1
|
Mavraganis G, Georgiopoulos G, Zervas G, Aivalioti E, Delialis D, Petropoulos I, Rachiotis N, Konstantaki C, Moustou C, Dimopoulou M, Sachse M, Tual‐Chalot S, Sopova K, Psimmenou E, Stellos K, Stamatelopoulos K. Circulating amyloid beta 1-40 peptide as an associate of renal function decline. Eur J Clin Invest 2025; 55:e70006. [PMID: 39989380 PMCID: PMC12011680 DOI: 10.1111/eci.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 01/27/2025] [Indexed: 02/25/2025]
Abstract
BACKGROUND Recent evidence suggests that Alzheimer's amyloid-beta (1-40) (Αβ1-40), an emerging biomarker of cardiovascular disease, may be involved in the heart-brain-renal axis. We aimed to comprehensively explore the association between circulating Aβ1-40 levels and renal function and its clinical relevance. METHODS Consecutively recruited subjects in the Athens Angiometabolic Registry with measured Aβ1-40 plasma levels (n = 811) were analysed. Αβ1-40 was measured by enzyme-linked immunosorbent assay and glomerular filtration rate (GFR) was calculated using the abbreviated four-variable Modification of Diet in Renal Disease (MDRD) formula. All-cause mortality was the main clinical endpoint across a median follow-up of 47 months. RESULTS Cross-sectionally, a bidirectional association between Αβ1-40 [adjusted odds ratio (adjOR) = 3.67 for highest tertile of Αβ1-40 and chronic kidney disease (CKD) stage ≥3, p < .001] and CKD stage ≥3 (adjOR = 3.52 for association with highest Aβ1-40 tertile, p < .001) was observed. Longitudinally, increased Αβ1-40 at baseline was associated with decline in renal function at follow-up (adjOR for CKD stage ≥3 = 2.26, p = .033). Similarly, longitudinal changes in Aβ1-40 were inversely associated with changes in GFR (OR = .77 per 1 SD increase in Aβ1-40, p = .006). Aβ1-40 was associated with all-cause mortality, independently of traditional risk factors (hazard ratio = 1.20 per 1 SD increase in Aβ1-40, p = .016). An indirect effect of GFR on the association between Aβ1-40 and mortality (p < .05) with an estimated indirect-to-total effect ratio of .334, but not of Αβ1-40 on GFR with mortality, was observed. CONCLUSIONS In a population with a wide range of GFR, we found a bidirectional association between Αβ1-40 levels and renal function. The association of Αβ1-40 with all-cause mortality was partly mediated by lower GFR.
Collapse
Affiliation(s)
- Georgios Mavraganis
- Department of Clinical Therapeutics, Alexandra HospitalNational and Kapodistrian University of Athens Medical SchoolAthensGreece
| | - Georgios Georgiopoulos
- Department of Clinical Therapeutics, Alexandra HospitalNational and Kapodistrian University of Athens Medical SchoolAthensGreece
- Department of Physiology, School of MedicineUniversity of PatrasPatrasGreece
| | - Georgios Zervas
- Department of Clinical Therapeutics, Alexandra HospitalNational and Kapodistrian University of Athens Medical SchoolAthensGreece
| | - Evmorfia Aivalioti
- Department of Clinical Therapeutics, Alexandra HospitalNational and Kapodistrian University of Athens Medical SchoolAthensGreece
| | - Dimitrios Delialis
- Department of Clinical Therapeutics, Alexandra HospitalNational and Kapodistrian University of Athens Medical SchoolAthensGreece
| | - Ioannis Petropoulos
- Department of Clinical Therapeutics, Alexandra HospitalNational and Kapodistrian University of Athens Medical SchoolAthensGreece
| | - Nikolaos Rachiotis
- Department of Clinical Therapeutics, Alexandra HospitalNational and Kapodistrian University of Athens Medical SchoolAthensGreece
| | - Christina Konstantaki
- Department of Clinical Therapeutics, Alexandra HospitalNational and Kapodistrian University of Athens Medical SchoolAthensGreece
| | - Chrysoula Moustou
- Department of Clinical Therapeutics, Alexandra HospitalNational and Kapodistrian University of Athens Medical SchoolAthensGreece
| | - Maria‐Aggeliki Dimopoulou
- Department of Clinical Therapeutics, Alexandra HospitalNational and Kapodistrian University of Athens Medical SchoolAthensGreece
| | - Marco Sachse
- Department of Cardiovascular Surgery, University Heart and Vascular CentreUniversity Medical Centre Hamburg‐EppendorfHamburgGermany
- Department of Cardiovascular Research, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - Simon Tual‐Chalot
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Kateryna Sopova
- Department of Cardiovascular Research, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Department of Medicine, University Medical Centre MannheimHeidelberg UniversityMannheimGermany
| | - Erasmia Psimmenou
- Department of Clinical Therapeutics, Alexandra HospitalNational and Kapodistrian University of Athens Medical SchoolAthensGreece
| | - Konstantinos Stellos
- Department of Cardiovascular Research, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Department of Medicine, University Medical Centre MannheimHeidelberg UniversityMannheimGermany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/MannheimMannheimGermany
- Helmholtz Institute for Translational AngioCardioScience (HI‐TAC)MannheimGermany
| | - Kimon Stamatelopoulos
- Department of Clinical Therapeutics, Alexandra HospitalNational and Kapodistrian University of Athens Medical SchoolAthensGreece
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
2
|
Aleksova A, Fluca AL, Pierri A, Barbati G, Beltrami AP, Padoan L, Merro E, Marketou M, Zwas D, D'Errico S, Sinagra G, Janjusevic M. Amyloid β1-40 Predicts Long-Term Mortality Rate in Patients With Acute Myocardial Infarction. J Am Heart Assoc 2025; 14:e035620. [PMID: 40178097 DOI: 10.1161/jaha.124.035620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 02/07/2025] [Indexed: 04/05/2025]
Abstract
BACKGROUND Amyloid β1-40 (Aβ1-40) contributes to atherosclerosis, being involved in plaque formation and destabilization. The prognostic role of Aβ1-40 in patients with acute myocardial infarction is currently limited to non-ST-segment-elevation myocardial infarction (NSTEMI). We examined the prognostic value of Aβ1-40 in a real-world cohort of patients with acute myocardial infarction (both ST-segment-elevation myocardial infarction [STEMI] and NSTEMI) and identified predictors for its elevated levels. METHODS AND RESULTS Our population included 1119 consecutive patients (mean age, 67 years; 72% men; and STEMI, 68%). The median Aβ1-40 concentration on admission was 86.9 (interquartile range, 54.5-128.9) pg/mL, and there was no difference in Aβ1-40 levels between NSTEMI and STEMI (P=0.1). Higher Aβ1-40 levels were predicted by older age, lower left ventricular ejection fraction, glycated hemoglobin >39 mmol/mol and glomerular filtration rate <60 mL/min per m2. From the final multivariable model, a nomogram was computed to determine probability of high Aβ1-40. During the median follow-up of 57 months, 193 patients (17.2%) died. Kaplan-Meier analysis revealed higher mortality risk in patients with Aβ1-40 levels above the median (P<0.01), consistent across STEMI (P<0.01) and NSTEMI (P=0.01) subgroups. At Cox multivariable analysis including the entire cohort, Aβ1-40 levels were predictive of death (hazard ratio, 1.03; P=0.01), together with older age, higher high-sensitivity C-reactive protein levels, smoking, glomerular filtration rate <60 mL/min per m2, worse left ventricular ejection fraction, and previous ischemic events. In the STEMI subcohort, Aβ1-40 remained a significant predictor, along with advanced age, worse left ventricular ejection fraction, smoking, and elevated high-sensitivity C-reactive protein. No such association was found in patients with NSTEMI (P=0.17), likely due to the smaller cohort size and low event rate. CONCLUSIONS Aβ1-40 is an independent predictor of death and improves risk stratification in patients with acute myocardial infarction.
Collapse
Affiliation(s)
- Aneta Aleksova
- Cardiothoracovascular Department Azienda Sanitaria Universitaria Giuliano Isontina Trieste Italy
- Department of Medical Surgical and Health Sciences University of Trieste Italy
| | - Alessandra Lucia Fluca
- Cardiothoracovascular Department Azienda Sanitaria Universitaria Giuliano Isontina Trieste Italy
- Department of Medical Surgical and Health Sciences University of Trieste Italy
| | | | - Giulia Barbati
- Biostatistics Unit, Department of Medical Surgical and Health Sciences University of Trieste Italy
| | - Antonio Paolo Beltrami
- Department of Medicine (DMED) Università degli Studi di Udine Udine Italy
- Azienda Sanitaria Universitaria Friuli Centrale Istituto di Patologia Clinica Udine Italy
| | - Laura Padoan
- Cardiovascular Pathophysiology University of Perugia Italy
| | - Enzo Merro
- Cardiothoracovascular Department Azienda Sanitaria Universitaria Giuliano Isontina Trieste Italy
- Department of Medical Surgical and Health Sciences University of Trieste Italy
| | - Maria Marketou
- School of Medicine, Cardiology Department Heraklion University General Hospital, University of Crete Greece
| | - Donna Zwas
- Linda Joy Pollin Cardiovascular Wellness Center for Women Heart Institute, Hadassah University Medical Center Jerusalem Israel
| | - Stefano D'Errico
- Department of Medical Surgical and Health Sciences University of Trieste Italy
| | - Gianfranco Sinagra
- Cardiothoracovascular Department Azienda Sanitaria Universitaria Giuliano Isontina Trieste Italy
- Department of Medical Surgical and Health Sciences University of Trieste Italy
| | - Milijana Janjusevic
- Cardiothoracovascular Department Azienda Sanitaria Universitaria Giuliano Isontina Trieste Italy
- Department of Medical Surgical and Health Sciences University of Trieste Italy
| |
Collapse
|
3
|
Georgiopoulos G, Athanasopoulos S, Mavraganis G, Konstantaki C, Papaioannou M, Delialis D, Angelidakis L, Sachse M, Papoutsis D, Cavlan B, Tual-Chalot S, Zervas G, Sopova K, Mitrakou A, Stellos K, Stamatelopoulos K. Incremental Value of Blood-Based Markers of Liver Fibrosis in Cardiovascular Risk Stratification. J Clin Endocrinol Metab 2025; 110:1115-1127. [PMID: 39257198 PMCID: PMC11913098 DOI: 10.1210/clinem/dgae619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/23/2024] [Accepted: 09/10/2024] [Indexed: 09/12/2024]
Abstract
CONTEXT Nonalcoholic fatty liver disease (NAFLD) with advanced liver fibrosis is associated with cardiovascular disease (CVD). OBJECTIVE This work aimed to examine if markers of vascular injury mediate the link between liver fibrosis noninvasive tests (LFNITs) and CVD events, and to compare the incremental predictive value of LFNITs over established CVD risk scores. METHODS Consecutively recruited individuals (n = 1692) with or without clinically overt coronary artery disease (CAD) from the Athens Cardiometabolic Cohort, were analyzed. Fibrosis-4 index (FIB-4), NAFLD Fibrosis score (NFS), and BARD score were evaluated for direct and indirect associations with indices of subclinical arterial injury including carotid maximal wall thickness (maxWT) and pulse wave velocity (PWV) and with a composite of major adverse cardiovascular events (MACE) that consisted of cardiac death, acute myocardial infarction, or coronary revascularization (39-month median follow-up). RESULTS FIB-4 was the only LFNIT that was consistently associated with multiple markers of vascular injury, irrespective of CAD presence and after controlling for traditional risk factors, surrogates of insulin resistance, or obesity (adjusted P < .05 for all). FIB-4 was also independently associated with CAD presence (adjusted odds ratio [OR] 6.55; 3.48-12.3; P < .001). Increased FIB-4 greater than 2.67 was incrementally associated with an increased risk for MACE (OR [95% CI] 2.00 [1.12-3.55], ΔAUC [95% CI] 0.014 [0.002-0.026]). These associations were mediated by maxWT rather than PWV. Only FIB-4 (>3.25) was independently and incrementally associated with all-cause mortality (adjusted P < 0.05). CONCLUSION In a cardiometabolically diverse population, the incremental associations of LFNITs with CVD outcomes were mediated by atherosclerotic burden rather than arterial stiffening. FIB-4 consistently demonstrated associations with all study end points. These findings provide mechanistic insights and support the clinical applicability of FIB-4 in CVD prevention.
Collapse
Affiliation(s)
- Georgios Georgiopoulos
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens Medical School, 11528 Athens, Greece
| | - Stavros Athanasopoulos
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens Medical School, 11528 Athens, Greece
| | - Georgios Mavraganis
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens Medical School, 11528 Athens, Greece
| | - Christina Konstantaki
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens Medical School, 11528 Athens, Greece
| | - Maria Papaioannou
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens Medical School, 11528 Athens, Greece
| | - Dimitrios Delialis
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens Medical School, 11528 Athens, Greece
| | - Lasthenis Angelidakis
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens Medical School, 11528 Athens, Greece
| | - Marco Sachse
- Department of Cardiovascular Research, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Dimitrios Papoutsis
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens Medical School, 11528 Athens, Greece
| | - Beyza Cavlan
- Department of Cardiovascular Research, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Simon Tual-Chalot
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, NE1 7RU Newcastle Upon Tyne, UK
| | - Georgios Zervas
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens Medical School, 11528 Athens, Greece
| | - Kateryna Sopova
- Department of Cardiovascular Research, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Department of Cardiology, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 68167 Mannheim, Germany
| | - Asimina Mitrakou
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens Medical School, 11528 Athens, Greece
| | - Konstantinos Stellos
- Department of Cardiovascular Research, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, NE1 7RU Newcastle Upon Tyne, UK
- Department of Cardiology, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 68167 Mannheim, Germany
| | - Kimon Stamatelopoulos
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens Medical School, 11528 Athens, Greece
- Translational and Clinical Research Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, NE1 7RU Newcastle Upon Tyne, UK
| |
Collapse
|
4
|
Khowdiary MM, Al-Kuraishy HM, Al-Gareeb AI, Albuhadily AK, Elhenawy AA, Rashwan EK, Alexiou A, Papadakis M, Fetoh MEAE, Batiha GES. The Peripheral Amyloid-β Nexus: Connecting Alzheimer's Disease with Atherosclerosis through Shared Pathophysiological Mechanisms. Neuromolecular Med 2025; 27:20. [PMID: 40032716 DOI: 10.1007/s12017-025-08836-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/06/2025] [Indexed: 03/05/2025]
Abstract
Alzheimer's disease (AD) and atherosclerosis (AS) are two chronic diseases with seemingly distinct pathologies. However, emerging research points to a bidirectional relationship driven by common mechanisms, such as inflammation, oxidative stress, and dysregulation of Amyloid-Beta (Aβ). This review focuses on the role of Aβ as a critical molecular link between AD and AS, emphasizing its contribution to neuronal impairment and vascular damage. Specifically, peripheral Aβ produced in the pancreas and skeletal muscle tissues exacerbates AS by promoting endothelial dysfunction and insulin resistance (IR). Furthermore, AS accelerates AD progression by impairing cerebral blood flow and inducing chronic hypoxia, causing Aβ accumulation. This review critically evaluates recent findings, highlighting inconsistencies in clinical studies and suggesting future research directions. Understanding the bidirectional influence of AD and AS could pave the way for novel therapeutic approaches targeting shared molecular pathways, particularly emphasizing Aβ clearance and inflammation.
Collapse
Affiliation(s)
- Manal M Khowdiary
- Department of Chemistry, Faculty of Applied Science, Lieth Collage, Umm Al-Qura University, 24382, Makkah, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Jabir Ibn Hayyan Medical University, Al-Ameer Qu./Najaf-Iraq, PO. Box13, Kufa, Iraq
| | - Ali K Albuhadily
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ahmed A Elhenawy
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
- Chemistry Department, Faculty of Science, AlBaha University, 65731, Al Bahah, Saudi Arabia
| | - Eman K Rashwan
- Department of Physiology, College of Medicine, Jouf University, Akaka, Saudi Arabia
| | - Athanasios Alexiou
- Department of Research & Development, Funogen, 11741, Athens, Attiki, Greece
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
| | - Marios Papadakis
- University Hospital, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Mohammed E Abo-El Fetoh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829, Cairo, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.
| |
Collapse
|
5
|
Liberale L, Tual-Chalot S, Sedej S, Ministrini S, Georgiopoulos G, Grunewald M, Bäck M, Bochaton-Piallat ML, Boon RA, Ramos GC, de Winther MPJ, Drosatos K, Evans PC, Ferguson JF, Forslund-Startceva SK, Goettsch C, Giacca M, Haendeler J, Kallikourdis M, Ketelhuth DFJ, Koenen RR, Lacolley P, Lutgens E, Maffia P, Miwa S, Monaco C, Montecucco F, Norata GD, Osto E, Richardson GD, Riksen NP, Soehnlein O, Spyridopoulos I, Van Linthout S, Vilahur G, Wentzel JJ, Andrés V, Badimon L, Benetos A, Binder CJ, Brandes RP, Crea F, Furman D, Gorbunova V, Guzik TJ, Hill JA, Lüscher TF, Mittelbrunn M, Nencioni A, Netea MG, Passos JF, Stamatelopoulos KS, Tavernarakis N, Ungvari Z, Wu JC, Kirkland JL, Camici GG, Dimmeler S, Kroemer G, Abdellatif M, Stellos K. Roadmap for alleviating the manifestations of ageing in the cardiovascular system. Nat Rev Cardiol 2025:10.1038/s41569-025-01130-5. [PMID: 39972009 DOI: 10.1038/s41569-025-01130-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/22/2025] [Indexed: 02/21/2025]
Abstract
Ageing of the cardiovascular system is associated with frailty and various life-threatening diseases. As global populations grow older, age-related conditions increasingly determine healthspan and lifespan. The circulatory system not only supplies nutrients and oxygen to all tissues of the human body and removes by-products but also builds the largest interorgan communication network, thereby serving as a gatekeeper for healthy ageing. Therefore, elucidating organ-specific and cell-specific ageing mechanisms that compromise circulatory system functions could have the potential to prevent or ameliorate age-related cardiovascular diseases. In support of this concept, emerging evidence suggests that targeting the circulatory system might restore organ function. In this Roadmap, we delve into the organ-specific and cell-specific mechanisms that underlie ageing-related changes in the cardiovascular system. We raise unanswered questions regarding the optimal design of clinical trials, in which markers of biological ageing in humans could be assessed. We provide guidance for the development of gerotherapeutics, which will rely on the technological progress of the diagnostic toolbox to measure residual risk in elderly individuals. A major challenge in the quest to discover interventions that delay age-related conditions in humans is to identify molecular switches that can delay the onset of ageing changes. To overcome this roadblock, future clinical trials need to provide evidence that gerotherapeutics directly affect one or several hallmarks of ageing in such a manner as to delay, prevent, alleviate or treat age-associated dysfunction and diseases.
Collapse
Affiliation(s)
- Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, Genoa, Italy
| | - Simon Tual-Chalot
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK.
| | - Simon Sedej
- Department of Cardiology, Medical University of Graz, Graz, Austria
| | - Stefano Ministrini
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | | | - Myriam Grunewald
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Magnus Bäck
- Translational Cardiology, Centre for Molecular Medicine, Department of Medicine Solna, and Department of Cardiology, Heart and Vascular Centre, Karolinska Institutet, Stockholm, Sweden
- Inserm, DCAC, Université de Lorraine, Nancy, France
| | | | - Reinier A Boon
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC location VUmc, Amsterdam, Netherlands
| | - Gustavo Campos Ramos
- Department of Internal Medicine I/Comprehensive Heart Failure Centre, University Hospital Würzburg, Würzburg, Germany
| | - Menno P J de Winther
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences: Atherosclerosis and Ischaemic Syndromes; Amsterdam Infection and Immunity: Inflammatory Diseases, Amsterdam UMC location AMC, Amsterdam, Netherlands
| | - Konstantinos Drosatos
- Metabolic Biology Laboratory, Cardiovascular Center, Department of Pharmacology, Physiology, and Neurobiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Paul C Evans
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jane F Ferguson
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sofia K Forslund-Startceva
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Claudia Goettsch
- Department of Internal Medicine I, Division of Cardiology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Mauro Giacca
- British Heart foundation Centre of Reseach Excellence, King's College London, London, UK
| | - Judith Haendeler
- Cardiovascular Degeneration, Medical Faculty, University Hospital and Heinrich-Heine University, Düsseldorf, Germany
| | - Marinos Kallikourdis
- Adaptive Immunity Lab, IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
| | - Daniel F J Ketelhuth
- Cardiovascular and Renal Research Unit, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Rory R Koenen
- CARIM-School for Cardiovascular Diseases, Department of Biochemistry, Maastricht University, Maastricht, Netherlands
| | | | - Esther Lutgens
- Department of Cardiovascular Medicine & Immunology, Mayo Clinic, Rochester, MN, USA
| | - Pasquale Maffia
- School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Satomi Miwa
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Claudia Monaco
- Kennedy Institute, NDORMS, University of Oxford, Oxford, UK
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, Genoa, Italy
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Elena Osto
- Division of Physiology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Gavin D Richardson
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Niels P Riksen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Oliver Soehnlein
- Institute of Experimental Pathology, University of Münster, Münster, Germany
| | - Ioakim Spyridopoulos
- Translational and Clinical Research Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Sophie Van Linthout
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätmedizin Berlin, Berlin, Germany
| | - Gemma Vilahur
- Research Institute, Hospital de la Santa Creu y Sant Pau l, IIB-Sant Pau, Barcelona, Spain
| | - Jolanda J Wentzel
- Cardiology, Biomedical Engineering, Erasmus MC, Rotterdam, Netherlands
| | - Vicente Andrés
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), CIBERCV, Madrid, Spain
| | - Lina Badimon
- Cardiovascular Health and Innovation Research Foundation (FICSI) and Cardiovascular Health and Network Medicine Department, University of Vic (UVIC-UCC), Barcelona, Spain
| | - Athanase Benetos
- Department of Geriatrics, University Hospital of Nancy and Inserm DCAC, Université de Lorraine, Nancy, France
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Ralf P Brandes
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt am Main, Germany
| | - Filippo Crea
- Centre of Excellence of Cardiovascular Sciences, Ospedale Isola Tiberina - Gemelli Isola, Roma, Italy
| | - David Furman
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Vera Gorbunova
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | - Tomasz J Guzik
- Centre for Cardiovascular Sciences, University of Edinburgh, Edinburgh, UK
| | - Joseph A Hill
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Thomas F Lüscher
- Heart Division, Royal Brompton and Harefield Hospital and National Heart and Lung Institute, Imperial College, London, UK
| | - María Mittelbrunn
- Consejo Superior de Investigaciones Científicas (CSIC), Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Alessio Nencioni
- IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, Genoa, Italy
- Dipartimento di Medicina Interna e Specialità Mediche-DIMI, Università degli Studi di Genova, Genova, Italy
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - João F Passos
- Department of Physiology and Biomedical Engineering, Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Kimon S Stamatelopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Nektarios Tavernarakis
- Medical School, University of Crete, and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Zoltan Ungvari
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - James L Kirkland
- Center for Advanced Gerotherapeutics, Division of Endocrinology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Goethe University, Frankfurt am Main, Germany
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm, Institut Universitaire de France, Paris, France
| | | | - Konstantinos Stellos
- Department of Cardiovascular Research, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
6
|
Al-Kuraishy HM, Sulaiman GM, Mohammed HA, Mohammed SG, Al-Gareeb AI, Albuhadily AK, Dawood RA, Al Ali A, Abu-Alghayth MH. Amyloid-β and heart failure in Alzheimer's disease: the new vistas. Front Med (Lausanne) 2025; 12:1494101. [PMID: 39967593 PMCID: PMC11832649 DOI: 10.3389/fmed.2025.1494101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/17/2025] [Indexed: 02/20/2025] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and represents 75% of all dementia types. AD neuropathology is due to the progressive deposition of extracellular amyloid-beta (Aβ) peptide and intracellular hyperphosphorylated tau protein. The accumulated Aβ forms amyloid plaques, while the hyperphosphorylated tau protein forms neurofibrillary tangles (NFTs). Both amyloid plaques and NFTs are hallmarks of AD neuropathology. The fundamental mechanism involved in the pathogenesis of AD is still elusive, although Aβ is the more conceivable theory. Aβ-induced neurodegeneration and associated neuroinflammation, oxidative stress, endoplasmic reticulum stress (ER), and mitochondrial dysfunction contribute to the development of cognitive impairment and dementia. Of note, Aβ is not only originated from the brain but also produced peripherally and, via the blood-brain barrier (BBB), can accumulate in the brain and result in the development of AD. It has been shown that cardiometabolic conditions such as obesity, type 2 diabetes (T2D), and heart failure (HF) are regarded as possible risk factors for the development of AD and other types of dementia, such as vascular dementia. HF-induced chronic cerebral hypoperfusion, oxidative stress, and inflammation can induce the development and progression of AD. Interestingly, AD is regarded as a systemic disease that causes systemic inflammation and oxidative stress, which in turn affects peripheral organs, including the heart. Aβ through deranged BBB can be transported into the systemic circulation from the brain and accumulated in the heart, leading to the development of HF. These findings suggest a close relationship between AD and HF. However, the exact mechanism of AD-induced HF is not fully elucidated. Therefore, this review aims to discuss the link between AD and the risk of HF regarding the potential role of Aβ in the pathogenesis of HF.
Collapse
Affiliation(s)
- Hayder M. Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | | | - Hamdoon A. Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim, Saudi Arabia
| | - Sohaib G. Mohammed
- Department of Pathological Analysis, College of Applied Science, Samarra University, Saladin, Iraq
| | | | - Ali K. Albuhadily
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Retaj A. Dawood
- Department of Biology, College of Science, Al-Mustaqbal University, Hilla, Iraq
| | - Amer Al Ali
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, Saudi Arabia
| | - Mohammed H. Abu-Alghayth
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, Saudi Arabia
| |
Collapse
|
7
|
Saeed A, McKennan C, Duan J, Yang YN, Kip KE, Finegold D, Vu M, Swanson J, Lopez OL, Cohen A, Mapstone M, Yu B, Ballantyne CM, Reis SE. Mid-life anti-inflammatory metabolites are inversely associated with long-term cardiovascular disease events. EBioMedicine 2025; 112:105551. [PMID: 39793479 PMCID: PMC11764641 DOI: 10.1016/j.ebiom.2024.105551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Preclinical data have shown that low levels of metabolites with anti-inflammatory properties may impact metabolic disease processes. However, the association between mid-life levels of such metabolites and long-term ASCVD risk is not known. METHODS We characterised the plasma metabolomic profile (1228 metabolites) of 1852 participants (58.1 ± 7.5 years old, 69.6% female, 43.6% self-identified as Black) enrolled in the Heart Strategies Concentrating on Risk Evaluation (Heart SCORE) study. Logistic regression was used to assess the impact of metabolite levels on ASCVD risk (nonfatal MI, revascularisation, and cardiac mortality). We additionally explored the effect of genetic variants neighbouring ASCVD-related genes on the levels of metabolites predictive of ASCVD events. The Atherosclerosis Risk in Communities (ARIC) study (n = 4790; 75.5 ± 5.1 years old, 57.4% female, 19.5% self-identified as Black) was used as an independent validation cohort. FINDINGS In fully adjusted models, alpha-ketobutyrate [AKB] (OR 0.62 [95% CI, 0.49-0.80]; p < 0.001), and 1-palmitoyl-2-linoleoyl-GPI [OR, 0.62, 95% CI, 0.47-0.83; p < 0.001], two metabolites in amino acid and phosphatidylinositol lipid pathways, respectively, showed a significant protective association with incident ASCVD risk in both Heart SCORE and ARIC cohorts. Three plasmalogens and a bilirubin derivative, whose levels were regulated by genetic variants neighbouring FADS1 and UGT1A1, respectively, exhibited a significant protective association with ASCVD risk in the Heart SCORE only. INTERPRETATION Higher mid-life levels of AKB and 1-palmitoyl-2-linoleoyl-GPI metabolites may be associated with lower risk late-life ASCVD events. Further research can determine the causality and therapeutic potential of these metabolites in ASCVD. FUNDING This study was funded by the Pennsylvania Department of Health (ME-02-384). The department specifically disclaims responsibility for any analyses, interpretations, or conclusions. Additional funding was provided by National Institutes of Health (NIH) grant R01HL089292 and UL1 TR001857 (Steven Reis). Further, NIH funded R01HL141824 and R01HL168683 were used for the ARIC study validation (Bing Yu).
Collapse
Affiliation(s)
- Anum Saeed
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Heart and Vascular Institute, UPMC, Pittsburgh, PA, USA.
| | - Chris McKennan
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jiaxuan Duan
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Kevin E Kip
- Clinical Analytics, UPMC Health Services Division, Pittsburgh, PA, USA
| | - David Finegold
- University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Michael Vu
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
| | | | - Oscar L Lopez
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Cognitive and Behavioral and Neurology Division, UPMC, Pittsburgh, PA, USA
| | - Ann Cohen
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mark Mapstone
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
| | - Bing Yu
- University of Texas Health Sciences, Houston, TX, USA
| | | | - Steven E Reis
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Heart and Vascular Institute, UPMC, Pittsburgh, PA, USA
| |
Collapse
|
8
|
Heller LI, Lowe AS, Del Rosario Hernández T, Gore SV, Chatterjee M, Creton R. Target the Heart: a new axis of Alzheimer's disease prevention. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.27.634057. [PMID: 39975163 PMCID: PMC11838187 DOI: 10.1101/2025.01.27.634057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Cyclosporine A and other calcineurin inhibitors have been identified as prospective treatments for preventing Alzheimer's disease. Utilizing a neural network model, Z-LaP Tracker, we previously found that calcineurin inhibitors elicit a unique behavioral profile in zebrafish larvae characterized by increased activity, acoustic hyperexcitability, and reduced visually guided behaviors. Screening a large library of FDA-approved drugs using Z-LaP Tracker revealed a cluster of 65 drugs demonstrating a cyclosporine A-like behavioral profile. 14 of these drugs were heart medications, including angiotensin receptor blockers, beta-blockers, alpha-adrenergic receptor antagonists, and a statin. This suggests some heart medications may be effective in preventing or ameliorating Alzheimer's disease pathology. Other studies have shown that many of these 14 drugs directly or indirectly inhibit the calcineurin-NFAT pathway, alike cyclosporine A. Dual administration of the heart medications with cyclosporine A in Z-LaP Tracker revealed synergistic effects: lower doses of each heart medication could be delivered in conjunction with a lower dose of cyclosporine A to evoke a similar or larger behavioral effect than higher doses of each drug independently. This indicates that co-administering a low dose of cyclosporine A with select cardiac drugs could be a potentially effective treatment strategy for Alzheimer's disease and cardiovascular dysfunction, while mitigating side effects associated with higher doses of cyclosporine A. Given that heart disease precedes Alzheimer's disease in many patients, physicians may be able to create a treatment regimen that simultaneously addresses both conditions. Our results suggest that cyclosporine A combined with simvastatin, irbesartan, cilostazol, doxazosin, or nebivolol are the most promising candidates for future exploration.
Collapse
Affiliation(s)
- Lawrence I Heller
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, United States
| | - Allison S Lowe
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, United States
| | - Thaís Del Rosario Hernández
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, United States
| | - Sayali V Gore
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, United States
| | - Mallika Chatterjee
- Amity Institute of Neuropsychology and Neurosciences, Amity University, Noida, 201303, India
| | - Robbert Creton
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, United States
| |
Collapse
|
9
|
Aivalioti E, Georgiopoulos G, Tual-Chalot S, Bampatsias D, Delialis D, Sopova K, Drakos SG, Stellos K, Stamatelopoulos K. Amyloid-beta metabolism in age-related neurocardiovascular diseases. Eur Heart J 2025; 46:250-272. [PMID: 39527015 PMCID: PMC11735085 DOI: 10.1093/eurheartj/ehae655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/13/2024] [Accepted: 09/15/2024] [Indexed: 11/16/2024] Open
Abstract
Epidemiological evidence suggests the presence of common risk factors for the development and prognosis of both cardio- and cerebrovascular diseases, including stroke, Alzheimer's disease, vascular dementia, heart, and peripheral vascular diseases. Accumulation of harmful blood signals may induce organotypic endothelial dysfunction affecting blood-brain barrier function and vascular health in age-related diseases. Genetic-, age-, lifestyle- or cardiovascular therapy-associated imbalance of amyloid-beta (Aβ) peptide metabolism in the brain and periphery may be the missing link between age-related neurocardiovascular diseases. Genetic polymorphisms of genes related to Aβ metabolism, lifestyle modifications, drugs used in clinical practice, and Aβ-specific treatments may modulate Aβ levels, affecting brain, vascular, and cardiac diseases. This narrative review elaborates on the effects of interventions on Aβ metabolism in the brain, cerebrospinal fluid, blood, and peripheral heart or vascular tissues. Implications for clinical applicability, gaps in knowledge, and future perspectives of Aβ as the link among age-related neurocardiovascular diseases are also discussed.
Collapse
Affiliation(s)
- Evmorfia Aivalioti
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens Medical School, PO Box 11528, 80 Vas. Sofias Str., Athens, Greece
| | - Georgios Georgiopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens Medical School, PO Box 11528, 80 Vas. Sofias Str., Athens, Greece
- School of Biomedical Engineering and Imaging Sciences, King’s College, London, UK
- Department of Physiology, School of Medicine, University of Patras, Patra, Greece
| | - Simon Tual-Chalot
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Centre for Life, Newcastle Upon Tyne, NE1 3BZ, UK
| | - Dimitrios Bampatsias
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens Medical School, PO Box 11528, 80 Vas. Sofias Str., Athens, Greece
- Division of Cardiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Dimitrios Delialis
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens Medical School, PO Box 11528, 80 Vas. Sofias Str., Athens, Greece
| | - Kateryna Sopova
- Department of Cardiovascular Research, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Straße 13–17, D-68167 Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Mannheim, Germany
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Stavros G Drakos
- Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah School of Medicine, Salt Lake City, UT, USA
- Division of Cardiovascular Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Konstantinos Stellos
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Centre for Life, Newcastle Upon Tyne, NE1 3BZ, UK
- Department of Cardiovascular Research, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Straße 13–17, D-68167 Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Mannheim, Germany
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Kimon Stamatelopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens Medical School, PO Box 11528, 80 Vas. Sofias Str., Athens, Greece
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Centre for Life, Newcastle Upon Tyne, NE1 3BZ, UK
| |
Collapse
|
10
|
Ye C, Chen G, Huang W, Liu Y, He Z, Hu M, Deng G, Qi L, Li K. Association between the platelet/high-density lipoprotein cholesterol ratio and depression: A cross-sectional analysis in United States adults. J Affect Disord 2025; 368:741-748. [PMID: 39306005 DOI: 10.1016/j.jad.2024.09.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/15/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND The primary objective of this study was to elucidate the relationship between the platelet/high-density lipoprotein cholesterol ratio (PHR) and the risk of depression in adults in the US. METHODS We conducted a cross-sectional study using data from the National Health and Nutrition Examination Survey (NHANES) from 2007 to 2016. Depression was assessed using the PHQ-9 questionnaire. Weighted multivariable logistic regression models and restricted cubic spline (RCS) models were used to study the relationship between PHR and the risk of depression. Subgroup and interaction analyses were performed to further understand these associations. RESULTS A total of 21,454 participants were included in this study. After full adjustment, PHR was significantly positively correlated with depression (OR = 1.33, 95%CI: 1.03-1.73). When PHR was converted into a categorical variable based on quartiles (Q1-Q4), the highest quartile of PHR was associated with an increased risk of depression compared to the lowest reference group (OR = 1.22, 95%CI: 1.01-1.48). There was a linear dose-response relationship between PHR and the risk of depression (P-non-linear = 0.8038). The association remained significant in several subgroup analyses. However, the interaction test showed that none of the stratified variables were significant (all P for interaction >0.05). LIMITATION Using self-assessment scales and inability to assess causality. CONCLUSION This population-based cross-sectional study elucidated that PHR is significantly associated with an increased prevalence of depression in adults in the US.
Collapse
Affiliation(s)
- Chenle Ye
- Institute of Digestive Diseases, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan 511518, China
| | - Guangzhan Chen
- Institute of Digestive Diseases, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan 511518, China
| | - Weikai Huang
- Institute of Digestive Diseases, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan 511518, China
| | - Yuanrun Liu
- Institute of Digestive Diseases, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan 511518, China
| | - Zhuoqi He
- Institute of Digestive Diseases, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan 511518, China
| | - Mingjie Hu
- School of Economics and Management, Beihang University, Beijing 100191, China
| | - Guangce Deng
- Department of Neurosurgery, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan 511518, China
| | - Ling Qi
- Institute of Digestive Diseases, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan 511518, China
| | - Kaishu Li
- Institute of Digestive Diseases, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan 511518, China; Department of Neurosurgery, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan 511518, China.
| |
Collapse
|
11
|
Aleksova A, Fluca AL, Beltrami AP, Dozio E, Sinagra G, Marketou M, Janjusevic M. Biomarkers of Importance in Monitoring Heart Condition After Acute Myocardial Infarction. J Clin Med 2024; 14:129. [PMID: 39797212 PMCID: PMC11721547 DOI: 10.3390/jcm14010129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/04/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Despite notable advancements in cardiovascular medicine, morbidity and mortality rates associated with myocardial infarction (MI) remain high. The unfavourable prognosis and absence of robust post-MI protocols necessitate further intervention. In this comprehensive review, we will focus on well-established and novel biomarkers that can provide insight into the processes that occur after an ischemic event. More precisely, during the follow-up, it is of particular importance to monitor biomarkers that indicate an increase in myocardial stretch and stress, damage and death of cardiomyocytes, remodelling of the extracellular matrix, oxidative stress, and inflammation. This enables the identification of abnormalities in a timely manner, as well as the capacity to respond promptly to any changes. Therefore, we would like to highlight the importance of well-known markers, such as natriuretic peptides, high-sensitivity troponins, soluble suppression of tumorigenicity 2, galactin-3, C-reactive protein, and interleukins in post-MI settings, as well as biomarkers such as adrenomedullin, growth differentiation factor-15, insulin-like growth factor binding protein 7, amyloid beta, vitamin D, trimethylamine N-oxide, and advanced glycation end-products that recently emerged in the cardiovascular filed. The implementation of novel post-MI protocols, which encompass the monitoring of the aforementioned biomarkers deemed pertinent, in conjunction with adherence to established cardiac rehabilitation programmes, along with the already well-established therapeutic strategies and control of cardiovascular risk factors, has the potential to markedly enhance patient outcomes and reduce the elevated level of morbidity and mortality.
Collapse
Affiliation(s)
- Aneta Aleksova
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina, 34100 Trieste, Italy; (A.L.F.); (G.S.); (M.J.)
- Department of Medical Surgical and Health Sciences, University of Trieste, 34125 Trieste, Italy
| | - Alessandra Lucia Fluca
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina, 34100 Trieste, Italy; (A.L.F.); (G.S.); (M.J.)
- Department of Medical Surgical and Health Sciences, University of Trieste, 34125 Trieste, Italy
| | - Antonio Paolo Beltrami
- Dipartimento di Area Medica (DAME), Istituto di Patologia Clinica, University of Udine, 33100 Udine, Italy;
| | - Elena Dozio
- Department of Biomedical Sciences for Health, University of Milan, 20122 Milan, Italy;
| | - Gianfranco Sinagra
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina, 34100 Trieste, Italy; (A.L.F.); (G.S.); (M.J.)
- Department of Medical Surgical and Health Sciences, University of Trieste, 34125 Trieste, Italy
| | - Maria Marketou
- Cardiology Department Crete, School of Medicine, Heraklion University General Hospital, University of Crete, 70013 Heraklion, Greece;
| | - Milijana Janjusevic
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina, 34100 Trieste, Italy; (A.L.F.); (G.S.); (M.J.)
- Department of Medical Surgical and Health Sciences, University of Trieste, 34125 Trieste, Italy
| |
Collapse
|
12
|
Dabravolski SA, Churov AV, Elizova NV, Ravani AL, Karimova AE, Sukhorukov VN, Orekhov AN. Association between atherosclerosis and the development of multi-organ pathologies. SAGE Open Med 2024; 12:20503121241310013. [PMID: 39734765 PMCID: PMC11672402 DOI: 10.1177/20503121241310013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/09/2024] [Indexed: 12/31/2024] Open
Abstract
Atherosclerosis is a chronic inflammatory disease affecting the vascular system, characterised by the accumulation of modified lipoproteins, immune cell aggregation and the development of fibrous tissue within blood vessel walls. As atherosclerosis impacts blood vessels, its adverse effects may manifest across various tissues and organs. In this review, we examine the association of atherosclerosis with Alzheimer's disease, stroke, pancreatic and thyroid dysfunction, kidney stones and chronic kidney diseases. In several cases, the reciprocal causative effect of these diseases on the progression of atherosclerosis is also discussed. Particular attention is given to common risk factors, biomarkers and identified molecular mechanisms linking the pathophysiology of atherosclerosis to the dysfunction of multiple tissues and organs. Understanding the role of atherosclerosis and its associated microenvironmental conditions in the pathology of multi-organ disorders may unveil novel therapeutic avenues for the prevention and treatment of cardiovascular and associated diseases.
Collapse
Affiliation(s)
- Siarhei A Dabravolski
- Department of Biotechnology Engineering, Braude Academic College of Engineering, Karmiel, Israel
| | - Alexey V Churov
- Institute of General Pathology and Pathophysiology, Moscow, Russia
- Pirogov Russian National Research Medical University, Russia Gerontology Clinical Research Centre, Institute on Ageing Research, Russian Federation, Moscow, Russia
| | | | | | - Amina E Karimova
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow, Russia
| | - Vasily N Sukhorukov
- Institute of General Pathology and Pathophysiology, Moscow, Russia
- Institute of Human Morphology, Petrovsky Russian National Centre of Surgery, Moscow, Russia
| | | |
Collapse
|
13
|
Moore A, Ritchie MD. Is the Relationship Between Cardiovascular Disease and Alzheimer's Disease Genetic? A Scoping Review. Genes (Basel) 2024; 15:1509. [PMID: 39766777 PMCID: PMC11675426 DOI: 10.3390/genes15121509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Cardiovascular disease (CVD) and Alzheimer's disease (AD) are two diseases highly prevalent in the aging population and often co-occur. The exact relationship between the two diseases is uncertain, though epidemiological studies have demonstrated that CVDs appear to increase the risk of AD and vice versa. This scoping review aims to examine the current identified overlapping genetics between CVDs and AD at the individual gene level and at the shared pathway level. METHODS Following PRISMA-ScR guidelines for a scoping review, we searched the PubMed and Scopus databases from 1990 to October 2024 for articles that involved (1) CVDs, (2) AD, and (3) used statistical methods to parse genetic relationships. RESULTS Our search yielded 2918 articles, of which 274 articles passed screening and were organized into two main sections: (1) evidence of shared genetic risk; and (2) shared mechanisms. The genes APOE, PSEN1, and PSEN2 reportedly have wide effects across the AD and CVD spectrum, affecting both cardiac and brain tissues. Mechanistically, changes in three main pathways (lipid metabolism, blood pressure regulation, and the breakdown of the blood-brain barrier (BBB)) contribute to subclinical and etiological changes that promote both AD and CVD progression. However, genetic studies continue to be limited by the availability of longitudinal data and lack of cohorts that are representative of diverse populations. CONCLUSIONS Highly penetrant familial genes simultaneously increase the risk of CVDs and AD. However, in most cases, sets of dysregulated genes within larger-scale mechanisms, like changes in lipid metabolism, blood pressure regulation, and BBB breakdown, increase the risk of both AD and CVDs and contribute to disease progression.
Collapse
Affiliation(s)
- Anni Moore
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Marylyn D. Ritchie
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
- Division of Informatics, Department of Biostatistics, Epidemiology & Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
14
|
Bao M, Hua X, Chen X, An T, Mo H, Sun Z, Tao M, Yue G, Song J. PICALM Regulating the Generation of Amyloid β-Peptide to Promote Anthracycline-Induced Cardiotoxicity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401945. [PMID: 38935046 PMCID: PMC11348153 DOI: 10.1002/advs.202401945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/22/2024] [Indexed: 06/28/2024]
Abstract
Anthracyclines are chemotherapeutic drugs used to treat solid and hematologic malignancies. However, life-threatening cardiotoxicity, with cardiac dilation and heart failure, is a drawback. A combination of in vivo for single cell/nucleus RNA sequencing and in vitro approaches is used to elucidate the underlying mechanism. Genetic depletion and pharmacological blocking peptides on phosphatidylinositol binding clathrin assembly (PICALM) are used to evaluate the role of PICALM in doxorubicin-induced cardiotoxicity in vivo. Human heart tissue samples are used for verification. Patients with end-stage heart failure and chemotherapy-induced cardiotoxicity have thinner cell membranes compared to healthy controls do. Using the doxorubicin-induced cardiotoxicity mice model, it is possible to replicate the corresponding phenotype in patients. Cellular changes in doxorubicin-induced cardiotoxicity in mice, especially in cardiomyocytes, are identified using single cell/nucleus RNA sequencing. Picalm expression is upregulated only in cardiomyocytes with doxorubicin-induced cardiotoxicity. Amyloid β-peptide production is also increased after doxorubicin treatment, which leads to a greater increase in the membrane permeability of cardiomyocytes. Genetic depletion and pharmacological blocking peptides on Picalm reduce the generation of amyloid β-peptide. This alleviates the doxorubicin-induced cardiotoxicity in vitro and in vivo. In human heart tissue samples of patients with chemotherapy-induced cardiotoxicity, PICALM, and amyloid β-peptide are elevated as well.
Collapse
Affiliation(s)
- Mengni Bao
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant MaterialsAnimal Experimental CentreFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100037China
- State Key Laboratory of Cardiovascular DiseaseFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing10037China
- Shenzhen Key Laboratory of Cardiovascular DiseaseFuwai HospitalChinese Academy of Medical SciencesShenzhen518057China
| | - Xiumeng Hua
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant MaterialsAnimal Experimental CentreFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100037China
- State Key Laboratory of Cardiovascular DiseaseFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing10037China
- Department of Cardiovascular SurgeryFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing10037China
- The Cardiomyopathy Research GroupFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing10037China
| | - Xiao Chen
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant MaterialsAnimal Experimental CentreFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100037China
- State Key Laboratory of Cardiovascular DiseaseFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing10037China
- Department of Cardiovascular SurgeryFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing10037China
- The Cardiomyopathy Research GroupFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing10037China
| | - Tao An
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant MaterialsAnimal Experimental CentreFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100037China
- Department of CardiologyFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing10037China
| | - Han Mo
- Shenzhen Key Laboratory of Cardiovascular DiseaseFuwai HospitalChinese Academy of Medical SciencesShenzhen518057China
| | - Zhe Sun
- Shenzhen Key Laboratory of Cardiovascular DiseaseFuwai HospitalChinese Academy of Medical SciencesShenzhen518057China
| | - Menghao Tao
- State Key Laboratory of Cardiovascular DiseaseFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing10037China
| | - Guangxin Yue
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant MaterialsAnimal Experimental CentreFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100037China
| | - Jiangping Song
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant MaterialsAnimal Experimental CentreFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100037China
- State Key Laboratory of Cardiovascular DiseaseFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing10037China
- Shenzhen Key Laboratory of Cardiovascular DiseaseFuwai HospitalChinese Academy of Medical SciencesShenzhen518057China
- Department of Cardiovascular SurgeryFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing10037China
- The Cardiomyopathy Research GroupFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing10037China
| |
Collapse
|
15
|
Mourino-Alvarez L, Juarez-Alia C, Sastre-Oliva T, Perales-Sánchez I, Hernandez-Fernandez G, Chicano-Galvez E, Peralbo-Molina Á, Madruga F, Blanco-Lopez E, Tejerina T, Barderas MG. Dysregulation of Lipid Metabolism Serves as A Link Between Alzheimer's and Cardiovascular Disease, As Witnessed in A Cross-Sectional Study. Aging Dis 2024:AD.2024.0434. [PMID: 39012677 DOI: 10.14336/ad.2024.0434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 05/31/2024] [Indexed: 07/17/2024] Open
Abstract
Cardiovascular risk factors and established cardiovascular disease (CVD) increase the risk of suffering dementia of the Alzheimer's type (DAT). Here, we set out to define specific molecular profiles of CVD in patients with DAT to better understand its relationship, to unravel the mechanisms underlying the high risk of developing DAT in CVD patients and to define new markers of early disease. Plasma samples from patients with DAT, with and without CVD, were analyzed through a multiomics approach, with integration of metabolomics and proteomics datasets using the OmicsNet web-based tool. Metabolomics results showed an enrichment in lipids and lipid-like molecules. Similarly, the most significant cluster identified through proteomics was formed by 5 proteins related to lipoprotein and cholesterol metabolism. After integration and functional enrichment, glycerolipid metabolism, fatty acid degradation and sphingolipid metabolism were among the most significant functions. Finally, differential expression of ABCA1 and APOH proteins was verified, in an independent cohort also including controls and patients with CVD alone. Both proteins positively correlated with phospho-Tau (181), a classical hallmark of DAT. Different molecular profiles exist in patients with DAT, with and without CVD, with exacerbated alterations in patients in which DAT and CVD co-exist. This information may help to define biomarkers like ABCA1 and APOH that identify patients with cardiovascular dysfunction that are at high risk of developing DAT. Such markers will allow more personalized interventions to be selected, a further step towards precision medicine for individuals whose molecular profiles indicate a distinct response to the same management strategies.
Collapse
Affiliation(s)
- Laura Mourino-Alvarez
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, SESCAM, 45071 Toledo, Spain
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, IDISCAM, 45071 Toledo, Spain
| | - Cristina Juarez-Alia
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, SESCAM, 45071 Toledo, Spain
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, IDISCAM, 45071 Toledo, Spain
| | - Tamara Sastre-Oliva
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, SESCAM, 45071 Toledo, Spain
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, IDISCAM, 45071 Toledo, Spain
| | - Inés Perales-Sánchez
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, SESCAM, 45071 Toledo, Spain
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, IDISCAM, 45071 Toledo, Spain
| | - German Hernandez-Fernandez
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, SESCAM, 45071 Toledo, Spain
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, IDISCAM, 45071 Toledo, Spain
| | - Eduardo Chicano-Galvez
- IMIBIC Mass Spectrometry and Molecular Imaging Unit, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba (UCO), Córdoba, Spain
| | - Ángela Peralbo-Molina
- IMIBIC Mass Spectrometry and Molecular Imaging Unit, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba (UCO), Córdoba, Spain
| | - Felipe Madruga
- Departament of Geriatrics, Hospital Virgen del Valle, SESCAM, Toledo, Spain
| | - Emilio Blanco-Lopez
- Department of Cardiology, Ciudad Real General University Hospital, Ciudad Real, Spain
| | - Teresa Tejerina
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - María G Barderas
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, SESCAM, 45071 Toledo, Spain
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, IDISCAM, 45071 Toledo, Spain
| |
Collapse
|
16
|
Chen YH, Ren CY, Yu C. Causal relationship between Alzheimer's disease and unstable angina: a bidirectional Mendelian randomization analysis. Front Psychiatry 2024; 15:1435394. [PMID: 39045549 PMCID: PMC11263098 DOI: 10.3389/fpsyt.2024.1435394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024] Open
Abstract
Background Research from observational studies has demonstrated a link between Alzheimer's disease (AD) and a higher risk of cardiovascular disease (CVD). Uncertainty surrounds the exact genetic cause of AD and coronary heart disease, particularly unstable angina (UA). Mendelian randomization (MR) analysis was used to examine the causal genetic link between AD and UA to evaluate the impact of AD on UA. Methods The purpose of the bidirectional MR analysis was to investigate the link between exposure and illness causation. Genetic instrumental variables for AD were obtained from European populations using genome-wide association studies (GWAS). The primary causal conclusions were obtained using the inverse variance weighted approach (IVW), and other sensitivity analysis techniques were employed. Sensitivity analyses were carried out to evaluate heterogeneity and horizontal pleiotropy to guarantee accurate MR results. Results An elevated risk of UA was linked to genetically predicted AD (IVW: OR=3.439, 95% CI: 1.565-7.555, P=0.002). A substantial genetic relationship between UA and the risk of AD was not supported by any evidence in the reverse study (IVW: OR=0.998, 95% CI: 0.995-1.001, P=0.190). Various MR techniques produced consistent results. Sensitivity analysis revealed no discernible heterogeneity or horizontal pleiotropy. Conclusions One risk factor for UA that we found in our bidirectional Mendelian randomization trial was AD. This highlights the necessity of researching the underlying molecular mechanisms linked to AD and UA as well as the possibility of creating individualized treatment plans based on genetic data.
Collapse
Affiliation(s)
- Yu-hang Chen
- Department of Operations Management, Chongqing Mental Health Center, Chongqing, China
| | - Cong-ying Ren
- Department of Hospital Infection Control, Chongqing Mental Health Center, Chongqing, China
| | - Cao Yu
- Department of Cardiothoracic Surgery, Chongqing University Jiangjin Hospital, Chongqing, China
| |
Collapse
|
17
|
Delialis D, Georgiopoulos G, Tual-Chalot S, Angelidakis L, Aivalioti E, Mavraganis G, Sopova K, Argyris A, Kostakou P, Konstantaki C, Papaioannou M, Tsilimigras D, Chatoupis K, Zacharoulis AA, Galyfos G, Sigala F, Stellos K, Stamatelopoulos K. Amyloid beta is associated with carotid wall echolucency and atherosclerotic plaque composition. Sci Rep 2024; 14:14944. [PMID: 38942831 PMCID: PMC11213915 DOI: 10.1038/s41598-024-64906-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/14/2024] [Indexed: 06/30/2024] Open
Abstract
Circulating amyloid-beta 1-40 (Αb40) has pro-atherogenic properties and could serve as a biomarker in atherosclerotic cardiovascular disease (ASCVD). However, the association of Ab40 levels with morphological characteristics reflecting atherosclerotic plaque echolucency and composition is not available. Carotid atherosclerosis was assessed in consecutively recruited individuals without ASCVD (n = 342) by ultrasonography. The primary endpoint was grey scale median (GSM) of intima-media complex (IMC) and plaques, analysed using dedicated software. Vascular markers were assessed at two time-points (median follow-up 35.5 months). In n = 56 patients undergoing carotid endarterectomy, histological plaque features were analysed. Plasma Αb40 levels were measured at baseline. Ab40 was associated with lower IMC GSM and plaque GSM and higher plaque area at baseline after multivariable adjustment. Increased Ab40 levels were also longitudinally associated with decreasing or persistently low IMC and plaque GSM after multivariable adjustment (p < 0.05). In the histological analysis, Ab40 levels were associated with lower incidence of calcified plaques and plaques without high-risk features. Ab40 levels are associated with ultrasonographic and histological markers of carotid wall composition both in the non-stenotic arterial wall and in severely stenotic plaques. These findings support experimental evidence linking Ab40 with plaque vulnerability, possibly mediating its established association with major adverse cardiovascular events.
Collapse
Affiliation(s)
- Dimitrios Delialis
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, PO Box 11528, 80 Vas. Sofias Str., Athens, Greece
| | - Georgios Georgiopoulos
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, PO Box 11528, 80 Vas. Sofias Str., Athens, Greece
| | - Simon Tual-Chalot
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Lasthenis Angelidakis
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, PO Box 11528, 80 Vas. Sofias Str., Athens, Greece
| | - Evmorfia Aivalioti
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, PO Box 11528, 80 Vas. Sofias Str., Athens, Greece
| | - Georgios Mavraganis
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, PO Box 11528, 80 Vas. Sofias Str., Athens, Greece
| | - Kateryna Sopova
- Department of Cardiovascular Research, European Center for Angioscience (ECAS), Heidelberg University, Ludolf-Krehl-Straße 13-17, D-68167, Mannheim, Germany
- Department of Cardiology, University Hospital Mannheim, Mannheim, Germany
| | - Antonios Argyris
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, PO Box 11528, 80 Vas. Sofias Str., Athens, Greece
| | - Peggy Kostakou
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, PO Box 11528, 80 Vas. Sofias Str., Athens, Greece
| | - Christina Konstantaki
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, PO Box 11528, 80 Vas. Sofias Str., Athens, Greece
| | - Maria Papaioannou
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, PO Box 11528, 80 Vas. Sofias Str., Athens, Greece
| | - Diamantis Tsilimigras
- First Department of Propaedeutic Surgery, Hippocrateion Hospital, Medical School, University of Athens, Athens, Greece
| | - Konstantinos Chatoupis
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, PO Box 11528, 80 Vas. Sofias Str., Athens, Greece
| | | | - George Galyfos
- First Department of Propaedeutic Surgery, Hippocrateion Hospital, Medical School, University of Athens, Athens, Greece
| | - Fragiska Sigala
- First Department of Propaedeutic Surgery, Hippocrateion Hospital, Medical School, University of Athens, Athens, Greece
| | - Konstantinos Stellos
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK.
- Department of Cardiovascular Research, European Center for Angioscience (ECAS), Heidelberg University, Ludolf-Krehl-Straße 13-17, D-68167, Mannheim, Germany.
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Mannheim, Germany.
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Kimon Stamatelopoulos
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, PO Box 11528, 80 Vas. Sofias Str., Athens, Greece.
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK.
| |
Collapse
|
18
|
Chen C, Anqi W, Ling G, Shan W, Liangjun D, Suhang S, Kang H, Fan G, Jingyi W, Qiumin Q, Jin W. Atherosclerosis is associated with plasma Aβ levels in non-hypertension patients. BMC Neurol 2024; 24:218. [PMID: 38918722 PMCID: PMC11197226 DOI: 10.1186/s12883-024-03722-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Growing evidence indicated that to develop of atherosclerosis observed more often by people with Alzheimer's disease (AD), but the underlying mechanism is not fully clarified. Considering that amyloid-β (Aβ) deposition in the brain is the key pathophysiology of AD and plasma Aβ is closely relate to Aβ deposition in the brain, in the present study, we investigated the relationships between atherosclerosis and plasma Aβ levels. METHODS This was a population based cross-sectional study. Patients with high risk of atherosclerosis from Qubao Village, Xi'an were underwent carotid ultrasound for assessment of atherosclerosis. Venous blood was collected on empty stomach in the morning and plasma Aβ1-40 and Aβ1-42 levels were measured using ELISA. Multivariate logistic regression analysis was performed to investigate the relationships between carotid atherosclerosis (CAS) and plasma Aβ levels. RESULTS Among 344 patients with high risk of atherosclerosis, 251(73.0%) had CAS. In the univariate analysis, the plasma Aβ levels had no significant differences between CAS group and non-CAS group (Aβ1-40: 53.07 ± 9.24 pg/ml vs. 51.67 ± 9.11pg/ml, p = 0.211; Aβ1-42: 40.10 ± 5.57 pg/ml vs. 40.70 pg/ml ± 6.37pg/ml, p = 0.285). Multivariate logistic analysis showed that plasma Aβ levels were not associated with CAS (Aβ1-40: OR = 1.019, 95%CI: 0.985-1.054, p = 0.270;Aβ1-42: OR = 1.028, 95%CI: 0.980-1.079, p = 0.256) in the total study population. After stratified by hypertension, CAS was associated with plasma Aβ1-40 positively (OR = 1.063, 95%CI: 1.007-1.122, p = 0.028) in the non-hypertension group, but not in hypertensive group. When the plasma Aβ concentrations were classified into four groups according to its quartile, the highest level of plasma Aβ1-40 group was associated with CAS significantly (OR = 4.465, 95%CI: 1.024-19.474, p = 0.046). CONCLUSION Among patients with high risk of atherosclerosis, CAS was associated with higher plasma Aβ1-40 level in non-hypertension group, but not in hypertension group. These indicated that atherosclerosis is associated with plasma Aβ level, but the relationship may be confounded by hypertension.
Collapse
Affiliation(s)
- Chen Chen
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Rd, Xi'an, 710061, China
| | - Wang Anqi
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Rd, Xi'an, 710061, China
| | - Gao Ling
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Rd, Xi'an, 710061, China
| | - Wei Shan
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Rd, Xi'an, 710061, China
| | - Dang Liangjun
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Rd, Xi'an, 710061, China
| | - Shang Suhang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Rd, Xi'an, 710061, China
| | - Huo Kang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Rd, Xi'an, 710061, China
| | - Gao Fan
- Clinical research center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wang Jingyi
- Huyi Hospital of Traditional Chinese Medicine, Xi'an, China
| | - Qu Qiumin
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Rd, Xi'an, 710061, China.
| | - Wang Jin
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Rd, Xi'an, 710061, China.
| |
Collapse
|
19
|
Del Moral LE, Lerma C, González-Pacheco H, Chávez-Lázaro AC, Massó F, Rodriguez E. Correlation of Plasmatic Amyloid Beta Peptides (Aβ-40, Aβ-42) with Myocardial Injury and Inflammatory Biomarkers in Acute Coronary Syndrome. J Clin Med 2024; 13:1117. [PMID: 38398429 PMCID: PMC10889335 DOI: 10.3390/jcm13041117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Background/Objective: Amyloid beta (β) -40 levels increase with age and inflammation states and appear to be associated with clinical manifestations of acute coronary syndrome (ACS). We investigated the correlation of Aβ peptides with myocardial injury and inflammation biomarkers in patients with or without ST elevation myocardial infarction (STEMI, NSTEMI). Methods: This singe-center, cross-sectional, observational, and correlation study included 65 patients with ACS (n = 34 STEMI, 29 males, age = 58 ± 12 years; n = 31 NSTEMI, 22 males, age = 60 ± 12 years) who were enrolled in the coronary care unit within 12 h after symptom onset from February 2022 to May 2023. Aβ peptide levels and biochemical parameters were assessed. Results: NSTEMI patients had a higher prevalence of hypertension (p = 0.039), diabetes (p = 0.043), smoking (p = 0.003), and prior myocardial infarction (p = 0.010) compared to STEMI patients. We observed a higher level of Aβ-42 in NSTEMI (p = 0.001) but no difference in Aβ-40 levels. We also found a correlation between age and NT-proBNP with both Aβ peptides (Aβ-40, Aβ-42) (p = 0.001, p = 0.002 respectively). Conclusions: Our results show that patients with NSTEMI had a higher prevalence of cardiovascular risk factors (hypertension, diabetes, smoking, and prior myocardial infarction). Considering these results, we propose that Aβ-42 can add value to risk stratification in NSTEMI patients.
Collapse
Affiliation(s)
- Luis Eduardo Del Moral
- Translacional Research Unit, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (L.E.D.M.); (A.C.C.-L.); (F.M.)
| | - Claudia Lerma
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - Héctor González-Pacheco
- Coronary Care Unit, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - Alan Cristhian Chávez-Lázaro
- Translacional Research Unit, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (L.E.D.M.); (A.C.C.-L.); (F.M.)
| | - Felipe Massó
- Translacional Research Unit, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (L.E.D.M.); (A.C.C.-L.); (F.M.)
| | - Emma Rodriguez
- Translacional Research Unit, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (L.E.D.M.); (A.C.C.-L.); (F.M.)
| |
Collapse
|
20
|
Duan L, Xiao R, Liu S, Shi Y, Feng Y. Causality between cognitive performance and cardiovascular disease: A bidirectional Mendelian randomization study. Gene 2024; 891:147822. [PMID: 37758004 DOI: 10.1016/j.gene.2023.147822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/29/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Growing evidence points to a connection between cardiovascular disease and cognitive impairment. These observational study findings, however, were not all uniform, and some did not discover a link like this. Investigating the causal link between cognitive impairment and cardiovascular disease is vital. METHOD Using publicly available genome-wide association study (GWAS) summary datasets and stringent screening instrumental variables, we carried out a bidirectional Mendelian randomization study. To investigate the causality between cardiovascular disease and cognitive impairment, three different MR techniques-inverse variance weighted (IVW), MR-Egger, and weighted median-as well as various sensitivity analyses-Cochran's Q, ivw_radial, leave-one-out (LOO), MR-Egger intercept, and MR-PRESSO-were used. RESULTS The causal impact of genetically predicted cognitive performance on hypertension, atrial fibrillation, heart failure, coronary atherosclerosis, coronary artery disease, and myocardial infarction was detected in the forward MR analysis, but not stroke or any subtypes. We only discover the causal effects of hypertension, any stroke, and its subtypes (ischemic and small vessel stroke) on cognitive performance in the reverse MR analysis. CONCLUSION This MR analysis offers proof of a causal link between cognitive impairment and elevated cardiovascular disease risk. Our research emphasizes the value of cognitively impaired patients being screened for cardiovascular disease, which may offer fresh perspectives on cardiovascular disease prevention.
Collapse
Affiliation(s)
- Lincheng Duan
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Xiao
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shupei Liu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue Shi
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue Feng
- Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
21
|
Abstract
Cardiovascular disease (CVD) remains one of the leading causes of morbidity and mortality in aging adults across the United States. Prior studies indicate that the presence of atherosclerosis, the pathogenic basis of CVD, is linked with dementias. Alzheimer's disease (AD) and AD-related dementias are a major public health challenge in the United States. Recent studies indicate that ≈3.7 million Americans ≥65 years of age had clinical AD in 2017, with projected increases to 9.3 million by 2060. Treatment options for AD remain limited. Development of disease-modifying therapies are challenging due, in part, to the long preclinical window of AD. The preclinical incubation period of AD starts in midlife, providing a critical window for identification and optimization of AD risk factors. Studies link AD with CVD risk factors such as hypertension, inflammation, and dyslipidemia. Both AD and CVD are progressive diseases with decades-long development periods. CVD can clinically manifest several years earlier than AD, making CVD and its risk factors a potential predictor of future AD. The current review focuses on the state of literature on molecular and metabolic pathways modulating the heart-brain axis underlying the potential association of midlife CVD risk factors and their effect on AD and related dementias. Further, we explore potential CVD/dementia preventive strategies during the window of opportunity in midlife and the future of research in the field in the multiomics and novel biomarker use era.
Collapse
Affiliation(s)
- Anum Saeed
- University of Pittsburgh School of MedicinePittsburghPAUSA
- Heart and Vascular InstituteUniversity of Pittsburgh Medical CenterPAPittsburghUSA
| | - Oscar Lopez
- University of Pittsburgh School of MedicinePittsburghPAUSA
- Cognitive and Behavioral and Neurology DivisionUniversity of Pittsburgh Medical CenterPAPittsburghUSA
| | - Ann Cohen
- University of Pittsburgh School of MedicinePittsburghPAUSA
- Division of PsychiatryUniversity of Pittsburgh Medical CenterPAPittsburghUSA
| | - Steven E. Reis
- University of Pittsburgh School of MedicinePittsburghPAUSA
- Heart and Vascular InstituteUniversity of Pittsburgh Medical CenterPAPittsburghUSA
| |
Collapse
|
22
|
Georgiopoulos G, Delialis D, Aivalioti E, Georgakis V, Mavraganis G, Angelidakis L, Bampatsias D, Armeni E, Maneta E, Patras R, Dimopoulou MA, Oikonomou E, Kanakakis I, Lambrinoudaki I, Lagiou A, Xenos P, Stamatelopoulos K. Implementation of risk enhancers in ASCVD risk estimation and hypolipidemic treatment eligibility: A sex-specific analysis. Hellenic J Cardiol 2023; 73:16-23. [PMID: 36805072 DOI: 10.1016/j.hjc.2023.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/20/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
OBJECTIVE Sex-specific data are limited regarding eligibility for hypolipidemic treatment. We aim to explore the sex-specific clinical utility of high-sensitivity C-reactive protein (hsCRP) and carotid ultrasound as risk modifiers for hypolipidemic treatment in primary prevention of atherosclerotic cardiovascular disease (ASCVD). METHODS We aimed to explore these sex-specific trends in two pooled contemporary independent Greek cohorts (Athens Vascular Registry n = 698, 50.9% women and Menopause Clinic n = 373, 100% women) of individuals without overt ASCVD. Baseline ASCVD risk was estimated using the Systematic COronary Risk Evaluation-2 (SCORE2) tools. The presence of carotid plaque and hsCRP ≥2 mg/L were integrated as risk modifiers. RESULTS Men had increased odds to achieve target LDL-C levels based on ASCVD risk (23.8% vs. 17.7%, OR: 1.45 95% CI: 1.05-2.00, p = 0.023, for men vs. women). Additionally, considering carotid plaque or high hsCRP levels did not change this association but reduced on-target LDL-C rate in both sexes. Women had decreased odds of being eligible for hypolipidemic treatment by ASCVD risk estimation (11.5% vs. 26.4%, p < 0.001) compared with men. The addition of carotid plaque presence or high hsCRP levels and their combination resulted in a higher relative increase in hypolipidemic treatment eligibility in women (from 11.5% to 70.9% vs. 26.4% to 61.4% for carotid plaque, from 11.5% to 38.5% vs. 26.4% to 50.8% for hsCRP and from 11.5% to 79.1% vs. 26.4% to 75% for their combination, all for women vs. men, pforinteraction < 0.001 for all) than men. CONCLUSIONS Implementation of carotid plaque and hsCRP levels increases hypolipidemic treatment eligibility more prominently in women than in men. The impact on clinical outcomes in these untreated patients merits further investigation.
Collapse
Affiliation(s)
- Georgios Georgiopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Dimitrios Delialis
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Evmorfia Aivalioti
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Vasileios Georgakis
- Department of Statistics and Insurance Science, School of Finance and Statistics, University of Piraeus, Piraeus, Greece
| | - Georgios Mavraganis
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Lasthenis Angelidakis
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Dimitrios Bampatsias
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Elena Armeni
- Menopause Clinic, 2nd Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Aretaeio Hospital, Athens, Greece
| | - Eleni Maneta
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Raphael Patras
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Maria Angeliki Dimopoulou
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Ermioni Oikonomou
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Ioannis Kanakakis
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Irene Lambrinoudaki
- Menopause Clinic, 2nd Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Aretaeio Hospital, Athens, Greece
| | - Areti Lagiou
- Department of Public and Community Health, Faculty of Public Health, University of West Attica, Athens, Greece
| | - Panos Xenos
- Department of Statistics and Insurance Science, School of Finance and Statistics, University of Piraeus, Piraeus, Greece
| | - Kimon Stamatelopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens Medical School, Athens, Greece.
| |
Collapse
|
23
|
Xu S, Liu Y, Wang Q, Liu F, Xu F, Liu Y. Mendelian randomization study reveals a causal relationship between coronary artery disease and cognitive impairment. Front Cardiovasc Med 2023; 10:1150432. [PMID: 37288257 PMCID: PMC10242088 DOI: 10.3389/fcvm.2023.1150432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023] Open
Abstract
Background Growing evidence suggests that Coronary artery disease (CAD) is associated with cognitive impairment. However, these results from observational studies was not entirely consistent, with some detecting no such association. And it is necessary to explore the causal relationship between CAD and cognitive impairment. Objective We aimed to explore the potential causal relationship between CAD and cognitive impairment by using bidirectional two-sample mendelian randomization (MR) analyses. Methods Instrument variants were extracted according to strict selection criteria. And we used publicly available summary-level GWAS data. Five different methods of MR [random-effect inverse-variance weighted (IVW), MR Egger, weighted median, weighted mode and Wald ratio] were used to explore the causal relationship between CAD and cognitive impairment. Results There was little evidence to support a causal effect of CAD on cognitive impairment in the forward MR analysis. In the reverse MR analyses, We detect causal effects of fluid intelligence score (IVW: β = -0.12, 95% CI of -0.18 to -0.06, P = 6.8 × 10-5), cognitive performance (IVW: β = -0.18, 95% CI of -0.28 to -0.08, P = 5.8 × 10-4) and dementia with lewy bodies (IVW: OR = 1.07, 95% CI of 1.04-1.10, P = 1.1 × 10-5) on CAD. Conclusion This MR analysis provides evidence of a causal association between cognitive impairment and CAD. Our findings highlight the importance of screening for coronary heart disease in patients of cognitive impairment, which might provide new insight into the prevention of CAD. Moreover, our study provides clues for risk factor identification and early prediction of CAD.
Collapse
Affiliation(s)
- Shihan Xu
- The Second Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanfei Liu
- The Second Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qing Wang
- The Second Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fenglan Liu
- Graduate School of Guangdong Pharmaceutical University, Guangzhou, China
| | - Fengqin Xu
- The Second Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yue Liu
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
24
|
Luciani M, Montalbano M, Troncone L, Bacchin C, Uchida K, Daniele G, Jacobs Wolf B, Butler HM, Kiel J, Berto S, Gensemer C, Moore K, Morningstar J, Diteepeng T, Albayram O, Abisambra JF, Norris RA, Di Salvo TG, Prosser B, Kayed R, del Monte F. Big tau aggregation disrupts microtubule tyrosination and causes myocardial diastolic dysfunction: from discovery to therapy. Eur Heart J 2023; 44:1560-1570. [PMID: 37122097 PMCID: PMC10324644 DOI: 10.1093/eurheartj/ehad205] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 05/02/2023] Open
Abstract
BACKGROUND Amyloid plaques and neurofibrillary tangles, the molecular lesions that characterize Alzheimer's disease (AD) and other forms of dementia, are emerging as determinants of proteinopathies 'beyond the brain'. This study aims to establish tau's putative pathophysiological mechanistic roles and potential future therapeutic targeting of tau in heart failure (HF). METHODS AND RESULTS A mouse model of tauopathy and human myocardial and brain tissue from patients with HF, AD, and controls was employed in this study. Tau protein expression was examined together with its distribution, and in vitro tau-related pathophysiological mechanisms were identified using a variety of biochemical, imaging, and functional approaches. A novel tau-targeting immunotherapy was tested to explore tau-targeted therapeutic potential in HF. Tau is expressed in normal and diseased human hearts, in contradistinction to the current oft-cited observation that tau is expressed specifically in the brain. Notably, the main cardiac isoform is high-molecular-weight (HMW) tau (also known as big tau), and hyperphosphorylated tau segregates in aggregates in HF and AD hearts. As previously described for amyloid-beta, the tauopathy phenotype in human myocardium is of diastolic dysfunction. Perturbation in the tubulin code, specifically a loss of tyrosinated microtubules, emerged as a potential mechanism of myocardial tauopathy. Monoclonal anti-tau antibody therapy improved myocardial function and clearance of toxic aggregates in mice, supporting tau as a potential target for novel HF immunotherapy. CONCLUSION The study presents new mechanistic evidence and potential treatment for the brain-heart tauopathy axis in myocardial and brain degenerative diseases and ageing.
Collapse
Affiliation(s)
- Marco Luciani
- Center for Translational and Experimental Cardiology, University of Zurich, Rämistrasse 100 8091 Zurich, Switzerland
| | - Mauro Montalbano
- Department of Neurology, The University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-1045 USA
| | - Luca Troncone
- Cardiovascular Research Center, Mass General Research Institute, Mass General Brigham, 149 13th St., Boston, MA 02129, USA
| | - Camilla Bacchin
- Department of Medicine, Medical University of South Carolina, 96 Jonathan Lucas St., Charleston, SC 2942, USA
| | - Keita Uchida
- Department of Physiology, University of Pennsylvania, 415 Curie Blvd., Philadelphia, PA 19104, USA
| | - Gianlorenzo Daniele
- Department of Medicine, Medical University of South Carolina, 96 Jonathan Lucas St., Charleston, SC 2942, USA
| | - Bethany Jacobs Wolf
- Department of Public Health Sciences, Medical University of South Carolina, 135 Cannon St., Charleston, SC 2942, USA
| | - Helen M Butler
- Department of Medicine, Medical University of South Carolina, 96 Jonathan Lucas St., Charleston, SC 2942, USA
| | - Justin Kiel
- Department of Medicine, Medical University of South Carolina, 68 President Street, Charleston, SC 29425, USA
| | - Stefano Berto
- Department of Neuroscience Medical, University of South Carolina, 68 President St., Charleston, SC 29425, USA
| | - Cortney Gensemer
- Department of Medicine, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425, USA
| | - Kelsey Moore
- Department of Medicine, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425, USA
| | - Jordan Morningstar
- Department of Medicine, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425, USA
| | - Thamonwan Diteepeng
- Center for Translational and Experimental Cardiology, University of Zurich, Rämistrasse 100 8091 Zurich, Switzerland
| | - Onder Albayram
- Department of Medicine, Medical University of South Carolina, 68 President Street, Charleston, SC 29425, USA
| | - José F Abisambra
- Department of Neuroscience, University of Florida Health, 1275 Center Drive, Gainesville, FL 32610, USA
| | - Russell A Norris
- Department of Medicine, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425, USA
| | - Thomas G Di Salvo
- Department of Medicine, Medical University of South Carolina, 30 Courtenay Drive, Charleston, SC 29425, USA
| | - Benjamin Prosser
- Department of Physiology, University of Pennsylvania, 415 Curie Blvd., Philadelphia, PA 19104, USA
| | - Rakez Kayed
- Department of Neurology, The University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-1045 USA
| | - Federica del Monte
- Department of Medicine, Medical University of South Carolina, 96 Jonathan Lucas St., Charleston, SC 2942, USA
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Via Massarenti 9, Bologna 40054, Italy
- Massachusetts General Hospital, Harvard Medical School, Mass General Brigham, 55 Fruit Street, Boston, MA 02114, USA
| |
Collapse
|
25
|
Emfietzoglou M, Mavrogiannis MC, García-García HM, Stamatelopoulos K, Kanakakis I, Papafaklis MI. Current Toolset in Predicting Acute Coronary Thrombotic Events: The “Vulnerable Plaque” in a “Vulnerable Patient” Concept. Life (Basel) 2023; 13:life13030696. [PMID: 36983851 PMCID: PMC10052113 DOI: 10.3390/life13030696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Despite major advances in pharmacotherapy and interventional procedures, coronary artery disease (CAD) remains a principal cause of morbidity and mortality worldwide. Invasive coronary imaging along with the computation of hemodynamic forces, primarily endothelial shear stress and plaque structural stress, have enabled a comprehensive identification of atherosclerotic plaque components, providing a unique insight into the understanding of plaque vulnerability and progression, which may help guide patient treatment. However, the invasive-only approach to CAD has failed to show high predictive value. Meanwhile, it is becoming increasingly evident that along with the “vulnerable plaque”, the presence of a “vulnerable patient” state is also necessary to precipitate an acute coronary thrombotic event. Non-invasive imaging techniques have also evolved, providing new opportunities for the identification of high-risk plaques, the study of atherosclerosis in asymptomatic individuals, and general population screening. Additionally, risk stratification scores, circulating biomarkers, immunology, and genetics also complete the armamentarium of a broader “vulnerable plaque and patient” concept approach. In the current review article, the invasive and non-invasive modalities used for the detection of high-risk plaques in patients with CAD are summarized and critically appraised. The challenges of the vulnerable plaque concept are also discussed, highlighting the need to shift towards a more interdisciplinary approach that can identify the “vulnerable plaque” in a “vulnerable patient”.
Collapse
Affiliation(s)
| | - Michail C. Mavrogiannis
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Hector M. García-García
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, DC 20010, USA
| | - Kimon Stamatelopoulos
- Department of Therapeutics, Faculty of Medicine, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Ioannis Kanakakis
- Catheterization and Hemodynamic Unit, Alexandra University Hospital, 115 28 Athens, Greece
| | - Michail I. Papafaklis
- Catheterization and Hemodynamic Unit, Alexandra University Hospital, 115 28 Athens, Greece
- Correspondence: ; Tel.: +30-6944376572
| |
Collapse
|
26
|
Glycemia is associated with subclinical atherosclerosis through renal function in nondiabetic apparently healthy adults: a mediation analysis. Hypertens Res 2023:10.1038/s41440-023-01192-3. [PMID: 36690807 DOI: 10.1038/s41440-023-01192-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/18/2022] [Accepted: 01/05/2023] [Indexed: 01/24/2023]
Abstract
The causative associations between glycemia and early alterations in renal and vascular function remain unclear. To examine the interplay among glycemia, renal function, and markers of subclinical atherosclerosis in apparently healthy subjects. Nondiabetic (30-60 years old) individuals (n = 205) without chronic kidney disease or cardiovascular disease were consecutively recruited from a cardiovascular prevention clinic. All subjects underwent arterial stiffness assessment by measuring the carotid-femoral pulse wave velocity (cfPWV). Glomerular filtration rate (GFR) was estimated by CKD-EPI equation. Study procedures were identical in the two visits (median follow-up 66 months). We employed structural equation modeling (SEM) analysis to investigate the directionality of associations. Baseline fasting plasma glucose (FPG) was independently and inversely associated with GFR (p = 0.008). GFR was significantly associated with cfPWV (p < 0.001) at baseline. By SEM analysis decreasing baseline GFR directly correlated with increasing cfPWV (p = 0.003) whereas FPG correlated with cfPWV indirectly through GFR (mediation) (P = 0.032). FPG did not mediate the effect of GFR on cfPWV (P = 0.768). SEM analysis of longitudinal data revealed bidirectional correlations between changes in FPG and GFR (P < 0.001). Alterations in GFR were directly related to changes in cfPWV (p < 0.001) whereas FPG only indirectly correlated with cfPWV through GFR changes (P = 0.002). In apparently healthy nondiabetic subjects, the association between baseline or longitudinal glycemia levels and arterial stiffening was indirect, consistently mediated by renal function status. These findings provide the first clinical evidence supporting the directionality between kidney function and glycemia in nondiabetic subjects leading to vascular dysfunction. In apparently healthy nondiabetic subjects, without cardiovascular disease or chronic kidney disease, the association between baseline or longitudinal glycemia levels and arterial stiffening was indirect, consistently mediated by renal function status.
Collapse
|
27
|
Wang C, Lu Y, He K, Zhao R, Cheng J, Jiang S, Guo M. Comparative proteomics analyses of whey proteins from breastmilk collected from two ethnic groups in northeast China. Food Chem X 2023; 17:100568. [PMID: 36845516 PMCID: PMC9945434 DOI: 10.1016/j.fochx.2023.100568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/22/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
The current study aims to investigate differences in whey protein of breastmilk of volunteered mother collected from two ethnic groups (Korean and Han) in China using data-independent acquisition (DIA) based proteomics technique. The total detected 624 proteins were principally allocated to cellular process of biological process (BP), cell and cell part of cell component (CC) and binding of molecular function (MF) according to Gene Ontology (GO) annotation; and carbohydrate metabolism of Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Among the 54 differently expressed proteins, 8 were related with immunity. Enrichment data showed that intracellular of GO functions and viral myocarditis of KEGG pathways were most significantly enriched (p < 0.05). Protein-protein interaction (PPI) network suggested that 40S ribosomal protein S27a and 60S ribosomal protein L10a which interacted most with other proteins ranked the top two hub proteins by MCC (Maximal Clique Centrality) method. This study may have guiding role for development of infant formula powder for specific infants of Han or Korean groups according to responding breastmilk composition.
Collapse
Affiliation(s)
- Cuina Wang
- Department of Food Science, Jilin University, Changchun, China
| | - Yingcong Lu
- Department of Food Science, Jilin University, Changchun, China
| | - Keyi He
- Department of Food Science, Jilin University, Changchun, China
| | - Ru Zhao
- Department of Food Science, Jilin University, Changchun, China
| | - Jianjun Cheng
- Department of Food Science, Northeast Agriculture University, Harbin, China
| | - Shilong Jiang
- R&D Center, Heilongjiang Feihe Dairy Co., Ltd, Beijing, China
| | - Mingruo Guo
- Department of Nutrition and Food Sciences, College of Agriculture and Life Sciences, University of Vermont, Burlington, VT 05405, USA,Corresponding author at: 109 Carrigan Drive, 351Marsh Life Science, The University of Vermont, Burlington, VT 05405, USA.
| |
Collapse
|
28
|
Zhu F, Wolters FJ, Yaqub A, Leening MJG, Ghanbari M, Boersma E, Ikram MA, Kavousi M. Plasma Amyloid-β in Relation to Cardiac Function and Risk of Heart Failure in General Population. JACC. HEART FAILURE 2023; 11:93-102. [PMID: 36372727 DOI: 10.1016/j.jchf.2022.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Amyloid-β (Aβ) may be related to cardiac function. However, there are limited data on the association of plasma Aβ with cardiac function and risk of heart failure (HF) in the general population. OBJECTIVES This study sought to determine the associations of plasma amyloid-β40 (Aβ40) and amyloid-β42 (Aβ42) with echocardiographic measurements of cardiac dysfunction and with incident HF in the general population. METHODS The study included 4,156 participants of the population-based Rotterdam Study (mean age: 71.4 years; 57.1% women), who had plasma Aβ samples collected between 2002 and 2005 and had no established dementia and HF at baseline. Multivariable linear regression models were used to explore the cross-sectional association of plasma Aβ with echocardiographic measures. Participants were followed up until December 2016. Cox proportional hazards models were used to assess the association of Aβ levels with incident HF. Models were adjusted for cardiovascular risk factors. RESULTS A per 1-SD increase in log-transformed plasma Aβ40 was associated with a 0.39% (95% CI: -0.68 to -0.10) lower left ventricular ejection fraction and a 0.70 g/m2 (95% CI: 0.06-1.34) larger left ventricular mass indexed by body surface area. Aβ42 was not significantly associated with echocardiographic measures cross-sectionally. During follow-up (median: 10.2 years), 472 incident HF cases were identified. A per 1-SD increase in log-transformed Aβ40 was associated with a 32% greater risk of HF (HR: 1.32; 95% CI: 1.15-1.51), and the association was significant in men, but not in women. Higher plasma Aβ42 levels were associated with an increased risk of HF (HR: 1.12; 95% CI: 1.02-1.24), although the association was attenuated after further adjustment for concomitant Aβ40 (HR: 1.03; 95% CI: 0.92-1.16). CONCLUSIONS Higher levels of Aβ40 were associated with worse cardiac function and higher risk of new onset HF in the general population, in particular among men.
Collapse
Affiliation(s)
- Fang Zhu
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Frank J Wolters
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Amber Yaqub
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Maarten J G Leening
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Eric Boersma
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| |
Collapse
|
29
|
Peikert A, Cunningham JW. Amyloid-β and the Risk of Heart Failure: Cause or Only Association? JACC. HEART FAILURE 2023; 11:103-105. [PMID: 36599537 DOI: 10.1016/j.jchf.2022.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Alexander Peikert
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan W Cunningham
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
30
|
Wei S, Dang L, Gao F, Wang J, Wang J, Qu Q. Effects of Simvastatin on Plasma Amyloid-β Transport in Patients with Hyperlipidemia: A 12-Week Randomized, Double-Blind, Placebo-Controlled Trial. J Alzheimers Dis 2022; 90:349-362. [DOI: 10.3233/jad-220240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Abnormal blood lipids are associated with cognitive impairment and amyloid-β (Aβ) deposition in the brain. However, the effects of statins on Alzheimer’s disease (AD) have not been determined. Objective: Considering that plasma Aβ are related to Aβ deposition in the brain, we investigated the effects of simvastatin on plasma Aβ transport. Methods: This was a randomized, double-blind, placebo-controlled trial. One hundred and twenty patients with hyperlipidemia were randomly assigned to receive 40 mg of simvastatin per day or matching placebo for 12 weeks (sixty patients per group). Plasma Aβ, sLRP1, sRAGE, and lipid levels were measured at baseline and at the 6-week and 12-week visits. Results: The ITT database ultimately included 108 participants (placebo group: n = 53; simvastatin group: n = 55) and 64 (59.3%) were women, ranging in age from 45 to 75 years (mean 57.2±6.9 years). Multiple linear regression analysis showed that, after 12 weeks of follow-up, compared with the placebo group, ΔAβ 42 levels (the change of Aβ 42 levels from baseline at week 12) increased more and ΔsRAGE levels decreased more in the simvastatin group (Aβ 42: β= 5.823, p = 0.040; sRAGE: β= –72.012, p = 0.031), and a significant negative association was found between ΔAβ 42 and ΔsRAGE levels (β= –0.115, p = 0.045). In addition, generalized estimation equation analysis showed that triglycerides levels were negatively correlated with Aβ 40 (β= –16.79, p = 0.023), Aβ 42 (β= –6.10, p = 0.001), and sRAGE (β= –51.16, p = 0.003). Conclusion: Daily oral simvastatin (40 mg/day) in patients with hyperlipidemia for 12 weeks can significantly increase plasma Aβ 42 levels compared with placebo, which was associated with reduced triglycerides and sRAGE levels, indicating that statins may affect plasma Aβ transport.
Collapse
Affiliation(s)
- Shan Wei
- Department of Neurology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Liangjun Dang
- Department of Neurology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Fan Gao
- Clinical research center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jingyi Wang
- Huyi Hospital of Traditional Chinese Medicine, Xi’an, China
| | - Jin Wang
- Department of Neurology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Qiumin Qu
- Department of Neurology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
31
|
Bampatsias D, Mavroeidis I, Tual-Chalot S, Vlachogiannis NL, Bonini F, Sachse M, Mavraganis G, Mareti A, Kritsioti C, Laina A, Delialis D, Ciliberti G, Sopova K, Gatsiou A, Martelli F, Georgiopoulos G, Stellos K, Stamatelopoulos K. Beta-secretase-1 antisense RNA is associated with vascular ageing and atherosclerotic cardiovascular disease. Thromb Haemost 2022; 122:1932-1942. [PMID: 35915966 PMCID: PMC9626031 DOI: 10.1055/a-1914-2094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background
The noncoding antisense transcript for β-secretase-1 (
BACE1-AS
) is a long noncoding RNA with a pivotal role in the regulation of amyloid-β (Aβ). We aimed to explore the clinical value of
BACE1-AS
expression in atherosclerotic cardiovascular disease (ASCVD).
Methods
Expression of
BACE1-AS
and its target, β-secretase 1 (
BACE1
) mRNA, was measured in peripheral blood mononuclear cells derived from 434 individuals (259 without established ASCVD [non-CVD], 90 with stable coronary artery disease [CAD], and 85 with acute coronary syndrome). Intima-media thickness and atheromatous plaques evaluated by ultrasonography, as well as arterial wave reflections and pulse wave velocity, were measured as markers of subclinical ASCVD. Patients were followed for a median of 52 months for major adverse cardiovascular events (MACE).
Results
In the cross-sectional arm,
BACE1-AS
expression correlated with
BACE1
expression (
r
= 0.396,
p
< 0.001) and marginally with Aβ1–40 levels in plasma (
r
= 0.141,
p
= 0.008). Higher
BACE1-AS
was associated with higher estimated CVD risk assessed by HeartScore for non-CVD subjects and by European Society of Cardiology clinical criteria for the total population (
p
< 0.05 for both).
BACE1-AS
was associated with higher prevalence of CAD (odds ratio [OR] = 1.85, 95% confidence interval [CI]: 1.37–2.5), multivessel CAD (OR = 1.36, 95% CI: 1.06–1.75), and with higher number of diseased vascular beds (OR = 1.31, 95% CI: 1.07–1.61, for multiple diseased vascular beds) after multivariable adjustment for traditional cardiovascular risk factors. In the prospective arm,
BACE1-AS
was an independent predictor of MACE in high cardiovascular risk patients (adjusted hazard ratio = 1.86 per ascending tertile, 95% CI: 1.011–3.43,
p
= 0.046).
Conclusion
BACE1-AS
is associated with the incidence and severity of ASCVD.
Collapse
Affiliation(s)
- Dimitrios Bampatsias
- Alexandra University Hospital, Department of Clinical Therapeutics, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Ioannis Mavroeidis
- Alexandra University Hospital, Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | - Simon Tual-Chalot
- Institute of Bioscience, Vascular Biology and Medicine Theme, Newcastle University Faculty of Medical Sciences, Newcastle upon Tyne, United Kingdom of Great Britain and Northern Ireland
| | - Nikolaos L Vlachogiannis
- Biosciences Institute, Vascular Biology and Medicine Theme, Newcastle University Faculty of Medical Sciences, Newcastle upon Tyne, United Kingdom of Great Britain and Northern Ireland
| | - Francesca Bonini
- Department of Cardiovascular Research, European Center for Angioscience (ECAS), Ruprecht Karls University Heidelberg Faculty of Medicine Mannheim, Mannheim, Germany
| | - Marco Sachse
- Department of Cardiovascular Research, Goethe University Frankfurt Faculty 16 Medicine, Frankfurt am Main, Germany.,Department of Cardiovascular Research, European Center for Angioscience (ECAS), Ruprecht Karls University Heidelberg Faculty of Medicine Mannheim, Mannheim, Germany
| | - Georgios Mavraganis
- Alexandra University Hospital, Department of Clinical Therapeutics, National and Kapodistrian University of Athens Aiginitio Hospital, Athens, Greece
| | - Alexia Mareti
- Alexandra University Hospital, Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | - Chrysoula Kritsioti
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | - Ageliki Laina
- Alexandra University Hospital, Department of Clinical Therapeutics,, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitris Delialis
- National and Kapodistrian University of Athens School of Medicine Therapeutic Clinic, Athens, Greece
| | - Giorgia Ciliberti
- Department of Cardiovascular Research, European Center for Angioscience (ECAS), Ruprecht Karls University Heidelberg Faculty of Medicine Mannheim, Mannheim, Germany
| | - Kateryna Sopova
- Faculty of Medical Sciences, Newcastle University, Newcastle University Faculty of Medical Sciences, Newcastle upon Tyne, United Kingdom of Great Britain and Northern Ireland
| | - Aikaterini Gatsiou
- , Biosciences Institute, Vascular Biology and Medicine Theme, Newcastle University Faculty of Medical Sciences, Newcastle upon Tyne, United Kingdom of Great Britain and Northern Ireland
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Georgios Georgiopoulos
- National and Kapodistrian University of Athens School of Medicine Therapeutic Clinic, Athens, Greece
| | - Konstantinos Stellos
- Department of Cardiovascular Research, European Center for Angioscience (ECAS), Ruprecht Karls University Heidelberg Faculty of Medicine Mannheim, Mannheim, Germany.,German Centre for Cardiovascular Research (DZHK), Ruprecht Karls University Heidelberg Faculty of Medicine Mannheim, Mannheim, Germany.,Department of Cardiology, Ruprecht Karls University Heidelberg Faculty of Medicine Mannheim, Mannheim, Germany.,Biosciences Institute, Vascular Biology and Medicine Theme, Newcastle University Faculty of Medical Sciences, Newcastle upon Tyne, United Kingdom of Great Britain and Northern Ireland
| | - Kimon Stamatelopoulos
- Alexandra University Hospital, Department of Clinical Therapeutics, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.,Vascular Biology and Medicine Theme, Newcastle University Faculty of Medical Sciences, Newcastle upon Tyne, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
32
|
Armeni E, Soureti A, Augoulea A, Chondrou A, Drakoulis N, Kaparos G, Delialis D, Stefos S, Angelidakis L, Sianis A, Dimopoulou AM, Alexandrou A, Baka S, Aravantinos L, Panoulis K, Stamatelopoulos K, Lambrinoudaki I. Endothelial Function in Postmenopausal Women: The Possible Role of Heat Shock Protein 60 and Serum Androgens. FRONTIERS IN MOLECULAR MEDICINE 2022; 2:933188. [PMID: 39086968 PMCID: PMC11285708 DOI: 10.3389/fmmed.2022.933188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/20/2022] [Indexed: 08/02/2024]
Abstract
Background: Heat shock protein 60 (HSP60), a potentially homeostatic antigen, is involved in physiological and non-physiological conditions. Experimental data support the role of HSP60 in placental and mitochondrial steroidogenesis. Furthermore, HSP60 is translocated into the endothelial-cell plasma membrane and the extracellular space under stress conditions, promoting the atherosclerotic process. Therefore, we investigated the association between HSP60 and endothelial function in postmenopausal women, considering the possible atherogenic effect of androgenic hormones. Methods: This study included 123 healthy postmenopausal women. Exclusion criteria were treated hypertension or dyslipidaemia, menopause hormone therapy during the last 6 months, and previously diagnosed peripheral vascular disease or cardiovascular disease. Fasting venous blood samples were obtained for biochemical and hormonal assessment and evaluation of HSP60. Sonographic assessment of flow-mediated dilation (FMD) occurred immediately after that in one session. Results: Univariate analysis showed that women with FMD values below median 5.12% had lower logHSP60 values (low vs. high FMD, HSP60 values: 2.01 ± 1.16 ng/ml vs. 3.22 ± 1.17 ng/ml, p-value = 0.031). Multivariable analysis showed that logHSP60 was associated with FMD (b-coefficient = 0.171, p-value = 0.046), adjusting for traditional cardiovascular risk factors (TRFs) and insulin levels. Further adjustment for testosterone and DHEAS rendered the result non-significant. In the multivariable analysis, FMD was associated with insulin (b-coefficient = -0.166, p-value = 0.034), testosterone (b-coefficient = -0.165, p-value = 0.034), DHEAS (b-coefficient = -0.187, p-value = 0.017), adjusting for TRFs. Discussion: The results of this study indicate that the association between androgens and endothelial function is possibly mediated by HSP60 molecules, in women with low insulin resistance and androgenicity. Further prospective studies are needed to explore the significance of our findings.
Collapse
Affiliation(s)
- Eleni Armeni
- 2Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Aretaieio Hospital, Athens, Greece
| | - Anastasia Soureti
- 2Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Aretaieio Hospital, Athens, Greece
| | - Areti Augoulea
- 2Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Aretaieio Hospital, Athens, Greece
| | - Asimina Chondrou
- 2Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Aretaieio Hospital, Athens, Greece
| | - Nikolaos Drakoulis
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - George Kaparos
- Hormonal and Biochemical Laboratory, 2Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Aretaieio Hospital, Athens, Greece
| | - Dimitrios Delialis
- Laboratory of Therapeutics and Vascular Pathophysiology, National and Kapodistrian University of Athens, Alexandra Hospital, Athens, Greece
| | - Spyros Stefos
- 2Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Aretaieio Hospital, Athens, Greece
| | - Lasthenis Angelidakis
- Laboratory of Therapeutics and Vascular Pathophysiology, National and Kapodistrian University of Athens, Alexandra Hospital, Athens, Greece
| | - Alexandros Sianis
- Laboratory of Therapeutics and Vascular Pathophysiology, National and Kapodistrian University of Athens, Alexandra Hospital, Athens, Greece
| | - Aggeliki-Maria Dimopoulou
- Laboratory of Therapeutics and Vascular Pathophysiology, National and Kapodistrian University of Athens, Alexandra Hospital, Athens, Greece
| | - Andreas Alexandrou
- 2Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Aretaieio Hospital, Athens, Greece
| | - Stavroula Baka
- 2Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Aretaieio Hospital, Athens, Greece
| | - Leon Aravantinos
- 2Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Aretaieio Hospital, Athens, Greece
| | - Konstantinos Panoulis
- 2Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Aretaieio Hospital, Athens, Greece
| | - Kimon Stamatelopoulos
- Laboratory of Therapeutics and Vascular Pathophysiology, National and Kapodistrian University of Athens, Alexandra Hospital, Athens, Greece
| | - Irene Lambrinoudaki
- 2Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Aretaieio Hospital, Athens, Greece
| |
Collapse
|
33
|
Stamatelopoulos K, Delialis D, Georgiopoulos G, Tselegkidi MI, Theodorakakou F, Dialoupi I, Bambatsias D, Petropoulos I, Vergaro G, Ikonomidis I, Tzortzis S, Briasoulis A, Kanakakis J, Trougakos I, Dimopoulos MA, Kastritis E. Determining patterns of vascular function and structure in wild-type transthyretin cardiac amyloidosis. A comparative study. Int J Cardiol 2022; 363:102-110. [PMID: 35716935 DOI: 10.1016/j.ijcard.2022.06.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/26/2022] [Accepted: 06/10/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND The impact of wild-type transthyretin-related cardiac amyloidosis (ATTRwt) on functional and structural peripheral vascular measures is unknown. In the present study, we explored patterns of vascular dysfunction in patients with ATTRwt in comparison to diseases with similar cardiac phenotype. METHODS Treatment-naïve patients with ATTRwt (n = 32) were compared to: 1. Age-and sex-matched reference population without amyloidosis (n = 32), 2. Age-and sex-matched patients with systemic AL amyloidosis (n = 32), and 3. patients with cardiac AL amyloidosis (AL-HF, n = 23) or elderly patients with heart failure with preserved ejection fraction (HFpEF) (n = 16). All subjects underwent peripheral vascular assessment using carotid artery ultrasonography, brachial artery flow-mediated dilation (FMD), measurement of arterial stiffness and aortic hemodynamics including heart rate-adjusted time of return of reflected waves (Tr/HR). RESULTS After adjustment for traditional cardiovascular risk factors and coronary artery disease (core model), peripheral and aortic blood pressures (BP) were lower in patients with ATTRwt (p < 0.05) whereas other vascular markers were preserved compared to the reference non-amyloidosis group. ATTRwt was independently associated with lower BP and longer Tr/HR compared to AL. Compared to AL-HF, FMD was lower in ATTRwt (p = 0.033). ATTRwt patients had lower BP and higher Tr/HR than HFpEF (p < 0.05). By ROC analysis, Tr/HR discriminated ATTRwt vs. AL-HF (sensitivity 93%, specificity 75%) and HFpEF (sensitivity 100%, specificity 94%) and lower FMD increased the likelihood for ATTRwt at low Tr/HR values. CONCLUSION ATTRwt patients present a distinct peripheral vascular fingerprint which is different from AL-HF or HFpEF, consisting of lower peripheral and aortic BP, prolonged Tr/HR and FMD at reference-population range.
Collapse
Affiliation(s)
- Kimon Stamatelopoulos
- Department of Clinical Therapeutics, University of Athens Medical School, Athens, Greece..
| | - Dimitrios Delialis
- Department of Clinical Therapeutics, University of Athens Medical School, Athens, Greece.; Department of Clinical Therapeutics, University of Athens Medical School, Athens, Greece.; Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy; Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Georgios Georgiopoulos
- Department of Clinical Therapeutics, University of Athens Medical School, Athens, Greece.; Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy; Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Maria-Irini Tselegkidi
- Department of Clinical Therapeutics, University of Athens Medical School, Athens, Greece.; Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy; Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Foteini Theodorakakou
- Department of Clinical Therapeutics, University of Athens Medical School, Athens, Greece.; Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy; Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Ioanna Dialoupi
- Department of Clinical Therapeutics, University of Athens Medical School, Athens, Greece.; Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy; Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Dimitrios Bambatsias
- Department of Clinical Therapeutics, University of Athens Medical School, Athens, Greece.; Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy; Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Ioannis Petropoulos
- Department of Clinical Therapeutics, University of Athens Medical School, Athens, Greece.; Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy; Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Giuseppe Vergaro
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy; Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy.; Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy; Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Ignatios Ikonomidis
- 2(nd) Department of Cardiology, School of Medicine of the National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece.; Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy; Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Stavros Tzortzis
- 2(nd) Department of Cardiology, School of Medicine of the National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece.; Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy; Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Alexandros Briasoulis
- Department of Clinical Therapeutics, University of Athens Medical School, Athens, Greece.; Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy; Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - John Kanakakis
- Department of Clinical Therapeutics, University of Athens Medical School, Athens, Greece.; Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy; Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Ioannis Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens; Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy; Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Meletios A Dimopoulos
- Department of Clinical Therapeutics, University of Athens Medical School, Athens, Greece.; Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy; Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Efstathios Kastritis
- Department of Clinical Therapeutics, University of Athens Medical School, Athens, Greece.; Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy; Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy..
| |
Collapse
|
34
|
Kraler S, Wenzl FA, Georgiopoulos G, Obeid S, Liberale L, von Eckardstein A, Muller O, Mach F, Räber L, Losdat S, Schmiady MO, Stellos K, Stamatelopoulos K, Camici GG, Srdic A, Paneni F, Akhmedov A, Lüscher TF. Soluble lectin-like oxidized low-density lipoprotein receptor-1 predicts premature death in acute coronary syndromes. Eur Heart J 2022; 43:1849-1860. [PMID: 35567560 DOI: 10.1093/eurheartj/ehac143] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/10/2022] [Accepted: 03/07/2022] [Indexed: 08/27/2023] Open
Abstract
AIMS The lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) and its shedding product [soluble LOX-1 (sLOX-1)] are implicated in atherosclerotic cardiovascular disease (ASCVD) pathogenesis. Herein, we examined the relationship of sLOX-1 with both fatal events and plaque progression in patients with acute coronary syndromes (ACS). METHODS AND RESULTS Plasma sLOX-1 was assessed at baseline in ACS and chronic coronary syndrome (CCS) patients prospectively recruited in the multicentre SPUM-ACS study, with sex- and age-matched healthy subjects serving as additional controls (n = 2924). Compared with both CCS and controls, ACS patients showed markedly elevated sLOX-1 levels (median, 2.00 and 2.00 vs. 35.08 pg/mL; P < 0.0001) which were independently associated with increased mortality risk over 30-day [tertile (T)3: adjusted hazard ratio (HR), 3.11; 95% confidence interval (CI), 1.44-10.61; P = 0.0055] and 1-year intervals (T3: adjusted HR, 2.04; 95% CI, 1.19-3.92; P = 0.0098). Results remained consistent after adjustment for GRACE 2.0 (T3: adjusted HR, 1.86; 95% CI, 1.04-3.74; P = 0.0391) and were primarily driven by the pronounced relationship of sLOX-1 with cardiovascular mortality at 30 days (T3: adjusted HR, 3.81; 95% CI, 1.62-19.62; P = 0.0036) and at 1 year (T3: adjusted HR, 2.29; 95% CI, 1.19-5.34; P = 0.0148). In ACS patients undergoing serial intracoronary imaging and statin therapy, sLOX-1 dropped significantly in those with coronary plaque regression at 1 year (ΔsLOX-1: -4.64 ± 1.80; P = 0.0057), and showed a good discrimination for predicting plaque progression (area under the curve = 0.74; 95% CI, 0.59-0.86; P = 0.0031). CONCLUSION Plasma sLOX-1 levels are increased during ACS and predict fatal events beyond traditional and emerging risk factors. Persistently high sLOX-1 associates with coronary plaque progression in patients with established ASCVD. CLINICAL TRIAL REGISTRATION NCT01000701.
Collapse
Affiliation(s)
- Simon Kraler
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, 8952 Schlieren, Zurich, Switzerland
| | - Florian A Wenzl
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, 8952 Schlieren, Zurich, Switzerland
| | - Georgios Georgiopoulos
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- School of Biomedical Engineering and Imaging Sciences, King's College, London, UK
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens School of Health Sciences, Athens, Greece
| | - Slayman Obeid
- University Heart Center, Department of Cardiology, University Hospital, Zurich, Switzerland
| | - Luca Liberale
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, 8952 Schlieren, Zurich, Switzerland
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | | | - Olivier Muller
- Department of Cardiology, University Hospital of Lausanne, University of Lausanne, Lausanne, Switzerland
| | - François Mach
- Cardiology, University Hospital Geneva, Geneva, Switzerland
| | | | | | - Martin O Schmiady
- University Heart Center, Department of Cardiac Surgery, University Hospital Zurich, Zurich, Switzerland
- Department of Congenital Cardiovascular Surgery, University Children's Hospital, Zurich, Switzerland
| | - Konstantinos Stellos
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Cardiology, Freeman Hospital, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Department of Cardiovascular Research, European Center for Angioscience (ECAS), Heidelberg University, Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Mannheim, Germany
| | - Kimon Stamatelopoulos
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens School of Health Sciences, Athens, Greece
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, 8952 Schlieren, Zurich, Switzerland
- University Heart Center, Department of Cardiology, University Hospital, Zurich, Switzerland
- Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
| | - Annie Srdic
- University Heart Center, Department of Cardiology, University Hospital, Zurich, Switzerland
| | - Francesco Paneni
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, 8952 Schlieren, Zurich, Switzerland
- University Heart Center, Department of Cardiology, University Hospital, Zurich, Switzerland
| | - Alexander Akhmedov
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, 8952 Schlieren, Zurich, Switzerland
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, 8952 Schlieren, Zurich, Switzerland
- Research, Education & Development, Royal Brompton and Harefield Hospitals and Imperial College, Sydney Street, London SW3 6NP, UK
| |
Collapse
|
35
|
Cognitive impairment and its association with circulating biomarkers in patients with acute decompensated heart failure. J Geriatr Cardiol 2022; 19:227-237. [PMID: 35464650 PMCID: PMC9002086 DOI: 10.11909/j.issn.1671-5411.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Cognitive impairment (CI) is common in patients with heart failure (HF), but the association between CI and biomarkers related to HF or cognitive decline in patients with HF remains unclear. METHODS This prospective observational study investigated the incidence of CI, subsequent cognitive changes, and the association between CI and novel biomarkers in patients with left ventricular ejection fraction < 40% who were hospitalized for acute decompensated HF. Patients were evaluated for CI, depressive symptoms, and quality of life with the Mini-Mental State Examination (MMSE) and the Mini-Cog, Beck Depression Inventory (BDI)-II, and Kansas City Cardiomyopathy Questionnaire (KCCQ), respectively. The primary endpoint was a composite of all-cause mortality or hospitalization for HF at one year. RESULTS Among the 145 patients enrolled in this study, 54 had CI (37.2%) at baseline. The mean MMSE increased significantly at the 3-month and 1-year follow-up, accompanied by decreased BDI-II and increased KCCQ scores. The improvement in the MMSE scores mainly occurred in patients with CI. Among the biomarkers assayed, only growth/differentiation factor (GDF)-15 > 1621.1 pg/mL was significantly associated with CI (area under the curve = 0.64; P = 0.003). An increase in GDF-15 per 1000 units was associated with an increased risk of the primary endpoint (hazard ratio = 1.42; 95% confidence interval: 1.17-1.73; P < 0.001). CONCLUSIONS In patients with HF with CI, cognitive function, depression, and quality of life measures improved at the 3-month and 1-year follow-up. GDF-15 predicted CI with moderate discrimination capacity and was associated with worse HF outcomes.
Collapse
|
36
|
Sayevand Z, Nazem F, Nazari A, Sheykhlouvand M, Forbes SC. Cardioprotective effects of exercise and curcumin supplementation against myocardial ischemia–reperfusion injury. SPORT SCIENCES FOR HEALTH 2022. [DOI: 10.1007/s11332-021-00886-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Plasma amyloid-β40 in relation to subclinical atherosclerosis and cardiovascular disease: A population-based study. Atherosclerosis 2022; 348:44-50. [DOI: 10.1016/j.atherosclerosis.2022.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 11/18/2022]
|
38
|
Jang S, Chapa-Dubocq XR, Parodi-Rullán RM, Fossati S, Javadov S. Beta-Amyloid Instigates Dysfunction of Mitochondria in Cardiac Cells. Cells 2022; 11:373. [PMID: 35159183 PMCID: PMC8834545 DOI: 10.3390/cells11030373] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 12/26/2022] Open
Abstract
Alzheimer's disease (AD) includes the formation of extracellular deposits comprising aggregated β-amyloid (Aβ) fibers associated with oxidative stress, inflammation, mitochondrial abnormalities, and neuronal loss. There is an associative link between AD and cardiac diseases; however, the mechanisms underlying the potential role of AD, particularly Aβ in cardiac cells, remain unknown. Here, we investigated the role of mitochondria in mediating the effects of Aβ1-40 and Aβ1-42 in cultured cardiomyocytes and primary coronary endothelial cells. Our results demonstrated that Aβ1-40 and Aβ1-42 are differently accumulated in cardiomyocytes and coronary endothelial cells. Aβ1-42 had more adverse effects than Aβ1-40 on cell viability and mitochondrial function in both types of cells. Mitochondrial and cellular ROS were significantly increased, whereas mitochondrial membrane potential and calcium retention capacity decreased in both types of cells in response to Aβ1-42. Mitochondrial dysfunction induced by Aβ was associated with apoptosis of the cells. The effects of Aβ1-42 on mitochondria and cell death were more evident in coronary endothelial cells. In addition, Aβ1-40 and Aβ1-42 significantly increased Ca2+ -induced swelling in mitochondria isolated from the intact rat hearts. In conclusion, this study demonstrates the toxic effects of Aβ on cell survival and mitochondria function in cardiac cells.
Collapse
Affiliation(s)
- Sehwan Jang
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, PR 00936, USA; (S.J.); (X.R.C.-D.)
| | - Xavier R. Chapa-Dubocq
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, PR 00936, USA; (S.J.); (X.R.C.-D.)
| | - Rebecca M. Parodi-Rullán
- Alzheimer’s Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (R.M.P.-R.); (S.F.)
| | - Silvia Fossati
- Alzheimer’s Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (R.M.P.-R.); (S.F.)
| | - Sabzali Javadov
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, PR 00936, USA; (S.J.); (X.R.C.-D.)
| |
Collapse
|
39
|
Vlachogiannis NI, Sachse M, Georgiopoulos G, Zormpas E, Bampatsias D, Delialis D, Bonini F, Galyfos G, Sigala F, Stamatelopoulos K, Gatsiou A, Stellos K. Adenosine-to-inosine Alu RNA editing controls the stability of the pro-inflammatory long noncoding RNA NEAT1 in atherosclerotic cardiovascular disease. J Mol Cell Cardiol 2021; 160:111-120. [PMID: 34302813 PMCID: PMC8585018 DOI: 10.1016/j.yjmcc.2021.07.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/21/2021] [Accepted: 07/16/2021] [Indexed: 12/24/2022]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as critical regulators in human disease including atherosclerosis. However, the mechanisms involved in the post-transcriptional regulation of the expression of disease-associated lncRNAs are not fully understood. Gene expression studies revealed that Nuclear Paraspeckle Assembly Transcript 1 (NEAT1) lncRNA expression was increased by >2-fold in peripheral blood mononuclear cells (PBMCs) derived from patients with coronary artery disease (CAD) or in carotid artery atherosclerotic plaques. We observed a linear association between NEAT1 lncRNA expression and prevalence of CAD which was independent of age, sex, cardiovascular traditional risk factors and renal function. NEAT1 expression was induced by TNF-α, while silencing of NEAT1 profoundly attenuated the TNF-α-induced vascular endothelial cell pro-inflammatory response as defined by the expression of CXCL8, CCL2, VCAM1 and ICAM1. Overexpression of the RNA editing enzyme adenosine deaminase acting on RNA-1 (ADAR1), but not of its editing-deficient mutant, upregulated NEAT1 levels. Conversely, silencing of ADAR1 suppressed the basal levels and the TNF-α-induced increase of NEAT1. NEAT1 lncRNA expression was strongly associated with ADAR1 in CAD and peripheral arterial vascular disease. RNA editing mapping studies revealed the presence of several inosines in close proximity to AU-rich elements within the AluSx3+/AluJo- double-stranded RNA complex. Silencing of the stabilizing RNA-binding protein AUF1 reduced NEAT1 levels while silencing of ADAR1 profoundly affected the binding capacity of AUF1 to NEAT1. Together, our findings propose a mechanism by which ADAR1-catalyzed A-to-I RNA editing controls NEAT1 lncRNA stability in ASCVD.
Collapse
Affiliation(s)
- Nikolaos I Vlachogiannis
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK; Department of Cardiology, Freeman Hospital, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Marco Sachse
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK; Vascular Inflammation and RNA Metabolism Laboratory, Institute for Vascular Signalling, JW Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Georgios Georgiopoulos
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleftherios Zormpas
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Dimitrios Bampatsias
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Delialis
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Francesca Bonini
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK; Vascular Inflammation and RNA Metabolism Laboratory, Institute for Vascular Signalling, JW Goethe University Frankfurt, Frankfurt am Main, Germany
| | - George Galyfos
- First Propaedeutic Department of Surgery, National and Kapodistrian University of Athens, Hippocration Hospital, Athens, Greece
| | - Fragiska Sigala
- First Propaedeutic Department of Surgery, National and Kapodistrian University of Athens, Hippocration Hospital, Athens, Greece
| | - Kimon Stamatelopoulos
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Aikaterini Gatsiou
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK.
| | - Konstantinos Stellos
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK; Department of Cardiology, Freeman Hospital, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; Vascular Inflammation and RNA Metabolism Laboratory, Institute for Vascular Signalling, JW Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
40
|
Stamatelopoulos K, Georgiopoulos G, Baker KF, Tiseo G, Delialis D, Lazaridis C, Barbieri G, Masi S, Vlachogiannis NI, Sopova K, Mengozzi A, Ghiadoni L, Schim van der Loeff I, Hanrath AT, Ajdini B, Vlachopoulos C, Dimopoulos MA, Duncan CJA, Falcone M, Stellos K. Estimated pulse wave velocity improves risk stratification for all-cause mortality in patients with COVID-19. Sci Rep 2021; 11:20239. [PMID: 34642385 PMCID: PMC8511157 DOI: 10.1038/s41598-021-99050-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/15/2021] [Indexed: 12/24/2022] Open
Abstract
Accurate risk stratification in COVID-19 patients consists a major clinical need to guide therapeutic strategies. We sought to evaluate the prognostic role of estimated pulse wave velocity (ePWV), a marker of arterial stiffness which reflects overall arterial integrity and aging, in risk stratification of hospitalized patients with COVID-19. This retrospective, longitudinal cohort study, analyzed a total population of 1671 subjects consisting of 737 hospitalized COVID-19 patients consecutively recruited from two tertiary centers (Newcastle cohort: n = 471 and Pisa cohort: n = 266) and a non-COVID control cohort (n = 934). Arterial stiffness was calculated using validated formulae for ePWV. ePWV progressively increased across the control group, COVID-19 survivors and deceased patients (adjusted mean increase per group 1.89 m/s, P < 0.001). Using a machine learning approach, ePWV provided incremental prognostic value and improved reclassification for mortality over the core model including age, sex and comorbidities [AUC (core model + ePWV vs. core model) = 0.864 vs. 0.755]. ePWV provided similar prognostic value when pulse pressure or hs-Troponin were added to the core model or over its components including age and mean blood pressure (p < 0.05 for all). The optimal prognostic ePWV value was 13.0 m/s. ePWV conferred additive discrimination (AUC: 0.817 versus 0.779, P < 0.001) and reclassification value (NRI = 0.381, P < 0.001) over the 4C Mortality score, a validated score for predicting mortality in COVID-19 and the Charlson comorbidity index. We suggest that calculation of ePWV, a readily applicable estimation of arterial stiffness, may serve as an additional clinical tool to refine risk stratification of hospitalized patients with COVID-19 beyond established risk factors and scores.
Collapse
Affiliation(s)
- Kimon Stamatelopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
- Biosciences Institute, International Centre for Life, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK.
| | - Georgios Georgiopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
- School of Biomedical Engineering and Imaging Sciences, King's College, London, UK
| | - Kenneth F Baker
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle University and Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Giusy Tiseo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Dimitrios Delialis
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Charalampos Lazaridis
- Biosciences Institute, International Centre for Life, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
- RVI and Freeman Hospitals, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Greta Barbieri
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Stefano Masi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Nikolaos I Vlachogiannis
- Biosciences Institute, International Centre for Life, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Kateryna Sopova
- Biosciences Institute, International Centre for Life, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
- RVI and Freeman Hospitals, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Alessandro Mengozzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Lorenzo Ghiadoni
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Ina Schim van der Loeff
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Aidan T Hanrath
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Bajram Ajdini
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Charalambos Vlachopoulos
- First Department of Cardiology, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Meletios A Dimopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Christopher J A Duncan
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- RVI and Freeman Hospitals, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Marco Falcone
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Konstantinos Stellos
- Biosciences Institute, International Centre for Life, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK.
- RVI and Freeman Hospitals, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| |
Collapse
|
41
|
Zecca C, Pasculli G, Tortelli R, Dell'Abate MT, Capozzo R, Barulli MR, Barone R, Accogli M, Arima S, Pollice A, Brescia V, Logroscino G. The Role of Age on Beta-Amyloid 1-42 Plasma Levels in Healthy Subjects. Front Aging Neurosci 2021; 13:698571. [PMID: 34531734 PMCID: PMC8438760 DOI: 10.3389/fnagi.2021.698571] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/09/2021] [Indexed: 01/02/2023] Open
Abstract
Beta-amyloid (Aβ) plaques have been observed in the brain of healthy elderlies with frequencies strongly influenced by age. The aim of the study is to evaluate the role of age and other biochemical and hematological parameters on Aβ1–42 plasma levels in cognitively and neurologically normal individuals. Two-hundred and seventy-five normal subjects stratified by age groups (<35 years, 35–65 years, and >65 years) were included in the study. Aβ1–42 plasma levels significantly correlated with age (rs = 0.27; p < 0.0001) in the whole sample, inversely correlated with age in the first age group (rs = −0.25, p = 0.01), positively correlated in the second group (rs = 0.22, p = 0.03), while there was no significant correlation in the older group (rs = 0.02, p = 0.86). Both age (β-estimate = 0.08; p < 0.001) and cholesterol (β-estimate = 0.03; p = 0.009) were significantly associated with Aβ1–42 plasma level in multivariable analysis. However, only the association with age survived post hoc adjustment for multiple comparisons. The different effects of age on the Aβ level across age groups should be explored in further studies to better understand the age-dependent variability. This could better define the value of plasma Aβ as a biomarker of the Alzheimer neuropathology.
Collapse
Affiliation(s)
- Chiara Zecca
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in Neurology of the University of Bari "Aldo Moro" at "Pia Fondazione Card G. Panico" Hospital Tricase, Lecce, Italy
| | - Giuseppe Pasculli
- Department of Computer, Control, and Management Engineering Antonio Ruberti (DIAG), La Sapienza University, Rome, Italy
| | - Rosanna Tortelli
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in Neurology of the University of Bari "Aldo Moro" at "Pia Fondazione Card G. Panico" Hospital Tricase, Lecce, Italy
| | - Maria Teresa Dell'Abate
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in Neurology of the University of Bari "Aldo Moro" at "Pia Fondazione Card G. Panico" Hospital Tricase, Lecce, Italy
| | - Rosa Capozzo
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in Neurology of the University of Bari "Aldo Moro" at "Pia Fondazione Card G. Panico" Hospital Tricase, Lecce, Italy
| | - Maria Rosaria Barulli
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in Neurology of the University of Bari "Aldo Moro" at "Pia Fondazione Card G. Panico" Hospital Tricase, Lecce, Italy
| | - Roberta Barone
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in Neurology of the University of Bari "Aldo Moro" at "Pia Fondazione Card G. Panico" Hospital Tricase, Lecce, Italy
| | - Miriam Accogli
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in Neurology of the University of Bari "Aldo Moro" at "Pia Fondazione Card G. Panico" Hospital Tricase, Lecce, Italy
| | - Serena Arima
- Department of History, Society and Human Studies, University of Salento, Lecce, Italy
| | - Alessio Pollice
- Department of Economics and Finance, University of Bari "Aldo Moro", Bari, Italy
| | - Vincenzo Brescia
- Unit of Laboratory Medicine, "Pia Fondazione Card. G. Panico" Hospital Tricase, Lecce, Italy
| | - Giancarlo Logroscino
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in Neurology of the University of Bari "Aldo Moro" at "Pia Fondazione Card G. Panico" Hospital Tricase, Lecce, Italy.,Department of Basic Medicine Sciences, Neuroscience, and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
42
|
Wang W, Wu J, Liu P, Tang X, Pang H, Xie T, Xu F, Shao J, Chen Y, Liu B, Zheng Y. Urinary Proteomics Identifying Novel Biomarkers for the Diagnosis and Phenotyping of Carotid Artery Stenosis. Front Mol Biosci 2021; 8:714706. [PMID: 34447787 PMCID: PMC8383446 DOI: 10.3389/fmolb.2021.714706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/26/2021] [Indexed: 01/12/2023] Open
Abstract
Background: Carotid artery stenosis (CAS) is caused by the formation of atherosclerotic plaques inside the arterial wall and accounts for 20–30% of all strokes. The development of an early, noninvasive diagnostic method and the identification of high-risk patients for ischemic stroke is essential to the management of CAS in clinical practice. Methods: We used the data-independent acquisition (DIA) technique to conduct a urinary proteomic study in patients with CAS and healthy controls. We identified the potential diagnosis and risk stratification biomarkers of CAS. And Ingenuity pathway analysis was used for functional annotation of differentially expressed proteins (DEPs). Furthermore, receiver operating characteristic (ROC) analysis was performed to evaluate the diagnostic values of DEPs. Results: A total of 194 DEPs were identified between CAS patients and healthy controls by DIA quantification. The bioinformatics analysis showed that these DEPs were correlated with the pathogenesis of CAS. We further identified 32 DEPs in symptomatic CAS compared to asymptomatic CAS, and biological function analysis revealed that these proteins are mainly related to immune/inflammatory pathways. Finally, a biomarker panel of six proteins (ACP2, PLD3, HLA-C, GGH, CALML3, and IL2RB) exhibited potential diagnostic value in CAS and good discriminative power for differentiating symptomatic and asymptomatic CAS with high sensitivity and specificity. Conclusions: Our study identified novel potential urinary biomarkers for noninvasive early screening and risk stratification of CAS.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Complex Severe and Rare Disease, Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianqiang Wu
- State Key Laboratory of Complex Severe and Rare Disease, Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Complex Severe and Rare Diseases, Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peng Liu
- State Key Laboratory of Complex Severe and Rare Diseases, Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyue Tang
- State Key Laboratory of Complex Severe and Rare Diseases, Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haiyu Pang
- State Key Laboratory of Complex Severe and Rare Diseases, Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ting Xie
- State Key Laboratory of Complex Severe and Rare Diseases, Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fang Xu
- State Key Laboratory of Complex Severe and Rare Disease, Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiang Shao
- State Key Laboratory of Complex Severe and Rare Disease, Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuexin Chen
- State Key Laboratory of Complex Severe and Rare Disease, Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bao Liu
- State Key Laboratory of Complex Severe and Rare Disease, Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuehong Zheng
- State Key Laboratory of Complex Severe and Rare Disease, Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
43
|
Huang YT, Hong FF, Yang SL. Atherosclerosis: The Culprit and Co-victim of Vascular Dementia. Front Neurosci 2021; 15:673440. [PMID: 34421513 PMCID: PMC8377286 DOI: 10.3389/fnins.2021.673440] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/11/2021] [Indexed: 11/24/2022] Open
Abstract
Vascular dementia (VD), a cerebrovascular disease which causes cognitive impairment, is one of the significant factors that affects the quality of senectitude. Atherosclerosis (AS) is a chronic inflammatory syndrome and closely associated with VD. Analyzing the role of AS in VD contribute greatly to its early detection and prevention, but their relationship has not been integrated into a complete network. This review summarizes AS biomarkers as VD predictors for the first time and describes the direct mechanisms of AS causing VD from five aspects: vascular morphogenesis, hemodynamic change, neurovascular unit damage (NVU), oxidative stress, and microRNA (miRNA). Finally, it discriminates the relationship between AS and VD in common risk factors which can be disease or some molecules. In particular, these data imply that the role of AS in VD is not only a pathogenic factor but also a comorbidity in VD. This review aims to bring new ideas for the prediction and treatment of VD.
Collapse
Affiliation(s)
- Ya-Ting Huang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, China.,Queen Marry College, School of Medicine, Nanchang University, Nanchang, China
| | - Fen-Fang Hong
- Experimental Center of Pathogen Biology, Nanchang University, Nanchang, China
| | - Shu-Long Yang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, China.,Department of Physiology, Fuzhou Medical College, Fuzhou, China
| |
Collapse
|
44
|
Liu L, Ni YQ, Zhan JK, Liu YS. The Role of SGLT2 Inhibitors in Vascular Aging. Aging Dis 2021; 12:1323-1336. [PMID: 34341711 PMCID: PMC8279525 DOI: 10.14336/ad.2020.1229] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/29/2020] [Indexed: 12/19/2022] Open
Abstract
Vascular aging is defined as organic and functional changes in blood vessels, in which decline in autophagy levels, DNA damage, MicroRNA (miRNA), oxidative stress, sirtuin, and apoptosis signal-regulated kinase 1 (ASK1) are integral thereto. With regard to vascular morphology, the increase in arterial stiffness, atherosclerosis, vascular calcification and high amyloid beta levels are closely related to vascular aging. Further closely related thereto, at the cellular level, is the aging of vascular endothelial cells (ECs) and vascular smooth muscle cells (VSMCs). Vascular aging seriously affects the health, economy and life of patients, but can be delayed by SGLT2 inhibitors through the improvement of vascular function. In the present article, a review is conducted of recent domestic and international progress in research on SGLT2 inhibitors,vascular aging and diseases related thereto, thereby providing theoretical support and guidance for further revealing the relationship between SGLT2 inhibitors and diseases related to vascular aging.
Collapse
Affiliation(s)
- Le Liu
- 1Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,2Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan 410011, China
| | - Yu-Qing Ni
- 1Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,2Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan 410011, China
| | - Jun-Kun Zhan
- 1Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,2Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan 410011, China
| | - You-Shuo Liu
- 1Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,2Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
45
|
Tual-Chalot S, Stellos K. Therapeutic potential of adenosine kinase inhibition in vascular disease. Cardiovasc Res 2021; 117:354-356. [PMID: 32533148 DOI: 10.1093/cvr/cvaa122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Simon Tual-Chalot
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle Upon Tyne NE1 3BZ, UK
| | - Konstantinos Stellos
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle Upon Tyne NE1 3BZ, UK.,Department of Cardiology, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Freeman Rd, High Heaton, Newcastle Upon Tyne NE7 7DN, UK
| |
Collapse
|
46
|
Maciejewska K, Czarnecka K, Szymański P. A review of the mechanisms underlying selected comorbidities in Alzheimer's disease. Pharmacol Rep 2021; 73:1565-1581. [PMID: 34121170 PMCID: PMC8599320 DOI: 10.1007/s43440-021-00293-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder of the central nervous system (CNS) leading to mental deterioration and devastation, and eventually a fatal outcome. AD affects mostly the elderly. AD is frequently accompanied by hypercholesterolemia, hypertension, atherosclerosis, and diabetes mellitus, and these are significant risk factors of AD. Other conditions triggered by the progression of AD include psychosis, sleep disorders, epilepsy, and depression. One important comorbidity is Down’s syndrome, which directly contributes to the severity and rapid progression of AD. The development of new therapeutic strategies for AD includes the repurposing of drugs currently used for the treatment of comorbidities. A better understanding of the influence of comorbidities on the pathogenesis of AD, and the medications used in its treatment, might allow better control of disease progression, and more effective pharmacotherapy.
Collapse
Affiliation(s)
- Karolina Maciejewska
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151, Lodz, Poland
| | - Kamila Czarnecka
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151, Lodz, Poland
- Department of Radiobiology and Radiation Protection, Military Institute of Hygiene and Epidemiology, 4 Kozielska St, 01-163, Warsaw, Poland
| | - Paweł Szymański
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151, Lodz, Poland.
- Department of Radiobiology and Radiation Protection, Military Institute of Hygiene and Epidemiology, 4 Kozielska St, 01-163, Warsaw, Poland.
| |
Collapse
|
47
|
Additive contribution of microRNA-34a/b/c to human arterial ageing and atherosclerosis. Atherosclerosis 2021; 327:49-58. [PMID: 34038763 DOI: 10.1016/j.atherosclerosis.2021.05.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Preclinical data suggest that the ageing-induced miR-34a regulates vascular senescence. Herein we sought to assess whether the miR-34 family members miR-34a, miR-34b and miR-34c are involved in human arterial disease. METHODS Expression levels of miR-34a/b/c were quantified by TaqMan assay in peripheral blood mononuclear cells (PBMCs) derived from a consecutive cohort of 221 subjects who underwent cardiovascular risk assessment and thorough vascular examination for aortic stiffness and extent of arterial atherosclerosis. RESULTS High miR-34a was independently associated with the presence of CAD [OR (95%C.I.): 3.87 (1.56-9.56); p = 0.003] and high miR-34c with the number of diseased arterial beds [OR (95%C.I.): 1.88 (1.034-3.41); p = 0.038], while concurrent high expression of miR-34-a/c or all three miR-34a/b/c was associated with aortic stiffening (miR-34a/c: p = 0.022; miR-34a/b/c: p = 0.041) and with the extent of atherosclerosis [OR (95%C.I.) for number of coronary arteries [miR-34a/c: 3.29 (1.085-9.95); miR-34a/b/c: 6.06 (1.74-21.2)] and number of diseased arterial beds [miR-34a/c: 3.51 (1.45-8.52); miR-34a/b/c: 2.89 (1.05-7.92)] after controlling for possible confounders (p < 0.05 for all). Mechanistically, the increased levels of miR-34a or miR-34c were inversely associated with expression of SIRT1 or JAG1, NOTCH2, CTNNB1 and ATF1, respectively. The association of miR-34a/c or miR-34a/b/c with CAD was mainly mediated through SIRT1 and to a lesser extent through JAG1 as revealed by generalized structural equation modeling. Leukocyte-specific ablation of miR-34a/b/c ameliorates atherosclerotic plaque development and increases Sirt1 and Jag1 expression in an atherosclerosis mouse model confirming the human findings. CONCLUSIONS The present study reveals the clinical significance of the additive role of miR-34a/b/c in vascular ageing and atherosclerotic vascular disease.
Collapse
|
48
|
Retinol-binding protein 4 is associated with arterial stiffness in early postmenopausal women. ACTA ACUST UNITED AC 2021; 27:906-912. [PMID: 32665530 DOI: 10.1097/gme.0000000000001598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Recent evidence in postmenopausal women suggested lack of association between serum levels of retinol-binding protein 4 (RBP4) and subclinical atherosclerosis; however, associations with arterial stiffness in this population remain unexplored. We evaluated the association among RBP4 and cardiovascular risk factors, including homocysteine, a marker involved in retinoic acid synthesis, and indices of arterial stiffness, in a sample of apparently healthy postmenopausal women. METHODS This cross-sectional study included 123 healthy postmenopausal women, not on hormone therapy, antihypertensive, or hypolipidemic treatment and with a menopausal age 10 years or less. We performed biochemical/hormonal assessment and sonographic evaluation, including carotid-femoral pulse wave velocity (PWV) and carotid artery stiffness index (SI). RESULTS Univariate analysis showed that RBP4 values correlated with age, low-density lipoprotein-cholesterol and estradiol levels. There was a trend of association of SI and PWV with homocysteine and triglycerides. RBP4 differed according to PWV, using the median PWV value as cut-off (RBP4, PWV ≤8.1 vs >8.1 m/s: 10.09 ± 2.05 vs 10.85 ± 1.91 ng/mL, analysis of covariance P value 0.014 adjusted for age, menopausal age, estradiol, pulse pressure). Linear regression analysis showed that PWV was independently associated with RBP4, age, and pulse pressure, whereas SI was independently associated with RBP4. An increase of one standard deviation in RBP4 levels (2.54 ng/mL) was associated with an increase of 0.577 m/s in PWV. CONCLUSIONS RBP4 serum levels are associated with arterial stiffness, in a sample of healthy postmenopausal women. If this association is causative, serum RBP4 levels could serve as a marker of arterial stiffness. Prospective studies are required to investigate the significance of our findings. : Video Summary:http://links.lww.com/MENO/A621.
Collapse
|
49
|
Tual-Chalot S, Stellos K. MicroRNA-based therapy of postmyocardial infarction heart failure. Hellenic J Cardiol 2021; 62:149-151. [PMID: 33852921 DOI: 10.1016/j.hjc.2021.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 11/28/2022] Open
Affiliation(s)
- Simon Tual-Chalot
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Konstantinos Stellos
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK; Department of Cardiology, Freeman Hospital, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK.
| |
Collapse
|
50
|
Tektonidou MG, Kravvariti E, Vlachogiannis NI, Georgiopoulos G, Mantzou A, Sfikakis PP, Stellos K, Stamatelopoulos K. Clinical value of amyloid-beta1-40 as a marker of thrombo-inflammation in antiphospholipid syndrome. Rheumatology (Oxford) 2021; 60:1669-1675. [PMID: 33027516 DOI: 10.1093/rheumatology/keaa548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/17/2020] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE Amyloid-beta1-40 (Aβ40) is a pro-inflammatory peptide under investigation as a novel biomarker of vascular inflammation, endothelial dysfunction and atherothrombosis in the general population. Herein we tested the hypothesis that Aβ40 is deregulated in APS, a systemic autoimmune disease characterized by a thrombo-inflammatory state. METHODS Between January 2016 and July 2017, we consecutively recruited 80 regularly followed thrombotic APS patients (44 primary, 36 SLE/APS) and 80 age- and sex-matched controls. Plasma Aβ40 levels were measured using ELISA and APS-related clinical and laboratory characteristics were recorded. The adjusted Global Anti-Phospholipid Syndrome Score (aGAPSS), a validated risk score in APS, was calculated as a comparator to Aβ40 performance to detect arterial thrombotic APS-related events. RESULTS Higher Aβ40 levels were significantly associated with the presence of APS [odds ratio (OR) 1.024 per 1 pg/ml (95% CI 1.007, 1.041)] after adjustment for cardiovascular risk factors (CVRFs), including smoking, arterial hypertension, dyslipidaemia and BMI, and for estimated glomerular filtration rate (eGFR). Among APS patients, increased high-sensitivity CRP (hs-CRP) serum levels was the only independent determinant of Aβ40 levels. Importantly, Aβ40 levels above the optimal receiver operating characteristics (ROC)-derived cut-off value were independently associated with recurrent arterial events [OR 4.93 (95% CI 1.31, 18.51)] after adjustment for age, sex, CVRFs, hs-CRP and high anti-β2 glycoprotein I IgG titres. Finally, by ROC curve analysis, Aβ40 provided incremental additive value over the aGAPSS by significantly improving its discrimination ability for recurrent arterial thromboses. CONCLUSION In APS, Aβ40 plasma levels are elevated and associated with an adverse thrombo-inflammatory profile. The pathophysiological and prognostic role of Aβ40 in APS merits further investigation.
Collapse
Affiliation(s)
- Maria G Tektonidou
- First Department of Propaedeutic Internal Medicine, Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Evrydiki Kravvariti
- First Department of Propaedeutic Internal Medicine, Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Nikolaos I Vlachogiannis
- First Department of Propaedeutic Internal Medicine, Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece.,Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Georgios Georgiopoulos
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Aimilia Mantzou
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Petros P Sfikakis
- First Department of Propaedeutic Internal Medicine, Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Konstantinos Stellos
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,Department of Cardiology, Freeman Hospital, Newcastle Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Kimon Stamatelopoulos
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| |
Collapse
|