1
|
Pisani LF, Albertini Petroni G, Crespi G, Mola S, Annunziata ML, Caprioli FA, Porta C, Pastorelli L. Lower Expression of SARS-CoV-2 Host Cell Entry Genes in the Intestinal Mucosa of IBD Patients With Quiescent or Mildly Active Disease. Inflamm Bowel Dis 2025:izaf079. [PMID: 40279370 DOI: 10.1093/ibd/izaf079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Indexed: 04/27/2025]
Abstract
BACKGROUND Long-term immunosuppressive therapy typically increases the risk of viral infection, yet during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, inflammatory bowel disease (IBD) patients showed reduced severe coronavirus disease 2019 (COVID-19) susceptibility. This suggests potential overlapping molecular mechanisms between IBD and COVID-19 that warrant investigation. METHODS From April 2020 to April 2022, we enrolled 363 IBD patients and 146 healthy donors. Serum samples were analyzed by enzyme-linked immunoadsorption assay to determine the presence of anti-SARS-CoV-2 antibodies and to measure concentrations of the host-soluble factors sACE2 and mannose-binding lectin (MBL), which have SARS-CoV-2 neutralizing activity. Furthermore, colonic mucosa biopsies were analyzed by real-time PCR to confirm the upregulation of MBL2 as well as to assess the expression of genes encoding SARS-CoV-2 entry molecules (ie, ACE2, TMPRSS2, TMPRSS4, ADAM17, AGTR1). RESULTS Intestinal mucosa expression of ACE2, TMPRSS2, and TMPRSS4 genes was significantly lower in IBD than in healthy individuals, regardless of the type of medication, while ADAM17 and AGT1R were similar across groups. Serum sACE2 levels changed minimally, whereas circulating MBL levels were significantly higher in CD and somewhat elevated in UC patients versus controls. Parallel trends in MBL2 gene expression were observed in IBD patients' intestinal mucosa. CONCLUSIONS Overall, our study indicates that the presence of higher basal circulating levels of MBL in CD patients and the decreased intestinal mucosa expression of the SARS-CoV-2 receptor ACE2 and the host cell priming proteases TMPRSS2 and TMPRSS4 in both CD and UC patients may reduce COVID-19 risk, underscoring the potential protective role of these biomarkers in IBD populations against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Laura Francesca Pisani
- Unit of Immunology and Functional Genomics, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | | | - Giorgia Crespi
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy
| | - Silvia Mola
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy
| | - Maria Laura Annunziata
- Gastroenterology and Endoscopy Unit, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Flavio Andrea Caprioli
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Chiara Porta
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy
| | - Luca Pastorelli
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
- Liver and Gastroenterology Unit, ASST Santi Paolo e Carlo, Milan, Italy
| |
Collapse
|
2
|
de Castro MV, Cariste LM, Almeida RR, Sasahara GL, Silva MVR, Soares FB, Coria VR, Naslavsky MS, Santos KS, Cunha-Neto E, Kalil J, Zatz M. Potential protective role of interferon-induced protein with tetratricopeptide repeats 3 (IFIT3) in COVID-19. Front Cell Infect Microbiol 2024; 14:1464581. [PMID: 39664492 PMCID: PMC11631949 DOI: 10.3389/fcimb.2024.1464581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 11/07/2024] [Indexed: 12/13/2024] Open
Abstract
The COVID-19 pandemic has prompted a quest to understand why certain individuals remain uninfected or asymptomatic despite repetitive exposure to SARS-CoV-2. Here, we focused on six exposed females residing with their symptomatic and reinfected SARS-CoV-2 PCR-positive COVID-19 partners. Peripheral blood mononuclear cell samples from couples were analysed for poly (I:C)-induced mRNA expression of type I/III interferons and interferon-stimulated genes (ISGs). Remarkably, we found a significant upregulation of the ISG interferon-inducible protein with tetrapeptide repeats 3 (IFIT3) gene exclusively in exposed uninfected or asymptomatic females, suggesting a potential role in protective immunity against symptomatic COVID-19.
Collapse
Affiliation(s)
- Mateus V. de Castro
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, SP, Brazil
| | - Leonardo M. Cariste
- Laboratory of Immunology, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, Brazil
- Instutute on Investigation in Immunology, - Instituto Nacional de Ciências e Tecnologia-iii-INCT, São Paulo, Brazil
- Division of Clinical Immunology and Allergy, Departamento de Clínica Médica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Rafael R. Almeida
- Laboratory of Immunology, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, Brazil
- Instutute on Investigation in Immunology, - Instituto Nacional de Ciências e Tecnologia-iii-INCT, São Paulo, Brazil
- Division of Clinical Immunology and Allergy, Departamento de Clínica Médica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Greyce L. Sasahara
- Laboratory of Immunology, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, Brazil
- Instutute on Investigation in Immunology, - Instituto Nacional de Ciências e Tecnologia-iii-INCT, São Paulo, Brazil
- Division of Clinical Immunology and Allergy, Departamento de Clínica Médica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Monize V. R. Silva
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, SP, Brazil
| | - Flávia B. Soares
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, SP, Brazil
| | - Vivian R. Coria
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, SP, Brazil
| | - Michel S. Naslavsky
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, SP, Brazil
| | - Keity S. Santos
- Laboratory of Immunology, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, Brazil
- Instutute on Investigation in Immunology, - Instituto Nacional de Ciências e Tecnologia-iii-INCT, São Paulo, Brazil
- Division of Clinical Immunology and Allergy, Departamento de Clínica Médica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Edecio Cunha-Neto
- Laboratory of Immunology, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, Brazil
- Instutute on Investigation in Immunology, - Instituto Nacional de Ciências e Tecnologia-iii-INCT, São Paulo, Brazil
- Division of Clinical Immunology and Allergy, Departamento de Clínica Médica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Jorge Kalil
- Laboratory of Immunology, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, Brazil
- Instutute on Investigation in Immunology, - Instituto Nacional de Ciências e Tecnologia-iii-INCT, São Paulo, Brazil
- Division of Clinical Immunology and Allergy, Departamento de Clínica Médica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Mayana Zatz
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
3
|
Messina NL, Pittet LF, McDonald E, Moore C, Barry S, Bonten M, Byrne A, Campbell J, Croda J, Croda MG, Dalcolmo M, de Almeida E Val FF, de Oliveira RD, Dos Santos G, Douglas MW, Gardiner K, Gwee A, Jardim BA, Kollmann T, Lacerda MV, Lucas M, Lynn DJ, Manning L, Marshall H, O'Connell A, Perrett KP, Post JJ, Prat-Aymerich C, Rocha JL, Rodriguez-Baño J, Wadia U, Warris A, Davidson A, Curtis N. BCG vaccination of healthcare workers for protection against COVID-19: 12-month outcomes from an international randomised controlled trial. J Infect 2024; 89:106245. [PMID: 39127450 PMCID: PMC11409612 DOI: 10.1016/j.jinf.2024.106245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
OBJECTIVES Bacille Calmette-Guérin (BCG) vaccine has immunomodulatory effects that may provide protection against unrelated infectious diseases. We aimed to determine whether BCG vaccination protects adults against COVID-19. DESIGN Phase III double-blind randomised controlled trial. SETTING Healthcare centres in Australia, Brazil, the Netherlands, Spain, and the United Kingdom during the COVID-19 pandemic. PARTICIPANTS 3988 healthcare workers with no prior COVID-19 and no contraindication to BCG. INTERVENTION Randomised 1:1 using a web-based procedure to receive a single 0.1 mL intradermal dose of BCG-Denmark (BCG group, n = 1999) or saline (placebo group, n = 1989). MAIN OUTCOME MEASURES Difference in incidence of (i) symptomatic and (ii) severe COVID-19 during the 12 months following randomisation in the modified intention to treat (mITT) population (confirmed SARS-CoV-2 naïve at inclusion). RESULTS Of the 3988 participants randomised, 3386 had a negative baseline SARS-CoV-2 test and were included in the mITT population. The 12-month adjusted estimated risk of symptomatic COVID-19 was higher in the BCG group (22.6%; 95% confidence interval [CI] 20.6 to 24.5%) compared with the placebo group (19.6%; 95% CI 17.6 to 21.5%); adjusted difference +3.0% points (95% CI 0.2 to 5.8%; p = 0.04). The 12-month adjusted estimated risk of severe COVID-19 (mainly comprising those reporting being unable to work for ≥3 consecutive days) was 11.0% in the BCG group (95% CI 9.5 to 12.4%) compared with 9.6% in the placebo group (95% CI 8.3 to 11.1%); adjusted difference +1.3% points (95% CI -0.7 to 3.3%, p = 0.2). Breakthrough COVID-19 (post COVID-19 vaccination) and asymptomatic SARS-CoV-2 infections were similar in the two groups. There were 18 hospitalisations due to COVID-19 (11 in BCG group, 7 in placebo group; adjusted hazard ratio 1.56, 95% CI 0.60 to 4.02, p = 0.4) and two deaths due to COVID-19, both in the placebo group. CONCLUSIONS Compared to placebo, vaccination with BCG-Denmark increased the risk of symptomatic COVID-19 over 12 months among healthcare workers and did not decrease the risk of severe COVID-19 or post-vaccination breakthrough COVID-19. TRIAL REGISTRATION ClinicalTrials.gov NCT04327206.
Collapse
Affiliation(s)
- Nicole L Messina
- Infectious Diseases Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia
| | - Laure F Pittet
- Infectious Diseases Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia; Immunology, Vaccinology, Rheumatology and Infectious Diseases Unit, Geneva and University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Ellie McDonald
- Infectious Diseases Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Cecilia Moore
- Clinical Epidemiology and Biostatistics Unit, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Simone Barry
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia; Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Marc Bonten
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, the Netherlands; European Clinical Research Alliance on Infectious Diseases, Utrecht, Netherlands
| | - Anthony Byrne
- St Vincent's Hospitals, Darlinghurst, New South Wales, Australia; Partners In Health, Socios En Salud, Peru; Thoracic Society of Australia & New Zealand (NSW/ACT Branch), Australia
| | - John Campbell
- Exeter Collaboration for Academic Primary Care, University of Exeter Medical School, Exeter, United Kingdom
| | - Julio Croda
- Fiocruz Mato Grosso do Sul, Fundação Oswaldo Cruz, Campo Grande, Mato Grosso do Sul, Brazil; Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA; Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Mariana G Croda
- Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Margareth Dalcolmo
- Centro de Referência Professor Hélio Fraga, ENSP/FIOCRUZ (Fundação Oswaldo Cruz), Rio de Janeiro, Brazil
| | | | - Roberto D de Oliveira
- State University of Mato Grosso do Sul, Dourados, Brazil; Post Graduate Program in Health Sciences, Federal University of Grande Dourados, Dourados, Brazil
| | - Glauce Dos Santos
- Centro de Referência Professor Hélio Fraga, ENSP/FIOCRUZ (Fundação Oswaldo Cruz), Rio de Janeiro, Brazil
| | - Mark W Douglas
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Syndey at Westmead Hospital, Westmead, New South Wales, Australia; Centre for Infectious Diseases and Microbiology, Sydney Infectious Diseases Institute, The University of Sydney at Westmead Hospital, Westmead, New South Wales, Australia
| | - Kaya Gardiner
- Infectious Diseases Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia; Research Operations, The Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
| | - Amanda Gwee
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia; Infectious Diseases, Royal Children's Hospital Melbourne, Parkville, Victoria, Australia; Antimicrobials Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Bruno A Jardim
- Institute of Clinical Research Carlos Borborema, Doctor Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
| | - Tobias Kollmann
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, Nedlands, Western Australia, Australia
| | - Marcus Vg Lacerda
- Institute of Clinical Research Carlos Borborema, Doctor Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil; Instituto Leônidas & Maria Deane, Oswaldo Cruz Foundation Ministry of Health, Manaus, Brazil; University of Texas Medical Branch, Galveston, TX, USA
| | - Michaela Lucas
- Department of Immunology, Pathwest, Queen Elizabeth II Medical Centre, Nedlands, Western Australia, Australia; Department of Immunology, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia; Department of Immunology, Perth Children's Hospital, Nedlands, Western Australia, Australia; School of Medicine, University of Western Australia, Perth, Western Australia, Australia
| | - David J Lynn
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia; Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, Australia
| | - Laurens Manning
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, Nedlands, Western Australia, Australia; School of Medicine, University of Western Australia, Perth, Western Australia, Australia; Department of Infectious Diseases, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Helen Marshall
- The University of Adelaide and the Women's and Children's Health Network, Adelaide, SA, Australia
| | - Abby O'Connell
- Exeter Clinical Trials Unit, University of Exeter, Exeter, United Kingdom
| | - Kirsten P Perrett
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia; Population Allergy Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia; Department of Allergy and Immunology, Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
| | - Jeffrey J Post
- Department of Infectious Diseases, Prince of Wales Hospital, Randwick, New South Wales, Australia; School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Cristina Prat-Aymerich
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, the Netherlands; European Clinical Research Alliance on Infectious Diseases, Utrecht, Netherlands
| | - Jorge L Rocha
- Helio Fraga Reference Center, Oswaldo Cruz Foundation Ministry of Health, Curicica, Brazil
| | - Jesus Rodriguez-Baño
- Division of Infectious Diseases and Microbiology, Department of Medicine, Hospital Universitario Virgen Macarena, University of Seville, Biomedicines Institute of Seville-Consejo Superior de Investigaciones Científicas, Seville, Spain; CIBER de Enfermedades Infecciosas, Instituto de Salud Carloss III, Madrid, Spain
| | - Ushma Wadia
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, Nedlands, Western Australia, Australia; School of Medicine, University of Western Australia, Perth, Western Australia, Australia
| | - Adilia Warris
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom; Department of Infectious Diseases, Great Ormond Street Hospital, London, United Kingdom
| | - Andrew Davidson
- Melbourne Children's Trial Centre, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Nigel Curtis
- Infectious Diseases Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia; Infectious Diseases, Royal Children's Hospital Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
4
|
Gao M, Xing X, Hao W, Zhang X, Zhong K, Lu C, Deng X, Yu L. Diverse immune responses in vaccinated individuals with and without symptoms after omicron exposure during the recent outbreak in Guangzhou, China. Heliyon 2024; 10:e24030. [PMID: 38293451 PMCID: PMC10827461 DOI: 10.1016/j.heliyon.2024.e24030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/17/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024] Open
Abstract
Objectives During the recent wave of coronavirus disease 2019 (COVID-19) infections in China, most individuals have been vaccinated and exposed to the omicron variant. In the present study, two cohorts were observed in the vaccinated population: vaccinated individuals with symptoms (VIWS) and those without symptoms (VIWOS). Our study aimed to characterize the antibody response in two cohorts: VIWS and VIWOS. Methods A questionnaire survey was conducted in the community. Blood and saliva samples were collected from 124 individuals in the VIWS and VIWOS cohorts. Capture enzyme-linked immunosorbent assay (ELISA) was performed to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) specific antibodies. Results The questionnaire survey revealed that 30.0 % (302/1005) of individuals in the older adult group (≥65 years) experienced no symptoms, whereas the rate of individuals without symptoms in the younger group (<65 years) was 17.8 % (166/932). Nucleocapsid (N)-specific IgM (N-IgM) was detected in the blood samples at a rate of 69.2 % (54/78) in the VIWS cohort. The positivity rate for N-specific IgA (N-IgA) was 93.6 % (73/78). In addition, the positivity rates of spike (S)-specific IgA (S-IgA) and N-IgA detected in saliva samples were 42 % (21/50) and 54 % (27/50), respectively. Both N-IgA positivity and negativity were observed in the VIWOS cohort. The detection rate of N-IgM positivity was 57.1 % (12/21) in the N-IgA-positive group. In addition, 54.3 % (25/46) of the vaccinated individuals without symptoms were IgA-negative. Conclusions Our study indicates that substantial N-specific antibodies were induced during omicron infection and that testing for N-IgA in both blood and saliva may aid in the diagnosis of SARS-CoV-2 infection in vaccinated populations.
Collapse
Affiliation(s)
- Ming Gao
- Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510060, China
| | - Xiaomin Xing
- Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510060, China
| | - Wenbiao Hao
- Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510060, China
| | - Xulei Zhang
- Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510060, China
| | - Kexin Zhong
- Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510060, China
| | - Canhui Lu
- Jiahe Community Health Service Center of Baiyun District, Guangzhou 510440, China
| | - Xilong Deng
- Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510060, China
| | - Lei Yu
- Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510060, China
| |
Collapse
|
5
|
Röltgen K, Boyd SD. Antibody and B Cell Responses to SARS-CoV-2 Infection and Vaccination: The End of the Beginning. ANNUAL REVIEW OF PATHOLOGY 2024; 19:69-97. [PMID: 37738512 DOI: 10.1146/annurev-pathmechdis-031521-042754] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
As the COVID-19 pandemic has evolved during the past years, interactions between human immune systems, rapidly mutating and selected SARS-CoV-2 viral variants, and effective vaccines have complicated the landscape of individual immunological histories. Here, we review some key findings for antibody and B cell-mediated immunity, including responses to the highly mutated omicron variants; immunological imprinting and other impacts of successive viral antigenic variant exposures on antibody and B cell memory; responses in secondary lymphoid and mucosal tissues and non-neutralizing antibody-mediated immunity; responses in populations vulnerable to severe disease such as those with cancer, immunodeficiencies, and other comorbidities, as well as populations showing apparent resistance to severe disease such as many African populations; and evidence of antibody involvement in postacute sequelae of infection or long COVID. Despite the initial phase of the pandemic ending, human populations will continue to face challenges presented by this unpredictable virus.
Collapse
Affiliation(s)
- Katharina Röltgen
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Scott D Boyd
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA;
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
6
|
Kieber-Emmons T. Is It Time to Re-Evaluate? Monoclon Antib Immunodiagn Immunother 2023; 42:187-188. [PMID: 38133517 DOI: 10.1089/mab.2023.29016.editorial] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
|
7
|
Carriazo S, Ribagorda M, Pintor-Chocano A, Perez-Gomez MV, Ortiz A, Sanchez-Niño MD. Increased expression of SCARF genes favoring SARS-CoV-2 infection in key target organs in CKD. Clin Kidney J 2023; 16:2672-2682. [PMID: 38046008 PMCID: PMC10689187 DOI: 10.1093/ckj/sfad220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Indexed: 12/05/2023] Open
Abstract
Background Chronic kidney disease (CKD), especially diabetic CKD, is the condition that most increases the risk of lethal coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the underlying molecular mechanisms are unclear. SARS-CoV-2 and coronavirus-associated receptors and factors (SCARFs) regulate coronavirus cell entry and/or replication. We hypothesized that CKD may alter the expression of SCARF genes. Methods A literature search identified 34 SCARF genes of which we selected 21 involved in interactions between SARS-CoV/SARS-CoV-2 and host cells, and assessed their mRNA expression in target tissues of COVID-19 (kidneys, lungs, aorta and heart) in mice with adenine-induced CKD. Results Twenty genes were differentially expressed in at least one organ in mice with CKD. For 15 genes, the differential expression would be expected to favor SARS-CoV-2 infection and/or severity. Of these 15 genes, 13 were differentially expressed in the kidney and 8 were validated in human CKD kidney transcriptomics datasets, including those for the most common cause of CKD, diabetic nephropathy. Two genes reported to protect from SARS-CoV-2 were downregulated in at least two non-kidney target organs: Ifitm3 encoding interferon-induced transmembrane protein 3 (IFITM3) in lung and Ly6e encoding lymphocyte antigen 6 family member 6 (LY6E) in aorta. Conclusion CKD, including diabetic CKD, is associated with the differential expression of multiple SCARF genes in target organs of COVID-19, some of which may sensitize to SARS-CoV-2 infection. This information may facilitate developing therapeutic strategies aimed at decreasing COVID-19 severity in patients with CKD.
Collapse
Affiliation(s)
- Sol Carriazo
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
- Department of Medicine, RICORS2040, Madrid, Spain
| | - Marta Ribagorda
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
- Department of Medicine, RICORS2040, Madrid, Spain
| | - Aranzazu Pintor-Chocano
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
- Department of Medicine, RICORS2040, Madrid, Spain
| | - Maria Vanessa Perez-Gomez
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
- Department of Medicine, RICORS2040, Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
- Department of Medicine, RICORS2040, Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Maria Dolores Sanchez-Niño
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
- Department of Medicine, RICORS2040, Madrid, Spain
- Departamento de Farmacología, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
8
|
Ghezzi P, Rubartelli A. Redox regulation of defense against bacterial and viral pathogens. Curr Opin Chem Biol 2023; 76:102339. [PMID: 37295350 DOI: 10.1016/j.cbpa.2023.102339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 06/12/2023]
Abstract
There is considerable interest in the role of oxygen-derived oxidants (often termed generically reactive oxygen species), and the potential effect of exogenous antioxidants, in the pathogenesis of infectious disease. Most of the published research focuses on the inflammatory response and the concept that oxidants are pro-inflammatory and antioxidants are anti-inflammatory. The present review discusses the evidence that both oxidants and thiol antioxidants are important in the various processes of innate and adaptive immunity, focusing on the function of the immune system in the defense against pathogens, rather than its pathogenic role in inflammatory and autoimmune disease.
Collapse
Affiliation(s)
- Pietro Ghezzi
- Department of Biomolecular Sciences, Università di Urbino, 61029, Urbino, Italy.
| | - Anna Rubartelli
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, 20100, Milano, Italy
| |
Collapse
|
9
|
Kalk A, Sturmberg J, Van Damme W, Brown GW, Ridde V, Zizi M, Paul E. Surfing Corona waves - instead of breaking them: Rethinking the role of natural immunity in COVID-19 policy. F1000Res 2023; 11:337. [PMID: 37576385 PMCID: PMC10412939 DOI: 10.12688/f1000research.110593.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/22/2023] [Indexed: 08/15/2023] Open
Abstract
In the first two years of the pandemic, COVID-19 response policies have aimed to break Corona waves through non-pharmaceutical interventions and mass vaccination. However, for long-term strategies to be effective and efficient, and to avoid massive disruption and social harms, it is crucial to introduce the role of natural immunity in our thinking about COVID-19 (or future "Disease-X") control and prevention. We argue that any Corona or similar virus control policy must appropriately balance five key elements simultaneously: balancing the various fundamental interests of the nation, as well as the various interventions within the health sector; tailoring the prevention measures and treatments to individual needs; limiting social interaction restrictions; and balancing the role of vaccinations against the role of naturally induced immunity. Given the high infectivity of SARS-CoV-2 and its differential impact on population segments, we examine this last element in more detail and argue that an important aspect of 'living with the virus' will be to better understand the role of naturally induced immunity in our overall COVID-19 policy response. In our eyes, a policy approach that factors natural immunity should be considered for persons without major comorbidities and those having 'encountered' the antigen in the past.
Collapse
Affiliation(s)
- Andreas Kalk
- Kinshasa Country Office, Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ), Kinshasa, Democratic Republic of the Congo
| | - Joachim Sturmberg
- Foundation President – International Society for Systems and Complexity Sciences for Health, Australia, Callaghan, Australia
- A/Prof of General Practice, College of Health, Medicine and Wellbeing, University of Newcastle, Australia, Callaghan, Australia
| | - Wim Van Damme
- Department of Public Health, Institute of Tropical Medicine, Antwerp, Antwerp, Belgium
| | | | - Valéry Ridde
- CEPED, IRD-Université de Paris, ERL INSERM SAGESUD, Institute for Research on Sustainable Development (IRD), Paris, France
| | - Martin Zizi
- Aerendir Mobile Inc., Mountain View, California, USA
| | - Elisabeth Paul
- School of Public Health, Université libre de Bruxelles, Brussels, 1070, Belgium
| |
Collapse
|
10
|
Swadling L, Maini MK. Can T Cells Abort SARS-CoV-2 and Other Viral Infections? Int J Mol Sci 2023; 24:4371. [PMID: 36901802 PMCID: PMC10002440 DOI: 10.3390/ijms24054371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Despite the highly infectious nature of the SARS-CoV-2 virus, it is clear that some individuals with potential exposure, or even experimental challenge with the virus, resist developing a detectable infection. While a proportion of seronegative individuals will have completely avoided exposure to the virus, a growing body of evidence suggests a subset of individuals are exposed, but mediate rapid viral clearance before the infection is detected by PCR or seroconversion. This type of "abortive" infection likely represents a dead-end in transmission and precludes the possibility for development of disease. It is, therefore, a desirable outcome on exposure and a setting in which highly effective immunity can be studied. Here, we describe how early sampling of a new pandemic virus using sensitive immunoassays and a novel transcriptomic signature can identify abortive infections. Despite the challenges in identifying abortive infections, we highlight diverse lines of evidence supporting their occurrence. In particular, expansion of virus-specific T cells in seronegative individuals suggests abortive infections occur not only after exposure to SARS-CoV-2, but for other coronaviridae, and diverse viral infections of global health importance (e.g., HIV, HCV, HBV). We discuss unanswered questions related to abortive infection, such as: 'Are we just missing antibodies? Are T cells an epiphenomenon? What is the influence of the dose of viral inoculum?' Finally, we argue for a refinement of the current paradigm that T cells are only involved in clearing established infection; instead, we emphasise the importance of considering their role in terminating early viral replication by studying abortive infections.
Collapse
Affiliation(s)
- Leo Swadling
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London WC1E 6BT, UK
| | - Mala K. Maini
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London WC1E 6BT, UK
| |
Collapse
|
11
|
Yang KWK, Paris CF, Gorman KT, Rattsev I, Yoo RH, Chen Y, Desman JM, Wei TY, Greenstein JL, Taylor CO, Ray SC. Factors associated with resistance to SARS-CoV-2 infection discovered using large-scale medical record data and machine learning. PLoS One 2023; 18:e0278466. [PMID: 36812214 PMCID: PMC9946212 DOI: 10.1371/journal.pone.0278466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/06/2022] [Indexed: 02/24/2023] Open
Abstract
There have been over 621 million cases of COVID-19 worldwide with over 6.5 million deaths. Despite the high secondary attack rate of COVID-19 in shared households, some exposed individuals do not contract the virus. In addition, little is known about whether the occurrence of COVID-19 resistance differs among people by health characteristics as stored in the electronic health records (EHR). In this retrospective analysis, we develop a statistical model to predict COVID-19 resistance in 8,536 individuals with prior COVID-19 exposure using demographics, diagnostic codes, outpatient medication orders, and count of Elixhauser comorbidities in EHR data from the COVID-19 Precision Medicine Platform Registry. Cluster analyses identified 5 patterns of diagnostic codes that distinguished resistant from non-resistant patients in our study population. In addition, our models showed modest performance in predicting COVID-19 resistance (best performing model AUROC = 0.61). Monte Carlo simulations conducted indicated that the AUROC results are statistically significant (p < 0.001) for the testing set. We hope to validate the features found to be associated with resistance/non-resistance through more advanced association studies.
Collapse
Affiliation(s)
- Kai-Wen K. Yang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, United States of America
| | - Chloé F. Paris
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, United States of America
| | - Kevin T. Gorman
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, United States of America
| | - Ilia Rattsev
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, United States of America
| | - Rebecca H. Yoo
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, United States of America
| | - Yijia Chen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| | - Jacob M. Desman
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, United States of America
| | - Tony Y. Wei
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, United States of America
| | - Joseph L. Greenstein
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, United States of America
| | - Casey Overby Taylor
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, United States of America
- Department of Medicine, Division of General Internal Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States of America
| | - Stuart C. Ray
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, MD, United States of America
- * E-mail:
| |
Collapse
|
12
|
Geckin B, Zoodsma M, Kilic G, Debisarun PA, Rakshit S, Adiga V, Ahmed A, Parthiban C, Kumar NC, D’Souza G, Baltissen MP, Martens JHA, Domínguez-Andrés J, Li Y, Vyakarnam A, Netea MG. Differences in Immune Responses in Individuals of Indian and European Origin: Relevance for the COVID-19 Pandemic. Microbiol Spectr 2023; 11:e0023123. [PMID: 36779734 PMCID: PMC10100912 DOI: 10.1128/spectrum.00231-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/14/2023] Open
Abstract
During the coronavirus disease 2019 (COVID-19) pandemic, large differences in susceptibility and mortality due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection have been reported between populations in Europe and South Asia. While both host and environmental factors (including Mycobacterium bovis BCG vaccination) have been proposed to explain this, the potential biological substrate of these differences is unknown. We purified peripheral blood mononuclear cells from individuals living in India and the Netherlands at baseline and 10 to 12 weeks after BCG vaccination. We compared chromatin accessibility between the two populations at baseline, as well as gene transcription profiles and cytokine production capacities upon stimulation. The chromatin accessibility of genes important for adaptive immunity was higher in the Indians than in the Europeans, while the latter had more accessible chromatin regions in genes of the innate immune system. At the transcriptional level, we observed that the Indian volunteers displayed a more tolerant immune response to stimulation, in contrast to a more exaggerated response in the Europeans. BCG vaccination strengthened the tolerance program in the Indians but not in the Europeans. These differences may partly explain the different impact of COVID-19 on the two populations. IMPORTANCE In this study, we assessed the differences in immune responses in individuals from India and Europe. This aspect is of great relevance, because of the described differences in morbidity and mortality between India and Europe during the pandemic. We found a significant difference in chromatin accessibility in immune cells from the two populations, followed by a more balanced and effective response in individuals from India. These exciting findings represent a very important piece of the puzzle for understanding the COVID-19 pandemic at a global level.
Collapse
Affiliation(s)
- Büsra Geckin
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Martijn Zoodsma
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Gizem Kilic
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Priya A. Debisarun
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Srabanti Rakshit
- Laboratory of Immunology of HIV-TB Co-infection, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Vasista Adiga
- Laboratory of Immunology of HIV-TB Co-infection, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Asma Ahmed
- Laboratory of Immunology of HIV-TB Co-infection, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Chaitra Parthiban
- Laboratory of Immunology of HIV-TB Co-infection, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Nirutha Chetan Kumar
- Laboratory of Immunology of HIV-TB Co-infection, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - George D’Souza
- Laboratory of Immunology of HIV-TB Co-infection, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Marijke P. Baltissen
- Department of Molecular Biology, Radboud University, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Joost H. A. Martens
- Department of Molecular Biology, Radboud University, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Jorge Domínguez-Andrés
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Yang Li
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Annapurna Vyakarnam
- Laboratory of Immunology of HIV-TB Co-infection, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences & Medicine, Guy’s Hospital, King’s College London, London, United Kingdom
| | - Mihai G. Netea
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Immunology and Metabolism, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
13
|
Tabcheh J, Vergalli J, Davin-Régli A, Ghanem N, Pages JM, Al-Bayssari C, Brunel JM. Rejuvenating the Activity of Usual Antibiotics on Resistant Gram-Negative Bacteria: Recent Issues and Perspectives. Int J Mol Sci 2023; 24:1515. [PMID: 36675027 PMCID: PMC9864949 DOI: 10.3390/ijms24021515] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Antibiotic resistance continues to evolve and spread beyond all boundaries, resulting in an increase in morbidity and mortality for non-curable infectious diseases. Due to the failure of conventional antimicrobial therapy and the lack of introduction of a novel class of antibiotics, novel strategies have recently emerged to combat these multidrug-resistant infectious microorganisms. In this review, we highlight the development of effective antibiotic combinations and of antibiotics with non-antibiotic activity-enhancing compounds to address the widespread emergence of antibiotic-resistant strains.
Collapse
Affiliation(s)
- Jinane Tabcheh
- Aix Marseille University, INSERM, SSA, MCT, 13385 Marseille, France
- Faculty of Science 3, Lebanese University, Michel Slayman Tripoli Campus, Tripoli 1352, Lebanon
| | - Julia Vergalli
- Aix Marseille University, INSERM, SSA, MCT, 13385 Marseille, France
| | - Anne Davin-Régli
- Aix Marseille University, INSERM, SSA, MCT, 13385 Marseille, France
| | - Noha Ghanem
- Faculty of Science 3, Lebanese University, Michel Slayman Tripoli Campus, Tripoli 1352, Lebanon
| | - Jean-Marie Pages
- Aix Marseille University, INSERM, SSA, MCT, 13385 Marseille, France
| | - Charbel Al-Bayssari
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, University of Balamand, Beirut P.O. Box 55251, Lebanon
| | | |
Collapse
|
14
|
Zsichla L, Müller V. Risk Factors of Severe COVID-19: A Review of Host, Viral and Environmental Factors. Viruses 2023; 15:175. [PMID: 36680215 PMCID: PMC9863423 DOI: 10.3390/v15010175] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The clinical course and outcome of COVID-19 are highly variable, ranging from asymptomatic infections to severe disease and death. Understanding the risk factors of severe COVID-19 is relevant both in the clinical setting and at the epidemiological level. Here, we provide an overview of host, viral and environmental factors that have been shown or (in some cases) hypothesized to be associated with severe clinical outcomes. The factors considered in detail include the age and frailty, genetic polymorphisms, biological sex (and pregnancy), co- and superinfections, non-communicable comorbidities, immunological history, microbiota, and lifestyle of the patient; viral genetic variation and infecting dose; socioeconomic factors; and air pollution. For each category, we compile (sometimes conflicting) evidence for the association of the factor with COVID-19 outcomes (including the strength of the effect) and outline possible action mechanisms. We also discuss the complex interactions between the various risk factors.
Collapse
Affiliation(s)
- Levente Zsichla
- Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary
- National Laboratory for Health Security, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Viktor Müller
- Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary
- National Laboratory for Health Security, Eötvös Loránd University, 1117 Budapest, Hungary
| |
Collapse
|
15
|
Yamanaka Y, Yokota I, Yasumoto A, Morishita E, Horiuchi H. Time of Day of Vaccination Does Not Associate With SARS-CoV-2 Antibody Titer Following First Dose of mRNA COVID-19 Vaccine. J Biol Rhythms 2022; 37:700-706. [PMID: 36154515 PMCID: PMC9726636 DOI: 10.1177/07487304221124661] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The immune system exhibits circadian rhythms, and its response to viral infection is influenced by the circadian clock system. Previous studies have reported associations between the time of day of vaccination against COVID-19 and production of anti-SARS-CoV-2 antibody titer. We examined the effect of vaccination time of day on anti-SARS-CoV-2 antibody titer after the first dose of vaccination with the mRNA-1273 (Moderna) COVID-19 vaccine in an adult population. A total of 332 Japanese adults participated in the present study. All participants were not infected with SARS-CoV-2 and had already received the first dose of mRNA-1273 2 to 4 weeks prior to participating in the study. The participants were asked to provide basic demographic characteristics (age, sex, medical history, allergy, medication, and mean sleep duration), the number of days after the first dose of vaccination, and the time of day of vaccination. Blood was collected from the participants, and SARS-CoV-2 antibody titers were measured. Ordinary least square regression was used for assessing the relationship between basic demographic characteristics, number of days after vaccination, time of day of vaccination, and the log10-transformed normalized antibody titer. The least square mean of antibody titers was not associated with the vaccination time and sleep durations. The least square means of antibody titers was associated with age; the antibody titers decreased in people aged 50 to 59 years and 60 to 64 years. The present findings demonstrate that the vaccination time with mRNA-1273 was not associated with the SARS-CoV-2 antibody titer in an adult population, suggesting that these results do not support restricting vaccination to a particular time of day. The present findings may be useful in optimizing SARS-CoV-2 vaccination strategies.
Collapse
Affiliation(s)
- Yujiro Yamanaka
- Laboratory of Life and Health Sciences, Graduate School of Education and Faculty of Education, Hokkaido University, Sapporo, Japan,Research and Education Center for Brain Science, Hokkaido University, Sapporo, Japan,Yujiro Yamanaka, Laboratory of Life and Health Sciences, Graduate School of Education and Faculty of Education, Hokkaido University, North-11, West-7, Kita-Ku, Sapporo 060-0811, Japan; e-mail:
| | - Isao Yokota
- Department of Biostatistics, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Atsushi Yasumoto
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, Japan
| | - Eriko Morishita
- Department of Hematology, Kanazawa University Hospital, Kanazawa, Japan
| | - Hisanori Horiuchi
- Department of Molecular and Cellular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
16
|
Beyond GWAS-Could Genetic Differentiation within the Allograft Rejection Pathway Shape Natural Immunity to COVID-19? Int J Mol Sci 2022; 23:ijms23116272. [PMID: 35682950 PMCID: PMC9181155 DOI: 10.3390/ijms23116272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 01/25/2023] Open
Abstract
COVID-19 infections pose a serious global health concern so it is crucial to identify the biomarkers for the susceptibility to and resistance against this disease that could help in a rapid risk assessment and reliable decisions being made on patients' treatment and their potential hospitalisation. Several studies investigated the factors associated with severe COVID-19 outcomes that can be either environmental, population based, or genetic. It was demonstrated that the genetics of the host plays an important role in the various immune responses and, therefore, there are different clinical presentations of COVID-19 infection. In this study, we aimed to use variant descriptive statistics from GWAS (Genome-Wide Association Study) and variant genomic annotations to identify metabolic pathways that are associated with a severe COVID-19 infection as well as pathways related to resistance to COVID-19. For this purpose, we applied a custom-designed mixed linear model implemented into custom-written software. Our analysis of more than 12.5 million SNPs did not indicate any pathway that was significant for a severe COVID-19 infection. However, the Allograft rejection pathway (hsa05330) was significant (p = 0.01087) for resistance to the infection. The majority of the 27 SNP marking genes constituting the Allograft rejection pathway were located on chromosome 6 (19 SNPs) and the remainder were mapped to chromosomes 2, 3, 10, 12, 20, and X. This pathway comprises several immune system components crucial for the self versus non-self recognition, but also the components of antiviral immunity. Our study demonstrated that not only single variants are important for resistance to COVID-19, but also the cumulative impact of several SNPs within the same pathway matters.
Collapse
|