randomly divided into five groups: sham operation group, WMI group, and hUC-MSCs groups (low dose, medium dose, and high dose), with 24 rats in each group. Twenty-four hours after successful establishment of the neonatal rat white matter injury model, the WMI group was injected with sterile PBS via the lateral ventricle, while the hUC-MSCs groups received injections of hUC-MSCs at different doses. At 14 and 21 days post-modeling, hematoxylin and eosin staining was used to observe pathological changes in the tissues around the lateral ventricles. Real-time quantitative polymerase chain reaction was used to detect the quantitative expression of myelin basic protein (MBP) and glial fibrillary acidic protein (GFAP) mRNA in the brain tissue. Immunohistochemistry was employed to observe the expression levels of GFAP and neuron-specific nuclear protein (NeuN) in the tissues around the lateral ventricles. TUNEL staining was used to observe cell apoptosis in the tissues around the lateral ventricles. At 21 days post-modeling, the Morris water maze test was used to observe the spatial learning and memory capabilities of the neonatal rats. RESULTS At 14 and 21 days post-modeling, numerous cells with nuclear shrinkage and rupture, as well as disordered arrangement of nerve fibers, were observed in the tissues around the lateral ventricles of the WMI group and the low dose group. Compared with the WMI group, the medium and high dose groups showed alleviated pathological changes; the arrangement of nerve fibers in the medium dose group was relatively more orderly compared with the high dose group. Compared with the WMI group, there was no significant difference in the expression levels of MBP and GFAP mRNA in the low dose group (P>0.05), while the expression levels of MBP mRNA increased and GFAP mRNA decreased in the medium and high dose groups. The expression level of MBP mRNA in the medium dose group was higher than that in the high dose group, and the expression level of GFAP mRNA in the medium dose group was lower than that in the high dose group (P<0.05). Compared with the WMI group, there was no significant difference in the protein expression of GFAP and NeuN in the low dose group (P>0.05), while the expression of NeuN protein increased and GFAP protein decreased in the medium and high dose groups. The expression of NeuN protein in the medium dose group was higher than that in the high dose group, and the expression of GFAP protein in the medium dose group was lower than that in the high dose group (P<0.05). Compared with the WMI group, there was no significant difference in the number of apoptotic cells in the low dose group (P>0.05), while the number of apoptotic cells in the medium and high dose groups was less than that in the WMI group, and the number of apoptotic cells in the medium dose group was less than that in the high dose group (P<0.05). Compared with the WMI group, there was no significant difference in the escape latency time in the low dose group (P>0.05); starting from the third day of the latency period, the escape latency time in the medium dose group was less than that in the WMI group (P<0.05). The medium and high dose groups crossed the platform more times than the WMI group (P<0.05). CONCLUSIONS Low dose hUC-MSCs may yield unsatisfactory repair effects on WMI in neonatal rats, while medium and high doses of hUC-MSCs have significant repair effects, with the medium dose demonstrating superior efficacy.
Collapse
Affiliation(s)
| | - 明霞 李
- 新疆医科大学第一附属医院新生儿科,新疆乌鲁木齐830054
| | | | | | | | - 艳萍 朱
- 新疆医科大学第一附属医院新生儿科,新疆乌鲁木齐830054
| |
Collapse
|
21
|
Goodman GW, Devlin P, West BE, Ritzel RM. The emerging importance of skull-brain interactions in traumatic brain injury. Front Immunol 2024; 15:1353513. [PMID: 38680490 PMCID: PMC11047125 DOI: 10.3389/fimmu.2024.1353513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 04/01/2024] [Indexed: 05/01/2024] Open
Abstract
The recent identification of skull bone marrow as a reactive hematopoietic niche that can contribute to and direct leukocyte trafficking into the meninges and brain has transformed our view of this bone structure from a solid, protective casing to a living, dynamic tissue poised to modulate brain homeostasis and neuroinflammation. This emerging concept may be highly relevant to injuries that directly impact the skull such as in traumatic brain injury (TBI). From mild concussion to severe contusion with skull fracturing, the bone marrow response of this local myeloid cell reservoir has the potential to impact not just the acute inflammatory response in the brain, but also the remodeling of the calvarium itself, influencing its response to future head impacts. If we borrow understanding from recent discoveries in other CNS immunological niches and extend them to this nascent, but growing, subfield of neuroimmunology, it is not unreasonable to consider the hematopoietic compartment in the skull may similarly play an important role in health, aging, and neurodegenerative disease following TBI. This literature review briefly summarizes the traditional role of the skull in TBI and offers some additional insights into skull-brain interactions and their potential role in affecting secondary neuroinflammation and injury outcomes.
Collapse
Affiliation(s)
| | | | | | - Rodney M. Ritzel
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
22
|
Yu J, Chen Y, Wang J, Wu H. Research progress on the relationship between traumatic brain injury and brain-gut-microbial axis. IBRAIN 2024; 10:477-487. [PMID: 39691426 PMCID: PMC11649388 DOI: 10.1002/ibra.12153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 12/19/2024]
Abstract
Traumatic brain injury (TBI) is a common disease with a high rate of death and disability, which poses a serious threat to human health; thus, the effective treatment of TBI has been a high priority. The brain-gut-microbial (BGM) axis, as a bidirectional communication network for information exchange between the brain and gut, plays a crucial role in neurological diseases. This article comprehensively explores the interrelationship between the BGM axis and TBI, including its physiological effects, basic pathophysiology, and potential therapeutic strategies. It highlights how the bidirectional regulatory pathways of the BGM axis could provide new insights into clinical TBI treatment and underscores the necessity for advanced research and development of innovative clinical treatments for TBI.
Collapse
Affiliation(s)
- Jie Yu
- Department of NeurosurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Yun‐Xin Chen
- Department of NeurosurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Jin‐Wei Wang
- Department of NeurosurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Hai‐Tao Wu
- Department of NeurosurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
23
|
Chang M, Wang H, Lei Y, Yang H, Xu J, Tang S. Proteomic study of left ventricle and cortex in rats after myocardial infarction. Sci Rep 2024; 14:6866. [PMID: 38514755 PMCID: PMC10958002 DOI: 10.1038/s41598-024-56816-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 03/11/2024] [Indexed: 03/23/2024] Open
Abstract
Myocardial infarction (MI) induces neuroinflammation indirectly, chronic neuroinflammation may cause neurodegenerative diseases. Changes in the proteomics of heart and brain tissue after MI may shed new light on the mechanisms involved in neuroinflammation. This study explored brain and heart protein changes after MI with a data-independent acquisition (DIA) mode proteomics approach. Permanent ligation of the left anterior descending coronary artery (LAD) was performed in the heart of rats, and the immunofluorescence of microglia in the brain cortex was performed at 1d, 3d, 5d, and 7d after MI to detect the neuroinflammation. Then proteomics was accomplished to obtain the vital proteins in the heart and brain post-MI. The results show that the number of microglia was significantly increased in the Model-1d group, the Model-3d group, the Model-5d group, and the Model-7d group compared to the Sham group. Various proteins were obtained through DIA proteomics. Linking to key targets of brain disease, 14 proteins were obtained in the brain cortex. Among them, elongation of very long chain fatty acids protein 5 (ELOVL5) and ATP-binding cassette subfamily G member 4 (ABCG4) were verified through western blotting (WB). The results of WB were consistent with the proteomics results. Therefore, these proteins may be related to the pathogenesis of neuroinflammation after MI.
Collapse
Affiliation(s)
- Mengli Chang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Huanhuan Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yuxin Lei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Hongjun Yang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jing Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Shihuan Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
24
|
Jiang W, Liu X, Chen Y, Liu M, Yuan J, Nie M, Fan Y, Wu D, Qian Y, Sha Z, Dong S, Wu C, Liu T, Huang J, Zhang J, Gao C, Jiang R. CD4 + CD11b + T cells infiltrate and aggravate the traumatic brain injury depending on brain-to-cervical lymph node signaling. CNS Neurosci Ther 2024; 30:e14673. [PMID: 38468459 PMCID: PMC10928342 DOI: 10.1111/cns.14673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/28/2023] [Accepted: 02/16/2024] [Indexed: 03/13/2024] Open
Abstract
AIM We aim to identify the specific CD4+ T-cell subtype influenced by brain-to-CLN signaling and explore their role during the acute phase of traumatic brain injury (TBI). METHOD Cervical lymphadenectomy or cervical afferent lymphatic ligation was performed before TBI. Cytokine array and western blot were used to detect cytokines, while the motor function was assessed using mNss and rotarod test. CD4+ T-cell subtypes in blood, brain, and CLNs were analyzed with Cytometry by time-of-flight analysis (CyTOF) or fluorescence-activated cell sorting (FACS). Brain edema and volume changes were measured by 9.4T MRI. Neuronal apoptosis was evaluated by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining. RESULTS Cervical lymphadenectomy and ligation of cervical lymphatic vessels resulted in a decreased infiltration of CD4+ T cells, specifically CD11b-positive CD4+ T cells, within the affected region. The population of CD4+ CD11b+ T cells increased in ligated CLNs, accompanied by a decrease in the average fluorescence intensity of sphingosine-1-phosphate receptor-1 (S1PR1) on these cells. Administration of CD4+ CD11b+ T cells sorted from CLNs into the lateral ventricle reversed the attenuated neurologic deficits, brain edema, and lesion volume following cervical lymphadenectomy. CONCLUSION The infiltration of CD4+ CD11b+ T cells exacerbates secondary brain damage in TBI, and this process is modulated by brain-to-CLN signaling.
Collapse
Affiliation(s)
- Weiwei Jiang
- Department of NeurosurgeryGeneral Hospital of Tianjin Medical UniversityTianjinChina
- State Key Laboratory of Experimental HematologyTianjinChina
- Tianjin Neurological Institute, Key Laboratory of Post‐Neuroinjury Neurorepair and Regeneration in Central Nervous SystemTianjin Medical University General Hospital, Ministry of EducationTianjinChina
| | - Xuanhui Liu
- Department of NeurosurgeryGeneral Hospital of Tianjin Medical UniversityTianjinChina
- State Key Laboratory of Experimental HematologyTianjinChina
- Tianjin Neurological Institute, Key Laboratory of Post‐Neuroinjury Neurorepair and Regeneration in Central Nervous SystemTianjin Medical University General Hospital, Ministry of EducationTianjinChina
| | - Yupeng Chen
- Department of NeurosurgeryGeneral Hospital of Tianjin Medical UniversityTianjinChina
- State Key Laboratory of Experimental HematologyTianjinChina
- Tianjin Neurological Institute, Key Laboratory of Post‐Neuroinjury Neurorepair and Regeneration in Central Nervous SystemTianjin Medical University General Hospital, Ministry of EducationTianjinChina
| | - Mingqi Liu
- Department of NeurosurgeryGeneral Hospital of Tianjin Medical UniversityTianjinChina
- State Key Laboratory of Experimental HematologyTianjinChina
- Tianjin Neurological Institute, Key Laboratory of Post‐Neuroinjury Neurorepair and Regeneration in Central Nervous SystemTianjin Medical University General Hospital, Ministry of EducationTianjinChina
| | - Jiangyuan Yuan
- Department of NeurosurgeryGeneral Hospital of Tianjin Medical UniversityTianjinChina
- State Key Laboratory of Experimental HematologyTianjinChina
- Tianjin Neurological Institute, Key Laboratory of Post‐Neuroinjury Neurorepair and Regeneration in Central Nervous SystemTianjin Medical University General Hospital, Ministry of EducationTianjinChina
| | - Meng Nie
- Department of NeurosurgeryGeneral Hospital of Tianjin Medical UniversityTianjinChina
- State Key Laboratory of Experimental HematologyTianjinChina
- Tianjin Neurological Institute, Key Laboratory of Post‐Neuroinjury Neurorepair and Regeneration in Central Nervous SystemTianjin Medical University General Hospital, Ministry of EducationTianjinChina
| | - Yibing Fan
- Department of NeurosurgeryTianjin First Central HospitalTianjinChina
| | - Di Wu
- Department of NeurosurgeryGeneral Hospital of Tianjin Medical UniversityTianjinChina
- State Key Laboratory of Experimental HematologyTianjinChina
- Tianjin Neurological Institute, Key Laboratory of Post‐Neuroinjury Neurorepair and Regeneration in Central Nervous SystemTianjin Medical University General Hospital, Ministry of EducationTianjinChina
| | - Yu Qian
- Department of NeurosurgeryGeneral Hospital of Tianjin Medical UniversityTianjinChina
- State Key Laboratory of Experimental HematologyTianjinChina
- Tianjin Neurological Institute, Key Laboratory of Post‐Neuroinjury Neurorepair and Regeneration in Central Nervous SystemTianjin Medical University General Hospital, Ministry of EducationTianjinChina
| | - Zhuang Sha
- Department of NeurosurgeryGeneral Hospital of Tianjin Medical UniversityTianjinChina
- State Key Laboratory of Experimental HematologyTianjinChina
- Tianjin Neurological Institute, Key Laboratory of Post‐Neuroinjury Neurorepair and Regeneration in Central Nervous SystemTianjin Medical University General Hospital, Ministry of EducationTianjinChina
| | - Shiying Dong
- Department of NeurosurgeryGeneral Hospital of Tianjin Medical UniversityTianjinChina
- State Key Laboratory of Experimental HematologyTianjinChina
- Tianjin Neurological Institute, Key Laboratory of Post‐Neuroinjury Neurorepair and Regeneration in Central Nervous SystemTianjin Medical University General Hospital, Ministry of EducationTianjinChina
| | - Chenrui Wu
- Department of NeurosurgeryGeneral Hospital of Tianjin Medical UniversityTianjinChina
- State Key Laboratory of Experimental HematologyTianjinChina
- Tianjin Neurological Institute, Key Laboratory of Post‐Neuroinjury Neurorepair and Regeneration in Central Nervous SystemTianjin Medical University General Hospital, Ministry of EducationTianjinChina
| | - Tao Liu
- Department of NeurosurgeryGeneral Hospital of Tianjin Medical UniversityTianjinChina
- State Key Laboratory of Experimental HematologyTianjinChina
- Tianjin Neurological Institute, Key Laboratory of Post‐Neuroinjury Neurorepair and Regeneration in Central Nervous SystemTianjin Medical University General Hospital, Ministry of EducationTianjinChina
| | - Jinhao Huang
- Department of NeurosurgeryGeneral Hospital of Tianjin Medical UniversityTianjinChina
- State Key Laboratory of Experimental HematologyTianjinChina
- Tianjin Neurological Institute, Key Laboratory of Post‐Neuroinjury Neurorepair and Regeneration in Central Nervous SystemTianjin Medical University General Hospital, Ministry of EducationTianjinChina
| | - Jianning Zhang
- Department of NeurosurgeryGeneral Hospital of Tianjin Medical UniversityTianjinChina
- State Key Laboratory of Experimental HematologyTianjinChina
- Tianjin Neurological Institute, Key Laboratory of Post‐Neuroinjury Neurorepair and Regeneration in Central Nervous SystemTianjin Medical University General Hospital, Ministry of EducationTianjinChina
| | - Chuang Gao
- Department of NeurosurgeryGeneral Hospital of Tianjin Medical UniversityTianjinChina
- State Key Laboratory of Experimental HematologyTianjinChina
- Tianjin Neurological Institute, Key Laboratory of Post‐Neuroinjury Neurorepair and Regeneration in Central Nervous SystemTianjin Medical University General Hospital, Ministry of EducationTianjinChina
| | - Rongcai Jiang
- Department of NeurosurgeryGeneral Hospital of Tianjin Medical UniversityTianjinChina
- State Key Laboratory of Experimental HematologyTianjinChina
- Tianjin Neurological Institute, Key Laboratory of Post‐Neuroinjury Neurorepair and Regeneration in Central Nervous SystemTianjin Medical University General Hospital, Ministry of EducationTianjinChina
| |
Collapse
|
25
|
Ritter K, Somnuke P, Hu L, Griemert EV, Schäfer MKE. Current state of neuroprotective therapy using antibiotics in human traumatic brain injury and animal models. BMC Neurosci 2024; 25:10. [PMID: 38424488 PMCID: PMC10905838 DOI: 10.1186/s12868-024-00851-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
TBI is a leading cause of death and disability in young people and older adults worldwide. There is no gold standard treatment for TBI besides surgical interventions and symptomatic relief. Post-injury infections, such as lower respiratory tract and surgical site infections or meningitis are frequent complications following TBI. Whether the use of preventive and/or symptomatic antibiotic therapy improves patient mortality and outcome is an ongoing matter of debate. In contrast, results from animal models of TBI suggest translational perspectives and support the hypothesis that antibiotics, independent of their anti-microbial activity, alleviate secondary injury and improve neurological outcomes. These beneficial effects were largely attributed to the inhibition of neuroinflammation and neuronal cell death. In this review, we briefly outline current treatment options, including antibiotic therapy, for patients with TBI. We then summarize the therapeutic effects of the most commonly tested antibiotics in TBI animal models, highlight studies identifying molecular targets of antibiotics, and discuss similarities and differences in their mechanistic modes of action.
Collapse
Affiliation(s)
- Katharina Ritter
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1 (Bld. 505), Mainz, 55131, Germany
| | - Pawit Somnuke
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1 (Bld. 505), Mainz, 55131, Germany
- Department of Anesthesiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Lingjiao Hu
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1 (Bld. 505), Mainz, 55131, Germany
- Department of Gastroenterology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Eva-Verena Griemert
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1 (Bld. 505), Mainz, 55131, Germany
| | - Michael K E Schäfer
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1 (Bld. 505), Mainz, 55131, Germany.
- Focus Program Translational Neurosciences (FTN, Johannes Gutenberg-University Mainz, Mainz, Germany.
- Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg- University Mainz, Mainz, Germany.
| |
Collapse
|
26
|
Xu L, Min H, Saha A, Gunaratne A, Schwartzman J, Parrott R, Kurtzberg J, Filiano AJ. Mesenchymal stromal cells suppress microglial activation and tumor necrosis factor production. Cytotherapy 2024; 26:185-193. [PMID: 38054911 DOI: 10.1016/j.jcyt.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/03/2023] [Accepted: 11/16/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND AIMS White matter diseases are commonly associated with microglial activation and neuroinflammation. Mesenchymal stromal cells (MSCs) have immunomodulatory properties and thus have the potential to be developed as cell therapy for white matter disease. MSCs interact with resident macrophages to alter the trajectory of inflammation; however, the impact MSCs have on central nervous system macrophages and the effect this has on the progression of white matter disease are unclear. METHODS In this study, we utilized numerous assays of varying complexity to model different aspects of white matter disease. These assays ranged from an in vivo spinal cord acute demyelination model to a simple microglial cell line activation assay. Our goal was to investigate the influence of human umbilical cord tissue MSCs on the activation of microglia. RESULTS MSCs reduced the production of tumor necrosis factor (TNF) by microglia and decreased demyelinated lesions in the spinal cord after acute focal injury. To determine if MSCs could directly suppress the activation of microglia and to develop an efficient potency assay, we utilized isolated primary microglia from mouse brains and the Immortalized MicroGlial Cell Line (IMG). MSCs suppressed the activation of microglia and the release of TNF after stimulation with lipopolysaccharide, a toll-like receptor agonist. CONCLUSIONS In this study, we demonstrated that MSCs altered the immune response after acute injury in the spinal cord. In numerous assays, MSCs suppressed activation of microglia and release of the pro-inflammatory cytokine TNF. Of these assays, IMG could be standardized and used as an effective potency assay to determine the efficacy of MSCs for treating white matter disease or other neuroinflammatory conditions associated with microglial activation.
Collapse
Affiliation(s)
- Li Xu
- Marcus Center for Cellular Cures, Duke University, Durham, North Carolina, USA
| | - Hyunjung Min
- Marcus Center for Cellular Cures, Duke University, Durham, North Carolina, USA
| | - Arjun Saha
- Marcus Center for Cellular Cures, Duke University, Durham, North Carolina, USA
| | - Aruni Gunaratne
- Marcus Center for Cellular Cures, Duke University, Durham, North Carolina, USA; Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | | | - Roberta Parrott
- Marcus Center for Cellular Cures, Duke University, Durham, North Carolina, USA
| | - Joanne Kurtzberg
- Marcus Center for Cellular Cures, Duke University, Durham, North Carolina, USA; Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | - Anthony J Filiano
- Marcus Center for Cellular Cures, Duke University, Durham, North Carolina, USA; Department of Neurosurgery, Duke University, Durham, North Carolina, USA; Department of Integrative Immunobiology, Duke University, Durham, North Carolina, USA; Department of Pathology, Duke University, Durham, North Carolina, USA.
| |
Collapse
|
27
|
Peters ME, Lyketsos CG. The glymphatic system's role in traumatic brain injury-related neurodegeneration. Mol Psychiatry 2023; 28:2707-2715. [PMID: 37185960 DOI: 10.1038/s41380-023-02070-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023]
Abstract
In at least some individuals who suffer a traumatic brain injury (TBI), there exists a risk of future neurodegenerative illness. This review focuses on the association between the brain-based paravascular drainage pathway known as the "glymphatic system" and TBI-related neurodegeneration. The glymphatic system is composed of cerebrospinal fluid (CSF) flowing into the brain parenchyma along paravascular spaces surrounding penetrating arterioles where it mixes with interstitial fluid (ISF) before being cleared along paravenous drainage pathways. Aquaporin-4 (AQP4) water channels on astrocytic end-feet appear essential for the functioning of this system. The current literature linking glymphatic system disruption and TBI-related neurodegeneration is largely based on murine models with existing human research focused on the need for biomarkers of glymphatic system function (e.g., neuroimaging modalities). Key findings from the existing literature include evidence of glymphatic system flow disruption following TBI, mechanisms of this decreased flow (i.e., AQP4 depolarization), and evidence of protein accumulation and deposition (e.g., amyloid β, tau). The same studies suggest that glymphatic dysfunction leads to subsequent neurodegeneration, cognitive decline, and/or behavioral change although replication in humans is needed. Identified emerging topics from the literature are as follows: link between TBI, sleep, and glymphatic system dysfunction; influence of glymphatic system disruption on TBI biomarkers; and development of novel treatments for glymphatic system disruption following TBI. Although a burgeoning field, more research is needed to elucidate the role of glymphatic system disruption in TBI-related neurodegeneration.
Collapse
Affiliation(s)
- Matthew E Peters
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Constantine G Lyketsos
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
28
|
Johnson NH, Kerr NA, de Rivero Vaccari JP, Bramlett HM, Keane RW, Dietrich WD. Genetic predisposition to Alzheimer's disease alters inflammasome activity after traumatic brain injury. Transl Res 2023; 257:66-77. [PMID: 36758791 PMCID: PMC10192027 DOI: 10.1016/j.trsl.2023.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
Traumatic Brain Injury (TBI) is a major cause of death and disability in the US and a recognized risk factor for the development of Alzheimer's disease (AD). The relationship between these conditions is not completely understood, but the conditions may share additive or synergistic pathological hallmarks that may serve as novel therapeutic targets. Heightened inflammasome signaling plays a critical role in the pathogenesis of central nervous system injury (CNS) and the release of apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) speck from neurons and activated microglia contribute significantly to TBI and AD pathology. This study investigated whether inflammasome signaling after TBI was augmented in AD and whether this signaling pathway impacted biochemical and neuropathological outcomes and overall cognitive function. Five-month-old, 3xTg mice and respective wild type controls were randomized and underwent moderate controlled cortical impact (CCI) injury or served as sham/uninjured controls. Animals were sacrificed at 1 hour, 1 day, or 1 week after TBI to assess acute pathology or at 12 weeks after assessing cognitive function. The ipsilateral cerebral cortex was processed for inflammasome protein expression by immunoblotting. Mice were evaluated for behavior by open field (3 days), novel object recognition (2 weeks), and Morris water maze (6 weeks) testing after TBI. There was a statistically significant increase in the expression of inflammasome signaling proteins Caspase-1, Caspase-8, ASC, and interleukin (IL)-1β after TBI in both wild type and 3xTg animals. At 1-day post injury, significant increases in ASC and IL-1β protein expression were measured in AD TBI mice compared to WT TBI. Behavioral testing showed that injured AD mice had altered cognitive function when compared to injured WT mice. Elevated Aβ was seen in the ipsilateral cortex and hippocampus of sham and injured AD when compared to respective groups at 12 weeks post injury. Moreover, treatment of injured AD mice with IC100, an anti-ASC monoclonal antibody, inhibited the inflammasome, as evidenced by IL-1β reduction in the injured cortex at 1-week post injury. These findings show that the inflammasome response is heightened in mice genetically predisposed to AD and suggests that AD may exacerbate TBI pathology. Thus, dampening inflammasome signaling may offer a novel approach for the treatment of AD and TBI.
Collapse
Affiliation(s)
- Nathan H Johnson
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, Florida
| | - Nadine A Kerr
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida; Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Juan P de Rivero Vaccari
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida; Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Helen M Bramlett
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida; Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida; Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida
| | - Robert W Keane
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida; Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, Florida
| | - W Dalton Dietrich
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida; Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida.
| |
Collapse
|
29
|
Zhao Q, Li H, Li H, Xie F, Zhang J. Research progress of neuroinflammation-related cells in traumatic brain injury: A review. Medicine (Baltimore) 2023; 102:e34009. [PMID: 37352020 PMCID: PMC10289497 DOI: 10.1097/md.0000000000034009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/25/2023] Open
Abstract
Neuroinflammation after traumatic brain injury (TBI) is related to chronic neurodegenerative diseases and is one of the causes of acute secondary injury after TBI. Therefore, it is particularly important to clarify the role of cellular mechanisms in the neuroinflammatory response after TBI. The objective of this article is to understand the involvement of cells during the TBI inflammatory response (for instance, astrocytes, microglia, and oligodendrocytes) and shed light on the recent progress in the stimulation and interaction of granulocytes and lymphocytes, to provide a novel approach for clinical research. We searched articles in PubMed published between 1950 and 2023, using the following keywords: TBI, neuroinflammation, inflammatory cells, neuroprotection, clinical. Articles for inclusion in this paper were finalized based on their novelty, representativeness, and relevance to the main arguments of this review. We found that the neuroinflammatory response after TBI includes the activation of glial cells, the release of inflammatory mediators in the brain, and the recruitment of peripheral immune cells. These inflammatory responses not only induce secondary brain damage, but also have a role in repairing the nervous system to some extent. However, not all of the mechanisms of cell-to-cell interactions have been well studied. After TBI, clinical treatment cannot simply suppress the inflammatory response, and the inflammatory phenotype of patients' needs to be defined according to their specific conditions after injury. Clinical trials of personalized inflammation regulation therapy for specific patients should be carried out in order to improve the prognosis of patients.
Collapse
Affiliation(s)
- Qinghui Zhao
- Institute of Physical Culture, Huanghuai University, Zhumadian, China
| | - Huige Li
- Institute of Physical Culture, Huanghuai University, Zhumadian, China
| | - Hongru Li
- Zhumadian Central Hospital, Zhumadian, China
| | - Fei Xie
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Jianhua Zhang
- Institute of Physical Culture, Huanghuai University, Zhumadian, China
| |
Collapse
|
30
|
He X, Huang Y, Liu Y, Zhang X, Wang Q, Liu Y, Ma X, Long X, Ruan Y, Lei H, Gan C, Wang X, Zou X, Xiong B, Shu K, Lei T, Zhang H. Astrocyte-derived exosomal lncRNA 4933431K23Rik modulates microglial phenotype and improves post-traumatic recovery via SMAD7 regulation. Mol Ther 2023; 31:1313-1331. [PMID: 36739479 PMCID: PMC10188635 DOI: 10.1016/j.ymthe.2023.01.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 01/07/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Astrocyte-microglial interaction plays a crucial role in brain injury-associated neuroinflammation. Our previous data illustrated that astrocytes secrete microRNA, leading to anti-inflammatory effects on microglia. Long non-coding RNAs participate in neuroinflammation regulation after traumatic brain injury. However, the effect of astrocytes on microglial phenotype via long non-coding RNAs and the underlying molecular mechanisms remain elusive. We used long non-coding RNA sequencing on murine astrocytes and found that exosomal long non-coding RNA 4933431K23Rik attenuated traumatic brain injury-induced microglial activation in vitro and in vivo and ameliorated cognitive function deficiency. Furthermore, microRNA and messenger RNA sequencing together with binding prediction illustrated that exosomal long non-coding RNA 4933431K23Rik up-regulates E2F7 and TFAP2C expression by sponging miR-10a-5p. Additionally, E2F7 and TFAP2C, as transcription factors, regulated microglial Smad7 expression. Using Cx3cr1-Smad7 overexpression of adeno-associated virus, microglia specifically overexpressed Smad7 in the attenuation of neuroinflammation, resulting in less cognitive deficiency after traumatic brain injury. Mechanically, overexpressed Smad7 physically binds to IκBα and inhibits its ubiquitination, preventing NF-κB signaling activation. The Smad7 activator asiaticoside alleviates neuroinflammation and protects neuronal function in traumatic brain injury mice. This study revealed that an exosomal long non-coding RNA from astrocytes attenuates microglial activation after traumatic brain injury by up-regulating Smad7, providing a potential therapeutic target.
Collapse
Affiliation(s)
- Xuejun He
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, Hubei 430030, P.R. China; Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Yimin Huang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, Hubei 430030, P.R. China
| | - Yuan Liu
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, Hubei 430030, P.R. China
| | - Xincheng Zhang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, Hubei 430030, P.R. China
| | - Quanji Wang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, Hubei 430030, P.R. China
| | - Yanchao Liu
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, Hubei 430030, P.R. China
| | - Xiaopeng Ma
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, Hubei 430030, P.R. China
| | - Xiaobing Long
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yang Ruan
- Wuhan United Imaging Life Science Instruments Ltd., Wuhan, Hubei 430030, P.R. China
| | - Hongxia Lei
- Wuhan United Imaging Life Science Instruments Ltd., Wuhan, Hubei 430030, P.R. China
| | - Chao Gan
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, Hubei 430030, P.R. China
| | - Xiaochuan Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xin Zou
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Bo Xiong
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Kai Shu
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, Hubei 430030, P.R. China
| | - Ting Lei
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, Hubei 430030, P.R. China
| | - Huaqiu Zhang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, Hubei 430030, P.R. China.
| |
Collapse
|
31
|
Inflammasome activation in traumatic brain injury and Alzheimer's disease. Transl Res 2023; 254:1-12. [PMID: 36070840 DOI: 10.1016/j.trsl.2022.08.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/21/2022]
Abstract
Traumatic brain injury (TBI) and Alzheimer's disease (AD) represent 2 of the largest sources of death and disability in the United States. Recent studies have identified TBI as a potential risk factor for AD development, and numerous reports have shown that TBI is linked with AD associated protein expression during the acute phase of injury, suggesting an interplay between the 2 pathologies. The inflammasome is a multi-protein complex that plays a role in both TBI and AD pathologies, and is characterized by inflammatory cytokine release and pyroptotic cell death. Products of inflammasome signaling pathways activate microglia and astrocytes, which attempt to resolve pathological inflammation caused by inflammatory cytokine release and phagocytosis of cellular debris. Although the initial phase of the inflammatory response in the nervous system is beneficial, recent evidence has emerged that the heightened inflammatory response after trauma is self-perpetuating and results in additional damage in the central nervous system. Inflammasome-induced cytokines and inflammasome signaling proteins released from activated microglia interact with AD associated proteins and exacerbate AD pathological progression and cellular damage. Additionally, multiple genetic mutations associated with AD development alter microglia inflammatory activity, increasing and perpetuating inflammatory cell damage. In this review, we discuss the pathologies of TBI and AD and how they are impacted by and potentially interact through inflammasome activity and signaling proteins. We discuss current clinical trials that target the inflammasome to reduce heightened inflammation associated with these disorders.
Collapse
|
32
|
Malone K, Shearer JA, Williams JM, Moore AC, Moore T, Waeber C. Recombinant pregnancy-specific glycoprotein-1-Fc reduces functional deficit in a mouse model of permanent brain ischaemia. Brain Behav Immun Health 2022; 25:100497. [PMID: 36120102 PMCID: PMC9475273 DOI: 10.1016/j.bbih.2022.100497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/13/2022] [Indexed: 11/06/2022] Open
Abstract
Background The well-characterised role of the immune system in acute ischaemic stroke has prompted the search for immunomodulatory therapies. Pregnancy-specific glycoproteins (PSGs) are a group of proteins synthesised by placental trophoblasts which show immunomodulatory properties. The aim of this study was to determine whether a proposed PSG1-based therapeutic enhanced recovery in a mouse model of brain ischaemia and to explore possible immunomodulatory effects. Methods Mice underwent permanent electrocoagulation of the left middle cerebral artery (pMCAO). They received saline (n = 20) or recombinant pregnancy-specific glycoprotein-1-alpha “fused” to the Fc domain of IgG1 (rPSG1-Fc) (100 μg) (n = 22) at 1 h post-ischaemia. At 3 and 5 days post-ischaemia, neurobehavioural recovery was assessed by the grid-walking test. At 5 days post-ischaemia, lesion size was determined by NeuN staining. Peripheral T cell populations were quantified via flow cytometry. Immunohistochemistry was used to quantify ICAM-1 expression and FoxP3+ cell infiltration in the ischaemic brain. Immunofluorescence was employed to determine microglial activation status via Iba-1 staining. Results: rPSG1-Fc significantly enhanced performance in the grid-walking test at 3 and 5 days post-ischaemia. No effect on infarct size was observed. A significant increase in circulating CD4+ FoxP3+ cells and brain-infiltrating FoxP3+ cells was noted in rPSG1-Fc-treated mice. Among CD4+ cells, rPSG1-Fc enhanced the expression of IL-10 in spleen, blood, draining lymph nodes, and non-draining lymph nodes, while downregulating IFN-γ and IL-17 in spleen and blood. A similar cytokine expression pattern was observed in CD8+ cells. rPSG1-Fc reduced activated microglia in the infarct core. Conclusion The administration of rPSG1-Fc improved functional recovery in post-ischaemic mice without impacting infarct size. Improved outcome was associated with a modulation of the cytokine-secreting phenotype of CD4+ and CD8+ T cells towards a more regulatory phenotype, as well as reduced activation of microglia. This establishes proof-of-concept of rPSG1-Fc as a potential stroke immunotherapy. rPSG1-Fc enhances functional recovery in a mouse model of permanent brain ischaemia. rPSG1-Fc increases circulating CD4+ FoxP3+ cells and brain-infiltrating FoxP3+ cells. rPSG1-Fc increases the expression of IL-10 among CD4+ cells in spleen, blood, and lymph nodes.
Collapse
|
33
|
Wang Y, Wernersbach I, Strehle J, Li S, Appel D, Klein M, Ritter K, Hummel R, Tegeder I, Schäfer MKE. Early posttraumatic CSF1R inhibition via PLX3397 leads to time- and sex-dependent effects on inflammation and neuronal maintenance after traumatic brain injury in mice. Brain Behav Immun 2022; 106:49-66. [PMID: 35933030 DOI: 10.1016/j.bbi.2022.07.164] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/08/2022] [Accepted: 07/30/2022] [Indexed: 10/31/2022] Open
Abstract
BACKGROUND There is a need for early therapeutic interventions after traumatic brain injury (TBI) to prevent neurodegeneration. Microglia/macrophage (M/M) depletion and repopulation after treatment with colony stimulating factor 1 receptor (CSF1R) inhibitors reduces neurodegeneration. The present study investigates short- and long-term consequences after CSF1R inhibition during the early phase after TBI. METHODS Sex-matched mice were subjected to TBI and CSF1R inhibition by PLX3397 for 5 days and sacrificed at 5 or 30 days post injury (dpi). Neurological deficits were monitored and brain tissues were examined for histo- and molecular pathological markers. RNAseq was performed with 30 dpi TBI samples. RESULTS At 5 dpi, CSF1R inhibition attenuated the TBI-induced perilesional M/M increase and associated gene expressions by up to 50%. M/M attenuation did not affect structural brain damage at this time-point, impaired hematoma clearance, and had no effect on IL-1β expression. At 30 dpi, following drug discontinuation at 5 dpi and M/M repopulation, CSF1R inhibition attenuated brain tissue loss regardless of sex, as well as hippocampal atrophy and thalamic neuronal loss in male mice. Selected gene markers of brain inflammation and apoptosis were reduced in males but increased in females after early CSF1R inhibition as compared to corresponding TBI vehicle groups. Neurological outcome in behaving mice was almost not affected. RNAseq and gene set enrichment analysis (GSEA) of injured brains at 30 dpi revealed more genes associated with dendritic spines and synapse function after early CSF1R inhibition as compared to vehicle, suggesting improved neuronal maintenance and recovery. In TBI vehicle mice, GSEA showed high oxidative phosphorylation, oxidoreductase activity and ribosomal biogenesis suggesting oxidative stress and increased abundance of metabolically highly active cells. More genes associated with immune processes and phagocytosis in PLX3397 treated females vs males, suggesting sex-specific differences in response to early CSF1R inhibition after TBI. CONCLUSIONS M/M attenuation after CSF1R inhibition via PLX3397 during the early phase of TBI reduces long-term brain tissue loss, improves neuronal maintenance and fosters synapse recovery. Overall effects were not sex-specific but there is evidence that male mice benefit more than female mice.
Collapse
Affiliation(s)
- Yong Wang
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Isa Wernersbach
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Jenny Strehle
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Shuailong Li
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Dominik Appel
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Matthias Klein
- Institute for Immunology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Katharina Ritter
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Regina Hummel
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, Medical Faculty, Theodor Stern Kai 7, 60590 Frankfurt, Germany
| | - Michael K E Schäfer
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; Focus Program Translational Neurosciences (FTN) of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; Research Center for Immunotherapy (FZI), Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany.
| |
Collapse
|
34
|
Tu T, Peng Z, Song Z, Ma Y, Zhang H. New insight into DAVF pathology—Clues from meningeal immunity. Front Immunol 2022; 13:858924. [PMID: 36189220 PMCID: PMC9520480 DOI: 10.3389/fimmu.2022.858924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
In recent years, with the current access in techniques, studies have significantly advanced the knowledge on meningeal immunity, revealing that the central nervous system (CNS) border acts as an immune landscape. The latest concept of meningeal immune system is a tertiary structure, which is a comprehensive overview of the meningeal immune system from macro to micro. We comprehensively reviewed recent advances in meningeal immunity, particularly the new understanding of the dural sinus and meningeal lymphatics. Moreover, based on the clues from the meningeal immunity, new insights were proposed into the dural arteriovenous fistula (DAVF) pathology, aiming to provide novel ideas for DAVF understanding.
Collapse
Affiliation(s)
- Tianqi Tu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- International Neuroscience Institute (China-INI), Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhenghong Peng
- Department of Health Management Center, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zihao Song
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- International Neuroscience Institute (China-INI), Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yongjie Ma
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- International Neuroscience Institute (China-INI), Xuanwu Hospital, Capital Medical University, Beijing, China
- *Correspondence: Yongjie Ma, ; Hongqi Zhang,
| | - Hongqi Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- International Neuroscience Institute (China-INI), Xuanwu Hospital, Capital Medical University, Beijing, China
- *Correspondence: Yongjie Ma, ; Hongqi Zhang,
| |
Collapse
|
35
|
Chen N, Wang XC, Fan LL, Zhu YH, Wang Q, Chen YB. Berberine ameliorates lipopolysaccharide-induced cognitive impairment through Sirt1/Nrf2/NF-κB signaling pathway in C57BL/6J mice. Rejuvenation Res 2022; 25:233-242. [PMID: 36029207 DOI: 10.1089/rej.2022.0023] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The inflammatory response is the stress reactions to infection or injury so as to help the body return to normal as soon as possible. In central nervous system, the over activated immune system causes irreversible damage to neurons and synapses,which results in cognitive impairment. Berberine,an isoquinoline alkaloid extracted from Coptidis Rhizoma,plays a powerful role in anti-inflammation.It has been reported that berberine significantly improved the decline of cognitive ability.Therefore,we carried out this work to find out the specific mechanism.We tested behaviourally that berberine administration did improve lipopolysaccharide (LPS)-induced cognitive impairment in C57BL/6J mice. We found that berberine reduced neuronal damage in the hippocampus by Nissl staining, and verified by Western blot and immunofluorescence that berberine improved LPS-induced cognitive impairment through the SIRT1/NRF2/NF-κB signaling pathway.The results showed that berberine plays an anti-inflammatory and antioxidant role by targeting SIRT1/NRF2/NFκB signaling pathway so as to reduce the cognitive impairment and neuronal damage caused by lipopolysaccharide in C57BL/6J mice.Berberine pre-protection increased the expression of heme oxygenase-1 (HO-1) after activating nuclear factor E2 related factor 2 (NRF2), and inhibited the activation of NF-κB and the release of iNOS, which may be related to berberine activating SIRT1. However,the effect of reducing inflammatory response was inhibited after using SIRT1 inhibitor EX527 in vitro.This research explains the significance of anti-inflammatory in the treatment of cognitive impairment from different angles. Key words: berberine;lipopolysaccharide;cognitive impairment; neuroinflammation; SIRT1.
Collapse
Affiliation(s)
- Nan Chen
- Guangzhou University of Chinese Medicine Science and Technology Innovation Center, Guangzhou, Guangzhou, China, 510006;
| | | | - Ling-Ling Fan
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China;
| | - Yu-Huang Zhu
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China;
| | - Qi Wang
- Guangzhou University of Chinese Medicine, Guangzhou, China;
| | - Yun-Bo Chen
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China;
| |
Collapse
|
36
|
Zheng Z, Wang S, Wu C, Cao Y, Gu Q, Zhu Y, Zhang W, Hu W. Gut Microbiota Dysbiosis after Traumatic Brain Injury Contributes to Persistent Microglial Activation Associated with Upregulated Lyz2 and Shifted Tryptophan Metabolic Phenotype. Nutrients 2022; 14:3467. [PMID: 36079724 PMCID: PMC9459947 DOI: 10.3390/nu14173467] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/19/2022] [Accepted: 08/19/2022] [Indexed: 11/22/2022] Open
Abstract
Traumatic brain injury (TBI) is a common cause of disability and mortality, affecting millions of people every year. The neuroinflammation and immune response post-TBI initially have neuroprotective and reparative effects, but prolonged neuroinflammation leads to secondary injury and increases the risk of chronic neurodegenerative diseases. Persistent microglial activation plays a critical role in chronic neuroinflammation post-TBI. Given the bidirectional communication along the brain-gut axis, it is plausible to suppose that gut microbiota dysbiosis post-TBI influences microglial activation. In the present study, hippocampal microglial activation was observed at 7 days and 28 days post-TBI. However, in TBI mice with a depletion of gut microbiota, microglia were activated at 7 days post-TBI, but not at 28 days post-TBI, indicating that gut microbiota contributes to the long-term activation of microglia post-TBI. In addition, in conventional mice colonized by the gut microbiota of TBI mice using fecal microbiota transplant (FMT), microglial activation was observed at 28 days post-TBI, but not at 7 days post-TBI, supporting the role of gut microbiota dysbiosis in persistent microglial activation post-TBI. The RNA sequencing of the hippocampus identified a microglial activation gene, Lyz2, which kept upregulation post-TBI. This persistent upregulation was inhibited by oral antibiotics and partly induced by FMT. 16s rRNA gene sequencing showed that the composition and function of gut microbiota shifted over time post-TBI with progressive dysbiosis, and untargeted metabolomics profiling revealed that the tryptophan metabolic phenotype was differently reshaped at 7 days and 28 days post-TBI, which may play a role in the persistent upregulation of Lyz2 and the activation of microglia. This study implicates that gut microbiota and Lyz2 are potential targets for the development of novel strategies to address persistent microglial activation and chronic neuroinflammation post-TBI, and further investigations are warranted to elucidate the specific mechanism.
Collapse
Affiliation(s)
- Zhipeng Zheng
- Department of Critical Care Medicine, Fourth Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310006, China
- Department of Critical Care Medicine, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Shuai Wang
- Department of Critical Care Medicine, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Chenghao Wu
- Department of Critical Care Medicine, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yang Cao
- Department of Neurosurgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006 China
| | - Qiao Gu
- Department of Critical Care Medicine, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Ying Zhu
- Department of Critical Care Medicine, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Wei Zhang
- Department of General Surgery, Secondary Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310005, China
| | - Wei Hu
- Department of Critical Care Medicine, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| |
Collapse
|
37
|
Li G, Cao Y, Tang X, Huang J, Cai L, Zhou L. The meningeal lymphatic vessels and the glymphatic system: Potential therapeutic targets in neurological disorders. J Cereb Blood Flow Metab 2022; 42:1364-1382. [PMID: 35484910 PMCID: PMC9274866 DOI: 10.1177/0271678x221098145] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 04/03/2022] [Accepted: 04/14/2022] [Indexed: 02/05/2023]
Abstract
The recent discovery of the meningeal lymphatic vessels (mLVs) and glymphatic pathways has challenged the long-lasting dogma that the central nervous system (CNS) lacks a lymphatic system and therefore does not interact with peripheral immunity. This discovery has reshaped our understanding of mechanisms underlying CNS drainage. Under normal conditions, a close connection between mLVs and the glymphatic system enables metabolic waste removal, immune cell trafficking, and CNS immune surveillance. Dysfunction of the glymphatic-mLV system can lead to toxic protein accumulation in the brain, and it contributes to the development of a series of neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases. The identification of precise cerebral transport routes is based mainly on indirect, invasive imaging of animals, and the results cannot always be applied to humans. Here we review the functions of the glymphatic-mLV system and evidence for its involvement in some CNS diseases. We focus on emerging noninvasive imaging techniques to evaluate the human glymphatic-mLV system and their potential for preclinical diagnosis and prevention of neurodegenerative diseases. Potential strategies that target the glymphatic-mLV system in order to treat and prevent neurological disorders are also discussed.
Collapse
Affiliation(s)
- Gaowei Li
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Cao
- Department of Neurosurgery, Chengdu Second People's hospital, Chengdu, China
| | - Xin Tang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jianhan Huang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Linjun Cai
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Liangxue Zhou
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
38
|
Zhang D, Li X, Li B. Glymphatic System Dysfunction in Central Nervous System Diseases and Mood Disorders. Front Aging Neurosci 2022; 14:873697. [PMID: 35547631 PMCID: PMC9082304 DOI: 10.3389/fnagi.2022.873697] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/31/2022] [Indexed: 12/13/2022] Open
Abstract
The glymphatic system, a recently discovered macroscopic waste removal system in the brain, has many unknown aspects, especially its driving forces and relationship with sleep, and thus further explorations of the relationship between the glymphatic system and a variety of possible related diseases are urgently needed. Here, we focus on the progress in current research on the role of the glymphatic system in several common central nervous system diseases and mood disorders, discuss the structural and functional abnormalities of the glymphatic system which may occur before or during the pathophysiological progress and the possible underlying mechanisms. We emphasize the relationship between sleep and the glymphatic system under pathological conditions and summarize the common imaging techniques for the glymphatic system currently available. The perfection of the glymphatic system hypothesis and the exploration of the effects of aging and endocrine factors on the central and peripheral regulatory pathways through the glymphatic system still require exploration in the future.
Collapse
Affiliation(s)
- Dianjun Zhang
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, School of Forensic Medicine, China Medical University, Shenyang, China
- China Medical University Center of Forensic Investigation, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Xinyu Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, School of Forensic Medicine, China Medical University, Shenyang, China
- China Medical University Center of Forensic Investigation, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, School of Forensic Medicine, China Medical University, Shenyang, China
- China Medical University Center of Forensic Investigation, School of Forensic Medicine, China Medical University, Shenyang, China
| |
Collapse
|
39
|
Role of Inflammation in Traumatic Brain Injury-Associated Risk for Neuropsychiatric Disorders: State of the Evidence and Where Do We Go From Here. Biol Psychiatry 2022; 91:438-448. [PMID: 34955170 DOI: 10.1016/j.biopsych.2021.11.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/01/2021] [Accepted: 11/02/2021] [Indexed: 02/06/2023]
Abstract
In the past decade, there has been an increasing awareness that traumatic brain injury (TBI) and concussion substantially increase the risk for developing psychiatric disorders. Even mild TBI increases the risk for depression and anxiety disorders such as posttraumatic stress disorder by two- to threefold, predisposing patients to further functional impairment. This strong epidemiological link supports examination of potential mechanisms driving neuropsychiatric symptom development after TBI. One potential mechanism for increased neuropsychiatric symptoms after TBI is via inflammatory processes, as central nervous system inflammation can last years after initial injury. There is emerging preliminary evidence that TBI patients with posttraumatic stress disorder or depression exhibit increased central and peripheral inflammatory markers compared with TBI patients without these comorbidities. Growing evidence has demonstrated that immune signaling in animals plays an integral role in depressive- and anxiety-like behaviors after severe stress or brain injury. In this review, we will 1) discuss current evidence for chronic inflammation after TBI in the development of neuropsychiatric symptoms, 2) highlight potential microglial activation and cytokine signaling contributions, and 3) discuss potential promise and pitfalls for immune-targeted interventions and biomarker strategies to identify and treat TBI patients with immune-related neuropsychiatric symptoms.
Collapse
|
40
|
Green TRF, Murphy SM, Ortiz JB, Rowe RK. Age-At-Injury Influences the Glial Response to Traumatic Brain Injury in the Cortex of Male Juvenile Rats. Front Neurol 2022; 12:804139. [PMID: 35111130 PMCID: PMC8802670 DOI: 10.3389/fneur.2021.804139] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/14/2021] [Indexed: 11/29/2022] Open
Abstract
Few translational studies have examined how age-at-injury affects the glial response to traumatic brain injury (TBI). We hypothesized that rats injured at post-natal day (PND) 17 would exhibit a greater glial response, that would persist into early adulthood, compared to rats injured at PND35. PND17 and PND35 rats (n = 75) received a mild to moderate midline fluid percussion injury or sham surgery. In three cortical regions [peri-injury, primary somatosensory barrel field (S1BF), perirhinal], we investigated the glial response relative to age-at-injury (PND17 or PND35), time post-injury (2 hours, 1 day, 7 days, 25 days, or 43 days), and post-natal age, such that rats injured at PND17 or PND35 were compared at the same post-natal-age (e.g., PND17 + 25D post-injury = PND42; PND35 + 7D post-injury = PND42). We measured Iba1 positive microglia cells (area, perimeter) and quantified their activation status using skeletal analysis (branch length/cell, mean processes/cell, cell abundance). GFAP expression was examined using immunohistochemistry and pixel analysis. Data were analyzed using Bayesian multivariate multi-level models. Independent of age-at-injury, TBI activated microglia (shorter branches, fewer processes) in the S1BF and perirhinal cortex with more microglia in all regions compared to uninjured shams. TBI-induced microglial activation (shorter branches) was sustained in the S1BF into early adulthood (PND60). Overall, PND17 injured rats had more microglial activation in the perirhinal cortex than PND35 injured rats. Activation was not confounded by age-dependent cell size changes, and microglial cell body sizes were similar between PND17 and PND35 rats. There were no differences in astrocyte GFAP expression. Increased microglial activation in PND17 brain-injured rats suggests that TBI upregulates the glial response at discrete stages of development. Age-at-injury and aging with an injury are translationally important because experiencing a TBI at an early age may trigger an exaggerated glial response.
Collapse
Affiliation(s)
- Tabitha R. F. Green
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
| | - Sean M. Murphy
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
| | - J. Bryce Ortiz
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
- Phoenix Veterans Affairs (VA) Health Care System, Phoenix, AZ, United States
| | - Rachel K. Rowe
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
- Department of Integrative Physiology, University of Colorado, Boulder, CO, United States
- BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States
| |
Collapse
|
41
|
Moro F, Pischiutta F, Portet A, Needham EJ, Norton EJ, Ferdinand JR, Vegliante G, Sammali E, Pascente R, Caruso E, Micotti E, Tolomeo D, di Marco Barros R, Fraunberger E, Wang KKW, Esser MJ, Menon DK, Clatworthy MR, Zanier ER. Ageing is associated with maladaptive immune response and worse outcome after traumatic brain injury. Brain Commun 2022; 4:fcac036. [PMID: 35350551 PMCID: PMC8947244 DOI: 10.1093/braincomms/fcac036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/23/2021] [Accepted: 02/14/2022] [Indexed: 11/15/2022] Open
Abstract
Traumatic brain injury is increasingly common in older individuals. Older age is one of the strongest predictors for poor prognosis after brain trauma, a phenomenon driven by the presence of extra-cranial comorbidities as well as pre-existent pathologies associated with cognitive impairment and brain volume loss (such as cerebrovascular disease or age-related neurodegeneration). Furthermore, ageing is associated with a dysregulated immune response, which includes attenuated responses to infection and vaccination, and a failure to resolve inflammation leading to chronic inflammatory states. In traumatic brain injury, where the immune response is imperative for the clearance of cellular debris and survey of the injured milieu, an appropriate self-limiting response is vital to promote recovery. Currently, our understanding of age-related factors that contribute to the outcome is limited; but a more complete understanding is essential for the development of tailored therapeutic strategies to mitigate the consequences of traumatic brain injury. Here we show greater functional deficits, white matter abnormalities and worse long-term outcomes in aged compared with young C57BL/6J mice after either moderate or severe traumatic brain injury. These effects are associated with altered systemic, meningeal and brain tissue immune response. Importantly, the impaired acute systemic immune response in the mice was similar to the findings observed in our clinical cohort. Traumatic brain-injured patient cohort over 70 years of age showed lower monocyte and lymphocyte counts compared with those under 45 years. In mice, traumatic brain injury was associated with alterations in peripheral immune subsets, which differed in aged compared with adult mice. There was a significant increase in transcription of immune and inflammatory genes in the meninges post-traumatic brain injury, including monocyte/leucocyte-recruiting chemokines. Immune cells were recruited to the region of the dural injury, with a significantly higher number of CD11b+ myeloid cells in aged compared with the adult mice. In brain tissue, when compared with the young adult mice, we observed a more pronounced and widespread reactive astrogliosis 1 month after trauma in aged mice, sustained by an early and persistent induction of proinflammatory astrocytic state. These findings provide important insights regarding age-related exacerbation of neurological damage after brain trauma.
Collapse
Affiliation(s)
- Federico Moro
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Francesca Pischiutta
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Anaïs Portet
- Molecular Immunity Unit, Department of Medicine, Laboratory of Molecular Biology, University of Cambridge, Cambridge CB2 0QH, UK
| | - Edward J. Needham
- Division of Anaesthesia, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QH, UK
| | - Emma J. Norton
- Division of Anaesthesia, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QH, UK
| | - John R. Ferdinand
- Molecular Immunity Unit, Department of Medicine, Laboratory of Molecular Biology, University of Cambridge, Cambridge CB2 0QH, UK
| | - Gloria Vegliante
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Eliana Sammali
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Rosaria Pascente
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Enrico Caruso
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
- Neuroscience Intensive Care Unit, Department of Anesthesia and Critical Care, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Edoardo Micotti
- Laboratory of Biology of Neurodegenerative Disorders, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Daniele Tolomeo
- Laboratory of Biology of Neurodegenerative Disorders, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Rafael di Marco Barros
- Molecular Immunity Unit, Department of Medicine, Laboratory of Molecular Biology, University of Cambridge, Cambridge CB2 0QH, UK
| | - Erik Fraunberger
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
- Cumming School of Medicine, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Kevin K. W. Wang
- Program for Neurotrauma, Neuroproteomics and Biomarker Research, Departments of Emergency Medicine, Psychiatry and Neuroscience, University of Florida, Gainesville, FL, USA
| | - Michael J. Esser
- Cumming School of Medicine, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - David K. Menon
- Division of Anaesthesia, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QH, UK
| | - Menna R. Clatworthy
- Molecular Immunity Unit, Department of Medicine, Laboratory of Molecular Biology, University of Cambridge, Cambridge CB2 0QH, UK
| | - Elisa R. Zanier
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
- Correspondence to: Elisa R. Zanier Laboratory of Acute Brain Injury and Therapeutic Strategies Department of Neuroscience Istituto di Ricerche Farmacologiche Mario Negri IRCCS 20156 Milan, Italy E-mail:
| |
Collapse
|
42
|
Derk J, Jones HE, Como C, Pawlikowski B, Siegenthaler JA. Living on the Edge of the CNS: Meninges Cell Diversity in Health and Disease. Front Cell Neurosci 2021; 15:703944. [PMID: 34276313 PMCID: PMC8281977 DOI: 10.3389/fncel.2021.703944] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/08/2021] [Indexed: 12/30/2022] Open
Abstract
The meninges are the fibrous covering of the central nervous system (CNS) which contain vastly heterogeneous cell types within its three layers (dura, arachnoid, and pia). The dural compartment of the meninges, closest to the skull, is predominantly composed of fibroblasts, but also includes fenestrated blood vasculature, an elaborate lymphatic system, as well as immune cells which are distinct from the CNS. Segregating the outer and inner meningeal compartments is the epithelial-like arachnoid barrier cells, connected by tight and adherens junctions, which regulate the movement of pathogens, molecules, and cells into and out of the cerebral spinal fluid (CSF) and brain parenchyma. Most proximate to the brain is the collagen and basement membrane-rich pia matter that abuts the glial limitans and has recently be shown to have regional heterogeneity within the developing mouse brain. While the meninges were historically seen as a purely structural support for the CNS and protection from trauma, the emerging view of the meninges is as an essential interface between the CNS and the periphery, critical to brain development, required for brain homeostasis, and involved in a variety of diseases. In this review, we will summarize what is known regarding the development, specification, and maturation of the meninges during homeostatic conditions and discuss the rapidly emerging evidence that specific meningeal cell compartments play differential and important roles in the pathophysiology of a myriad of diseases including: multiple sclerosis, dementia, stroke, viral/bacterial meningitis, traumatic brain injury, and cancer. We will conclude with a list of major questions and mechanisms that remain unknown, the study of which represent new, future directions for the field of meninges biology.
Collapse
Affiliation(s)
- Julia Derk
- Section of Developmental Biology, Department of Pediatrics, University of Colorado, Aurora, CO, United States
| | - Hannah E. Jones
- Section of Developmental Biology, Department of Pediatrics, University of Colorado, Aurora, CO, United States
- Cell Biology, Stem Cells and Development Graduate Program, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| | - Christina Como
- Section of Developmental Biology, Department of Pediatrics, University of Colorado, Aurora, CO, United States
- Neuroscience Graduate Program, University of Colorado, Aurora, CO, United States
| | - Bradley Pawlikowski
- Section of Developmental Biology, Department of Pediatrics, University of Colorado, Aurora, CO, United States
| | - Julie A. Siegenthaler
- Section of Developmental Biology, Department of Pediatrics, University of Colorado, Aurora, CO, United States
- Cell Biology, Stem Cells and Development Graduate Program, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
- Neuroscience Graduate Program, University of Colorado, Aurora, CO, United States
| |
Collapse
|
43
|
Mulens-Arias V, Rojas JM, Barber DF. The Use of Iron Oxide Nanoparticles to Reprogram Macrophage Responses and the Immunological Tumor Microenvironment. Front Immunol 2021; 12:693709. [PMID: 34177955 PMCID: PMC8221395 DOI: 10.3389/fimmu.2021.693709] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
The synthesis and functionalization of iron oxide nanoparticles (IONPs) is versatile, which has enhanced the interest in studying them as theranostic agents over recent years. As IONPs begin to be used for different biomedical applications, it is important to know how they affect the immune system and its different cell types, especially their interaction with the macrophages that are involved in their clearance. How immune cells respond to therapeutic interventions can condition the systemic and local tissue response, and hence, the final therapeutic outcome. Thus, it is fundamental to understand the effects that IONPs have on the immune response, especially in cancer immunotherapy. The biological effects of IONPs may be the result of intrinsic features of their iron oxide core, inducing reactive oxygen species (ROS) and modulating intracellular redox and iron metabolism. Alternatively, their effects are driven by the nanoparticle coating, for example, through cell membrane receptor engagement. Indeed, exploiting these properties of IONPs could lead to the development of innovative therapies. In this review, after a presentation of the elements that make up the tumor immunological microenvironment, we will review and discuss what is currently known about the immunomodulatory mechanisms triggered by IONPs, mainly focusing on macrophage polarization and reprogramming. Consequently, we will discuss the implications of these findings in the context of plausible therapeutic scenarios for cancer immunotherapy.
Collapse
Affiliation(s)
- Vladimir Mulens-Arias
- Department of Immunology and Oncology, and NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
| | - José Manuel Rojas
- Centro de Investigación en Sanidad Animal, Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria (CISA-INIA)-CSIC, Valdeolmos, Madrid, Spain
| | - Domingo F Barber
- Department of Immunology and Oncology, and NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
| |
Collapse
|