1
|
Bender S, Green D, Hadaya J, Haridas S, Chan C, Challita R, Dajani AH, Ardell J, Vrabec T. Closed-loop electrical block of vagus nerve scales from rodent to porcine cardiac models. J Neural Eng 2025; 22:036022. [PMID: 40367967 PMCID: PMC12108926 DOI: 10.1088/1741-2552/add8be] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/28/2025] [Accepted: 05/14/2025] [Indexed: 05/16/2025]
Abstract
Objective. Direct current (DC) electrical block of the vagus nerve has shown the ability to downregulate the parasympathetic input to the heart. Previous investigations used static prescribed values, but the main advantage of electrical nerve block is the ability to modulate the block effect in real time. Here we investigate the potential of real-time, closed loop control of heart rate (HR), and how these control schemes translate across species.Approach.In anesthetized rats and pigs, proximal vagus stimulation was applied as a perturbation to simulate overactive vagal activity, causing a decrease in HR. DC nerve block was applied distally to mitigate this perturbation and raise HR. The block amplitudes applied were normalized to a block threshold (BT), or the amount of current to block the nerve completely in 60 s. Two static levels of 10% and 50% BT were compared to a closed-loop controlled current.Main Results.In both the rat and the pig models, the closed-loop nerve block was able to control the HR to the desired setpoint (SP). Neither of the static values were able to achieve a reliably consistent level of block, with the controlled trials showing a much tighter spread of HR over time. In the pigs, a higher-gain controller was able to reach the SP more quickly. In the rat, the controller reduced both the injected charge and the time to recovery after block. In the pig, the charge was increased, but near-instant recovery times were retained. A closed-loop system is required for precision control of cardiac output.Significance.Both the rat and pig models showed success in closed-loop control of HR. Translating from rat to pig models only required minor changes to the controller, indicating that the system is robust. The ease of this translation effort bodes well for potential future translation to human therapies.
Collapse
Affiliation(s)
- Shane Bender
- Department of Physical Medicine and Rehabilitation, Case Western Reserve University School of Medicine, Cleveland, OH, United States of America
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
- Department of Physical Medicine and Rehabilitation, MetroHealth Medical Center, Cleveland, OH, United States of America
| | - David Green
- Department of Physical Medicine and Rehabilitation, MetroHealth Medical Center, Cleveland, OH, United States of America
| | - Joseph Hadaya
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States of America
- Molecular, Cellular, and Integrative Physiology Program, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Sahil Haridas
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Christopher Chan
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Ronald Challita
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Al-Hassan Dajani
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Jeffery Ardell
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States of America
- Molecular, Cellular, and Integrative Physiology Program, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Tina Vrabec
- Department of Physical Medicine and Rehabilitation, Case Western Reserve University School of Medicine, Cleveland, OH, United States of America
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
- Department of Physical Medicine and Rehabilitation, MetroHealth Medical Center, Cleveland, OH, United States of America
| |
Collapse
|
2
|
Zhang L, Chen H, Zou G, Jia W, Dong H, Wang C, Wang H, Liu Y, Teng D, Xu B, Zhong L, Gong L, Yang J. QRICH1 regulates ATF6 transcription to affect pathological cardiac hypertrophy progression. Mol Med 2025; 31:183. [PMID: 40355839 PMCID: PMC12070701 DOI: 10.1186/s10020-025-01241-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 05/02/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Many studies have shown that pathological cardiac hypertrophy is associated with active endoplasmic reticulum (ER) stress. Glutamine-rich protein 1 (QRICH1), as a transcriptional regulator, belongs to the caspase recruitment domain (CARD)-containing gene family. QRICH1 has been shown to influence the outcomes of endoplasmic reticulum stress by regulating the transcription of proteostasis-related genes. In this study, we explored the role of QRICH1 in pathological cardiac hypertrophy. METHODS We observed an increased expression of QRICH1 in the hearts of humans and mice with left ventricular hypertrophy (LVH). To assess the functional impact in this context, we employed gain- and loss-of-function approaches, using AAV9 injections to establish cardiac-specific QRICH1 knockdown or overexpression models in transverse aortic constriction (TAC) or isoproterenol (ISO)-induced cardiac hypertrophy. RESULTS Our data indicated that cardiomyocyte-specific knockdown of QRICH1 alleviated the hypertrophic phenotype in response to TAC or ISO injection. However, overexpression of QRICH1 exacerbated cardiac hypertrophy, remodeling, dysfunction, cell apoptosis, and inflammatory responses. Mechanistically, we demonstrated that ATF6 was significantly enriched by QRICH1 in cardiomyocytes treated with ISO using RNA-seq combined with CUT&TAG analysis. ChIP-qPCR and luciferase assays further confirmed that ATF6 is a target gene of QRICH1 in cardiomyocytes under growth stimulation. Knockdown of QRICH1 in cardiomyocytes blocked ISO-mediated induction of ATF6, activation of mTORC1, and cellular growth. And all of the above was restored by the overexpression of ATF6. CONCLUSIONS QRICH1 plays a pivotal role in cardiac hypertrophy by regulating ATF6, and QRICH1 may be a potential new therapeutic target for pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Lihui Zhang
- Medical College, Qingdao University, Qingdao, Shandong, China
- Department of Cardiology, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Hongping Chen
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Guangmei Zou
- Department of Cardiac Surgery, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Wenjuan Jia
- Department of Cardiology, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Haibin Dong
- Department of Cardiology, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Chunxiao Wang
- Department of Cardiology, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Hua Wang
- Department of Cardiology, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Yugang Liu
- Department of Cardiology, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Da Teng
- Medical College, Qingdao University, Qingdao, Shandong, China
- Department of Cardiology, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Bowen Xu
- Medical College, Qingdao University, Qingdao, Shandong, China
- Department of Cardiology, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Lin Zhong
- Department of Cardiology, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China.
| | - Lei Gong
- Department of Cardiology, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China.
| | - Jun Yang
- Department of Cardiology, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China.
| |
Collapse
|
3
|
Hafez OA, Chang RB. Regulation of Cardiac Function by the Autonomic Nervous System. Physiology (Bethesda) 2025; 40:0. [PMID: 39585760 DOI: 10.1152/physiol.00018.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/27/2024] Open
Abstract
The autonomic nervous system is critical for regulating cardiovascular physiology. The neurocardiac axis encompasses multiple levels of control, including the motor circuits of the sympathetic and parasympathetic nervous systems, sensory neurons that contribute to cardiac reflexes, and the intrinsic cardiac nervous system that provides localized sensing and regulation of the heart. Disruption of these systems can lead to significant clinical conditions. Recent advances have enhanced our understanding of the autonomic control of the heart, detailing the specific neuronal populations involved and their physiologic roles. In this review, we discuss this research at each level of the neurocardiac axis. We conclude by discussing the clinical field of neurocardiology and attempts to translate this new understanding of neurocardiac physiology to the clinic. We highlight the contributions of autonomic dysfunction in prevalent cardiovascular diseases and assess the current status of novel neuroscience-based treatment approaches.
Collapse
Affiliation(s)
- Omar A Hafez
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, United States
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, United States
- M.D.-Ph.D. Program, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Rui B Chang
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, United States
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, United States
| |
Collapse
|
4
|
Qiao J, Xu X, Zhou X, Wu Y, Wang J, Xi H, Liu C, Wang Y, Zhou L, Zhou X, Jiang H, Wu J, Deng H, Yu L. Targeted Ganglion Delivery of CaV2.2-Mediated Peptide by DNA Nanoflowers for Relieving Myocardial Infarction and Neuropathic Pain. ACS NANO 2025; 19:13037-13052. [PMID: 40128122 DOI: 10.1021/acsnano.4c17325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
N-type calcium channel (CaV2.2) protein contributes to neuronal excitability and overactivation in sympathetic ganglion (SG) following myocardial infarction (MI), thereby easily triggering cardiac remodeling and ventricular arrhythmias (VAs). Despite much advances in the understanding of CaV2.2, a neuron-targeted modifying treatment is, yet, infrequently realized. Moreover, establishing a specific delivery strategy and stable probe architecture with an extensive molecular structure in pursuit of the complex CaV2.2 regulation still remains a challenge. Herein, we develop a smart DNA nanoflower (sDNF) composite by utilizing the customizable design and scalable production from a multifunctionality-encoded template that self-assembles into a biomimetic nanoarchitecture. The nanoarchitecture contains a neuron-targeting aptamer and a decorated CaV2.2 mediator peptide-DNA bioconjugate. The combined targeted delivery and the release of the CaV2.2 mediator peptide synergistically led to an ∼31% reduction of the peak calcium current in neuron cells. Moreover, sDNF alleviated MI-induced SG hyperactivity and improved in vivo outcomes, such as decreasing susceptibility to VAs and relieving neuropathic pain for 10 h. The infarct size treated with sDNF is reduced to approximately 11.1%. It is envisioned that the DNF-based nanostructure for cardiac remodeling suppression and VAs inhibition along with pain relief provides a potential approach for the clinical treatment of sympathetic-associated cardiovascular diseases.
Collapse
Affiliation(s)
- Jiaming Qiao
- Department of Cardiology, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan 430060, P. R. China
| | - Xiao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan 430060, P. R. China
| | - Xiaoya Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan 430060, P. R. China
| | - Yang Wu
- Hubei Key Laboratory of Biomass Resource Chemistry. and Environmental Biotechnology, Hubei Engineering Center of Natural Polymers-Based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Jiale Wang
- Department of Cardiology, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan 430060, P. R. China
| | - Haosong Xi
- Department of Cardiology, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan 430060, P. R. China
| | - Chengzhe Liu
- Department of Cardiology, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan 430060, P. R. China
| | - Yuhong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan 430060, P. R. China
| | - Liping Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan 430060, P. R. China
| | - Xue Zhou
- Key Laboratory of Environment and Health, Ministry of Education, Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan 430060, P. R. China
| | - Jun Wu
- Department of Cardiology, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan 430060, P. R. China
| | - Hongbing Deng
- Hubei Key Laboratory of Biomass Resource Chemistry. and Environmental Biotechnology, Hubei Engineering Center of Natural Polymers-Based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Lilei Yu
- Department of Cardiology, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan 430060, P. R. China
| |
Collapse
|
5
|
Shanks J, Ramchandra R. Cardiac Vagal Nerve Activity During Exercise: New insights and future directions. Auton Neurosci 2025; 258:103254. [PMID: 40010037 DOI: 10.1016/j.autneu.2025.103254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/08/2025] [Accepted: 02/12/2025] [Indexed: 02/28/2025]
Abstract
A new paradigm is emerging in which cardiac vagal nerve activity is maintained and increases during exercise. This paradigm challenges decades of studies that have quoted a withdrawal of cardiac vagal activity during exercise. Here, we outline the existing evidence for increased cardiac vagal activity. We also explain why previous indirect methods used to measure vagal activity might have indirectly led to incorrect conclusions about the role of the cardiac vagus during exercise. We will review evidence that vagal control of the sinoatrial node and the ventricles differs and how vagal neurotransmitters other than acetylcholine may regulate cardiac function during exercise. We will also suggest future directions for research to uncover how the cardiac vagus influences cardiac function and the mechanisms behind the increase in cardiac vagal nerve activity during exercise.
Collapse
Affiliation(s)
- Julia Shanks
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, University of Auckland, Park Road, Grafton, Auckland, New Zealand.
| | - Rohit Ramchandra
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, University of Auckland, Park Road, Grafton, Auckland, New Zealand.
| |
Collapse
|
6
|
Kruchinova S, Gendugova M, Namitokov A, Sokolskaya M, Gilevich I, Tatarintseva Z, Karibova M, Danilov V, Simakin N, Shvartz E, Kosmacheva E, Shvartz V. Low-Frequency Electrical Stimulation of the Auricular Branch of the Vagus Nerve in Patients with ST-Elevation Myocardial Infarction: A Randomized Clinical Trial. J Clin Med 2025; 14:1866. [PMID: 40142674 PMCID: PMC11943318 DOI: 10.3390/jcm14061866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 02/25/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Background: Despite the vast evidence of the beneficial effect of vagus nerve stimulation on the course of myocardial infarction confirmed in studies using animal models, the introduction of this method into actual clinical practice remains uncommon. Objective: The objective of our study was to evaluate the effect of transcutaneous vagus nerve stimulation (tVNS) on in-hospital and long-term outcomes for patients with ST-elevation myocardial infarction. Materials and Methods: A blind, randomized, placebo-controlled clinical trial was conducted. The participants were randomly split into two groups. The Active tVNS group was subjected to stimulation of the tragus containing the auricular branch of the vagus nerve. The Sham tVNS group underwent stimulation of the lobule. Stimulation was performed immediately on admission before the start of the percutaneous coronary intervention (PCI). Then, tVNS continued throughout the entire PCI procedure and 30 min after its completion. The primary endpoints were hospital mortality and 12-month mortality. The secondary endpoints were in-hospital and remote non-lethal cardiovascular events. The combined endpoint consisted of major adverse cardiovascular events (MACEs)-recurrent myocardial infarction, stroke/TIA, and overall mortality. Results: A total of 110 patients were randomized into the Active tVNS group (n = 55) and the Sham tVNS group (n = 55). The incidences of hospital mortality, cardiogenic shock, and AV block 3 were statistically less common in the Active tVNS group than in the Sham tVNS group (p = 0.024*, p = 0.044*, and p = 0.013*, respectively). In the long-term period, no statistical differences were found in the studied outcomes obtained following the construction of Kaplan-Meyer survival curves. When comparing groups by total mortality, taking into account hospital mortality, we observed a tendency for the survival curves to diverge (Logrank test, p = 0.066). Statistical significance was revealed by the composite endpoint, taking into account hospital events (Logrank test, p = 0.0016*). Conclusions: tVNS significantly reduced hospital mortality (p = 0.024*), the level of markers of myocardial damage, and the frequency of severe cardiac arrhythmias in patients with acute myocardial infarction. In the long term, the prognostic value of tVNS was revealed by the composite endpoint major adverse cardiovascular events. Further studies with an expanded sample are needed for a more detailed verification of the data obtained to confirm the effectiveness of tVNS and allow an in-depth analysis of the safety and feasibility of its use in routine clinical practice. This clinical trial is registered with ClinicalTrials database under a unique identifier: NCT05992259.
Collapse
Affiliation(s)
- Sofia Kruchinova
- Scientific Research Institute of Regional Clinical Hospital #1 Ochapovsky, 350086 Krasnodar, Russia (A.N.); (I.G.)
- Department of Therapy #1, Kuban State Medical University, 350063 Krasnodar, Russia; (M.G.)
| | - Milana Gendugova
- Department of Therapy #1, Kuban State Medical University, 350063 Krasnodar, Russia; (M.G.)
| | - Alim Namitokov
- Scientific Research Institute of Regional Clinical Hospital #1 Ochapovsky, 350086 Krasnodar, Russia (A.N.); (I.G.)
- Department of Therapy #1, Kuban State Medical University, 350063 Krasnodar, Russia; (M.G.)
| | - Maria Sokolskaya
- Bakoulev Scientific Center for Cardiovascular Surgery, 121552 Moscow, Russia
| | - Irina Gilevich
- Scientific Research Institute of Regional Clinical Hospital #1 Ochapovsky, 350086 Krasnodar, Russia (A.N.); (I.G.)
| | - Zoya Tatarintseva
- Scientific Research Institute of Regional Clinical Hospital #1 Ochapovsky, 350086 Krasnodar, Russia (A.N.); (I.G.)
| | - Maria Karibova
- Department of Therapy #1, Kuban State Medical University, 350063 Krasnodar, Russia; (M.G.)
| | - Vasiliy Danilov
- Autonomous Non-Profit Organization Sports School “Become a Champion”, 350063 Krasnodar, Russia
| | - Nikita Simakin
- Cardiology Department, Novorossiysk City Hospital, 353915 Novorossiysk, Russia
| | - Elena Shvartz
- National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia;
| | - Elena Kosmacheva
- Scientific Research Institute of Regional Clinical Hospital #1 Ochapovsky, 350086 Krasnodar, Russia (A.N.); (I.G.)
- Department of Therapy #1, Kuban State Medical University, 350063 Krasnodar, Russia; (M.G.)
| | - Vladimir Shvartz
- Bakoulev Scientific Center for Cardiovascular Surgery, 121552 Moscow, Russia
| |
Collapse
|
7
|
Baldwin A, States G, Pikov V, Gunalan P, Elyahoodayan S, Kilgore K, Meng E. Recent advances in facilitating the translation of bioelectronic medicine therapies. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2025; 33:100575. [PMID: 39896232 PMCID: PMC11781353 DOI: 10.1016/j.cobme.2024.100575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Bioelectronic medicine is a growing field which involves directly interfacing with the vagus, sacral, enteric, and other autonomic nerves to treat conditions. Therapies based on bioelectronic medicine could address previously intractable diseases and provide an alternative to pharmaceuticals. However, translating a bioelectronic medicine therapy to the clinic requires overcoming several challenges, including titrating stimulation parameters to an individual's physiology, selectively stimulating target nerves without inducing off-target activation or block, and improving accessibility to clinically approved devices. This review describes recent progress towards solving these problems, including advances in mapping and characterizing the human autonomic nervous system, new sensor technology and signal processing techniques to enable closed-loop therapies, new methods for selectively stimulating autonomic nerves without inducing off-target effects, and efforts to develop open-source implantable devices. Recent commercial successes in bringing bioelectronic medicine therapies to the clinic are highlighted showing how addressing these challenges can lead to novel therapies.
Collapse
Affiliation(s)
- Alex Baldwin
- Alfred E. Mann Department of Biomedical Engineering,
University of Southern California, USA
| | - Gregory States
- Department of Physical Medicine & Rehabilitation, Case
Western Reserve University and The MetroHealth System, Cleveland, OH, USA
| | | | - Pallavi Gunalan
- Alfred E. Mann Department of Biomedical Engineering,
University of Southern California, USA
| | - Sahar Elyahoodayan
- Alfred E. Mann Department of Biomedical Engineering,
University of Southern California, USA
| | - Kevin Kilgore
- Department of Physical Medicine & Rehabilitation, Case
Western Reserve University and The MetroHealth System, Cleveland, OH, USA
| | - Ellis Meng
- Alfred E. Mann Department of Biomedical Engineering,
University of Southern California, USA
| |
Collapse
|
8
|
Gee MM, Lenhoff AM, Schwaber JS, Vadigepalli R. Computational modelling of cardiac control following myocardial infarction using an in silico patient cohort. J Physiol 2025; 603:2021-2042. [PMID: 39722577 PMCID: PMC11955869 DOI: 10.1113/jp287596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/12/2024] [Indexed: 12/28/2024] Open
Abstract
Loss of cardiac physiological function following myocardial infarction (MI) is accompanied by neural adaptations in the baroreflex that are compensatory in the short term, but then become associated with long-term disease progression. One marker of these adaptations is decreased baroreflex sensitivity, a strong predictor of post-MI mortality. The relative contributions of cardiac remodelling and neural adaptation in the sensory, central brainstem and peripheral ganglionic loci to baroreflex sensitivity changes remain underexplored. We used a computational model-based approach that accounts for the short-term dynamics of closed-loop human cardiac control to integrate disparate experimental studies on neural adaptation following MI into a unified quantitative framework. We developed an ensemble of 59 distinct model parameterizations that account for the clinically observed heterogeneity of cardiac control in healthy individuals. We simulated an in silico cohort of 35,400 patients with MI, corresponding to six scenarios of one or more loci of neural adaptation coupled with cardiac remodelling. We evaluated the range of MI-induced shifts in arterial pressure, heart rate and baroreflex curve responses. Our results show that adaptation in any single neural locus coupled with cardiac remodelling is sufficient to account for the MI-induced haemodynamic and autonomic changes observed experimentally. Of the adaptation pathways, we found that individuals with central or peripheral vagal efferent adaptation and preserved baroreceptor gain could maintain high baroreflex sensitivity after ischaemic injury. These results suggest that there are a multitude of adaptive pathways for tuning the baroreflex circuit to shift cardiac control physiology, potentially explaining patient heterogeneity post-MI. KEY POINTS: Baroreflex sensitivity is a strong indicator of post-myocardial ischaemia survival and is variable among individuals. We fine-tuned a computational model ensemble based on physiological observations to develop an in silico patient cohort consistent with the range of baroreflex responses observed experimentally. Simulation and analysis of the in silico cohort show that individuals with a functional afferent pathway and the ability to adapt along the vagal efferent pathway can maintain baroreflex sensitivity post-cardiac ischaemia.
Collapse
Affiliation(s)
- Michelle M. Gee
- Department of Chemical and Biomolecular EngineeringUniversity of DelawareNewarkDEUSA
- Daniel Baugh Institute for Functional Genomics and Computational BiologyDepartment of Pathology and Genomic MedicineThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Abraham M. Lenhoff
- Department of Chemical and Biomolecular EngineeringUniversity of DelawareNewarkDEUSA
| | - James S. Schwaber
- Daniel Baugh Institute for Functional Genomics and Computational BiologyDepartment of Pathology and Genomic MedicineThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute for Functional Genomics and Computational BiologyDepartment of Pathology and Genomic MedicineThomas Jefferson UniversityPhiladelphiaPAUSA
| |
Collapse
|
9
|
Ajijola OA, Aksu T, Arora R, Biaggioni I, Chen PS, De Ferrari G, Dusi V, Fudim M, Goldberger JJ, Green AL, Herring N, Khalsa SS, Kumar R, Lakatta E, Mehra R, Meyer C, Po S, Stavrakis S, Somers VK, Tan AY, Valderrabano M, Shivkumar K. Clinical neurocardiology: defining the value of neuroscience-based cardiovascular therapeutics - 2024 update. J Physiol 2025; 603:1781-1839. [PMID: 40056025 DOI: 10.1113/jp284741] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 01/28/2025] [Indexed: 04/01/2025] Open
Abstract
The intricate role of the autonomic nervous system (ANS) in regulating cardiac physiology has long been recognized. Aberrant function of the ANS is central to the pathophysiology of cardiovascular diseases. It stands to reason, therefore, that neuroscience-based cardiovascular therapeutics hold great promise in the treatment of cardiovascular diseases in humans. A decade after the inaugural edition, this White Paper reviews the current state of understanding of human cardiac neuroanatomy, neurophysiology and pathophysiology in specific disease conditions, autonomic testing, risk stratification, and neuromodulatory strategies to mitigate the progression of cardiovascular diseases.
Collapse
Affiliation(s)
- Olujimi A Ajijola
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Center of Excellence, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Tolga Aksu
- Division of Cardiology, Yeditepe University Hospital, Istanbul, Türkiye
| | - Rishi Arora
- Division of Cardiology, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | - Italo Biaggioni
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Peng-Sheng Chen
- Department of Cardiology, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Gaetano De Ferrari
- Department of Medical Sciences, University of Turin, Italy and Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Torino, Italy
| | - Veronica Dusi
- Department of Medical Sciences, University of Turin, Italy and Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Torino, Italy
| | - Marat Fudim
- Division of Cardiology, Duke University Medical Center, Durham, NC, USA
| | - Jeffrey J Goldberger
- Division of Cardiology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alexander L Green
- Department of Clinical Neurosciences, John Radcliffe Hospital, and Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Neil Herring
- Department for Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Sahib S Khalsa
- Department of Psychiatry, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Rajesh Kumar
- Department of Neurobiology and the Brain Research Institute, University of California, Los Angeles, CA, USA
| | - Edward Lakatta
- National Institute of Aging, National Institutes of Health, Bethesda, MD, USA
| | - Reena Mehra
- Division of Pulmonary Medicine, University of Washington, Seattle, WA, USA
| | - Christian Meyer
- Klinik für Kardiologie, Angiologie, Intensivmedizin, cNEP Research Consortium EVK, Düsseldorf, Germany
- Heart Rhythm Institute, Overland Park, KS, USA
| | - Sunny Po
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Stavros Stavrakis
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Virend K Somers
- Division of Cardiovascular Diseases, Mayo Clinic and Mayo Foundation, Rochester, MN, USA
| | - Alex Y Tan
- Division of Cardiology, Richmond Veterans Affairs Hospital, Richmond, VA, USA
| | - Miguel Valderrabano
- Methodist DeBakey Heart and Vascular Center and Methodist Hospital Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Kalyanam Shivkumar
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Center of Excellence, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
10
|
Thompson N, Ravagli E, Mastitskaya S, Challita R, Hadaya J, Iacoviello F, Idil AS, Shearing PR, Ajijola OA, Ardell JL, Shivkumar K, Holder D, Aristovich K. Towards spatially selective efferent neuromodulation: anatomical and functional organization of cardiac fibres in the porcine cervical vagus nerve. J Physiol 2025; 603:1983-2004. [PMID: 39183636 PMCID: PMC11955868 DOI: 10.1113/jp286494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/09/2024] [Indexed: 08/27/2024] Open
Abstract
Spatially selective vagus nerve stimulation (sVNS) offers a promising approach for addressing heart disease with enhanced precision. Despite its therapeutic potential, VNS is limited by off-target effects and the need for time-consuming titration. Our research aimed to determine the spatial organization of cardiac afferent and efferent fibres within the vagus nerve of pigs to achieve targeted neuromodulation. Using trial-and-error sVNS in vivo and ex vivo micro-computed tomography fascicle tracing, we found significant spatial separation between cardiac afferent and cardiac efferent fibres at the mid-cervical level and they were localized on average on opposite sides of the nerve cross-section. This was consistent between both in vivo and ex vivo methods. Specifically, cardiac afferent fibres were located near pulmonary fibres, consistent with findings of cardiopulmonary convergent circuits and, notably, cardiac efferent fascicles were exclusive. These cardiac efferent regions were located in close proximity to the recurrent laryngeal regions. This is consistent with the roughly equitable spread across the nerve of the afferent and efferent fibres. Our study demonstrated that targeted neuromodulation via sVNS could achieve scalable heart rate decreases without eliciting cardiac afferent-related reflexes; this is desirable for reducing sympathetic overactivation associated with heart disease. These findings indicate that understanding the spatial organization of cardiac-related fibres within the vagus nerve can lead to more precise and effective VNS therapy, minimizing off-target effects and potentially mitigating the need for titration. KEY POINTS: Spatially selective vagus nerve stimulation (sVNS) presents a promising approach for addressing chronic heart disease with enhanced precision. Our study reveals significant spatial separation between cardiac afferent and efferent fibres in the vagus nerve, particularly at the mid-cervical level. Utilizing trial-and-error sVNS in vivo and micro-computed tomography fascicle tracing, we demonstrate the potential for targeted neuromodulation, achieving therapeutic effects such as scalable heart rate decrease without stimulating cardiac afferent-related reflexes. This spatial understanding opens avenues for more effective VNS therapy, minimizing off-target effects and potentially eliminating the need for titration, thereby expediting therapeutic outcomes in myocardial infarction and related conditions.
Collapse
Affiliation(s)
- Nicole Thompson
- EIT and Neurophysiology Research Group, Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| | - Enrico Ravagli
- EIT and Neurophysiology Research Group, Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| | - Svetlana Mastitskaya
- EIT and Neurophysiology Research Group, Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| | - Ronald Challita
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Program of ExcellenceDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Joseph Hadaya
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Program of ExcellenceDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Francesco Iacoviello
- Electrochemical Innovation Lab, Department of Chemical EngineeringUniversity College LondonLondonUK
| | - Ahmad Shah Idil
- EIT and Neurophysiology Research Group, Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| | - Paul R. Shearing
- Electrochemical Innovation Lab, Department of Chemical EngineeringUniversity College LondonLondonUK
| | - Olujimi A. Ajijola
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Program of ExcellenceDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Jeffrey L. Ardell
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Program of ExcellenceDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Kalyanam Shivkumar
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Program of ExcellenceDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - David Holder
- EIT and Neurophysiology Research Group, Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| | - Kirill Aristovich
- EIT and Neurophysiology Research Group, Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| |
Collapse
|
11
|
Vrabec T, Bender S, Chan S, Cha S, Haridas S, Hanna P, Ajijola OA, Shivkumar K, Smith C, Ardell JL. Bioelectronic block of stellate ganglia mitigates pacing-induced heterogeneous release of catecholamine and neuropeptide Y in the infarcted pig heart. J Physiol 2025; 603:2071-2088. [PMID: 39557601 PMCID: PMC11955864 DOI: 10.1113/jp286924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/23/2024] [Indexed: 11/20/2024] Open
Abstract
The sympathetic nervous system modulates cardiac contractile and electrophysiological function and contributes to adverse remodelling following myocardial infarction (MI). Axonal modulation therapy (AMT), directed at the sympathetic chain, blocks efferent sympathetic outflow to the heart and is a strategy to transiently and controllably mitigate chronic MI-associated sympatho-excitation. In porcine models, we evaluated scalable AMT, directed at the paravertebral chain, in blocking reflex-mediated pacing-induced sympatho-excitation post-MI. The level of sympatho-excitation was assessed by dynamic interstitial measurement of noradrenaline (NA) and neuropeptide Y (NPY). In anaesthetized normal (n = 5) and age-matched pigs 6 weeks post-MI induction (n = 10), we electrically stimulated the right sympathetic chain and determined levels of direct current block applied at the T1-T2 level sufficient to reduce the evoked changes in heart rate and/or contractility by 25-75%. Reflex-mediated neural release of NA and NPY into the interstitial space during programmed pacing (PP) was assessed using fast-scanning cyclic voltammetry and capacitive immunoprobes. Normal animals demonstrated homogeneous NA and NPY release profiles during PP. In contrast, for MI animals PP evoked differential NA and NPY release in remote and MI border zones of the left ventricle. Right-sided AMT mitigated NA and NPY pacing-induced release in the remote left ventricle with a positive correlation to increasing AMT levels. Pacing-induced NA and NPY release in the MI border zone was not mitigated by AMT. Differential effects of AMT on NA and NPY may underlie the anti-arrhythmic effects of partial stellate ganglion block in the setting of chronic MI. KEY POINTS: Programmed cardiac pacing evokes homogeneous noradrenaline (NA) and neuropeptide Y (NPY) release in equivalent areas (e.g. medial and lateral aspects) of the normal left ventricle. Programmed cardiac pacing evokes differential NA and NPY release in remote and border zones of the infarcted left ventricle. Axonal modulation therapy (AMT), using a graded direct current block applied to the stellate ganglia, can proportionally modulate cardiac sympathetic reflexes. Unilateral AMT mitigates NA and NPY release in remote left ventricular tissue, with release negatively correlated to increasing AMT levels. Heterogeneities in NA and NPY between the border and remote tissues are reduced by progressive AMT.
Collapse
Affiliation(s)
- Tina Vrabec
- Department of Physical Medicine & RehabilitationMetroHealth Medical CenterClevelandOHUSA
- Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOHUSA
| | - Shane Bender
- Department of Physical Medicine & RehabilitationMetroHealth Medical CenterClevelandOHUSA
- Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOHUSA
| | - Shyue‐An Chan
- Department of Physiology and BiophysicsCase Western Reserve UniversityClevelandOHUSA
| | - Steven Cha
- David Geffen School of MedicineUniversity of California – Los Angeles (UCLA) Cardiac Arrhythmia CenterLos AngelesCAUSA
- UCLA Neurocardiology Research Program of ExcellenceLos AngelesCAUSA
| | - Sahil Haridas
- David Geffen School of MedicineUniversity of California – Los Angeles (UCLA) Cardiac Arrhythmia CenterLos AngelesCAUSA
- UCLA Neurocardiology Research Program of ExcellenceLos AngelesCAUSA
| | - Peter Hanna
- David Geffen School of MedicineUniversity of California – Los Angeles (UCLA) Cardiac Arrhythmia CenterLos AngelesCAUSA
- UCLA Neurocardiology Research Program of ExcellenceLos AngelesCAUSA
| | - Olujimi A. Ajijola
- David Geffen School of MedicineUniversity of California – Los Angeles (UCLA) Cardiac Arrhythmia CenterLos AngelesCAUSA
- UCLA Neurocardiology Research Program of ExcellenceLos AngelesCAUSA
| | - Kalyanam Shivkumar
- David Geffen School of MedicineUniversity of California – Los Angeles (UCLA) Cardiac Arrhythmia CenterLos AngelesCAUSA
- UCLA Neurocardiology Research Program of ExcellenceLos AngelesCAUSA
| | - Corey Smith
- Department of Physiology and BiophysicsCase Western Reserve UniversityClevelandOHUSA
| | - Jeffrey L. Ardell
- David Geffen School of MedicineUniversity of California – Los Angeles (UCLA) Cardiac Arrhythmia CenterLos AngelesCAUSA
- UCLA Neurocardiology Research Program of ExcellenceLos AngelesCAUSA
| |
Collapse
|
12
|
Tompkins JD, Hoover DB, Havton LA, Patel JC, Cho Y, Smith EH, Biscola NP, Ajijola OA, Shivkumar K, Ardell JL. Comparative specialization of intrinsic cardiac neurons in humans, mice and pigs. J Physiol 2025; 603:2043-2070. [PMID: 39513933 PMCID: PMC11957936 DOI: 10.1113/jp286714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Intrinsic cardiac neurons (ICNs) play a crucial role in the proper functioning of the heart; yet a paucity of data pertaining to human ICNs exist. We took a multidisciplinary approach to complete a detailed cellular comparison of the structure and function of ICNs from mice, pigs and humans. Immunohistochemistry of whole and sectioned ganglia, transmission electron microscopy, intracellular microelectrode recording and dye filling for quantitative morphometry were used to define the neurophysiology, histochemistry and ultrastructure of these neurons across species. The densely packed, smaller ICNs of mouse lacked dendrites, formed axosomatic connections and had high synaptic efficacy constituting an obligatory synapse. At pig ICNs, a convergence of subthreshold cholinergic inputs onto extensive dendritic arbors supported greater summation and integration of synaptic input. Human ICNs were tonically firing, with synaptic stimulation evoking large suprathreshold EPSPs like mouse, and subthreshold potentials like pig. Ultrastructural examination of synaptic terminals revealed conserved architecture, yet small clear vesicles were larger in pigs and humans. The presence and localization of ganglionic neuropeptides was distinct, with abundant vasoactive intestinal polypeptide observed in human but not pig or mouse ganglia, and little substance P or calcitonin gene-related peptide in pig ganglia. Action potential waveforms were similar, but human ICNs had larger after-hyperpolarizations. Intrinsic excitability differed; 95% of human neurons were tonic, all pig neurons were phasic, and both phasic and tonic phenotypes were observed in mouse. In combination, this publicly accessible, multimodal atlas of ICNs from mice, pigs and humans identifies similarities and differences in the evolution of ICNs. KEY POINTS: Intrinsic cardiac neurons (ICNs) are essential to the regulation of cardiac function. We investigated the neurochemistry, morphology, ultrastructure, membrane physiology and synaptic transmission of ICNs from donated human hearts in parallel with identical studies of ICNs from mice and pigs to create a publicly accessible cellular atlas detailing the structure and function of these neurons across species. In addition to presenting foundational data on human ICNs, this comparative study identifies both conserved and derived attributes of these neurons within mammals. The findings have significant implications for understanding the regulation of cardiac autonomic function in humans and may greatly influence strategies for neuromodulation in conditions such as atrial fibrillation and heart failure.
Collapse
Affiliation(s)
- John D. Tompkins
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Donald B. Hoover
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Leif A. Havton
- Departments of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Janaki C. Patel
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Youngjin Cho
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Elizabeth H. Smith
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Natalia P. Biscola
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Olujimi A. Ajijola
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Kalyanam Shivkumar
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jeffrey L. Ardell
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
13
|
Herring N, Ajijola OA, Foreman RD, Gourine AV, Green AL, Osborn J, Paterson DJ, Paton JFR, Ripplinger CM, Smith C, Vrabec TL, Wang HJ, Zucker IH, Ardell JL. Neurocardiology: translational advancements and potential. J Physiol 2025; 603:1729-1779. [PMID: 39340173 PMCID: PMC11955874 DOI: 10.1113/jp284740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
In our original white paper published in the The Journal of Physiology in 2016, we set out our knowledge of the structural and functional organization of cardiac autonomic control, how it remodels during disease, and approaches to exploit such knowledge for autonomic regulation therapy. The aim of this update is to build on this original blueprint, highlighting the significant progress which has been made in the field since and major challenges and opportunities that exist with regard to translation. Imbalances in autonomic responses, while beneficial in the short term, ultimately contribute to the evolution of cardiac pathology. As our understanding emerges of where and how to target in terms of actuators (including the heart and intracardiac nervous system (ICNS), stellate ganglia, dorsal root ganglia (DRG), vagus nerve, brainstem, and even higher centres), there is also a need to develop sensor technology to respond to appropriate biomarkers (electrophysiological, mechanical, and molecular) such that closed-loop autonomic regulation therapies can evolve. The goal is to work with endogenous control systems, rather than in opposition to them, to improve outcomes.
Collapse
Affiliation(s)
- N. Herring
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - O. A. Ajijola
- UCLA Neurocardiology Research Center of ExcellenceDavid Geffen School of MedicineLos AngelesCAUSA
| | - R. D. Foreman
- Department of Biochemistry and PhysiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| | - A. V. Gourine
- Centre for Cardiovascular and Metabolic NeuroscienceUniversity College LondonLondonUK
| | - A. L. Green
- Nuffield Department of Surgical SciencesUniversity of OxfordOxfordUK
| | - J. Osborn
- Department of SurgeryUniversity of MinnesotaMinneapolisMNUSA
| | - D. J. Paterson
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - J. F. R. Paton
- Manaaki Manawa – The Centre for Heart Research, Department of Physiology, Faculty of Medical and Health SciencesUniversity of AucklandAucklandNew Zealand
| | - C. M. Ripplinger
- Department of PharmacologyUniversity of California DavisDavisCAUSA
| | - C. Smith
- Department of Physiology and BiophysicsCase Western Reserve UniversityClevelandOHUSA
| | - T. L. Vrabec
- Department of Physical Medicine and Rehabilitation, School of MedicineCase Western Reserve UniversityClevelandOHUSA
| | - H. J. Wang
- Department of AnesthesiologyUniversity of Nebraska Medical CenterOmahaNEUSA
| | - I. H. Zucker
- Department of Cellular and Integrative PhysiologyUniversity of Nebraska Medical CenterOmahaNEUSA
| | - J. L. Ardell
- UCLA Neurocardiology Research Center of ExcellenceDavid Geffen School of MedicineLos AngelesCAUSA
| |
Collapse
|
14
|
Ren X, Tang W, Yuan Y, Chen S, Lu F, Mao J, Fan J, Wei X, Chu M, Hu B. A Body-Temperature-Triggered In Situ Softening Peripheral Nerve Electrode for Chronic Robust Neuromodulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412361. [PMID: 39639850 PMCID: PMC11791928 DOI: 10.1002/advs.202412361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/17/2024] [Indexed: 12/07/2024]
Abstract
Implantable peripheral nerve electrodes are crucial for monitoring health and alleviating symptoms of chronic diseases. Advanced compliant electrodes have been developed because of their biomechanical compatibility. However, these mechanically tissue-like electrodes suffer from unmanageable operating forces, leading to high risks of nerve injury and fragile electrode-tissue interfaces. Here, a peripheral nerve electrode is developed that simultaneously fulfills the criteria of body temperature softening and tissue-like modulus (less than 0.8 MPa at 37 °C) after implantation. The central core is altered from the tri-arm crosslinker to the star-branched monomer to kill two birds (close the translation temperature to 37 °C and decrease the modulus after implantation) with one stone. Furthermore, the decreased interfacial impedance (325.1 ± 46.9 Ω at 1 kHz) and increased charge storage capacity (111.2 ± 5.8 mC cm-2) are achieved by an in situ electrografted conductive polymer on the strain-insensitive conductive network of Au nanotubes. The electrodes are readily wrapped around nerves and applied for long-term stimulation in vivo with minimal inflammation. Neuromodulation experiments demonstrate their potential clinical utility, including vagus nerve stimulation in rats to suppress seizures and alleviation of cardiac remodeling in a canine model of myocardial infarction.
Collapse
Affiliation(s)
- Xueyang Ren
- School of Biomedical Engineering and InformaticsNanjing Medical UniversityNanjing211166China
| | - Wenjie Tang
- School of Biomedical Engineering and InformaticsNanjing Medical UniversityNanjing211166China
- Jinan Microecological Biomedicine Shandong LaboratoryJinan250000China
| | - Yuehui Yuan
- School of Biomedical Engineering and InformaticsNanjing Medical UniversityNanjing211166China
| | - Shisheng Chen
- School of Biomedical Engineering and InformaticsNanjing Medical UniversityNanjing211166China
- School of Electronic Science and EngineeringSoutheast UniversityNanjing211189China
| | - Fangzhou Lu
- Department of EndocrinologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjing210029China
| | - Jinyang Mao
- The Affiliated Taizhou People's Hospital of Nanjing Medical UniversityTaizhou School of Clinical MedicineNanjing Medical UniversityTaizhou225300China
| | - Jidan Fan
- The Affiliated Taizhou People's Hospital of Nanjing Medical UniversityTaizhou School of Clinical MedicineNanjing Medical UniversityTaizhou225300China
| | - Xufeng Wei
- The Affiliated Taizhou People's Hospital of Nanjing Medical UniversityTaizhou School of Clinical MedicineNanjing Medical UniversityTaizhou225300China
| | - Ming Chu
- The Affiliated Taizhou People's Hospital of Nanjing Medical UniversityTaizhou School of Clinical MedicineNanjing Medical UniversityTaizhou225300China
- Department of Cardiovascular MedicineThe First Affiliated Hospital of Nanjing Medical UniversityNanjing210029China
| | - Benhui Hu
- School of Biomedical Engineering and InformaticsNanjing Medical UniversityNanjing211166China
- State Key Laboratory of Reproductive Medicine and Offspring HealthAffiliated Stomatological HospitalNanjing Medical UniversityNanjing210029China
| |
Collapse
|
15
|
Evans AJ, Li YL. Remodeling of the Intracardiac Ganglia During the Development of Cardiovascular Autonomic Dysfunction in Type 2 Diabetes: Molecular Mechanisms and Therapeutics. Int J Mol Sci 2024; 25:12464. [PMID: 39596529 PMCID: PMC11594459 DOI: 10.3390/ijms252212464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is one of the most significant health issues worldwide, with associated healthcare costs estimated to surpass USD 1054 billion by 2045. The leading cause of death in T2DM patients is the development of cardiovascular disease (CVD). In the early stages of T2DM, patients develop cardiovascular autonomic dysfunction due to the withdrawal of cardiac parasympathetic activity. Diminished cardiac parasympathetic tone can lead to cardiac arrhythmia-related sudden cardiac death, which accounts for 50% of CVD-related deaths in T2DM patients. Regulation of cardiovascular parasympathetic activity is integrated by neural circuitry at multiple levels including afferent, central, and efferent components. Efferent control of cardiac parasympathetic autonomic tone is mediated through the activity of preganglionic parasympathetic neurons located in the cardiac extensions of the vagus nerve that signals to postganglionic parasympathetic neurons located in the intracardiac ganglia (ICG) on the heart. Postganglionic parasympathetic neurons exert local control on the heart, independent of higher brain centers, through the release of neurotransmitters, such as acetylcholine. Structural and functional alterations in cardiac parasympathetic postganglionic neurons contribute to the withdrawal of cardiac parasympathetic tone, resulting in arrhythmogenesis and sudden cardiac death. This review provides an overview of the remodeling of parasympathetic postganglionic neurons in the ICG, and potential mechanisms contributing to the withdrawal of cardiac parasympathetic tone, ventricular arrhythmogenesis, and sudden cardiac death in T2DM. Improving cardiac parasympathetic tone could be a therapeutic avenue to reduce malignant ventricular arrhythmia and sudden cardiac death, increasing both the lifespan and improving quality of life of T2DM patients.
Collapse
Affiliation(s)
- Anthony J. Evans
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Yu-Long Li
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA;
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
16
|
Giannino G, Nocera L, Andolfatto M, Braia V, Giacobbe F, Bruno F, Saglietto A, Angelini F, De Filippo O, D'Ascenzo F, De Ferrari GM, Dusi V. Vagal nerve stimulation in myocardial ischemia/reperfusion injury: from bench to bedside. Bioelectron Med 2024; 10:22. [PMID: 39267134 PMCID: PMC11395864 DOI: 10.1186/s42234-024-00153-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/31/2024] [Indexed: 09/14/2024] Open
Abstract
The identification of acute cardioprotective strategies against myocardial ischemia/reperfusion (I/R) injury that can be applied in the catheterization room is currently an unmet clinical need and several interventions evaluated in the past at the pre-clinical level have failed in translation. Autonomic imbalance, sustained by an abnormal afferent signalling, is a key component of I/R injury. Accordingly, there is a strong rationale for neuromodulation strategies, aimed at reducing sympathetic activity and/or increasing vagal tone, in this setting. In this review we focus on cervical vagal nerve stimulation (cVNS) and on transcutaneous auricular vagus nerve stimulation (taVNS); the latest has the potential to overcome several of the issues of invasive cVNS, including the possibility of being used in an acute setting, while retaining its beneficial effects. First, we discuss the pathophysiology of I/R injury, that is mostly a consequence of the overproduction of reactive oxygen species. Second, we describe the functional anatomy of the parasympathetic branch of the autonomic nervous system and the most relevant principles of bioelectronic medicine applied to electrical vagal modulation, with a particular focus on taVNS. Then, we provide a detailed and comprehensive summary of the most relevant pre-clinical studies of invasive and non-invasive VNS that support its strong cardioprotective effect whenever there is an acute or chronic cardiac injury and specifically in the setting of myocardial I/R injury. The potential benefit in the emerging field of post cardiac arrest syndrome (PCAS) is also mentioned. Indeed, electrical cVNS has a strong anti-adrenergic, anti-inflammatory, antioxidants, anti-apoptotic and pro-angiogenic effect; most of the involved molecular pathways were already directly confirmed to take place at the cardiac level for taVNS. Pre-clinical data clearly show that the sooner VNS is applied, the better the outcome, with the possibility of a marked infarct size reduction and almost complete left ventricular reverse remodelling when VNS is applied immediately before and during reperfusion. Finally, we describe in detail the limited but very promising clinical experience of taVNS in I/R injury available so far.
Collapse
Affiliation(s)
- Giuseppe Giannino
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Corso Bramante 88, Turin, 10126, Italy
| | - Lorenzo Nocera
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Corso Bramante 88, Turin, 10126, Italy
| | - Maria Andolfatto
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Corso Bramante 88, Turin, 10126, Italy
| | - Valentina Braia
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Corso Bramante 88, Turin, 10126, Italy
| | - Federico Giacobbe
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Corso Bramante 88, Turin, 10126, Italy
| | - Francesco Bruno
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
| | - Andrea Saglietto
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
| | - Filippo Angelini
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
| | - Ovidio De Filippo
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
| | - Fabrizio D'Ascenzo
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Corso Bramante 88, Turin, 10126, Italy
| | - Gaetano Maria De Ferrari
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Corso Bramante 88, Turin, 10126, Italy
| | - Veronica Dusi
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy.
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Corso Bramante 88, Turin, 10126, Italy.
| |
Collapse
|
17
|
Saw EL, Fronius M, Katare R, Kakinuma Y. Mini Review: the non-neuronal cardiac cholinergic system in type-2 diabetes mellitus. Front Cardiovasc Med 2024; 11:1425534. [PMID: 39314774 PMCID: PMC11417620 DOI: 10.3389/fcvm.2024.1425534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/22/2024] [Indexed: 09/25/2024] Open
Abstract
Diabetic heart disease remains the leading cause of death in individuals with type-2 diabetes mellitus (T2DM). Both insulin resistance and metabolic derangement, hallmark features of T2DM, develop early and progressively impair cardiovascular function. These factors result in altered cardiac metabolism and energetics, as well as coronary vascular dysfunction, among other consequences. Therefore, gaining a deeper understanding of the mechanisms underlying the pathophysiology of diabetic heart disease is crucial for developing novel therapies for T2DM-associated cardiovascular disease. Cardiomyocytes are equipped with the cholinergic machinery, known as the non-neuronal cardiac cholinergic system (NNCCS), for synthesizing and secreting acetylcholine (ACh) as well as possessing muscarinic ACh receptor for ACh binding and initiating signaling cascade. ACh from cardiomyocytes regulates glucose metabolism and energetics, endothelial function, and among others, in an auto/paracrine manner. Presently, there is only one preclinical animal model - diabetic db/db mice with cardiac-specific overexpression of choline transferase (Chat) gene - to study the effect of activated NNCCS in the diabetic heart. In this mini-review, we discuss the physiological role of NNCCS, the connection between NNCCS activation and cardiovascular function in T2DM and summarize the current knowledge of S-Nitroso-NPivaloyl-D-Penicillamine (SNPiP), a novel inducer of NNCCS, as a potential therapeutic strategy to modulate NNCCS activity for diabetic heart disease.
Collapse
Affiliation(s)
- Eng Leng Saw
- Whitaker Cardiovascular Institute, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | - Martin Fronius
- Department of Physiology, HeartOtago, University of Otago, Dunedin, New Zealand
| | - Rajesh Katare
- Department of Physiology, HeartOtago, University of Otago, Dunedin, New Zealand
| | - Yoshihiko Kakinuma
- Department of Bioregulatory Science, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
18
|
Hanna P, Ardell JL. Cardiac Neuroanatomy and Fundamentals of Neurocardiology. Card Electrophysiol Clin 2024; 16:229-237. [PMID: 39084716 DOI: 10.1016/j.ccep.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Cardiac control is mediated via nested-feedback reflex control networks involving the intrinsic cardiac ganglia, intra-thoracic extra-cardiac ganglia, spinal cord, brainstem, and higher centers. This control system is optimized to respond to normal physiologic stressors; however, it can be catastrophically disrupted by pathologic events such as myocardial ischemia. In fact, it is now recognized that cardiac disease progression reflects the dynamic interplay between adverse remodeling of the cardiac substrate coupled with autonomic dysregulation. With advances in understanding of this network dynamic in normal and pathologic states, neuroscience-based neuromodulation therapies can be devised for the management of acute and chronic cardiac pathologies.
Collapse
Affiliation(s)
- Peter Hanna
- University of California Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; UCLA Neurocardiology Research Program of Excellence, UCLA, Los Angeles, CA 90095, USA
| | - Jeffrey L Ardell
- University of California Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; UCLA Neurocardiology Research Program of Excellence, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
19
|
Li P, Chang Y, Song J. Advances in preclinical surgical therapy of cardiovascular diseases. Int J Surg 2024; 110:4965-4975. [PMID: 38701509 PMCID: PMC11326035 DOI: 10.1097/js9.0000000000001534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024]
Abstract
Cardiovascular disease is the most common cause of death worldwide, resulting in millions of deaths annually. Currently, there are still some deficiencies in the treatment of cardiovascular diseases. Innovative surgical treatments are currently being developed and tested in response to this situation. Large animal models, which are similar to humans in terms of anatomy, physiology, and genetics, play a crucial role in connecting basic research and clinical applications. This article reviews recent preclinical studies and the latest clinical advancements in cardiovascular disease based on large animal models, with a focus on targeted delivery, neural regulation, cardiac remodeling, and hemodynamic regulation. It provides new perspectives and ideas for clinical translation and offers new methods for clinical treatment.
Collapse
Affiliation(s)
- Peiyuan Li
- Department of Cardiac Surgery, Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | | | | |
Collapse
|
20
|
Schunke KJ, Rodriguez J, Dyavanapalli J, Schloen J, Wang X, Escobar J, Kowalik G, Cheung EC, Ribeiro C, Russo R, Alber BR, Dergacheva O, Chen SW, Murillo-Berlioz AE, Lee KB, Trachiotis G, Entcheva E, Brantner CA, Mendelowitz D, Kay MW. Outcomes of hypothalamic oxytocin neuron-driven cardioprotection after acute myocardial infarction. Basic Res Cardiol 2023; 118:43. [PMID: 37801130 PMCID: PMC10558415 DOI: 10.1007/s00395-023-01013-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/07/2023]
Abstract
Altered autonomic balance is a hallmark of numerous cardiovascular diseases, including myocardial infarction (MI). Although device-based vagal stimulation is cardioprotective during chronic disease, a non-invasive approach to selectively stimulate the cardiac parasympathetic system immediately after an infarction does not exist and is desperately needed. Cardiac vagal neurons (CVNs) in the brainstem receive powerful excitation from a population of neurons in the paraventricular nucleus (PVN) of the hypothalamus that co-release oxytocin (OXT) and glutamate to excite CVNs. We tested if chemogenetic activation of PVN-OXT neurons following MI would be cardioprotective. The PVN of neonatal rats was transfected with vectors to selectively express DREADDs within OXT neurons. At 6 weeks of age, an MI was induced and DREADDs were activated with clozapine-N-oxide. Seven days following MI, patch-clamp electrophysiology confirmed the augmented excitatory neurotransmission from PVN-OXT neurons to downstream nuclei critical for parasympathetic activity with treatment (43.7 ± 10 vs 86.9 ± 9 pA; MI vs. treatment), resulting in stark improvements in survival (85% vs. 95%; MI vs. treatment), inflammation, fibrosis assessed by trichrome blue staining, mitochondrial function assessed by Seahorse assays, and reduced incidence of arrhythmias (50% vs. 10% cumulative incidence of ventricular fibrillation; MI vs. treatment). Myocardial transcriptomic analysis provided molecular insight into potential cardioprotective mechanisms, which revealed the preservation of beneficial signaling pathways, including muscarinic receptor activation, in treated animals. These comprehensive results demonstrate that the PVN-OXT network could be a promising therapeutic target to quickly activate beneficial parasympathetic-mediated cellular pathways within the heart during the early stages of infarction.
Collapse
Affiliation(s)
- Kathryn J Schunke
- Department of Biomedical Engineering, George Washington University, Suite 5000 Science and Engineering Hall, 800 22nd Street NW, Washington, DC, 20052, USA.
- Department of Anatomy, Biochemistry and Physiology, University of Hawaii, 651 Ilalo St, Honolulu, HI, BSB 211 96813, USA.
| | - Jeannette Rodriguez
- Department of Biomedical Engineering, George Washington University, Suite 5000 Science and Engineering Hall, 800 22nd Street NW, Washington, DC, 20052, USA
| | - Jhansi Dyavanapalli
- Department of Pharmacology and Physiology, George Washington University, Suite 640 Ross Hall, 2300 Eye St. NW, Washington, DC, 20052, USA
| | - John Schloen
- Department of Biomedical Engineering, George Washington University, Suite 5000 Science and Engineering Hall, 800 22nd Street NW, Washington, DC, 20052, USA
| | - Xin Wang
- Department of Pharmacology and Physiology, George Washington University, Suite 640 Ross Hall, 2300 Eye St. NW, Washington, DC, 20052, USA
| | - Joan Escobar
- Department of Pharmacology and Physiology, George Washington University, Suite 640 Ross Hall, 2300 Eye St. NW, Washington, DC, 20052, USA
| | - Grant Kowalik
- Department of Biomedical Engineering, George Washington University, Suite 5000 Science and Engineering Hall, 800 22nd Street NW, Washington, DC, 20052, USA
| | - Emily C Cheung
- Department of Biomedical Engineering, George Washington University, Suite 5000 Science and Engineering Hall, 800 22nd Street NW, Washington, DC, 20052, USA
| | - Caitlin Ribeiro
- Department of Pharmacology and Physiology, George Washington University, Suite 640 Ross Hall, 2300 Eye St. NW, Washington, DC, 20052, USA
| | - Rebekah Russo
- Department of Biomedical Engineering, George Washington University, Suite 5000 Science and Engineering Hall, 800 22nd Street NW, Washington, DC, 20052, USA
| | - Bridget R Alber
- Department of Biomedical Engineering, George Washington University, Suite 5000 Science and Engineering Hall, 800 22nd Street NW, Washington, DC, 20052, USA
| | - Olga Dergacheva
- Department of Pharmacology and Physiology, George Washington University, Suite 640 Ross Hall, 2300 Eye St. NW, Washington, DC, 20052, USA
| | - Sheena W Chen
- Division of Cardiothoracic Surgery and Cardiothoracic Research, Veterans Affairs Medical Center, 50 Irving St. NW, Washington, DC, 20422, USA
| | - Alejandro E Murillo-Berlioz
- Division of Cardiothoracic Surgery and Cardiothoracic Research, Veterans Affairs Medical Center, 50 Irving St. NW, Washington, DC, 20422, USA
| | - Kyongjune B Lee
- Division of Cardiothoracic Surgery and Cardiothoracic Research, Veterans Affairs Medical Center, 50 Irving St. NW, Washington, DC, 20422, USA
| | - Gregory Trachiotis
- Department of Biomedical Engineering, George Washington University, Suite 5000 Science and Engineering Hall, 800 22nd Street NW, Washington, DC, 20052, USA
- Division of Cardiothoracic Surgery and Cardiothoracic Research, Veterans Affairs Medical Center, 50 Irving St. NW, Washington, DC, 20422, USA
| | - Emilia Entcheva
- Department of Biomedical Engineering, George Washington University, Suite 5000 Science and Engineering Hall, 800 22nd Street NW, Washington, DC, 20052, USA
| | - Christine A Brantner
- The GWU Nanofabrication and Imaging Center, 800 22nd Street NW, Washington, DC, 20052, USA
| | - David Mendelowitz
- Department of Pharmacology and Physiology, George Washington University, Suite 640 Ross Hall, 2300 Eye St. NW, Washington, DC, 20052, USA.
| | - Matthew W Kay
- Department of Biomedical Engineering, George Washington University, Suite 5000 Science and Engineering Hall, 800 22nd Street NW, Washington, DC, 20052, USA.
| |
Collapse
|