1
|
Yu B, Peng L, Dang W, Fu Y, Li Z, Feng J, Zhao H, Wang T, Xu F, Yarmush ML, Huang H. Cryopreservable, scalable and ready-to-use cell-laden patches for diabetic ulcer treatment. Bioact Mater 2025; 50:461-474. [PMID: 40342487 PMCID: PMC12059593 DOI: 10.1016/j.bioactmat.2025.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/27/2025] [Accepted: 04/19/2025] [Indexed: 05/11/2025] Open
Abstract
Stem cell-laden hydrogel patches are promising candidates to treat chronic ulcers due to cells' long-lasting and dynamic responses to wound microenvironment. However, their clinical translations are prohibited by the cryopreservation difficulty due to their weak mechanical strength and slow biotransport capability, and by the morphological mismatch between clinical ulcers and pre-fabricated patches. Here we report a stem cell-laden alginate-dopamine hydrogel patch that can be readily cryopreserved, processed, and scaled toward clinical usages. This cell-hydrogel patch not only maintains cell viability and structure integrity during cryopreservation, but also can be directly utilized without centrifugation or incubation post cryopreservation. In addition, this tissue-adhesive hydrogel patch enables close wound contact and fast cellular response, and its scalable and flexible structure enables assembly for large or irregularly shaped ulcers. Therefore, it accelerates ulcer healing and reduces scar formation via continuous, versatile, self-adjusting paracrine of imbedded, cryopreserved stem cells. These findings highlight its potential for scalable clinical applications in chronic wound management and pave the way for broader adoption of ready-to-use regenerative therapies.
Collapse
Affiliation(s)
- Bangrui Yu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
| | - Lanlan Peng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
| | - Wenjun Dang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
| | - Ying Fu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
| | - Zhijie Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
| | - Jinteng Feng
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Heng Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Tian Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
| | - Martin L. Yarmush
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, MA, 02114, United States
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, 08854, United States
| | - Haishui Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
| |
Collapse
|
2
|
Wang Y, Wu H, Liu X, Ren Z, Cao Y, Cong H, Yu B. Preparation of Oligopeptide Hydrogel with Rapid Hemostatic and Broad-Spectrum Antibacterial Properties for Accelerating Wound Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2503490. [PMID: 40424022 DOI: 10.1002/smll.202503490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 05/19/2025] [Indexed: 05/28/2025]
Abstract
The development of biomaterials with rapid hemostatic and antibacterial activity is essential for the treatment of chronic bacterial infected wounds. In this study, bacterial membrane chromatography combined with one-bead-one-compound (OBOC) method is used for rapid screening of antimicrobial peptides with potential antimicrobial properties. The screened antimicrobial peptide LKAPI (AMP LI5) has broad-spectrum bactericidal properties. Besides, AMP LI5 exhibited superior activation of the coagulation cascade and increased adherence to blood cells and platelets, which allows it to quickly coagulate blood. The hemostatic results showed that the AMP LI5 has a desirable hemostatic effect on the mouse tail-breaking model (9 ± 0.47 s). Finally, an HA-base composite antimicrobial peptide hydrogel is prepared antibacterial and hemostatic effects, which have injectability, compressibility, self-healing, and good biocompatibility. In addition, the antimicrobial peptide hydrogel significantly accelerated wound healing in chronic bacterial infected wounds in mouse. In summary, antimicrobial-hemostatic peptide hydrogels are expected to be competitive and multifunctional wound dressings for hemostasis and healing of bacterial-infected wounds.
Collapse
Affiliation(s)
- Yumei Wang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Han Wu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Xin Liu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Zekai Ren
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Yang Cao
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
- School of Materials Science and Engineering, Shandong University of Technology, Zibo, 255000, China
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang, 277160, China
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| |
Collapse
|
3
|
Malik AK, Setia A, Verma D, Viswanadh MK, Mukherjee A, Muthu MS. Carboxymethyl Chitosan Capped Bimetallic Nanoparticles Entrapped in Theranostic Nanofibers: Antimicrobial Peptide Coating, In Vitro, In Vivo Characterization for MDR Microbial Infection and Photoacoustic/Optical Imaging. ACS APPLIED BIO MATERIALS 2025; 8:3762-3782. [PMID: 40332166 DOI: 10.1021/acsabm.4c01883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Wound dressings, integrated with nanotechnology, have garnered considerable attention recently due to their ability to synergistically combine antimicrobial efficacy with wound healing properties, while also supporting adherence to standardized wound care protocols. We have developed smart theranostic wound dressings composed of carboxymethyl chitosan coated gold-silver-LL37 nanoparticles (G-S-CMC-Pep-NPs), of 155.1 ± 11.2 nm in size and a charge over the surface of +34.6 ± 3.7 mV. The optimized G-S-CMC-Pep-NPs were observed to exhibit minimal inhibitory and bactericidal concentration in the range of 0.390-0.781 μg/mL, also illustrated the maximum zone of inhibition (ZOI) of 21.61 ± 1.06 and 18.85 ± 1.22 mm, toward multidrug resistant (MDR) bacteria of P. aeruginosa and S. aureus respectively. TEM analysis of the microbial cells post-12-h treatment revealed irregularly undulating and disrupted cell walls, loss of cell wall integrity, and evidence of DNA condensation. Additionally, hemolysis assays demonstrated that G-S-CMC-Pep-NPs exhibited a nonhemolytic profile when tested on rodent blood, indicating their excellent biocompatibility. Furthermore, G-S-CMC-Pep-NPs were uniformly integrated into chitosan poly(vinyl alcohol) nanofibers (G-S-CMC-Pep-NPs-NFs) having a size ranging from 100 to 350 nm, resulting in an antimicrobial wound dressing, when applied to microbial-infected wounds in mice, achieved a 92.4% wound closure rate within 12 days of treatment. Additionally, this study is further substantiated through the analysis of wound marker protein expression levels, along with in vivo optical and ultrasound/photoacoustic imaging. The ultrasound/photoacoustic imaging offered an in-depth evaluation of the complex wound healing mechanism, enabling real-time visualization, high-resolution spatial imaging, and precise assessment of blood flow dynamics.
Collapse
Affiliation(s)
- Ankit Kumar Malik
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (IIT- BHU), Varanasi, Uttar Pradesh 221005, India
| | - Aseem Setia
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (IIT- BHU), Varanasi, Uttar Pradesh 221005, India
| | - Dipti Verma
- Department of Molecular and Human Genetics, Institute of Science, BHU, Varanasi, Uttar Pradesh 221005, India
| | - Matte Kasi Viswanadh
- Department of Pharmaceutics, KL College of Pharmacy, Koneru Lakshmaiah Education Foundations, Vaddeswaram, Guntur, Andhra Pradesh 522302, India
| | - Ashim Mukherjee
- Department of Molecular and Human Genetics, Institute of Science, BHU, Varanasi, Uttar Pradesh 221005, India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (IIT- BHU), Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
4
|
Xing C, Hou L, Sun C, Chen H, Li Y, Li L, Wu Y, Li L, An H, Wen Y, Du H. Injectable polypeptide/chitosan hydrogel with loaded stem cells and rapid gelation promoting angiogenesis for diabetic wound healing. Int J Biol Macromol 2025; 306:141578. [PMID: 40023432 DOI: 10.1016/j.ijbiomac.2025.141578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/18/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
Diabetic wounds face challenges like infection, prolonged inflammation, and poor vascularization. To address these, we developed an injectable hydrogel for diabetic wound dressing by grafting palmitoyl tetrapeptide-7 (Pal-7) onto chitosan (CS) to form CS/Pal-7 (CP7). Glutaraldehyde (GA) was used to enhance crosslinking between CS, creating the CP7 hydrogel. The hydrogel showed rapid gelation, good mechanical properties, biocompatibility, and strong antibacterial effects. Additionally, stem cells derived from human deciduous teeth (SHED) were loaded into the CP7 hydrogel to form SHED@CP7. This complex promoted human umbilical vein endothelial cell (HUVEC) migration and tube formation, aiding angiogenesis, and induced macrophage polarization toward the M2 phenotype, exerting anti-inflammatory effects. In streptozotocin-induced diabetic mouse wounds, SHED@CP7 significantly improved wound healing with over 95 % wound closure, increased collagen deposition, and reduced tumor necrosis factor-α (TNF-α) expression by approximately 75 % and Interleukin-6 (IL-6) expression by around 81 %. It also increased Interleukin-10 (IL-10) expression by approximately 58 %, modulating the inflammatory microenvironment for regeneration. Moreover, SHED@CP7 enhanced angiogenesis, as shown by a 69 % increase in endothelial cell marker CD31 staining, supporting faster wound healing. These results highlight the potential of SHED@CP7 as an effective treatment for diabetic wounds.
Collapse
Affiliation(s)
- Cencan Xing
- Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China; School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Liangxuan Hou
- Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China; School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Chunbin Sun
- Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China; School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hongyu Chen
- Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China; School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yingxian Li
- Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China; School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Luping Li
- Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China; School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yawen Wu
- Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China; School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Liang Li
- Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China; School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Heng An
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Yongqiang Wen
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing Key Laboratory for Bioengineering and Sensing Technology, Beijing 100083, China.
| | - Hongwu Du
- Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China; School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
5
|
Wu Z, Lu D, Sun S, Cai M, Lin L, Zhu M. Material Design, Fabrication Strategies, and the Development of Multifunctional Hydrogel Composites Dressings for Skin Wound Management. Biomacromolecules 2025; 26:1419-1460. [PMID: 39960380 DOI: 10.1021/acs.biomac.4c01715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2025]
Abstract
The skin is fragile, making it very vulnerable to damage and injury. Untreated skin wounds can pose a serious threat to human health. Three-dimensional polymer network hydrogels have broad application prospects in skin wound dressings due to their unique properties and structure. The therapeutic effect of traditional hydrogels is limited, while multifunctional composite hydrogels show greater potential. Multifunctional hydrogels can regulate wound moisture through formula adjustment. Moreover, hydrogels can be combined with bioactive ingredients to improve their performance in wound healing applications. Stimulus-responsive hydrogels can respond specifically to the wound environment and meet the needs of different wound healing stages. This review summarizes the material types, structure, properties, design considerations, and formulation strategies for multifunctional hydrogel composite dressings used in wound healing. We discuss various types of recently developed hydrogel dressings, highlights the importance of tailoring their physicochemical properties, and addresses potential challenges in preparing multifunctional hydrogel wound dressings.
Collapse
Affiliation(s)
- Ziteng Wu
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, PR China
| | - Dongdong Lu
- Dongguan Key Laboratory of Interdisciplinary Science for Advanced Materials and Large-Scale Scientific Facilities, School of Physical Sciences, Great Bay University, Dongguan, Guangdong 523000, PR China
| | - Shuo Sun
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, PR China
| | - Manqi Cai
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, PR China
| | - Lin Lin
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, PR China
- Key Laboratory of Medical Electronics and Medical Imaging Equipment, Dongguan 523808, PR China
- Songshan Lake Innovation Center of Medicine & Engineering, Guangdong Medical University, Dongguan 523808, PR China
| | - Mingning Zhu
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, PR China
- Key Laboratory of Medical Electronics and Medical Imaging Equipment, Dongguan 523808, PR China
- Songshan Lake Innovation Center of Medicine & Engineering, Guangdong Medical University, Dongguan 523808, PR China
| |
Collapse
|
6
|
Cheng Y, Ling J, Ouyang XK, Wang N. Curdlan/xanthan gum-based composite hydrogel with near-infrared irradiation responsive properties for infected wounds healing. Int J Biol Macromol 2025; 284:138199. [PMID: 39617228 DOI: 10.1016/j.ijbiomac.2024.138199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/05/2024] [Accepted: 11/28/2024] [Indexed: 12/16/2024]
Abstract
Open wounds are prone to bacterial contamination and delayed healing due to environmental exposure, necessitating the development of advanced wound dressings. Hydrogels are ideal candidates for wound care for maintaining a moist environment which benefits for the cell migration and tissue regeneration. However, conventional polysaccharide hydrogels lack intrinsic antibacterial properties, prompting the incorporation of antibacterial agents. Herein, we present a novel composite hydrogel synthesized from curdlan (CUR) and xanthan gum (XG) via thermal annealing, augmented with MXene and Mg2+ to enhance antibacterial efficacy and promote cellular migration. The results proved that the mechanical properties of the composite hydrogel prepared with CUR and XG are significantly enhanced. Due to the influence of near-infrared irradiation, the antibacterial rates of XC/Mg2+/MX against S. aureus and P. aeruginosa are 81.84 % and 89.27 %, respectively. This innovative composite hydrogel offers new insights and avenues in the progress of sophisticated wound healing dressings areas.
Collapse
Affiliation(s)
- Yuqi Cheng
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Junhong Ling
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Xiao-Kun Ouyang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Nan Wang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China.
| |
Collapse
|
7
|
Arafa AA, Hakeim OA, Nada AA, Zahran MK, Shaffie NM, Ibrahim AY. Evaluation of smart bi-functional dressing based on polysaccharide hydrogels and Brassica oleracea extract for wound healing and continuous monitoring. Int J Biol Macromol 2025; 286:138339. [PMID: 39638175 DOI: 10.1016/j.ijbiomac.2024.138339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Skin wounds can drive global impacts, socially and economically, in parallel with their elevated incidence rate. Therefore, utilizing the dual-activity of Brassica Oleracea (Red Cabbage) extract, of being pH-sensitive and biologically active in designing novel, therapeutic, and pH-sensitive wound dressings with an easily stripped-off feature, is critical. Wound dressings were designed using two separate hydrogels based on chitosan (CS) and hydroxyethylcellulose (HEC), each loaded with RCE. The pH sensitivity of prepared bandages exhibited a noticeable visual change in color during wound treatment. Wound closure has reached 99.69 % for CS/RCE dressings. Results showed that RCE had raised the hydroxyproline and collagen content in the healed skin. Histopathological investigation proves that skin returned to its regular thickness within 10 days of treatment. RCE showed marked improvement in the healing quality by acting as an antioxidant, anti-inflammatory, and antimicrobial agent. Therefore, dual-function dressings are potential candidates to sense and cure skin wounds.
Collapse
Affiliation(s)
- Asmaa Ahmed Arafa
- Department of Dyeing, Printing, and Auxiliaries, National Research Centre, Dokki, Giza 12622, Egypt.
| | - Osama A Hakeim
- Department of Dyeing, Printing, and Auxiliaries, National Research Centre, Dokki, Giza 12622, Egypt
| | - Ahmed Ali Nada
- Pre-treatment and Finishing of Cellulosic Textiles Dept., Textile Research Division, National Research Centre (Scopus Affiliation ID 60014618), Dokki, Giza 12622, Egypt
| | - Magdy Kandil Zahran
- Chemistry Department, Faculty of Science, Helwan University, Ain-Helwan, Cairo 11795, Egypt
| | - Nermeen M Shaffie
- Pathology Department, Medical Rresearches Institute, National Research Centre, 12622, Egypt
| | - Abeer Yousry Ibrahim
- Pharmaceutical and drug Industries Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| |
Collapse
|
8
|
Mukai K, Nakatani T. Comparison of different modern wound dressings on full-thickness murine cutaneous wound healing with wild-type and type-2 diabetes db/db mice. J Tissue Viability 2024; 33:616-624. [PMID: 39349341 DOI: 10.1016/j.jtv.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/02/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
BACKGROUND To evaluate the process of cutaneous wound healing, experiments have been conducted. However, to date, what modern wound dressings are suitable remains unclear. Therefore, this study aimed to compare the healing process in different modern wound dressings to determine their suitability in experimental acute wound and chronic diabetic wound. MATERIALS AND METHODS Twelve C57BL/6J mice and eleven db/db mice were subjected to full-thickness wound injuries. The mice were divided into the following four groups: hydrocolloid, form, film, and gauze groups in both wild-type and db/db mice. Wound healing was assessed until day 14. RESULTS In the wild-type groups, all wounds were healed and completed re-epithelialization by day 14. However, the wound surface was dry, and the periwound was hypercontracted in the wild-type-form and wild-type-gauze groups. In the db/db groups, wounds were not healed until day 14. Wound exudates in the db/db-hydrocolloid group were abundant and gradually increased until day 14. Wound exudates in the db/db-film group were present until day 14. Conversely, in the db/db-form and db/db-gauze groups, the wound surface was dry, and the periwound was hypercontracted. CONCLUSION These results showed that hydrocolloid and film dressings are suitable modern wound dressings for the mice wound models of acute wound and chronic diabetic wound. Moreover, using either hydrocolloid or film dressing depending on the purpose of the study on cutaneous wound healing in diabetes is necessary.
Collapse
Affiliation(s)
- Kanae Mukai
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.
| | - Toshio Nakatani
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
9
|
Lev-Tov HA, Hermak S. Hydration response technology dressings for low to excessively exuding wounds: a systematic review. J Wound Care 2024; 33:383-392. [PMID: 38843010 DOI: 10.12968/jowc.2024.0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
OBJECTIVE The aim of this systematic review was to identify and qualify the current available evidence of the wound exudate handling capabilities and the cost-effectiveness of hydration response technology (HRT). HRT combines physically modified cellulose fibres and gelling agents resulting in wound dressings that absorb and retain larger quantities of wound exudate. METHOD A systematic search was conducted in MEDLINE (via PubMed and PubMed Central) according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). The search was conducted using an unlimited search period. Studies or reviews that evaluated effect on wound exudate and cost-effectiveness, as well as the impact on wound healing were considered. Records focusing on wound management using HRT devices were included. RESULTS The literature search identified four studies and one comparative analysis, ranging from low to moderate quality, that compared HRT dressings to other interventions (carboxymethyl cellulose dressing, other superabsorbent dressings, negative pressure wound therapy). CONCLUSION The analysed data supported the beneficial use of dressings with HRT for exuding wounds which was characterised by fewer dressing changes, improved periwound skin conditions and reduced costs.
Collapse
Affiliation(s)
- Hadar Avihai Lev-Tov
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, US
| | - Sarah Hermak
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, US
| |
Collapse
|
10
|
Jarman E, Burgess J, Sharma A, Hayashigatani K, Singh A, Fox P. Human-Derived collagen hydrogel as an antibiotic vehicle for topical treatment of bacterial biofilms. PLoS One 2024; 19:e0303039. [PMID: 38701045 PMCID: PMC11068178 DOI: 10.1371/journal.pone.0303039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/13/2024] [Indexed: 05/05/2024] Open
Abstract
The complexity of chronic wounds creates difficulty in effective treatments, leading to prolonged care and significant morbidity. Additionally, these wounds are incredibly prone to bacterial biofilm development, further complicating treatment. The current standard treatment of colonized superficial wounds, debridement with intermittent systemic antibiotics, can lead to systemic side-effects and often fails to directly target the bacterial biofilm. Furthermore, standard of care dressings do not directly provide adequate antimicrobial properties. This study aims to assess the capacity of human-derived collagen hydrogel to provide sustained antibiotic release to disrupt bacterial biofilms and decrease bacterial load while maintaining host cell viability and scaffold integrity. Human collagen harvested from flexor tendons underwent processing to yield a gellable liquid, and subsequently was combined with varying concentrations of gentamicin (50-500 mg/L) or clindamycin (10-100 mg/L). The elution kinetics of antibiotics from the hydrogel were analyzed using liquid chromatography-mass spectrometry. The gel was used to topically treat Methicillin-resistant Staphylococcus aureus (MRSA) and Clostridium perfringens in established Kirby-Bauer and Crystal Violet models to assess the efficacy of bacterial inhibition. 2D mammalian cell monolayers were topically treated, and cell death was quantified to assess cytotoxicity. Bacteria-enhanced in vitro scratch assays were treated with antibiotic-embedded hydrogel and imaged over time to assess cell death and mobility. Collagen hydrogel embedded with antibiotics (cHG+abx) demonstrated sustained antibiotic release for up to 48 hours with successful inhibition of both MRSA and C. perfringens biofilms, while remaining bioactive up to 72 hours. Administration of cHG+abx with antibiotic concentrations up to 100X minimum inhibitory concentration was found to be non-toxic and facilitated mammalian cell migration in an in vitro scratch model. Collagen hydrogel is a promising pharmaceutical delivery vehicle that allows for safe, precise bacterial targeting for effective bacterial inhibition in a pro-regenerative scaffold.
Collapse
Affiliation(s)
- Evan Jarman
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, United States of America
- Division of Plastic & Reconstructive Surgery, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Jordan Burgess
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, United States of America
- Division of Plastic & Reconstructive Surgery, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Ayushi Sharma
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, United States of America
- Division of Plastic & Reconstructive Surgery, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Kate Hayashigatani
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, United States of America
- Division of Plastic & Reconstructive Surgery, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Amar Singh
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, United States of America
- Division of Plastic & Reconstructive Surgery, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Paige Fox
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, United States of America
- Division of Plastic & Reconstructive Surgery, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States of America
| |
Collapse
|
11
|
Sadeghianmaryan A, Ahmadian N, Wheatley S, Alizadeh Sardroud H, Nasrollah SAS, Naseri E, Ahmadi A. Advancements in 3D-printable polysaccharides, proteins, and synthetic polymers for wound dressing and skin scaffolding - A review. Int J Biol Macromol 2024; 266:131207. [PMID: 38552687 DOI: 10.1016/j.ijbiomac.2024.131207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/15/2024] [Accepted: 03/26/2024] [Indexed: 04/15/2024]
Abstract
This review investigates the most recent advances in personalized 3D-printed wound dressings and skin scaffolding. Skin is the largest and most vulnerable organ in the human body. The human body has natural mechanisms to restore damaged skin through several overlapping stages. However, the natural wound healing process can be rendered insufficient due to severe wounds or disturbances in the healing process. Wound dressings are crucial in providing a protective barrier against the external environment, accelerating healing. Although used for many years, conventional wound dressings are neither tailored to individual circumstances nor specific to wound conditions. To address the shortcomings of conventional dressings, skin scaffolding can be used for skin regeneration and wound healing. This review thoroughly investigates polysaccharides (e.g., chitosan, Hyaluronic acid (HA)), proteins (e.g., collagen, silk), synthetic polymers (e.g., Polycaprolactone (PCL), Poly lactide-co-glycolic acid (PLGA), Polylactic acid (PLA)), as well as nanocomposites (e.g., silver nano particles and clay materials) for wound healing applications and successfully 3D printed wound dressings. It discusses the importance of combining various biomaterials to enhance their beneficial characteristics and mitigate their drawbacks. Different 3D printing fabrication techniques used in developing personalized wound dressings are reviewed, highlighting the advantages and limitations of each method. This paper emphasizes the exceptional versatility of 3D printing techniques in advancing wound healing treatments. Finally, the review provides recommendations and future directions for further research in wound dressings.
Collapse
Affiliation(s)
- Ali Sadeghianmaryan
- Department of Biomedical Engineering, University of Memphis, Memphis, TN, USA; Department of Mechanical Engineering, École de Technologie Supérieure, Montreal, Canada; University of Montreal Hospital Research Centre (CRCHUM), Montreal, Canada.
| | - Nivad Ahmadian
- Centre for Commercialization of Regenerative Medicine (CCRM), Toronto, Ontario, Canada
| | - Sydney Wheatley
- Department of Mechanical Engineering, École de Technologie Supérieure, Montreal, Canada; University of Montreal Hospital Research Centre (CRCHUM), Montreal, Canada
| | - Hamed Alizadeh Sardroud
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | - Emad Naseri
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ali Ahmadi
- Department of Mechanical Engineering, École de Technologie Supérieure, Montreal, Canada; University of Montreal Hospital Research Centre (CRCHUM), Montreal, Canada
| |
Collapse
|
12
|
Duan W, Wang H, Wang Z, Ren Z, Li X, He F, Li S, Guan Y, Liu F, Chen L, Yan P, Hou X. Multi-functional composite dressings with sustained release of MSC-SLP and anti-adhesion property for accelerating wound healing. Mater Today Bio 2024; 25:100979. [PMID: 38375318 PMCID: PMC10875241 DOI: 10.1016/j.mtbio.2024.100979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/25/2023] [Accepted: 01/24/2024] [Indexed: 02/21/2024] Open
Abstract
Exudate management is of significant clinical value for the treatment of acute wound. Various wound dressings have been developed to restore the function of injured tissues and promote wound healing, but proper exploiting the healing factors inside exudate and achieving anti-adhesion wound care remains a challenge. Herein, we present a novel multi-functional composite dressing (MCD) by coupling supernatant lyophilized powder of mesenchymal stem cells (MSC-SLP) with a sandwich-structured wound dressing (SWD). The developed MCDs demonstrated unique unidirectional drainage capability, stable anti-adhesion characteristics, and improved wound healing performance. The designed SWD with both superhydrophobic inner surface and liquid-absorption ability of mid layer enables the dressings exhibit desired anti-adhesion property to neoformative granulation tissues, favorable shielding effect to exogenous bacteria, as well as appropriate exudate-retaining capability and unidirectional exudate-absorption property. The introduction of MSC-SLP in SWD was demonstrated to further improve wound healing quality. Compared to medical gauze, the synergic effect of SWD and MSC-SLP significantly accelerates wound healing rate by over 30%, avoids tissue avulsion when changing dressings, and produces a flat-smooth closure surface. More importantly, the wound treated with MCDs presents more skin accessory organs and blood vessels in regenerated tissues than other groups. In vivo/vitro biocompatibility evaluations indicated little toxicity, demonstrating the biosecurity of the developed dressings. The proposed method offers great potential in clinical applications particularly for chronic wound treatments.
Collapse
Affiliation(s)
- Wu Duan
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Haipeng Wang
- Key Laboratory of High-efficiency and Clean Mechanical Manufacture of MOE, School of Mechanical Engineering, Shandong University, Jinan, 250061, China
| | - Ziran Wang
- Key Laboratory of High-efficiency and Clean Mechanical Manufacture of MOE, School of Mechanical Engineering, Shandong University, Jinan, 250061, China
| | - Zhongjing Ren
- Key Laboratory of High-efficiency and Clean Mechanical Manufacture of MOE, School of Mechanical Engineering, Shandong University, Jinan, 250061, China
| | - Xinxin Li
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100083, China
| | - Falian He
- Nuolai Biomedical Technology Co., Ltd., Taian, China
| | - Shaomin Li
- Institute of Aerospace Special Materials and Processing Technology, Beijing, 100074, China
| | - Yingchun Guan
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100083, China
| | - Fuqiang Liu
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine and Health, Jinan, Shandong, 250012, China
- Jinan Clinical Research Center for Endocrine and Metabolic Disease, Jinan, Shandong, 250012, China
| | - Li Chen
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine and Health, Jinan, Shandong, 250012, China
- Jinan Clinical Research Center for Endocrine and Metabolic Disease, Jinan, Shandong, 250012, China
| | - Peng Yan
- Key Laboratory of High-efficiency and Clean Mechanical Manufacture of MOE, School of Mechanical Engineering, Shandong University, Jinan, 250061, China
| | - Xinguo Hou
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine and Health, Jinan, Shandong, 250012, China
- Jinan Clinical Research Center for Endocrine and Metabolic Disease, Jinan, Shandong, 250012, China
| |
Collapse
|
13
|
Malik AK, Singh C, Tiwari P, Verma D, Mehata AK, Vikas, Setia A, Mukherjee A, Muthu MS. Nanofibers of N,N,N-trimethyl chitosan capped bimetallic nanoparticles: Preparation, characterization, wound dressing and in vivo treatment of MDR microbial infection and tracking by optical and photoacoustic imaging. Int J Biol Macromol 2024; 263:130154. [PMID: 38354928 DOI: 10.1016/j.ijbiomac.2024.130154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/26/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
Recent advancements in wound care have led to the development of interactive wound dressings utilizing nanotechnology, aimed at enhancing healing and combating bacterial infections while adhering to established protocols. Our novel wound dressings consist of N,N,N-trimethyl chitosan capped gold‑silver nanoparticles (Au-Ag-TMC-NPs), with a mean size of 108.3 ± 8.4 nm and a zeta potential of +54.4 ± 1.8 mV. These optimized nanoparticles exhibit potent antibacterial and antifungal properties, with minimum inhibitory concentrations ranging from 0.390 μg ml-1 to 3.125 μg ml-1 and also exhibited promising zones of inhibition against multi-drug resistant strains of S. aureus, E. coli, P. aeruginosa, and C. albicans. Microbial transmission electron microscopy reveals substantial damage to cell walls and DNA condensation post-treatment. Furthermore, the nanoparticles demonstrate remarkable inhibition of microbial efflux pumps and are non-hemolytic in human blood. Incorporated into polyvinyl alcohol/chitosan nanofibers, they form Au-Ag-TMC-NPs-NFs with diameters of 100-350 nm, facilitating efficient antimicrobial wound dressing. In vivo studies on MDR microbial-infected wounds in mice showed 99.34 % wound healing rate within 12 days, corroborated by analyses of wound marker protein expression levels and advanced imaging techniques such as ultrasound/photoacoustic imaging, providing real-time visualization and blood flow assessment for a comprehensive understanding of the dynamic wound healing processes.
Collapse
Affiliation(s)
- Ankit Kumar Malik
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, UP, India
| | - Chandrashekhar Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, UP, India
| | - Punit Tiwari
- Department of Microbiology, Institute of Medical Sciences, BHU, Varanasi 221005, UP, India
| | - Dipti Verma
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, UP, India
| | - Vikas
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, UP, India
| | - Aseem Setia
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, UP, India
| | - Ashim Mukherjee
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, UP, India.
| |
Collapse
|
14
|
Qiao Z, Zhang K, Liu H, Roh Y, Kim MG, Lee HJ, Koo B, Lee EY, Lee M, Park CO, Shin Y. CSMP: A Self-Assembled Plant Polysaccharide-Based Hydrofilm for Enhanced Wound Healing. Adv Healthc Mater 2024; 13:e2303244. [PMID: 37934913 DOI: 10.1002/adhm.202303244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Indexed: 11/09/2023]
Abstract
Wound management remains a critical healthcare issue due to the rising incidence of chronic diseases leading to persistent wounds. Traditional dressings have their limitations, such as potential for further damage during changing and suboptimal healing conditions. Recently, hydrogel-based dressings have gained attention due to their biocompatibility, biodegradability, and ability to fill wounds. Particularly, polysaccharide-based hydrogels have shown potential in various medical applications. This study focuses on the development of a novel hydrofilm wound dressing produced from a blend of chia seed mucilage (CSM) and polyvinyl alcohol (PVA), termed CSMP. While the individual properties of CSM and PVA are well-documented, their combined potential in wound management is largely unexplored. CSMP, coupled with sorbitol and glycerin, and cross-linked using ultraviolet light, results in a flexible, adhesive, and biocompatible hydrofilm demonstrating superior water absorption, moisturizing, and antibacterial properties. This hydrofilm promotes epithelial cell migration, enhanced collagen production, and outperforms existing commercial dressings in animal tests. The innovative CSMP hydrofilm offers a promising, cost-effective approach for improved wound care, bridging existing gaps in dressing performance and preparation simplicity. Future research can unlock further applications of such polysaccharide-based hydrofilm dressings.
Collapse
Affiliation(s)
- Zhen Qiao
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - KeLun Zhang
- Department of Dermatology, Severance, Hospital, Cutaneous Biology, Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Huifang Liu
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yeonjeong Roh
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Myoung Gyu Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyo Joo Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Bonhan Koo
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Eun Yeong Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Minju Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Chang Ook Park
- Department of Dermatology, Severance, Hospital, Cutaneous Biology, Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Yong Shin
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
15
|
Hu Y, Tang H, Xu N, Kang X, Wu W, Shen C, Lin J, Bao Y, Jiang X, Luo Z. Adhesive, Flexible, and Fast Degradable 3D-Printed Wound Dressings with a Simple Composition. Adv Healthc Mater 2024; 13:e2302063. [PMID: 37916920 DOI: 10.1002/adhm.202302063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/15/2023] [Indexed: 11/03/2023]
Abstract
3D printing technology has revolutionized the field of wound dressings, offering tailored solutions with mechanical support to facilitate wound closure. In addition to personalization, the intricate nature of the wound healing process requires wound dressing materials with diverse properties, such as moisturization, flexibility, adhesion, anti-oxidation and degradability. Unfortunately, current materials used in digital light processing (DLP) 3D printing have been inadequate in meeting these crucial criteria. This study introduces a novel DLP resin that is biocompatible and consists of only three commonly employed non-toxic compounds in biomaterials, that is, dopamine, poly(ethylene glycol) diacrylate, and N-vinylpyrrolidone. Simple as it is, this material system fulfills all essential functions for effective wound healing. Unlike most DLP resins that are non-degradable and rigid, this material exhibits tunable and rapid degradation kinetics, allowing for complete hydrolysis within a few hours. Furthermore, the high flexibility enables conformal application of complex dressings in challenging areas such as finger joints. Using a difficult-to-heal wound model, the manifold positive effects on wound healing in vivo, including granulation tissue formation, inflammation regulation, and vascularization are substantiated. The simplicity and versatility of this material make it a promising option for personalized wound care, holding significant potential for future translation.
Collapse
Affiliation(s)
- Yu Hu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Hao Tang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Nan Xu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Xiaowo Kang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Weijun Wu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Chuhan Shen
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Junsheng Lin
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Yinyin Bao
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| | - Xingyu Jiang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Zhi Luo
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| |
Collapse
|
16
|
Las Heras K, Garcia-Orue I, Aguirre JJ, de la Caba K, Guerrero P, Igartua M, Santos-Vizcaino E, Hernandez RM. Soy protein/β-chitin sponge-like scaffolds laden with human mesenchymal stromal cells from hair follicle or adipose tissue promote diabetic chronic wound healing. BIOMATERIALS ADVANCES 2023; 155:213682. [PMID: 37925826 DOI: 10.1016/j.bioadv.2023.213682] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/10/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Chronic wounds are a worldwide problem that affect >40 million people every year. The constant inflammatory status accompanied by prolonged bacterial infections reduce patient's quality of life and life expectancy drastically. An important cell type involved in the wound healing process are mesenchymal stromal cells (MSCs) due to their long-term demonstrated immunomodulatory and pro-regenerative capacity. Thus, in this work, we leveraged and compared the therapeutic properties of MSCs derived from both adipose tissue and hair follicle, which we combined with sponge-like scaffolds (SLS) made of valorized soy protein and β-chitin. In this regard, the combination of these cells with biomaterials permitted us to obtain a multifunctional therapy that allowed high cell retention and growing rates while maintaining adequate cell-viability for several days. Furthermore, this combined therapy demonstrated to increase fibroblasts and keratinocytes migration, promote human umbilical vein endothelial cells angiogenesis and protect fibroblasts from highly proteolytic environments. Finally, this combined therapy demonstrated to be highly effective in reducing wound healing time in vivo with only one treatment change during all the experimental procedure, also promoting a more functional and native-like healed skin.
Collapse
Affiliation(s)
- Kevin Las Heras
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy (UPV/EHU), Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Itxaso Garcia-Orue
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy (UPV/EHU), Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Jose Javier Aguirre
- Bioaraba Health Research Institute, Osakidetza Basque Health Service, Araba University Hospital, Pathological Anatomy Service, Vitoria-Gasteiz, Spain
| | - Koro de la Caba
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain; BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Pedro Guerrero
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain; BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; Proteinmat Materials SL, Avenida de Tolosa 72, 20018 Donostia-San Sebastián, Spain
| | - Manoli Igartua
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy (UPV/EHU), Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy (UPV/EHU), Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain.
| | - Rosa Maria Hernandez
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy (UPV/EHU), Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain.
| |
Collapse
|
17
|
Liang W, Ni N, Huang Y, Lin C. An Advanced Review: Polyurethane-Related Dressings for Skin Wound Repair. Polymers (Basel) 2023; 15:4301. [PMID: 37959982 PMCID: PMC10649939 DOI: 10.3390/polym15214301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
The inability of wounds to heal effectively through normal repair has become a burden that seriously affects socio-economic development and human health. The therapy of acute and chronic skin wounds still poses great clinical difficulty due to the lack of suitable functional wound dressings. It has been found that dressings made of polyurethane exhibit excellent and diverse biological properties, but lack the functionality of clinical needs, and most dressings are unable to dynamically adapt to microenvironmental changes during the healing process at different stages of chronic wounds. Therefore, the development of multifunctional polyurethane composite materials has become a hot topic of research. This review describes the changes in physicochemical and biological properties caused by the incorporation of different polymers and fillers into polyurethane dressings and describes their applications in wound repair and regeneration. We listed several polymers, mainly including natural-based polymers (e.g., collagen, chitosan, and hyaluronic acid), synthetic-based polymers (e.g., polyethylene glycol, polyvinyl alcohol, and polyacrylamide), and some other active ingredients (e.g., LL37 peptide, platelet lysate, and exosomes). In addition to an introduction to the design and application of polyurethane-related dressings, we discuss the conversion and use of advanced functional dressings for applications, as well as future directions for development, providing reference for the development and new applications of novel polyurethane dressings.
Collapse
Affiliation(s)
| | | | | | - Changmin Lin
- Department of Histology and Embryology, Shantou University Medical College, Shantou 515041, China; (W.L.); (N.N.); (Y.H.)
| |
Collapse
|
18
|
Luo P, Shu L, Huang Z, Huang Y, Wu C, Pan X, Hu P. Utilization of Lyotropic Liquid Crystalline Gels for Chronic Wound Management. Gels 2023; 9:738. [PMID: 37754419 PMCID: PMC10530416 DOI: 10.3390/gels9090738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 09/28/2023] Open
Abstract
Management of chronic wounds is becoming a serious health problem worldwide. To treat chronic wounds, a suitable healing environment and sustained delivery of growth factors must be guaranteed. Different therapies have been applied for the treatment of chronic wounds such as debridement and photodynamic therapy. Among them, growth factors are widely used therapeutic drugs. However, at present, growth factor delivery systems cannot meet the demand of clinical practice; therefore new methods should be developed to meet the emerging need. For this reason, researchers have tried to modify hydrogels through some methods such as chemical synthesis and molecule modifications to enhance their properties. However, there are still a large number of limitations in practical use like byproduct problems, difficulty to industrialize, and instability of growth factor. Moreover, applications of new materials like lyotropic liquid crystalline (LLC) on chronic wounds have emerged as a new trend. The structure of LLC is endowed with many excellent properties including low cost, ordered structure, and excellent loading efficiency. LLC can provide a moist local environment for the wound, and its lattice structure can embed the growth factors in the water channel. Growth factor is released from the high-concentration carrier to the low-concentration release medium, which can be precisely regulated. Therefore, it can provide sustained and stable delivery of growth factors as well as a suitable healing environment for wounds, which is a promising candidate for chronic wound healing and has a broad prospective application. In conclusion, more reliable and applicable drug delivery systems should be designed and tested to improve the therapy and management of chronic wounds.
Collapse
Affiliation(s)
- Peili Luo
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (P.L.); (L.S.); (C.W.); (P.H.)
| | - Lei Shu
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (P.L.); (L.S.); (C.W.); (P.H.)
| | - Zhengwei Huang
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (P.L.); (L.S.); (C.W.); (P.H.)
| | - Ying Huang
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (P.L.); (L.S.); (C.W.); (P.H.)
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (P.L.); (L.S.); (C.W.); (P.H.)
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China;
| | - Ping Hu
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (P.L.); (L.S.); (C.W.); (P.H.)
| |
Collapse
|
19
|
Popescu V, Cauni V, Petrutescu MS, Rustin MM, Bocai R, Turculet CR, Doran H, Patrascu T, Lazar AM, Cretoiu D, Varlas VN, Mastalier B. Chronic Wound Management: From Gauze to Homologous Cellular Matrix. Biomedicines 2023; 11:2457. [PMID: 37760898 PMCID: PMC10525626 DOI: 10.3390/biomedicines11092457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Chronic wounds are a significant health problem with devastating consequences for patients' physical, social, and mental health, increasing healthcare systems' costs. Their prolonged healing times, economic burden, diminished quality of life, increased infection risk, and impact on patients' mobility and functionality make them a major concern for healthcare professionals. PURPOSE This review offers a multi-perspective analysis of the medical literature focusing on chronic wound management. METHODS USED We evaluated 48 articles from the last 21 years registered in the MEDLINE and Global Health databases. The articles included in our study had a minimum of 20 citations, patients > 18 years old, and focused on chronic, complex, and hard-to-heal wounds. Extracted data were summarized into a narrative synthesis using the same health-related quality of life instrument. RESULTS We evaluated the efficacy of existing wound care therapies from classical methods to modern concepts, and wound care products to regenerative medicine that uses a patient's pluripotent stem cells and growth factors. Regenerative medicine and stem cell therapies, biologic dressings and scaffolds, negative pressure wound therapy (NPWT), electrical stimulation, topical growth factors and cytokines, hyperbaric oxygen therapy (HBOT), advanced wound dressings, artificial intelligence (AI), and digital wound management are all part of the new arsenal of wound healing. CONCLUSION Periodic medical evaluation and proper use of modern wound care therapies, including the use of plasma-derived products [such as platelet-rich plasma (PRP) and platelet-rich fibrin (PRF)] combined with proper systemic support (adequate protein levels, blood sugar, vitamins involved in tissue regeneration, etc.) are the key to a faster wound healing, and, with the help of AI, can reach the fastest healing rate possible.
Collapse
Affiliation(s)
- Valentin Popescu
- General Surgery Clinic, Colentina Clinical Hospital, 020125 Bucharest, Romania; (V.P.); (M.S.P.); (A.M.L.); (B.M.)
- General Surgery Department, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania; (M.M.R.); (R.B.); (C.R.T.); (H.D.); (T.P.)
| | - Victor Cauni
- Urology Clinic, Colentina Clinical Hospital, 020125 Bucharest, Romania;
| | - Marius Septimiu Petrutescu
- General Surgery Clinic, Colentina Clinical Hospital, 020125 Bucharest, Romania; (V.P.); (M.S.P.); (A.M.L.); (B.M.)
| | - Maria Madalina Rustin
- General Surgery Department, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania; (M.M.R.); (R.B.); (C.R.T.); (H.D.); (T.P.)
| | - Raluca Bocai
- General Surgery Department, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania; (M.M.R.); (R.B.); (C.R.T.); (H.D.); (T.P.)
| | - Cristina Rachila Turculet
- General Surgery Department, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania; (M.M.R.); (R.B.); (C.R.T.); (H.D.); (T.P.)
| | - Horia Doran
- General Surgery Department, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania; (M.M.R.); (R.B.); (C.R.T.); (H.D.); (T.P.)
- Prof. I. Juvara General Surgery Clinic, Dr. I. Cantacuzino Clinical Hospital, 011437 Bucharest, Romania
| | - Traian Patrascu
- General Surgery Department, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania; (M.M.R.); (R.B.); (C.R.T.); (H.D.); (T.P.)
- Prof. I. Juvara General Surgery Clinic, Dr. I. Cantacuzino Clinical Hospital, 011437 Bucharest, Romania
| | - Angela Madalina Lazar
- General Surgery Clinic, Colentina Clinical Hospital, 020125 Bucharest, Romania; (V.P.); (M.S.P.); (A.M.L.); (B.M.)
- General Surgery Department, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania; (M.M.R.); (R.B.); (C.R.T.); (H.D.); (T.P.)
| | - Dragos Cretoiu
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, 020395 Bucharest, Romania
- Department of Genetics, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania
| | - Valentin Nicolae Varlas
- Department of Obstetrics and Gynaecology, Filantropia Clinical Hospital, 011171 Bucharest, Romania
- Department of Obstetrics and Gynaecology, Carol Davila University of Medicine and Pharmacy, 37 Dionisie Lupu St., 020021 Bucharest, Romania
| | - Bogdan Mastalier
- General Surgery Clinic, Colentina Clinical Hospital, 020125 Bucharest, Romania; (V.P.); (M.S.P.); (A.M.L.); (B.M.)
- General Surgery Department, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania; (M.M.R.); (R.B.); (C.R.T.); (H.D.); (T.P.)
| |
Collapse
|
20
|
Kong S, Song J, Wang Y, Wang S, Su F, Li S. Human umbilical cord blood mononuclear cells laden hydrogels made from carboxymethyl chitosan and oxidized hyaluronic acid for wound healing. J Appl Polym Sci 2023. [DOI: 10.1002/app.53848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2023]
Affiliation(s)
- Shaowen Kong
- College of Chemical Engineering Qingdao University of Science and Technology Qingdao China
| | - Jie Song
- College of Chemical Engineering Qingdao University of Science and Technology Qingdao China
| | - Yuandou Wang
- College of Chemical Engineering Qingdao University of Science and Technology Qingdao China
| | - Shuxin Wang
- College of Chemical Engineering Qingdao University of Science and Technology Qingdao China
| | - Feng Su
- College of Chemical Engineering Qingdao University of Science and Technology Qingdao China
- Institute of High Performance Polymers Qingdao University of Science and Technology Qingdao China
| | - Suming Li
- Institut Européen des Membranes, IEM UMR 5635 Université Montpellier, CNRS, ENSCM Montpellier France
| |
Collapse
|
21
|
Mierziak J, Wojtasik W, Kulma A, Żuk M, Grajzer M, Boba A, Dymińska L, Hanuza J, Szperlik J, Szopa J. Overexpression of Bacterial Beta-Ketothiolase Improves Flax (Linum usitatissimum L.) Retting and Changes the Fibre Properties. Metabolites 2023; 13:metabo13030437. [PMID: 36984877 PMCID: PMC10052753 DOI: 10.3390/metabo13030437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Beta-ketothiolases are involved in the beta-oxidation of fatty acids and the metabolism of hormones, benzenoids, and hydroxybutyrate. The expression of bacterial beta-ketothiolase in flax (Linum usitatissimum L.) results in an increase in endogenous beta-ketothiolase mRNA levels and beta-hydroxybutyrate content. In the present work, the effect of overexpression of beta-ketothiolase on retting and stem and fibre composition of flax plants is presented. The content of the components was evaluated by high-performance liquid chromatography, gas chromatography–mass spectrometry, Fourier-transform infrared spectroscopy, and biochemical methods. Changes in the stem cell walls, especially in the lower lignin and pectin content, resulted in more efficient retting. The overexpression of beta-ketothiolase reduced the fatty acid and carotenoid contents in flax and affected the distribution of phenolic compounds between free and cell wall-bound components. The obtained fibres were characterized by a slightly lower content of phenolic compounds and changes in the composition of the cell wall. Based on the IR analysis, we concluded that the production of hydroxybutyrate reduced the cellulose crystallinity and led to the formation of shorter but more flexible cellulose chains, while not changing the content of the cell wall components. We speculate that the changes in chemical composition of the stems and fibres are the result of the regulatory properties of hydroxybutyrate. This provides us with a novel way to influence metabolic composition in agriculturally important crops.
Collapse
Affiliation(s)
- Justyna Mierziak
- Department of Genetic Biochemistry, Faculty of Biotechnology, Wroclaw University, Przybyszewskiego Str. 63, 51-148 Wroclaw, Poland
| | - Wioleta Wojtasik
- Department of Genetic Biochemistry, Faculty of Biotechnology, Wroclaw University, Przybyszewskiego Str. 63, 51-148 Wroclaw, Poland
- Correspondence:
| | - Anna Kulma
- Department of Genetic Biochemistry, Faculty of Biotechnology, Wroclaw University, Przybyszewskiego Str. 63, 51-148 Wroclaw, Poland
| | - Magdalena Żuk
- Department of Genetic Biochemistry, Faculty of Biotechnology, Wroclaw University, Przybyszewskiego Str. 63, 51-148 Wroclaw, Poland
| | - Magdalena Grajzer
- Department of Dietetics and Bromatology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| | - Aleksandra Boba
- Department of Genetics, Plant Breeding and Seed Science, Wroclaw University of Environmental and Life Sciences, Grunwaldzki Sq. 24A, 50-363 Wroclaw, Poland
| | - Lucyna Dymińska
- Department of Bioorganic Chemistry, Wroclaw University of Economics and Business, Komandorska 118/120, 53-345 Wroclaw, Poland
| | - Jerzy Hanuza
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wroclaw, Poland
| | - Jakub Szperlik
- Laboratory of Tissue Culture, Botanical Garden, Faculty of Biological Sciences, University of Wroclaw, Sienkiewicza 23, 50-525 Wroclaw, Poland
| | - Jan Szopa
- Department of Genetic Biochemistry, Faculty of Biotechnology, Wroclaw University, Przybyszewskiego Str. 63, 51-148 Wroclaw, Poland
| |
Collapse
|
22
|
Wang H, Duan W, Ren Z, Li X, Ma W, Guan Y, Liu F, Chen L, Yan P, Hou X. Engineered Sandwich-Structured Composite Wound Dressings with Unidirectional Drainage and Anti-Adhesion Supporting Accelerated Wound Healing. Adv Healthc Mater 2023; 12:e2202685. [PMID: 36519950 DOI: 10.1002/adhm.202202685] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/10/2022] [Indexed: 12/23/2022]
Abstract
Proper management of exudate is of great clinical value for reducing wound infection and promoting wound healing, thus various dressings have been studied to address this widespread medical challenge. Herein, a novel sandwich-structured composite wound dressing (SCWD), integrating of a superlyophobic (SLO) polydimethylsiloxane (PDMS) layer, a superlyophilic gauze layer, and a lyophobic PDMS layer is presented, with particular unidirectional droplet drainage and stable anti-adhesion capabilities, which realizes effective management of wound exudate and provides a favorable environment for wound healing. Thanks to the stable SLO property on the PDMS surface with hierarchical micro/nanostructures, the continuously accumulated wound exudate at the interface between dressing and wound surface is gradually deformed, eventually passing through SLO PDMS layer through milli-scale channels and being absorbed by gauze layer. Experimental results show that the application of SCWD can significantly reduce the occurrence of wound infection, avoid the tearing of wound tissues when replacing dressings, and accelerate wound healing by ≈20%. The combination of SCWD and lyophilized powders of stem cells supernatant (LPSCS) is verified to better accelerate the healing process. The proposed method offers great potential in clinical applications, particularly for acute trauma wound treatments.
Collapse
Affiliation(s)
- Haipeng Wang
- Key Laboratory of High-efficiency and Clean Mechanical Manufacture of MOE, School of Mechanical Engineering, Shandong University, Jinan, 250061, China
| | - Wu Duan
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Zhongjing Ren
- Key Laboratory of High-efficiency and Clean Mechanical Manufacture of MOE, School of Mechanical Engineering, Shandong University, Jinan, 250061, China
| | - Xinxin Li
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100083, China
| | - Wenjie Ma
- Department of Endocrinology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, 266000, China
| | - Yingchun Guan
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100083, China
| | - Fuqiang Liu
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Li Chen
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Peng Yan
- Key Laboratory of High-efficiency and Clean Mechanical Manufacture of MOE, School of Mechanical Engineering, Shandong University, Jinan, 250061, China
| | - Xinguo Hou
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| |
Collapse
|
23
|
Wang X, Ma Y, Lu F, Chang Q. The diversified hydrogels for biomedical applications and their imperative roles in tissue regeneration. Biomater Sci 2023; 11:2639-2660. [PMID: 36790251 DOI: 10.1039/d2bm01486f] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Repair and regeneration of tissues after injury are complex pathophysiological processes. Microbial infection, malnutrition, and an ischemic and hypoxic microenvironment in the injured area can impede the typical healing cascade. Distinguished by biomimicry of the extracellular matrix, high aqueous content, and diverse functions, hydrogels have revolutionized clinical practices in tissue regeneration owing to their outstanding hydrophilicity, biocompatibility, and biodegradability. Various hydrogels such as smart hydrogels, nanocomposite hydrogels, and acellular matrix hydrogels are widely used for applications ranging from bench-scale to an industrial scale. In this review, some emerging hydrogels in the biomedical field are briefly discussed. The protective roles of hydrogels in wound dressings and their diverse biological effects on multiple tissues such as bone, cartilage, nerve, muscle, and adipose tissue are also discussed. The vehicle functions of hydrogels for chemicals and cell payloads are detailed. Additionally, this review emphasizes the particular characteristics of hydrogel products that promote tissue repair and reconstruction such as anti-infection, inflammation regulation, and angiogenesis.
Collapse
Affiliation(s)
- Xinhui Wang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 510515, China.
| | - Yuan Ma
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 510515, China.
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 510515, China.
| | - Qiang Chang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 510515, China.
| |
Collapse
|
24
|
Cook KA, Martinez-Lozano E, Sheridan R, Rodriguez EK, Nazarian A, Grinstaff MW. Hydrogels for the management of second-degree burns: currently available options and future promise. BURNS & TRAUMA 2022; 10:tkac047. [PMID: 36518878 PMCID: PMC9733594 DOI: 10.1093/burnst/tkac047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/14/2022] [Accepted: 09/30/2022] [Indexed: 12/13/2022]
Abstract
Burn wounds result from exposure to hot liquids, chemicals, fire, electric discharge or radiation. Wound severity ranges from first-degree injury, which is superficial, to fourth-degree injury, which exposes bone, tendons and muscles. Rapid assessment of burn depth and accurate wound management in the outpatient setting is critical to prevent injury progression into deeper layers of the dermis. Injury progression is of particular pertinence to second-degree burns, which are the most common form of thermal burn. As our understanding of wound healing advances, treatment options and technologies for second-degree burn management also evolve. Polymeric hydrogels are a class of burn wound dressings that adhere to tissue, absorb wound exudate, protect from the environment, can be transparent facilitating serial wound evaluation and, in some cases, enable facile removal for dressing changes. This review briefly describes the burn level classification and common, commercially available dressings used to treat second-degree burns, and then focuses on new polymeric hydrogel burn dressings under preclinical development analyzing their design, structure and performance. The review presents the follow key learning points: (1) introduction to the integument system and the wound-healing process; (2) classification of burns according to severity and clinical appearance; (3) available dressings currently used for second-degree burns; (4) introduction to hydrogels and their preparation and characterization techniques; and (5) pre-clinical hydrogel burn wound dressings currently being developed.
Collapse
Affiliation(s)
- Katherine A Cook
- Department of Chemistry, Biomedical Engineering, and Medicine, Boston University, Boston, MA, 02215, USA
| | - Edith Martinez-Lozano
- Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro, Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Robert Sheridan
- Shriners Hospitals for Children and Burns Service, Department of Surgery, Massachusetts General Hospital, Boston, MA, 02214, USA
| | - Edward K Rodriguez
- Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro, Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Ara Nazarian
- Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro, Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
- Department of Orthopaedic Surgery, Yerevan State Medical University, Yerevan, Armenia
| | - Mark W Grinstaff
- Department of Chemistry, Biomedical Engineering, and Medicine, Boston University, Boston, MA, 02215, USA
| |
Collapse
|
25
|
Xiao Y, Zhao H, Ma X, Gu Z, Wu X, Zhao L, Ye L, Feng Z. Hydrogel Dressing Containing Basic Fibroblast Growth Factor Accelerating Chronic Wound Healing in Aged Mouse Model. Molecules 2022; 27:molecules27196361. [PMID: 36234898 PMCID: PMC9570911 DOI: 10.3390/molecules27196361] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Due to the decreasing self-repairing ability, elder people are easier to form chronic wounds and suffer from slow and difficult wound healing. It is desirable to develop a novel wound dressing that can accelerate chronic wound healing in elderly subjects to decrease the pain of patients and save medical resources. In this work, Heparin and basic fibroblast growth factor(bFGF) were dissolved in the mixing solution of 4-arm acrylated polyethylene glycol and dithiothreitol to form hydrogel dressing in vitro at room temperature without any catalysts, which is convenient and easy to handle in clinic application. In vitro re-lease test shows the bFGF could be continuously released for at least 7 days, whereas the dressing surface integrity maintained for 3 days degradation in PBS solution. Three groups of treatments including bFGF-Gel, bFGF-Sol and control without any treatment were applied on the full-thickness wound on the 22 months old mice back. The wound closure rate and histological and immunohistochemical staining all illustrated that bFGF-Gel displayed a better wound healing effect than the other two groups. Thus, as-prepared hydrogel dressing seems supe-rior to current clinical treatment and more effective in elderly subjects, which shows promising potential to be applied in the clinic.
Collapse
Affiliation(s)
- Yonghao Xiao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Hui Zhao
- Department of Vascular Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing 101100, China
| | - Xiaoyu Ma
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zongheng Gu
- Department of Vascular Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing 101100, China
| | - Xin Wu
- Department of Vascular Surgery, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
- Correspondence: (X.W.); (L.Z.); (L.Y.); Tel.: +86-1084739149 (X.W.); +86-1069543901 (L.Z.); +86-1068912650 (L.Y.)
| | - Liang Zhao
- Department of Vascular Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing 101100, China
- Correspondence: (X.W.); (L.Z.); (L.Y.); Tel.: +86-1084739149 (X.W.); +86-1069543901 (L.Z.); +86-1068912650 (L.Y.)
| | - Lin Ye
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
- Correspondence: (X.W.); (L.Z.); (L.Y.); Tel.: +86-1084739149 (X.W.); +86-1069543901 (L.Z.); +86-1068912650 (L.Y.)
| | - Zengguo Feng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
26
|
Aderibigbe BA. Hybrid-Based Wound Dressings: Combination of Synthetic and Biopolymers. Polymers (Basel) 2022; 14:3806. [PMID: 36145951 PMCID: PMC9502880 DOI: 10.3390/polym14183806] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Most commercialized wound dressings are polymer-based. Synthetic and natural polymers have been utilized widely for the development of wound dressings. However, the use of natural polymers is limited by their poor mechanical properties, resulting in their combination with synthetic polymers and other materials to enhance their mechanical properties. Natural polymers are mostly affordable, biocompatible, and biodegradable with promising antimicrobial activity. They have been further tailored into unique hybrid wound dressings when combined with synthetic polymers and selected biomaterials. Some important features required in an ideal wound dressing include the capability to prevent bacteria invasion, reduce odor, absorb exudates, be comfortable, facilitate easy application and removal as well as frequent changing, prevent further skin tear and irritation when applied or removed, and provide a moist environment and soothing effect, be permeable to gases, etc. The efficacy of polymers in the design of wound dressings cannot be overemphasized. This review article reports the efficacy of wound dressings prepared from a combination of synthetic and natural polymers.
Collapse
|
27
|
Hu J, Lin Y, Cui C, Zhang F, Su T, Guo K, Chen T. Clinical efficacy of wet dressing combined with chitosan wound dressing in the treatment of deep second-degree burn wounds: A prospective, randomised, single-blind, positive control clinical trial. Int Wound J 2022; 20:699-705. [PMID: 35922093 PMCID: PMC9927885 DOI: 10.1111/iwj.13911] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 12/01/2022] Open
Abstract
To evaluate the efficacy and safety of wet dressing combined with chitosan wound dressing for deep II degree burn wounds, and provide the basis for clinical application. From October 2019 to October 2021, 80 patients with second-degree deep burn treated in the Department of burn and plastic surgery of our hospital were selected as the research objects. Patients were randomly divided into two groups. The control group (40n) was treated with wet compress, and the study group (40n) was treated with wet compress combined with chitosan wound dressing. The wound healing time, wound healing percentage and pain score were used as the effectiveness indexes, and the incidence of adverse events and serious adverse events and the detection rate of bacterial culture of wound exudates were used as the safety indexes. The efficacy and safety of the two groups were compared. The wound healing time of the study group (19.53 ± 2.74 days) was shorter than that of the control group (24.78 ± 4.86 days), the difference was significant (t = 3.571, P = 0.015). The percentage of wound healing at the 14th after treatment in the study group was higher than that in the control group (65.00% versus 37.50%) (X2 = 6.054, P = 0.014). There was no significant difference in pain scores between the two groups at each time point. The scar growth was observed 3 months after wound healing. The scar score of the study group (6.00 ± 0.98) was lower than that of the control group (8.77 ± 1.19) (t = 2.571, P = 0.031). The positive rate of wound secretion culture on the 7th and 14th day was statistically significant (X2 = 4.528, P = 0.033; X2 = 6.646, P = 0.010), and the study group was lower than the control group (29.03% versus 81.82%; 8.11% versus 42.86%). There was no significant difference in treatment cost between the study group and the control group (1258.7 ± 223.6 versus 1248.9 ± 182.3) (t = 1.571, P = 0.071). No adverse events or serious adverse events occurred in both groups. Chitosan wound dressing can significantly shorten the time of wound healing and reduce wound pain and wound infection in patients with deep second-degree burns. And it can effectively improve the situation of scar hyperplasia, which is worthy of clinical application.
Collapse
Affiliation(s)
- Jialin Hu
- Department of Burn and Wound RepairYueqing City People's Hospital: Wenzhou Medical College Affiliated Yueqing Hospital, Yueqing CountyWenzhouChina
| | - Yuesen Lin
- Department of Burn and Wound RepairYueqing City People's Hospital: Wenzhou Medical College Affiliated Yueqing Hospital, Yueqing CountyWenzhouChina
| | - Chengshuo Cui
- Department of Burn and Wound RepairYueqing City People's Hospital: Wenzhou Medical College Affiliated Yueqing Hospital, Yueqing CountyWenzhouChina
| | - Fangfang Zhang
- Department of Burn and Wound RepairYueqing City People's Hospital: Wenzhou Medical College Affiliated Yueqing Hospital, Yueqing CountyWenzhouChina
| | - Tingting Su
- Department of Burn and Wound RepairYueqing City People's Hospital: Wenzhou Medical College Affiliated Yueqing Hospital, Yueqing CountyWenzhouChina
| | - Kaiyu Guo
- Department of Burn and Wound RepairYueqing City People's Hospital: Wenzhou Medical College Affiliated Yueqing Hospital, Yueqing CountyWenzhouChina
| | - Tiannan Chen
- Department of Burn and Wound RepairYueqing City People's Hospital: Wenzhou Medical College Affiliated Yueqing Hospital, Yueqing CountyWenzhouChina
| |
Collapse
|
28
|
Wang J, Yang Y, Huang L, Kong L, Wang X, Shi J, Lü Y, Mu H, Duan J. Development of responsive chitosan-based hydrogels for the treatment of pathogen-induced skin infections. Int J Biol Macromol 2022; 219:1009-1020. [PMID: 35926673 DOI: 10.1016/j.ijbiomac.2022.07.212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/08/2022] [Accepted: 07/25/2022] [Indexed: 11/27/2022]
Abstract
Vancomycin (Van) remains one of the first-line drugs for the treatment of wound infections caused by methicillin-resistant Staphylococcus aureus (MRSA). However, the unsatisfactory bioavailability of vancomycin alone has greatly limited its potential health benefits. Here a responsive chitosan-based hydrogel was developed as the delivery system which not only would reduce this side effect but also increase efficacy of vancomycin. The hydrogel was prepared by grafting chitosan and cinnamaldehyde-based thioacetal (CTA) together with ginipin (G) as the crosslinker. Upon exposure to reactive oxygen species which were enriched in the bacterial wound, the hydrogel can locally degrade and sustainably release the loaded vancomycin near the lesion to compete with the troubling MRSA. Compared with vancomycin alone, the chitosan-based hydrogel loaded with vancomycin demonstrated accelerated acute wound healing. This achievement reveals that this multi-functional hydrogel may be a promising drug-delivery device for improving the efficacy of local antibiotic therapy.
Collapse
Affiliation(s)
- Junjie Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yu Yang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Lijie Huang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lili Kong
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xing Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingru Shi
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yinghua Lü
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Haibo Mu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Jinyou Duan
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
29
|
Yu J, Li X, Chen N, Xue S, Zhao J, Li S, Hou X, Yuan X. Microgel-integrated, high-strength in-situ formed hydrogel enables timely emergency trauma treatment. Colloids Surf B Biointerfaces 2022; 215:112508. [PMID: 35468430 DOI: 10.1016/j.colsurfb.2022.112508] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/05/2022] [Accepted: 04/14/2022] [Indexed: 11/17/2022]
Abstract
High-strength hydrogels formed in situ through a convenient gel transition process are highly desirable for emergency treatment due to their ability to quickly respond to accidents. However, current in-situ formed hydrogels require a laborious precursor preparation process or lack sufficient mechanical strength. Herein, we reported a series of microgels that were capable of convenient in-situ transition to high-strength hydrogels from their easily portable form, thereby facilitating emergency treatment. Three kinds of microgels were derived from two types of hydrogen bonds (H-bonds; OH⋯OC, NH⋯OC) crosslinked preformed hydrogels, and all exhibited excellent stability when stored at room temperature. After mixing with water, all these microgels could undergo a quick hydration process and then transform into high-strength hydrogels in situ through H-bonds. Specifically, stronger H-bond crosslinked microgels could build hydrogels with higher mechanical strength, albeit at the cost of longer hydration and operation time. Nevertheless, the whole operation process could be finished within several minutes, and the resultant hydrogels could exhibit maximally megapascal-level compressive strength and tens of kilopascal storage modulus. In the comparison of emergency application performance with commercial chitosan hemostatic powder (CHP), we found that the microgels could stop accidental bleeding almost immediately, and the whole process from taking out the stored microgels to hemostasis could be completed within 15 s, which was superior to CHP. Overall, the results indicated that the in-situ formed microgel-based hydrogels with convenient gel-transition ability and high strength showed great potential in emergency treatments.
Collapse
Affiliation(s)
- Jiaqi Yu
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xueping Li
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Ning Chen
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Suling Xue
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jin Zhao
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Sidi Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong, China.
| | - Xin Hou
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xubo Yuan
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
30
|
Kumar M, Mahmood S, Mandal UK. An Updated Account On Formulations And Strategies For The Treatment Of Burn Infection – A Review. Curr Pharm Des 2022; 28:1480-1492. [DOI: 10.2174/1381612828666220519145859] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/24/2022] [Accepted: 03/24/2022] [Indexed: 11/22/2022]
Abstract
Background:
Burn injury is considered one of the critical injuries of the skin. According to WHO (World Health Organization), approximately 3,00,000 deaths are caused each year mainly due to fire burns, with additional deaths attributed to heat and other causes of burn e.g., electric devices, chemical materials, radioactive rays, etc. More than 95% of burn injuries occur in developing countries.
Introduction:
Burn injuries have been a prominent topic of discussion in this present era of advancements. Burns are one of the common and devastating forms of trauma. Burn injuries are involved in causing severe damage to skin tissues and various other body parts triggered particularly by fire,blaze, or exposure to chemicals and heated substances. They leave a long-lasting negative impact on the patients in terms of their physical and mental health.
Method:
The various methods and bioactive hydrogels, a viable and widely utilised approach for treating chronic wounds remains a bottleneck. Many traditional approaches such as woven material, conventional antimicrobial agents, hydrogel sheets, creams are utilised in wound healing. Nowadays, lipid-based nanoparticles, nanofibres systems, and foam-based formulations heal the wound.
Result:
The prepared formulation shows wound healing activity when tested on rat model. The nanofibres containing SSD help in the burn-wound healing study on Male Sprague Dawley (SD) rats. The healing effect on rats was examined by western blot analysis, digital camera observation, and histological analyses.
Conclusion:
Burn is also considered the most grievous form of trauma. Nowadays, several large and foam-based formulations are used in wound healing, which heals the wound better than previously existing formulations and is less prone to secondary infection. Recently, nanofiber delivery has piqued the interest of academics over the years because of its excellent features, which include an extraordinarily high surface to volume ratio, a highly porous structure, and tiny pore size.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Uttam Kumar Mandal
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| |
Collapse
|
31
|
Benito-Martínez S, Pérez-Köhler B, Rodríguez M, Izco JM, Recalde JI, Pascual G. Wound Healing Modulation through the Local Application of Powder Collagen-Derived Treatments in an Excisional Cutaneous Murine Model. Biomedicines 2022; 10:960. [PMID: 35625698 PMCID: PMC9138686 DOI: 10.3390/biomedicines10050960] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
Wound healing includes dynamic processes grouped into three overlapping phases: inflammatory, proliferative, and maturation/remodeling. Collagen is a critical component of a healing wound and, due to its properties, is of great interest in regenerative medicine. This preclinical study was designed to compare the effects of a new collagen-based hydrolysate powder on wound repair to a commercial non-hydrolysate product, in a murine model of cutaneous healing. Circular excisional defects were created on the dorsal skin of Wistar rats (n = 36). Three study groups were established according to the treatment administered. Animals were euthanized after 7 and 18 days. Morphometric and morphological studies were performed to evaluate the healing process. The new collagen treatment led to the smallest open wound area throughout most of the study. After seven days, wound morphometry, contraction, and epithelialization were similar in all groups. Treated animals showed reduced granulation tissue formation and fewer inflammatory cells, and induction of vasculature with respect to untreated animals. After 18 days, animals treated with the new collagen treatment showed accelerated wound closure, significantly increased epithelialization, and more organized repair tissue. Our findings suggest that the new collagen treatment, compared to the untreated control group, produces significantly faster wound closure and, at the same time, promotes a slight progression of the reparative process compared with the rest of the groups.
Collapse
Affiliation(s)
- Selma Benito-Martínez
- Departamento de Medicina y Especialidades Médicas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, 28805 Alcalá de Henares, Spain; (S.B.-M.); (B.P.-K.)
- Biomedical Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain;
- Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain
| | - Bárbara Pérez-Köhler
- Departamento de Medicina y Especialidades Médicas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, 28805 Alcalá de Henares, Spain; (S.B.-M.); (B.P.-K.)
- Biomedical Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain;
- Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain
| | - Marta Rodríguez
- Biomedical Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain;
- Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain
- Departamento de Cirugía, Ciencias Médicas y Sociales, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, 28805 Alcalá de Henares, Spain
| | | | | | - Gemma Pascual
- Departamento de Medicina y Especialidades Médicas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, 28805 Alcalá de Henares, Spain; (S.B.-M.); (B.P.-K.)
- Biomedical Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain;
- Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain
| |
Collapse
|
32
|
Huang Q, Wu T, Wang L, Zhu J, Guo Y, Yu X, Fan L, Xin JH, Yu H. A multifunctional 3D dressing unit based on the core-shell hydrogel microfiber for diabetic foot wound healing. Biomater Sci 2022; 10:2568-2576. [PMID: 35389411 DOI: 10.1039/d2bm00029f] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The healing mechanism of diabetic foot wounds is very complicated, and it is difficult for a single-function medical dressing to achieve good therapeutic effects. We propose a simple coaxial biological 3D printing technology, which uses one-step 3D deposition to continuously produce multifunctional medical dressings on the basis of core-shell hydrogel fibers. These dressings have good biocompatibility, controlled drug-release performance, excellent water absorption and retention, and antibacterial and anti-inflammatory functions. In vivo experiments with type 2 diabetic rats were performed over a 14-day period to compare the performance of the multifunctional 3D dressing with a gauze control; the multifunctional 3D dressing reduced inflammation, effectively increased the post-healing thickness of granulation tissue, and promoted the formation of blood vessels, hair follicles, and highly oriented collagen fiber networks. Therefore, the proposed multifunctional dressing is expected to be suitable for clinical applications for healing diabetic foot wounds.
Collapse
Affiliation(s)
- Qiwei Huang
- Guangdong-Hong Kong Joint Laboratory for New Textile Materials, School of Textile Materials and Engineering, Wuyi University, Jiangmen, 529020, China.
| | - Tingbin Wu
- Guangdong-Hong Kong Joint Laboratory for New Textile Materials, School of Textile Materials and Engineering, Wuyi University, Jiangmen, 529020, China.
| | - Lihuan Wang
- Guangdong-Hong Kong Joint Laboratory for New Textile Materials, School of Textile Materials and Engineering, Wuyi University, Jiangmen, 529020, China.
| | - Jichang Zhu
- Guangdong-Hong Kong Joint Laboratory for New Textile Materials, School of Textile Materials and Engineering, Wuyi University, Jiangmen, 529020, China.
| | - Yongshi Guo
- Guangdong-Hong Kong Joint Laboratory for New Textile Materials, School of Textile Materials and Engineering, Wuyi University, Jiangmen, 529020, China.
| | - Xi Yu
- Guangdong-Hong Kong Joint Laboratory for New Textile Materials, School of Textile Materials and Engineering, Wuyi University, Jiangmen, 529020, China.
| | - Longfei Fan
- Guangdong-Hong Kong Joint Laboratory for New Textile Materials, School of Textile Materials and Engineering, Wuyi University, Jiangmen, 529020, China.
| | - John H Xin
- Institute of Textiles & Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Hui Yu
- Guangdong-Hong Kong Joint Laboratory for New Textile Materials, School of Textile Materials and Engineering, Wuyi University, Jiangmen, 529020, China.
| |
Collapse
|
33
|
Tsegay F, Elsherif M, Butt H. Smart 3D Printed Hydrogel Skin Wound Bandages: A Review. Polymers (Basel) 2022; 14:polym14051012. [PMID: 35267835 PMCID: PMC8912626 DOI: 10.3390/polym14051012] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 02/07/2023] Open
Abstract
Wounds are a major health concern affecting the lives of millions of people. Some wounds may pass a threshold diameter to become unrecoverable by themselves. These wounds become chronic and may even lead to mortality. Recently, 3D printing technology, in association with biocompatible hydrogels, has emerged as a promising platform for developing smart wound dressings, overcoming several challenges. 3D printed wound dressings can be loaded with a variety of items, such as antibiotics, antibacterial nanoparticles, and other drugs that can accelerate wound healing rate. 3D printing is computerized, allowing each level of the printed part to be fully controlled in situ to produce the dressings desired. In this review, recent developments in hydrogel-based wound dressings made using 3D printing are covered. The most common biosensors integrated with 3D printed hydrogels for wound dressing applications are comprehensively discussed. Fundamental challenges for 3D printing and future prospects are highlighted. Additionally, some related nanomaterial-based hydrogels are recommended for future consideration.
Collapse
|
34
|
Gholian S, Pishgahi A, Shakouri SK, Eslamian F, Yousefi M, Kheiraddin BP, Dareshiri S, Yarani R, Dolatkhah N. Use of autologous conditioned serum dressings in hard-to-heal wounds: a randomised prospective clinical trial. J Wound Care 2022; 31:68-77. [PMID: 35077207 DOI: 10.12968/jowc.2022.31.1.68] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE In this study, we aimed to assess both the efficacy and tolerability of autologous conditioned serum (ACS) as an innovative wound dressing in the local management of hard-to-heal wounds. METHOD In this single-blinded randomised controlled trial, patients with hard-to-heal wounds were randomly assigned to receive either ACS treatment or normal saline (NS) dressings. The treatment was applied once a week for three weeks with a final assessment at three weeks from the first ACS application. RESULTS A total of 30 patients took part in the study. Analysis of wound assessment data demonstrated statistically significant differences for wound surface area and Pressure Ulcer Scale for Healing scores (area score, exudate and tissue) from baseline to the end of the study in patients who received the ACS dressing, but not in patients who received the normal saline dressing. There were statistically significant differences in changes in: the wound surface area at week three (-6.4±2.69cm2 versus +0.4±2.52cm2); area score at week three (-2.2±1.08 versus +0.2±0.86); exudate at week two (-1.2±0.70 versus +0.0±0.45) and at week 3 (-1.3±0.72 versus -0.1±0.63); tissue at week two (-1.1±0.35 versus +0.0±0.53) and at week three (-1.8±0.65 versus -0.1±0.63); and the PUSH total score at week one (-1.6±0.98 versus +0.4±1.22), week two (-3.2±0.86 versus +0.4±0.98) and week three (-5.3±1.17 versus -0.0±1.33) between the ACS and NS groups, respectively. CONCLUSION This trial revealed a significant decrease in wound surface area as well as a considerable improvement in wound healing in the ACS dressing group.
Collapse
Affiliation(s)
- Shakiba Gholian
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Pishgahi
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Kazem Shakouri
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fariba Eslamian
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Shahla Dareshiri
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Yarani
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, US.,Translational Type 1 Diabetes Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Neda Dolatkhah
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
35
|
Gębarowski T, Jęśkowiak I, Janeczek M, Żuk M, Dobosz A, Wiatrak B. The Technological Process of Obtaining New Linen Dressings Did Not Cause the Loss of Their Wound-Healing Properties. MATERIALS 2021; 14:ma14247736. [PMID: 34947330 PMCID: PMC8707772 DOI: 10.3390/ma14247736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/30/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Linen dressings were invented a few years ago but are still being worked on. METHODS The obtained fabrics from the traditional variety of flax (Nike), two transgenic types of flax (M50 and B14) and the combination of these two flax fibers (M50 + B14) were tested in direct contact in cell cultures. Cell viability tests were performed, and the proliferation potential of cells on Balb3T3 and NHEK cell lines was checked using the Sulforhodamine-B (SRB) test. Moreover, the effect of new linen fabrics on apoptosis of THP-1 cells, as well as on the cell cycle of NHEK, HMCEV and THP-1, cells after 24 h of incubation was assessed. RESULTS All tested linen fabrics did not raise the number of necrotic cells. The tested fabrics caused a statistically significant decrease in the total protein content in skin cancer (except for 0.5 cm of Nike-type fabrics). The smallest cells in the apoptotic phase were in cultures treated with M50 fiber on an area of 0.5 cm. After 48 h of incubation of HEMVEC, NHEK and THP-1 cells with the tested fabrics, the growth of S-phase cells was noticed in all cases. At the same time, the greatest increase was observed with the use of B14 fabric. Necrosis is not statistically significant. CONCLUSIONS All the obtained flax fibers in the form of flax dressings did not lose their wound-healing properties under the influence of the technological process. New dressings made of genetically modified flax are a chance to increase the effectiveness of treatment of difficult healing wounds.
Collapse
Affiliation(s)
- Tomasz Gębarowski
- Department of Medical Science Foundation, Wroclaw Medical University, Borowska 211, 50-560 Wroclaw, Poland; (T.G.); (A.D.); (B.W.)
- Department of Biostructure and Animal Physiology, Wroclaw University of Environmental and Life Sciences, Kożuchowska 1/3, 51-631 Wroclaw, Poland;
| | - Izabela Jęśkowiak
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland
- Correspondence:
| | - Maciej Janeczek
- Department of Biostructure and Animal Physiology, Wroclaw University of Environmental and Life Sciences, Kożuchowska 1/3, 51-631 Wroclaw, Poland;
| | - Magdalena Żuk
- Department of Genetic Biochemistry, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland;
| | - Agnieszka Dobosz
- Department of Medical Science Foundation, Wroclaw Medical University, Borowska 211, 50-560 Wroclaw, Poland; (T.G.); (A.D.); (B.W.)
| | - Benita Wiatrak
- Department of Medical Science Foundation, Wroclaw Medical University, Borowska 211, 50-560 Wroclaw, Poland; (T.G.); (A.D.); (B.W.)
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland
| |
Collapse
|
36
|
Ahmad F, Mushtaq B, Butt FA, Zafar MS, Ahmad S, Afzal A, Nawab Y, Rasheed A, Ulker Z. Synthesis and Characterization of Nonwoven Cotton-Reinforced Cellulose Hydrogel for Wound Dressings. Polymers (Basel) 2021; 13:4098. [PMID: 34883602 PMCID: PMC8658904 DOI: 10.3390/polym13234098] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 11/17/2022] Open
Abstract
Hydrogels wound dressings have enormous advantages due to their ability to absorb high wound exudate, capacity to load drugs, and provide quick pain relief. The use of hydrogels as wound dressings in their original form is a considerable challenge, as these are difficult to apply on wounds without support. Therefore, the incorporation of polymeric hydrogels with a certain substrate is an emerging field of interest. The present study fabricated cellulose hydrogel using the sol-gel technique and reinforced it with nonwoven cotton for sustainable wound dressing application. The nonwoven cotton was immersed inside the prepared solution of cellulose and heated at 50 °C for 2 h to form cellulose hydrogel-nonwoven cotton composites and characterized for a range of properties. In addition, the prepared hydrogel composite was also loaded with titania particles to attain antibacterial properties. The Fourier transform infrared spectroscopy and scanning electron microscopy confirmed the formation of cellulose hydrogel layers inside the nonwoven cotton structure. The fabricated composite hydrogels showed good moisture management and air permeability, which are essential for comfortable wound healing. The wound exudate testing revealed that the fluid absorptive capacity of cellulose hydrogel nonwoven cotton composite was improved significantly in comparison to pure nonwoven cotton. The results reveal the successful hydrogel formation, having excellent absorbing, antimicrobial, and sustainable properties.
Collapse
Affiliation(s)
- Faheem Ahmad
- School of Engineering & Technology, National Textile University, Faisalabad 37610, Pakistan; (F.A.); (B.M.); (A.A.); (Y.N.); (A.R.)
| | - Bushra Mushtaq
- School of Engineering & Technology, National Textile University, Faisalabad 37610, Pakistan; (F.A.); (B.M.); (A.A.); (Y.N.); (A.R.)
| | - Faaz Ahmed Butt
- Materials Engineering Department, NED University of Engineering and Technology, Karachi 75270, Pakistan; or
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah Al Munawwarah 41311, Saudi Arabia
- Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad 44000, Pakistan
| | - Sheraz Ahmad
- School of Engineering & Technology, National Textile University, Faisalabad 37610, Pakistan; (F.A.); (B.M.); (A.A.); (Y.N.); (A.R.)
| | - Ali Afzal
- School of Engineering & Technology, National Textile University, Faisalabad 37610, Pakistan; (F.A.); (B.M.); (A.A.); (Y.N.); (A.R.)
| | - Yasir Nawab
- School of Engineering & Technology, National Textile University, Faisalabad 37610, Pakistan; (F.A.); (B.M.); (A.A.); (Y.N.); (A.R.)
| | - Abher Rasheed
- School of Engineering & Technology, National Textile University, Faisalabad 37610, Pakistan; (F.A.); (B.M.); (A.A.); (Y.N.); (A.R.)
| | - Zeynep Ulker
- School of Pharmacy, Altinbas University, Istanbul 34147, Turkey;
| |
Collapse
|
37
|
Tudoroiu EE, Dinu-Pîrvu CE, Albu Kaya MG, Popa L, Anuța V, Prisada RM, Ghica MV. An Overview of Cellulose Derivatives-Based Dressings for Wound-Healing Management. Pharmaceuticals (Basel) 2021; 14:1215. [PMID: 34959615 PMCID: PMC8706040 DOI: 10.3390/ph14121215] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/23/2022] Open
Abstract
Presently, notwithstanding the progress regarding wound-healing management, the treatment of the majority of skin lesions still represents a serious challenge for biomedical and pharmaceutical industries. Thus, the attention of the researchers has turned to the development of novel materials based on cellulose derivatives. Cellulose derivatives are semi-synthetic biopolymers, which exhibit high solubility in water and represent an advantageous alternative to water-insoluble cellulose. These biopolymers possess excellent properties, such as biocompatibility, biodegradability, sustainability, non-toxicity, non-immunogenicity, thermo-gelling behavior, mechanical strength, abundance, low costs, antibacterial effect, and high hydrophilicity. They have an efficient ability to absorb and retain a large quantity of wound exudates in the interstitial sites of their networks and can maintain optimal local moisture. Cellulose derivatives also represent a proper scaffold to incorporate various bioactive agents with beneficial therapeutic effects on skin tissue restoration. Due to these suitable and versatile characteristics, cellulose derivatives are attractive and captivating materials for wound-healing applications. This review presents an extensive overview of recent research regarding promising cellulose derivatives-based materials for the development of multiple biomedical and pharmaceutical applications, such as wound dressings, drug delivery devices, and tissue engineering.
Collapse
Affiliation(s)
- Elena-Emilia Tudoroiu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy Bucharest, 6 Traian Vuia Str., 020956 Bucharest, Romania; (E.-E.T.); (L.P.); (V.A.); (R.M.P.); (M.V.G.)
| | - Cristina-Elena Dinu-Pîrvu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy Bucharest, 6 Traian Vuia Str., 020956 Bucharest, Romania; (E.-E.T.); (L.P.); (V.A.); (R.M.P.); (M.V.G.)
| | - Mădălina Georgiana Albu Kaya
- Department of Collagen, Division Leather and Footwear Research Institute, National Research and Development Institute for Textile and Leather, 93 Ion Minulescu Str., 031215 Bucharest, Romania
| | - Lăcrămioara Popa
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy Bucharest, 6 Traian Vuia Str., 020956 Bucharest, Romania; (E.-E.T.); (L.P.); (V.A.); (R.M.P.); (M.V.G.)
| | - Valentina Anuța
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy Bucharest, 6 Traian Vuia Str., 020956 Bucharest, Romania; (E.-E.T.); (L.P.); (V.A.); (R.M.P.); (M.V.G.)
| | - Răzvan Mihai Prisada
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy Bucharest, 6 Traian Vuia Str., 020956 Bucharest, Romania; (E.-E.T.); (L.P.); (V.A.); (R.M.P.); (M.V.G.)
| | - Mihaela Violeta Ghica
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy Bucharest, 6 Traian Vuia Str., 020956 Bucharest, Romania; (E.-E.T.); (L.P.); (V.A.); (R.M.P.); (M.V.G.)
| |
Collapse
|
38
|
Wound dressings: curbing inflammation in chronic wound healing. Emerg Top Life Sci 2021; 5:523-537. [PMID: 34196717 PMCID: PMC8589427 DOI: 10.1042/etls20200346] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/07/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022]
Abstract
Chronic wounds represent an economic burden to healthcare systems worldwide and a societal burden to patients, deeply impacting their quality of life. The incidence of recalcitrant wounds has been steadily increasing since the population more susceptible, the elderly and diabetic, are rapidly growing. Chronic wounds are characterised by a delayed wound healing process that takes longer to heal under standard of care than acute (i.e. healthy) wounds. Two of the most common problems associated with chronic wounds are inflammation and infection, with the latter usually exacerbating the former. With this in mind, researchers and wound care companies have developed and marketed a wide variety of wound dressings presenting different compositions but all aimed at promoting healing. This makes it harder for physicians to choose the correct therapy, especially given a lack of public quantitative data to support the manufacturers’ claims. This review aims at giving a brief introduction to the clinical need for chronic wound dressings, focusing on inflammation and evaluating how bio-derived and synthetic dressings may control excess inflammation and promote healing.
Collapse
|
39
|
Preparation and characterization of smart therapeutic pH-sensitive wound dressing from red cabbage extract and chitosan hydrogel. Int J Biol Macromol 2021; 182:1820-1831. [PMID: 34052272 DOI: 10.1016/j.ijbiomac.2021.05.167] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022]
Abstract
Developing a multifunctional wound dressing that protects, cures and indicates the healing progress, is a new approach of investigation. Red cabbage extract (RCE), consisting of bioactive compounds that have antioxidant, anti-inflammatory, anti-carcinogenic, bactericidal, antifungal, and antiviral activities, was utilized as a natural pH-sensitive indicator. Chitosan-based hydrogel, encapsulating RCE, was developed to obtain a smart therapeutic pH-sensitive wound dressing as antimicrobial bio-matrix provides a comfortable cushion for wound bed and indicates its status. Methacrylated-chitosan was crosslinked by different concentrations of methylenebisacrylamide (MBAA) by which hydrogel mechanical and morphological properties were tuned. The proposed mechanism for hydrogel formation was confirmed by FT-IR. The coloristic properties of the RCE and the changes in color intensity as a function of pH were confirmed by UV-Vis spectroscopy. The effect of MBAA on the mechanical, swelling, release and morphological properties of hydrogel were investigated. MBAA (2.5% wt/v) in 2% wt/v chitosan showed preferable mechanical (20 KPa), swelling (1294% at pH 8 ± 0.2), and release (prolonged up to 5 days) properties. Hydrogel matrices, loaded on cotton gauze submerged in different pH buffer solutions, showed explicit color changes from green to red as pH changed from 9 to 4.
Collapse
|
40
|
Dydak K, Junka A, Dydak A, Brożyna M, Paleczny J, Fijalkowski K, Kubielas G, Aniołek O, Bartoszewicz M. In Vitro Efficacy of Bacterial Cellulose Dressings Chemisorbed with Antiseptics against Biofilm Formed by Pathogens Isolated from Chronic Wounds. Int J Mol Sci 2021; 22:3996. [PMID: 33924416 PMCID: PMC8069587 DOI: 10.3390/ijms22083996] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 01/10/2023] Open
Abstract
Local administration of antiseptics is required to prevent and fight against biofilm-based infections of chronic wounds. One of the methods used for delivering antiseptics to infected wounds is the application of dressings chemisorbed with antimicrobials. Dressings made of bacterial cellulose (BC) display several features, making them suitable for such a purpose. This work aimed to compare the activity of commonly used antiseptic molecules: octenidine, polyhexanide, povidone-iodine, chlorhexidine, ethacridine lactate, and hypochlorous solutions and to evaluate their usefulness as active substances of BC dressings against 48 bacterial strains (8 species) and 6 yeast strains (1 species). A silver dressing was applied as a control material of proven antimicrobial activity. The methodology applied included the assessment of minimal inhibitory concentrations (MIC) and minimal biofilm eradication concentration (MBEC), the modified disc-diffusion method, and the modified antibiofilm dressing activity measurement (A.D.A.M.) method. While in 96-well plate-based methods (MIC and MBEC assessment), the highest antimicrobial activity was recorded for chlorhexidine, in the modified disc-diffusion method and in the modified A.D.A.M test, povidone-iodine performed the best. In an in vitro setting simulating chronic wound conditions, BC dressings chemisorbed with polyhexanide, octenidine, or povidone-iodine displayed a similar or even higher antibiofilm activity than the control dressing containing silver molecules. If translated into clinical conditions, the obtained results suggest high applicability of BC dressings chemisorbed with antiseptics to eradicate biofilm from chronic wounds.
Collapse
Affiliation(s)
- Karolina Dydak
- Department of Pharmaceutical Microbiology and Parasitology, Medical University of Wroclaw, 50-556 Wroclaw, Poland; (K.D.); (M.B.); (J.P.); (M.B.)
| | - Adam Junka
- Department of Pharmaceutical Microbiology and Parasitology, Medical University of Wroclaw, 50-556 Wroclaw, Poland; (K.D.); (M.B.); (J.P.); (M.B.)
| | - Agata Dydak
- Faculty of Biological Sciences, University of Wroclaw, 51-148 Wroclaw, Poland;
| | - Malwina Brożyna
- Department of Pharmaceutical Microbiology and Parasitology, Medical University of Wroclaw, 50-556 Wroclaw, Poland; (K.D.); (M.B.); (J.P.); (M.B.)
| | - Justyna Paleczny
- Department of Pharmaceutical Microbiology and Parasitology, Medical University of Wroclaw, 50-556 Wroclaw, Poland; (K.D.); (M.B.); (J.P.); (M.B.)
| | - Karol Fijalkowski
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Szczecin, Piastow 45, 70-311 Szczecin, Poland;
| | - Grzegorz Kubielas
- Faculty of Health Sciences, Wroclaw Medical University, 50-996 Wroclaw, Poland;
| | - Olga Aniołek
- Faculty of Medicine, Lazarski University, 02-662 Warsaw, Poland;
| | - Marzenna Bartoszewicz
- Department of Pharmaceutical Microbiology and Parasitology, Medical University of Wroclaw, 50-556 Wroclaw, Poland; (K.D.); (M.B.); (J.P.); (M.B.)
| |
Collapse
|
41
|
Johnson JB, Broszczak DA, Mani JS, Anesi J, Naiker M. A cut above the rest: oxidative stress in chronic wounds and the potential role of polyphenols as therapeutics. J Pharm Pharmacol 2021; 74:485-502. [PMID: 33822141 DOI: 10.1093/jpp/rgab038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/11/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVES The pathophysiology of chronic wounds typically involves redox imbalance and inflammation pathway dysregulation, often with concomitant microbial infection. Endogenous antioxidants such as glutathione and tocopherols are notably reduced or absent, indicative of significant oxidative imbalance. However, emerging evidence suggests that polyphenols could be effective agents for the amelioration of this condition. This review aims to summarise the current state of knowledge surrounding redox imbalance in the chronic wound environment and the potential use of polyphenols for the treatment of chronic wounds. KEY FINDINGS Polyphenols provide a multi-faceted approach towards the treatment of chronic wounds. Firstly, their antioxidant activity allows direct neutralisation of harmful free radicals and reactive oxygen species, assisting in restoring redox balance. Upregulation of pro-healing and anti-inflammatory gene pathways and enzymes by specific polyphenols further acts to reduce redox imbalance and promote wound healing actions, such as proliferation, extracellular matrix deposition and tissue remodelling. Finally, many polyphenols possess antimicrobial activity, which can be beneficial for preventing or resolving infection of the wound site. SUMMARY Exploration of this diverse group of natural compounds may yield effective and economical options for the prevention or treatment of chronic wounds.
Collapse
Affiliation(s)
- Joel B Johnson
- School of Health, Medical and Applied Science, CQUniversity, Bruce Hwy, North Rockhampton, Queensland, Australia.,Centre for Indigenous Health Equity Research, CQUniversity, Bruce Hwy, North Rockhampton, Queensland, Australia
| | - Daniel A Broszczak
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia.,Tissue Repair and Translational Physiology Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Janice S Mani
- School of Health, Medical and Applied Science, CQUniversity, Bruce Hwy, North Rockhampton, Queensland, Australia.,Centre for Indigenous Health Equity Research, CQUniversity, Bruce Hwy, North Rockhampton, Queensland, Australia
| | - Jack Anesi
- School of Science, Psychology and Sport, Federation University Australia, Ballarat, Victoria, Australia
| | - Mani Naiker
- School of Health, Medical and Applied Science, CQUniversity, Bruce Hwy, North Rockhampton, Queensland, Australia.,Centre for Indigenous Health Equity Research, CQUniversity, Bruce Hwy, North Rockhampton, Queensland, Australia
| |
Collapse
|
42
|
Barbosa R, Villarreal A, Rodriguez C, De Leon H, Gilkerson R, Lozano K. Aloe Vera extract-based composite nanofibers for wound dressing applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 124:112061. [PMID: 33947555 DOI: 10.1016/j.msec.2021.112061] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/12/2021] [Accepted: 03/20/2021] [Indexed: 01/02/2023]
Abstract
Natural, biocompatible, and biodegradable composite nanofibers made of Aloe vera extract, pullulan, chitosan, and citric acid were successfully produced via Forcespinning® technology. The addition of Aloe vera extract at different weight percent loadings was investigated. The morphology, thermal properties, physical properties, and water absorption of the nanofibers were characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). The developed nanofiber membranes exhibited good water absorption capabilities, synergistic antibacterial activity against Escherichia coli, and promoted cell attachment and growth. Its porous and high surface area structure make it a potential candidate for wound dressing applications due to its ability to absorb excessive blood and exudates, as well as provide protection from infection while maintaining good thermal stability.
Collapse
Affiliation(s)
- Raul Barbosa
- Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Alexa Villarreal
- Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Cristobal Rodriguez
- Department of Biology, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Heriberto De Leon
- Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Robert Gilkerson
- Department of Biology, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Karen Lozano
- Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA.
| |
Collapse
|
43
|
Abstract
In the past decade, the frequency of chronic wounds in older population has increased, and their impact on quality of life is substantial. Chronic wounds are a public health problem associated with very high economic and psychosocial costs. These wounds result from various pathologies and comorbidities, such arterial and venous insufficiency, diabetes mellitus and continuous skin pressure. Recently, the role of infection and biofilms in the healing of chronic wounds has been the subject of considerable research. This paper presents an overview of various methods and products used to manage chronic wounds and discusses recent advances in wound care. To decide on the best treatment for any wound, it is crucial to holistically assess the patient and the wound. Additionally, multiple strategies could be used to prevent or treat chronic wounds.
Collapse
Affiliation(s)
- Maria Azevedo
- Researcher, Center for Research in Health Technologies and Information Systems and Department of Microbiology, Faculty of Medicine, University of Porto, Portugal
| | - Carmen Lisboa
- Lecturer and Researcher in Medical Microbiology, Center for Research in Health Technologies and Information Systems and Department of Microbiology, Faculty of Medicine, University of Porto, Portugal
| | - Acácio Rodrigues
- Lecturer and Researcher in Medical Microbiology, Faculty of Medicine, Porto; Burn Unit, Department of Plastic and Reconstructive Surgery, Hospital São João, Portugal
| |
Collapse
|
44
|
Abstract
Wound healing is a complex, dynamic process supported by a myriad of cellular events that must be tightly coordinated to efficiently repair damaged tissue. Derangement in wound-linked cellular behaviours, as occurs with diabetes and ageing, can lead to healing impairment and the formation of chronic, non-healing wounds. These wounds are a significant socioeconomic burden due to their high prevalence and recurrence. Thus, there is an urgent requirement for the improved biological and clinical understanding of the mechanisms that underpin wound repair. Here, we review the cellular basis of tissue repair and discuss how current and emerging understanding of wound pathology could inform future development of efficacious wound therapies.
Collapse
Affiliation(s)
- Holly N Wilkinson
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, The University of Hull, Hull HU6 7RX, United Kingdom
| | - Matthew J Hardman
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, The University of Hull, Hull HU6 7RX, United Kingdom
| |
Collapse
|
45
|
Negut I, Dorcioman G, Grumezescu V. Scaffolds for Wound Healing Applications. Polymers (Basel) 2020; 12:E2010. [PMID: 32899245 PMCID: PMC7563417 DOI: 10.3390/polym12092010] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 09/01/2020] [Indexed: 01/16/2023] Open
Abstract
In order to overcome the shortcomings related to unspecific and partially efficient conventional wound dressings, impressive efforts are oriented in the development and evaluation of new and effective platforms for wound healing applications. In situ formed wound dressings provide several advantages, including proper adaptability for wound bed microstructure and architecture, facile application, patient compliance and enhanced therapeutic effects. Natural or synthetic, composite or hybrid biomaterials represent suitable candidates for accelerated wound healing, by providing proper air and water vapor permeability, structure for macro- and microcirculation, support for cellular migration and proliferation, protection against microbial invasion and external contamination. Besides being the most promising choice for wound care applications, polymeric biomaterials (either from natural or synthetic sources) may exhibit intrinsic wound healing properties. Several nanotechnology-derived biomaterials proved great potential for wound healing applications, including micro- and nanoparticulate systems, fibrous scaffolds, and hydrogels. The present paper comprises the most recent data on modern and performant strategies for effective wound healing.
Collapse
Affiliation(s)
| | | | - Valentina Grumezescu
- Lasers Department, National Institute for Laser, Plasma and Radiation Physics, RO-077125 Magurele, Romania; (I.N.); (G.D.)
| |
Collapse
|
46
|
Abstract
Sodium alginate is a natural polymer used for many biomedical applications. The excellent biodegradability and biocompatibility of sodium alginate have provided ample space for future development in wound healing applications. In this study, bio-composite film was prepared by solvent casting technique by blending sodium alginate (SA) solution and titanium dioxide (TiO2) followed by crosslinking with calcium chloride. The bio-composite film was characterized with different characterization technique such as Fourier Transform Infrared (FTIR) and X-ray Diffraction (XRD). AFM analysis provides information about surface roughness. The microstructure of bio-composite film was determined by Field Emission Scanning Electron Microscope (FESEM). The wettability of surface material is measure by contact angle. The result demonstrate that the bio-composite film shows high value of surface roughness and contact angle to enhanced blood clotting for wound healing applications
Collapse
|
47
|
Chen CK, Liao MG, Wu YL, Fang ZY, Chen JA. Preparation of Highly Swelling/Antibacterial Cross-Linked N-Maleoyl-Functional Chitosan/Polyethylene Oxide Nanofiber Meshes for Controlled Antibiotic Release. Mol Pharm 2020; 17:3461-3476. [DOI: 10.1021/acs.molpharmaceut.0c00504] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Chih-Kuang Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, R.O.C
| | - Min-Gan Liao
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, R.O.C
| | - Yi-Ling Wu
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, R.O.C
| | - Zi-Yu Fang
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, R.O.C
| | - Jian-An Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, R.O.C
| |
Collapse
|
48
|
A Phytocomplex Consisting of Tropaeolum majus L. and Salvia officinalis L. Extracts Alleviates the Inflammatory Response of Dermal Fibroblasts to Bacterial Lipopolysaccharides. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8516153. [PMID: 32566105 PMCID: PMC7261326 DOI: 10.1155/2020/8516153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/14/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023]
Abstract
Background The antimicrobial activity and effects of a phytocomplex consisting of Tropaeolum flos (T) and Salviae folium (S) extracts on the cytokine levels and transcription factors on dermal fibroblast BJ exposed to bacterial lipopolysaccharides were examined. Methods In order to select the most optimal combination ratio of the two extracts for using in vitro, the physicochemical characterization of vegetal extract mixtures was performed and the antioxidant and antibacterial activities were evaluated on five different formulations of T : S, namely, 1 : 1, 1 : 2, 2 : 1, 3 : 1, and 1 : 3. The best combination of bioactive compounds with regard to antioxidant and antibacterial activities (T : S 1 : 2) was selected for in vitro evaluation of the anti-inflammatory effect. Human dermal fibroblast BJ cells were treated with two doses of the extract mixture and then exposed to bacterial lipopolysaccharides (LPS). The levels of the cytokines involved in inflammatory response, namely, interleukin- (IL-) 6, tumor necrosis factor- (TNF-) α, IL-31, and IL-33, were quantified by ELISA, and the expression of transcription factors, namely, signal transducer and activator of transcription (STAT) 3, nuclear factor kappa B (NFκB), and phosphorylated NFκB (pNFκB), were evaluated by western blot analysis. Results The results have shown that the mixture of T : S 1 : 2 exhibited significant antibacterial effects on Staphylococcus aureus ATCC 25923. LPS exposure increased the cytokine levels in BJ cells and enhanced the NFκB expression. The pretreatment of BF cells exposed to LPS with the two doses of the extract mixture markedly inhibited the increase of IL-33 and TNF-α levels and amplified the NFκB expression and its activation, especially with the high dose. The low doses of the extract reduced NFκB expression but increased its activation. Conclusions These experimental findings suggest that the mixture of T : S 1 : 2 can exert some protection against bacterial infections and inflammation induced by LPS in BJ cells being a good therapeutic option in related conditions associated with inflammation.
Collapse
|
49
|
Dual effect of procaine-loaded pectin hydrogels: pain management and in vitro wound healing. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03210-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
50
|
Rainys D, Cepas A, Dambrauskaite K, Nedzelskiene I, Rimdeika R. Effectiveness of autologous platelet-rich plasma gel in the treatment of hard-to-heal leg ulcers: a randomised control trial. J Wound Care 2020; 28:658-667. [PMID: 31600109 DOI: 10.12968/jowc.2019.28.10.658] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Regenerative medicine products such as autologous platelet-rich plasma (autologous PRP) gel may speed up the process of healing. Clinical studies show promising results in the treatment of diabetic foot ulcers (DFUs), however there is lack of scientific evidence of autologous PRP effectiveness in treating leg ulcers of other aetiology. This study evaluates the effectiveness of autologous PRP gel in the treatment of hard-to-heal leg ulcers compared with existing conventional treatment. METHOD A prospective, randomised controlled, open-labelled clinical trial was carried out between 2014 and 2018. An eight-week study protocol was chosen or until 100% wound re-epithelialisation was observed. Wound size reduction, granulation tissue formation, microbiological wound bed changes and safety were evaluated. RESULTS A total of 69 patients (35 in the autologous PRP group and 34 in the control group) were included in the study; 25.71% of the autologous PRP group and 17.64% of control group had ulcers completely re-epithelialised (p>0.05). Wound size reduction in the autologous PRP group was 52.35% and 33.36% in the control group (p=0.003). The autologous PRP group showed superiority over conventional treatment in wound bed coverage with granulation (p=0.001). However, more frequent wound contamination was observed at the end of treatment in the autologous PRP group (p=0.024). No severe adverse events were noted during the study. Both treatment methods were considered equally safe. CONCLUSION Topical application of autologous PRP gel in leg ulcers of various aetiology show beneficial results in wound size reduction and induces the granulation tissue formation. However, it is associated with more frequent microbiological wound contamination.
Collapse
Affiliation(s)
- Domantas Rainys
- Hospital of Lithuanian University of Health Sciences Kauno Klinikos Plastic and Reconstructive Surgery Department, Eivenių str. 2, LT 50009 Kaunas, Lithuania.,Lithuanian University of Health Sciences, Medical Faculty, A. Mickevičiaus str. 9, LT 44307 Kaunas, Lithuania
| | - Adas Cepas
- Hospital of Lithuanian University of Health Sciences Kauno Klinikos Plastic and Reconstructive Surgery Department, Eivenių str. 2, LT 50009 Kaunas, Lithuania.,Lithuanian University of Health Sciences, Medical Faculty, A. Mickevičiaus str. 9, LT 44307 Kaunas, Lithuania
| | - Karolina Dambrauskaite
- Lithuanian University of Health Sciences, Medical Faculty, A. Mickevičiaus str. 9, LT 44307 Kaunas, Lithuania
| | - Irena Nedzelskiene
- Lithuanian University of Health Sciences, Odontology faculty, Department of Dental and Oral Diseases, Senior Statistician, Eivenių str. 2, LT 50009 Kaunas, Lithuania
| | - Rytis Rimdeika
- Hospital of Lithuanian University of Health Sciences Kauno Klinikos Plastic and Reconstructive Surgery Department, Eivenių str. 2, LT 50009 Kaunas, Lithuania.,Lithuanian University of Health Sciences, Medical Faculty, A. Mickevičiaus str. 9, LT 44307 Kaunas, Lithuania
| |
Collapse
|