1
|
Rojas C, Gálvez-Jirón F, De Solminihac J, Padilla C, Cárcamo I, Villalón N, Kurte M, Pino-Lagos K. Crosstalk between Body Microbiota and the Regulation of Immunity. J Immunol Res 2022; 2022:6274265. [PMID: 35647199 PMCID: PMC9135571 DOI: 10.1155/2022/6274265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 11/26/2022] Open
Abstract
The microbiome corresponds to the genetic component of microorganisms (archaea, bacteria, phages, viruses, fungi, and protozoa) that coexist with an individual. During the last two decades, research on this topic has become massive demonstrating that in both homeostasis and disease, the microbiome plays an important role, and in some cases, a decisive one. To date, microbiota have been identified at different body locations, such as the eyes, lung, gastrointestinal and genitourinary tracts, and skin, and technological advances have permitted the taxonomic characterization of resident species and their metabolites, in addition to the cellular and molecular components of the host that maintain a crosstalk with local microorganisms. Here, we summarize recent studies regarding microbiota residing in different zones of the body and their relationship with the immune system. We emphasize the immune components underlying pathological conditions and how they interact with local (and distant) microbiota.
Collapse
Affiliation(s)
- Carolina Rojas
- Facultad de Medicina, Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago, Chile
- Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Felipe Gálvez-Jirón
- Facultad de Medicina, Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago, Chile
| | - Javiera De Solminihac
- Facultad de Medicina, Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago, Chile
| | - Cristina Padilla
- Facultad de Medicina, Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago, Chile
| | - Ignacio Cárcamo
- Facultad de Medicina, Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago, Chile
| | - Natalia Villalón
- Facultad de Medicina, Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago, Chile
| | - Mónica Kurte
- Facultad de Medicina, Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago, Chile
| | - Karina Pino-Lagos
- Facultad de Medicina, Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| |
Collapse
|
2
|
ELIAS MONIQUEB, TEODORO ANDERSONJ, LEMOS FELIPES, BERNARDES EMERSONS, SANTOS SOFIAN, PACHECO SIDNEY, OLIVEIRA FELIPELEITEDE. Lycopene induces bone marrow lymphopoiesis and differentiation of peritoneal IgA-producing cells. AN ACAD BRAS CIENC 2022; 94:e20210002. [DOI: 10.1590/0001-3765202220210002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 02/10/2022] [Indexed: 11/22/2022] Open
|
3
|
Zhong Z, Nan K, Weng M, Yue Y, Zhou W, Wang Z, Chu Y, Liu R, Miao C. Pro- and Anti- Effects of Immunoglobulin A- Producing B Cell in Tumors and Its Triggers. Front Immunol 2021; 12:765044. [PMID: 34868013 PMCID: PMC8640120 DOI: 10.3389/fimmu.2021.765044] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/01/2021] [Indexed: 12/18/2022] Open
Abstract
B cells are well known as key mediators of humoral immune responses via the production of antibodies. Immunoglobulin A (IgA) is the most abundantly produced antibody isotype and provides the first line of immune protection at mucosal surfaces. However, IgA has long been a divisive molecule with respect to tumor progression. IgA exerts anti- or pro-tumor effect in different tumor types. In this review, we summarize emerging evidence regarding the production and effects of IgA and IgA+ cells in the tumor microenvironment (TME). Moreover, we discuss that the TME cytokines, host diet, microbiome, and metabolites play a pivotal role in controlling the class-switch recombination (CSR) of IgA. The analysis of intratumoral Ig repertoires and determination of metabolites that influence CSR may help establish novel therapeutic targets for the treatment of cancers.
Collapse
Affiliation(s)
- Ziwen Zhong
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Ke Nan
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Meilin Weng
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ying Yue
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenchang Zhou
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhiqiang Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yiwei Chu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Shanghai Fifth People's Hospital and Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ronghua Liu
- Shanghai Fifth People's Hospital and Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Genetic background affects the mucosal SIgA levels, parasite burden, lung inflammation and susceptibility of male mice to Ascaris suum infection. Infect Immun 2021; 90:e0059521. [PMID: 34807734 DOI: 10.1128/iai.00595-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ascariasis is a neglected tropical disease, widespread in the world and causing important socioeconomic impacts. The presence of various stages of worm development in the pulmonary and intestinal mucosa induces a humoral and cellular immune response. However, although there is much evidence of the protective role of mucosal immunity against various pathogens, including helminthes, there is still a gap in the knowledge about the immune response and the mechanisms of action that are involved in protection against diseases, especially in the initial phase of ascariasis. Then, the aim of this study was to evaluate the kinetic aspects of the immune parasitological parameters in intestinal and pulmonary mucosa in male mice with early ascariasis. Therefore, two mice strains showed a different susceptibility to ascariasis (BALB/c and C57BL6/j), when experimentally infected with 2,500 infective eggs of Ascaris suum from time-point 0 and the immune parasitological parameters evaluated each two days after infection, during the period of 12 days. The results were suggestive of a synergetic action of intestinal and pulmonary SIgA contributing for the protection against early ascariasis by reducing the amount of migrating larval as well as the influx of leukocytes in the lung and the consequent impair of the pulmonary capacity.
Collapse
|
5
|
Zhang J, van Oostrom D, Li J, Savelkoul HFJ. Innate Mechanisms in Selective IgA Deficiency. Front Immunol 2021; 12:649112. [PMID: 33981304 PMCID: PMC8107477 DOI: 10.3389/fimmu.2021.649112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022] Open
Abstract
Selective IgA deficiency (SIgAD), characterized by a serum IgA level below 0.07 mg/ml, while displaying normal serum levels of IgM and IgG antibodies, is the most frequently occurring primary immunodeficiency that reveals itself after the first four years after birth. These individuals with SIgAD are for the majority healthy and even when they are identified they are usually not investigated further or followed up. However, recent studies show that newborns and young infants already display clinical manifestations of this condition due to aberrancies in their immune defense. Interestingly, there is a huge heterogeneity in the clinical symptoms of the affected individuals. More than 50% of the affected individuals do not have clinical symptoms, while the individuals that do show clinical symptoms can suffer from mild to severe infections, allergies and autoimmune diseases. However, the reason for this heterogeneity in the manifestation of clinical symptoms of the individuals with SIgAD is unknown. Therefore, this review focusses on the characteristics of innate immune system driving T-cell independent IgA production and providing a mechanism underlying the development of SIgAD. Thereby, we focus on some important genes, including TNFRSF13B (encoding TACI), associated with SIgAD and the involvement of epigenetics, which will cover the methylation degree of TNFRSF13B, and environmental factors, including the gut microbiota, in the development of SIgAD. Currently, no specific treatment for SIgAD exists and novel therapeutic strategies could be developed based on the discussed information.
Collapse
Affiliation(s)
- Jingyan Zhang
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| | - Dèlenn van Oostrom
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| | - JianXi Li
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| | - Huub F. J. Savelkoul
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
6
|
Silva JAF, Calmasini F, Siqueira-Berti A, Moraes-Vieira PMM, Quintar A, Carvalho HF. Prostate immunology: A challenging puzzle. J Reprod Immunol 2020; 142:103190. [PMID: 32853844 DOI: 10.1016/j.jri.2020.103190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/30/2020] [Accepted: 08/11/2020] [Indexed: 12/15/2022]
Abstract
Mucosal immunity defines the relationship of surfaces in contact with the environment and integrates diverse tissues such as epidermis, gum, nose, gut, uterus and prostate with the immune system. Although considered part of a system, each mucosa presents specific immune features beyond the barrier and secretory functions. Information regarding the mucosal immunology of the male reproductive tract and the prostate gland in particular is scarce. In this review, we approach the prostate as an epithelial barrier and as part of the mucosal immune system. Finally, we also raise a series of questions that will improve the understanding of this gland, its role in reproduction and its sensitivity/resistance to disease.
Collapse
Affiliation(s)
- Juliete Aparecida F Silva
- Department of Structural and Functional Biology, State University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Fabiano Calmasini
- Department of Structural and Functional Biology, State University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Aline Siqueira-Berti
- Department of Structural and Functional Biology, State University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Pedro M M Moraes-Vieira
- Department of Genetics, Evolution, Microbiology and Immunology, State University of Campinas, UNICAMP, Campinas, SP, Brazil
| | - Amado Quintar
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Hernandes F Carvalho
- Department of Structural and Functional Biology, State University of Campinas - UNICAMP, Campinas, SP, Brazil; National Institute of Science and Technology of Photonics Applied to Cell Biology - INFABiC, Campinas, SP, Brazil.
| |
Collapse
|
7
|
Pulvirenti F, Milito C, Cavaliere FM, Mezzaroma I, Cinetto F, Quinti I. IGA Antibody Induced by Immunization With Pneumococcal Polysaccharides Is a Prognostic Tool in Common Variable Immune Deficiencies. Front Immunol 2020; 11:1283. [PMID: 32695106 PMCID: PMC7336165 DOI: 10.3389/fimmu.2020.01283] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/20/2020] [Indexed: 12/02/2022] Open
Abstract
The evaluation of the response to vaccination in patients with inborn errors of immunity is a tool to evaluate T-dependent and T-independent antibody residual function of B lymphocytes and it is part of the diagnostic definition for Common Variable Immune Deficiencies. Currently used classifications for Common Variable Immune Deficiencies patients are based on the frequency of B cell subsets, and have been proven as a valid instrument for identification of patients at higher risk of infectious and non-infectious complications. This 6-years period observational study delineated the measurement of specific IgA antibodies induced by a 23-valent pneumococcal polysaccharides vaccine by a standardized ELISA for the quantification of IgA antibodies to all 23 pneumococcal serotypes as an additional prognostic marker in 74 CVID patients. The inability to mount an IgA-mediated response against the pneumococcal polysaccharide antigens or the inability to maintain the antibody response over time identified poor IgA CVID responders with severe immunological impairment, great risk of co-morbidities, and poor prognosis. The division of CVID patient into specific IgA-non responders and IgA-responders discriminated better than other CVID classifications for infectious risk, while it overlapped for non-infectious complications. Our study suggested to add the evaluation of the antibody response by the 23-valent IgA assay in the clinical monitoring of CVID patients.
Collapse
Affiliation(s)
- Federica Pulvirenti
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Cinzia Milito
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | | | - Ivano Mezzaroma
- Department of Translational and Precision, "Sapienza" University of Rome, Rome, Italy
| | - Francesco Cinetto
- Department of Medicine-DIMED, University of Padova, Padua, Italy.,Internal Medicine I, Ca' Foncello Hospital, Treviso, Italy
| | - Isabella Quinti
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
8
|
Yonkof JR, Gupta A, Rueda CM, Mangray S, Prince BT, Rangarajan HG, Alshahrani M, Varga E, Cripe TP, Abraham RS. A Novel Pathogenic Variant in CARMIL2 ( RLTPR) Causing CARMIL2 Deficiency and EBV-Associated Smooth Muscle Tumors. Front Immunol 2020; 11:884. [PMID: 32625199 PMCID: PMC7314954 DOI: 10.3389/fimmu.2020.00884] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/16/2020] [Indexed: 12/16/2022] Open
Abstract
CARMIL2 deficiency is a rare combined immunodeficiency (CID) characterized by defective CD28-mediated T cell co-stimulation, altered cytoskeletal dynamics, and susceptibility to Epstein Barr Virus smooth muscle tumors (EBV-SMTs). Case reports associated with EBV-SMTs are limited. We describe herein a novel homozygous CARMIL2 variant (c.1364_1393del) in two Saudi Arabian male siblings born to consanguineous parents who developed EBV-SMTs. CARMIL2 protein expression was significantly reduced in CD4+ T cells and CD8+ T cells. T cell proliferation on stimulation with soluble (s) anti-CD3 or (s) anti-CD3 plus anti-CD28 antibodies was close to absent in the proband, confirming altered CD28-mediated co-signaling. CD28 expression was substantially reduced in the proband's T cells, and was diminished to a lesser degree in the T cells of the younger sibling, who has a milder clinical phenotype. Defects in both T and B cell compartments were observed, including absent central memory CD8+ T cells, and decreased frequencies of total and class-switched memory B cells. FOXP3+ regulatory T cells (Treg) were also quantitatively decreased, and furthermore CD25 expression within the Treg subset was substantially reduced. These data confirm the pathogenicity of this novel loss-of-function (LOF) variant in CARMIL2 and expand the genotypic and phenotypic spectrum of CIDs associated with EBV-SMTs.
Collapse
Affiliation(s)
- Jennifer R Yonkof
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, United States
| | - Ajay Gupta
- Division of Hematology, Oncology and Blood and Marrow Transplant, Nationwide Children's Hospital, Columbus, OH, United States
| | - Cesar M Rueda
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, United States
| | - Shamlal Mangray
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, United States
| | - Benjamin T Prince
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, United States
| | - Hemalatha G Rangarajan
- Division of Hematology and Oncology, Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, United States
| | - Mohammad Alshahrani
- Department of Pediatric Hematology-Oncology, Riyadh Military Hospital, Riyadh, Saudi Arabia
| | - Elizabeth Varga
- Division of Hematology, Oncology and Blood and Marrow Transplant, Nationwide Children's Hospital, Columbus, OH, United States
| | - Timothy P Cripe
- Division of Hematology, Oncology and Blood and Marrow Transplant, Nationwide Children's Hospital, Columbus, OH, United States
| | - Roshini S Abraham
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, United States
| |
Collapse
|
9
|
The activation of BAFF/APRIL system in spleen and lymph nodes of Plasmodium falciparum infected patients. Sci Rep 2020; 10:3865. [PMID: 32123265 PMCID: PMC7052189 DOI: 10.1038/s41598-020-60763-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/13/2020] [Indexed: 12/16/2022] Open
Abstract
Previous studies have reported activation of the B cell-activating factor (BAFF)/a proliferation-inducing ligand (APRIL) system in T independent immunity against malaria infection. Plasmodium falciparum (P. falciparum) infected animal model is not feasible. Therefore, little is known about the occurrence of BAFF/APRIL system and changes in falciparum lymphoid tissues. This study aimed to investigate the expression of BAFF/APRIL system components in lymphoid tissues from P. falciparum infected patients. Spleen and lymph node samples from 14 patients were collected at autopsy. Normal spleens and bacterially infected tonsils served as controls. The protein and/or mRNA expression of BAFF/APRIL and their cognate receptors, BAFF-R, TACI and BCMA, were determined by immunohistochemistry and RT-qPCR, respectively. The spleens of the patients exhibited significantly higher BAFF-R protein expression than normal spleens. Although without appropriate control, BCMA protein was markedly observed only in the lymph nodes. BAFF and BCMA mRNA levels were also significantly elevated in the spleen tissues of the patients compared with normal spleens. The overall BAFF-R protein levels in the lymphoid tissues of the patients correlated positively with parasitaemia. These findings are the first to confirm that BAFF/APRIL system activation in lymphoid tissues and is positively correlated with the parasitaemia levels in falciparum malaria.
Collapse
|
10
|
Liu Y, Yuan X, Li L, Lin L, Zuo X, Cong Y, Li Y. Increased Ileal Immunoglobulin A Production and Immunoglobulin A-Coated Bacteria in Diarrhea-Predominant Irritable Bowel Syndrome. Clin Transl Gastroenterol 2020; 11:e00146. [PMID: 32352710 PMCID: PMC7145038 DOI: 10.14309/ctg.0000000000000146] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Immune activation and intestinal microbial dysbiosis could induce diarrhea-predominant irritable bowel syndrome (IBS-D). We examined the roles of ileal immunoglobulin A (IgA) and IgA-coated bacteria in IBS-D pathogenesis. METHODS Peripheral blood, fecal samples, and ileal and cecal biopsies were collected from 32 healthy volunteers and 44 patients with IBS-D. Quantitative reverse transcriptase polymerase chain reaction was used to assess differential gene expression. IgA levels in the blood and fecal samples were quantified by an enzyme-linked immunosorbent assay. IgA cells were assessed by immunofluorescence imaging. Flow-cytometry-based IgA bacterial cell sorting and 16S rRNA gene sequencing (IgA-SEQ) was used to isolate and identify fecal IgA bacteria. RESULTS Fecal IgA, particularly IgA1, was upregulated in patients with IBS-D. IgA class switch and B cell-activating factor-receptor were increased in the terminal ileum of patients. The intestinal microbiota composition was altered in patients compared with that in controls. IgA-SEQ showed that the proportion of fecal IgA-coated bacteria was increased significantly in patients with IBS-D. IgA bacteria in patients with IBS-D showed higher abundances of Escherichia-Shigella, Granulicatella, and Haemophilus compared with healthy controls and IgA bacteria in patients with IBS-D. The Escherichia-Shigella IgA coating index was positively correlated with anxiety and depression. The Escherichia-Shigella relative abundance, luminal IgA activity, and some altered IgA-coated bacteria were positively associated with the clinical manifestations of IBS-D. DISCUSSION Microbial dysbiosis may promote the terminal ileal mucosa to produce higher levels of IgA, increasing the proportion of IgA-coated bacteria by activating IgA class switching, which might regulate local inflammation and clinical manifestations in IBS-D. IgA may mediate the effects of microbial dysbiosis on the pathogenesis of IBS-D.
Collapse
Affiliation(s)
- Yi Liu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Department of Gastroenterology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xunyi Yuan
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Lixiang Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Lin Lin
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiuli Zuo
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yingzi Cong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Yanqing Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
11
|
Carsetti R, Di Sabatino A, Rosado MM, Cascioli S, Piano Mortari E, Milito C, Grimsholm O, Aranburu A, Giorda E, Tinozzi FP, Pulvirenti F, Donato G, Morini F, Bagolan P, Corazza GR, Quinti I. Lack of Gut Secretory Immunoglobulin A in Memory B-Cell Dysfunction-Associated Disorders: A Possible Gut-Spleen Axis. Front Immunol 2020; 10:2937. [PMID: 31969880 PMCID: PMC6960143 DOI: 10.3389/fimmu.2019.02937] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/29/2019] [Indexed: 12/23/2022] Open
Abstract
Background: B-1a B cells and gut secretory IgA (SIgA) are absent in asplenic mice. Human immunoglobulin M (IgM) memory B cells, which are functionally equivalent to mouse B-1a B cells, are reduced after splenectomy. Objective: To demonstrate whether IgM memory B cells are necessary for generating IgA-secreting plasma cells in the human gut. Methods: We studied intestinal SIgA in two disorders sharing the IgM memory B cell defect, namely asplenia, and common variable immune deficiency (CVID). Results: Splenectomy was associated with reduced circulating IgM memory B cells and disappearance of intestinal IgA-secreting plasma cells. CVID patients with reduced circulating IgM memory B cells had a reduced frequency of gut IgA+ plasma cells and a disrupted film of SIgA on epithelial cells. Toll-like receptor 9 (TLR9) and transmembrane activator and calcium-modulator and cyclophilin ligand interactor (TACI) induced IgM memory B cell differentiation into IgA+ plasma cells in vitro. In the human gut, TACI-expressing IgM memory B cells were localized under the epithelial cell layer where the TACI ligand a proliferation inducing ligand (APRIL) was extremely abundant. Conclusions: Circulating IgM memory B cell depletion was associated with a defect of intestinal IgA-secreting plasma cells in asplenia and CVID. The observation that IgM memory B cells have a distinctive role in mucosal protection suggests the existence of a functional gut-spleen axis.
Collapse
Affiliation(s)
- Rita Carsetti
- B Cell Pathophysiology Unit, IRCCS Bambino Gesù Children's Hospital, Rome, Italy.,Diagnostic Immunology Unit, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Antonio Di Sabatino
- First Department of Medicine, IRCCS San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Maria Manuela Rosado
- B Cell Pathophysiology Unit, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Simona Cascioli
- B Cell Pathophysiology Unit, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Eva Piano Mortari
- B Cell Pathophysiology Unit, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Cinzia Milito
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Ola Grimsholm
- B Cell Pathophysiology Unit, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Alaitz Aranburu
- B Cell Pathophysiology Unit, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Ezio Giorda
- B Cell Pathophysiology Unit, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Francesco Paolo Tinozzi
- Second Department of Surgery, IRCCS San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | | | - Giuseppe Donato
- Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Francesco Morini
- Department of Medical and Surgical Neonatology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Pietro Bagolan
- Department of Medical and Surgical Neonatology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Gino Roberto Corazza
- First Department of Medicine, IRCCS San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Isabella Quinti
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
12
|
Cytokine profile of NALT during acute stress and its possible effect on IgA secretion. Immunol Lett 2017; 188:68-78. [PMID: 28472640 DOI: 10.1016/j.imlet.2017.04.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 01/27/2017] [Accepted: 04/28/2017] [Indexed: 12/20/2022]
Abstract
Stress stimuli affect the immune system responses that occur at mucosal membranes, particularly IgA secretion. It has been suggested that acute stress increases the levels of IgA and that sympathetic innervation plays an important role in this process. We herein explore in a murine model how acute stress affects the Th1/Th2/Treg cytokine balance in NALT, and the possible role of glucocorticoids in this effect. Nine-week-old male CD1 mice were divided into three groups: unstressed (control), stressed (subjected to 4h of immobilization), and stressed after pretreatment with a single dose of the corticosterone receptor antagonist RU-486. The parameters evaluated included plasma corticosterone and epinephrine, IgA levels in nasal fluid (by ELISA), the percentage of CD19+B220+IgA+ lymphocytes and CD138+IgA+ plasma cells, and the mRNA expression of heavy α chain, J chain and pIgR. Moreover, the gene and protein expression of Th1 cytokines (TNFα, IL-2 and INF-γ), Th2 cytokines (IL-4 and IL-5) and Treg cytokines (IL-10 and TGFβ) were determined in nasal mucosa. The results show that acute stress generated a shift towards the dominance of an anti-inflammatory immune response (Th2 and Treg cytokines), evidenced by a significant rise in the amount of T cells that produce IL4, IL-5 and IL-10. This immune environment may favor IgA biosynthesis by CD138+IgA+ plasma cells, a process mediated mostly by glucocorticoids.
Collapse
|
13
|
Hydroxychloroquine alleviates persistent proteinuria in IgA nephropathy. Int Urol Nephrol 2017; 49:1233-1241. [PMID: 28349446 DOI: 10.1007/s11255-017-1574-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/17/2017] [Indexed: 12/20/2022]
Abstract
PURPOSE Dendritic cells, Toll-like receptor (TLR), interleukin-6 (IFN-α), interferon-alpha (IFN-α) and tumor necrosis factor-alpha (TNF-α) play an important role in the pathogenesis of IgA nephropathy (IgAN). Hydroxychloroquine (HCQ) is an antimalarial agent and had a notable impact on immune activation by the reduction of circulating activated immune cells that including decreased TLR-expressing cells, reduced IFN-secreting DCs, reduced production of cytokines including IFN-α,IL-6 and TNF-α. We evaluated the efficacy of HCQ in reducing proteinuria in patients with IgAN. METHODS Twenty-eight IgAN patients with persistent proteinuria (0.5-2.0 g/24 h) despite treatment with losartan for 3 months were matched to receive HCQ and losartan (group 1) or continue losartan therapy (group 2) for 24 weeks. The primary end point of this prospective, paired case-control study was reduction of proteinuria by 50% or more over entry level. RESULTS Six patients (42.9%) in group one versus two patients (14.3%) in group 2 reach the primary end point (P = 0.004). By 24 weeks, the mean urinary protein excretion was 65.9 ± 25.5% (P = 0.002) and 95.3 ± 30.0% (P = 0.791) that of the corresponding baseline value in group 1 and group 2, respectively. Baseline proteinuria and histologic grades, blood pressure control and changes in serum creatinine and eGFR were not different between the two groups. CONCLUSIONS In selected patients with IgAN, HCQ is effective in ameliorating proteinuria.
Collapse
|
14
|
Aberrantly methylated DNA regions lead to low activation of CD4+ T-cells in IgA nephropathy. Clin Sci (Lond) 2016; 130:733-46. [PMID: 26846681 DOI: 10.1042/cs20150711] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/04/2016] [Indexed: 12/12/2022]
Abstract
IgAN (IgA nephropathy) is the most common form of primary glomerulonephritis worldwide and has a strong genetic component. In this setting, DNA methylation could also be an important factor influencing this disease. We performed a genome-wide screening for DNA methylation in CD4(+) T-cells from IgAN patients and found three regions aberrantly methylated influencing genes involved in the response and proliferation of CD4(+) T-cells. Two hypomethylated regions codified genes involved in TCR (T-cell receptor) signalling, TRIM27 (tripartite motif-containing 27) and DUSP3 (dual-specificity phosphatase 3), and an hypermethylated region included the VTRNA2-1 (vault RNA 2-1) non-coding RNA, also known as miR-886 precursor. We showed that the aberrant methylation influences the expression of these genes in IgAN patients. Moreover, we demonstrated that the hypermethylation of the miR-886 precursor led to a decreased CD4(+) T-cell proliferation following TCR stimulation and to the overexpression of TGFβ (transforming growth factor β). Finally, we found a Th1/Th2 imbalance in IgAN patients. The IL (interleukin)-2/IL-5 ratio was notably higher in IgAN patients and clearly indicated a Th1 shift. In conclusion, we identified for the first time some specific DNA regions abnormally methylated in IgAN patients that led to the reduced TCR signal strength of the CD4(+) T-cells and to their anomalous response and activation that could explain the T-helper cell imbalance. The present study reveals new molecular mechanisms underlying the abnormal CD4(+) T-cell response in IgAN patients.
Collapse
|
15
|
González Aznar E, Romeu B, Lastre M, Zayas C, Cuello M, Cabrera O, Valdez Y, Fariñas M, Pérez O. Mucosal and systemic immune responses induced by a single time vaccination strategy in mice. Can J Microbiol 2015; 61:531-8. [PMID: 26140382 DOI: 10.1139/cjm-2015-0063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Vaccination is considered by the World Health Organization as the most cost-effective strategy for controlling infectious diseases. In spite of great successes with vaccines, many infectious diseases are still leading killers, because of the inadequate coverage of many vaccines. Several factors have been responsible: number of doses, high vaccine reactogenicity, vaccine costs, vaccination policy, among others. Contradictorily, few vaccines are of single dose and even less of mucosal administration. However, more common infections occur via mucosa, where secretory immunoglobulin A plays an essential role. As an alternative, we proposed a novel protocol of vaccination called Single Time Vaccination Strategy (SinTimVaS) by immunizing 2 priming doses at the same time: one by mucosal route and the other by parenteral route. Here, the mucosal and systemic responses induced by Finlay adjuvants (AF Proteoliposome 1 and AF Cochleate 1) implementing SinTimVaS in BALB/c mice were evaluated. One intranasal dose of AF Cochleate 1 and an intramuscular dose of AF Proteoliposome 1 adsorbed onto aluminum hydroxide, with bovine serum albumin or tetanus toxoid as model antigens, administrated at the same time, induced potent specific mucosal and systemic immune responses. Also, we demonstrated that SinTimVaS using other mucosal routes like oral and sublingual, in combination with the subcutaneous route elicits immune responses. SinTimVaS, as a new immunization strategy, could increase vaccination coverage and reduce time-cost vaccines campaigns, adding the benefits of immune response in mucosa.
Collapse
Affiliation(s)
| | - Belkis Romeu
- a Immunology Department, Finlay Institute, P.O. Box 16017, Havana, Cuba.,b Permanent Mission of Cuba, Geneva, Switzerland
| | | | - Caridad Zayas
- a Immunology Department, Finlay Institute, P.O. Box 16017, Havana, Cuba
| | - Maribel Cuello
- a Immunology Department, Finlay Institute, P.O. Box 16017, Havana, Cuba
| | - Osmir Cabrera
- a Immunology Department, Finlay Institute, P.O. Box 16017, Havana, Cuba
| | - Yolanda Valdez
- a Immunology Department, Finlay Institute, P.O. Box 16017, Havana, Cuba.,d Animal Models Direction, Finlay Institute, P.O. Box 16017, Havana, Cuba
| | - Mildrey Fariñas
- a Immunology Department, Finlay Institute, P.O. Box 16017, Havana, Cuba.,d Animal Models Direction, Finlay Institute, P.O. Box 16017, Havana, Cuba
| | | |
Collapse
|
16
|
Abstract
The goal of the influenza vaccine is to prevent influenza virus infection and control the yearly seasonal epidemic and pandemic. However, the presently available parenteral influenza vaccine induces only systemic humoral immunity, which does not prevent influenza virus infection on the mucosal surface. Secretary IGA antibodies play an important role in preventing natural infection. Moreover, the IgA antibody response mediates cross-protection against variant viruses in animal models. Thus, a mucosal influenza vaccine that induces mucosal immunity would be a powerful tool to protect individuals from the influenza virus. Although the function of the mucosal immune system, especially in the respiratory tract, is not completely understood, there are several studies underway to develop mucosal influenza vaccines. Here, we will review current knowledge concerning the induction of IgA, the role of B-cell production of influenza virus specific IgA antibodies in anti-influenza immunity, and the role of humoral memory responses induced upon vaccination.
Collapse
|
17
|
Feller L, Altini M, Khammissa R, Chandran R, Bouckaert M, Lemmer J. Oral mucosal immunity. Oral Surg Oral Med Oral Pathol Oral Radiol 2013; 116:576-83. [DOI: 10.1016/j.oooo.2013.07.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/20/2013] [Accepted: 07/17/2013] [Indexed: 12/15/2022]
|
18
|
Pittaway CE, Lawson AL, Coles GC, Wilson AD. Systemic and mucosal IgE antibody responses of horses to infection with Anoplocephala perfoliata. Vet Parasitol 2013; 199:32-41. [PMID: 24183646 DOI: 10.1016/j.vetpar.2013.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 09/24/2013] [Accepted: 10/05/2013] [Indexed: 11/26/2022]
Abstract
Infection of horses with Anoplocephala perfoliata induces a severe inflammatory reaction of the caecal mucosa around the site of parasite attachment adjacent to the ileocecal valve. Lesions show epithelial erosion or ulceration of the mucosa with infiltration by eosinophils, lymphocytes and mast cells leading to oedema, gross thickening and fibrosis of the caecal wall. Despite this evidence of an inflammatory reaction to A. perfoliata within the mucosa of the caecum there is little information about the nature of the local immune response to A. perfoliata. An ELISA which assays serum IgG(T) antibodies to A. perfoliata excretory/secretory antigens has been developed as a diagnostic test. However, the specificity of the ELISA remains sub-optimal and the role of other isotypes in the immune response to A. perfoliata has not been reported. This study measured IgA, IgE and IgG(T) antibody responses to A. perfoliata excretory/secretory antigens in sera of 75 horses presented for slaughter. The prevalence of A. perfoliata infection, as confirmed by the presence of parasites in the terminal ileum, caecum or proximal colon, was 55%. A. perfoliata-specific IgG(T) and IgE antibodies were significantly elevated in infected horses compared to controls; IgA antibodies were also detected but did not differ between infected and control horses. Diagnosis by serum IgG(T) ELISA had a sensitivity of 78% and a specificity of 80%, by comparison the serum IgE ELISA had a sensitivity of just 44% with a specificity of 82% and therefore did not provide an improved diagnostic test. Western blots with sera from infected horses demonstrated IgE-binding to at least 10 separate components of excretory/secretory (E/S) antigens. A similar pattern was also found with IgG(T). Around 30% of horses had high levels of serum IgE which bound fucose-containing carbohydrate antigens on the parasite surface but this was unrelated to the presence of A. perfoliata infection. Immunoperoxidase staining detected numerous IgE-positive cells within lymphoid follicles in the caecal mucosa close to the site of A. perfoliata attachment and quantitative RT-PCR detected high levels of IgE transcription in the caecal mucosa of all horses. Mucosal synthesis of antibodies was confirmed by the demonstration of A. perfoliata-specific IgG(T) and IgE in the supernatant of lamina propria explant cultures that discriminated clearly between infected and uninfected horses. We conclude that there is an active immune response to A. perfoliata within the caecal mucosa involving local production of both IgG(T) and IgE antibody isotypes; but it remains unclear whether this immune response can reduce or eliminate parasite burden.
Collapse
Affiliation(s)
- Charles E Pittaway
- University of Bristol, School of Clinical Veterinary Sciences, Langford House, Bristol BS40 5DU, UK
| | | | | | | |
Collapse
|
19
|
van Riet E, Ainai A, Suzuki T, Hasegawa H. Mucosal IgA responses in influenza virus infections; thoughts for vaccine design. Vaccine 2012; 30:5893-900. [DOI: 10.1016/j.vaccine.2012.04.109] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 04/20/2012] [Indexed: 10/28/2022]
|
20
|
Abstract
The gastrointestinal system is a common entry point for pathogenic microbes to access the inner environment of the body. Anti-microbial factors produced by the intestinal mucosa limit the translocation of both commensal and pathogenic microbes across the intestinal epithelial cell barrier. The regulation of these host defense mechanisms largely depends on the activation of innate immune receptors by microbial molecules. Under steady-state conditions, the microbiota provides constitutive signals to the innate immune system, which helps to maintain a healthy inflammatory tone within the intestinal mucosa and, thus, enhances resistance to infection with enteric pathogens. During an acute infection, the intestinal epithelial cell barrier is breached, and the detection of microbial molecules in the intestinal lamina propria rapidly stimulates innate immune signaling pathways that coordinate early defense mechanisms. Herein, we review how microbial molecules shed by both commensal and pathogenic microbes direct host defenses at the intestinal mucosa. We highlight the signaling pathways, effector molecules, and cell populations that are activated by microbial molecule recognition and, thereby, are involved in the maintenance of homeostatic levels of host defense and in the early response to acute enteric infection. Finally, we discuss how manipulation of these host defense pathways by stimulating innate immune receptors is a potential therapeutic strategy to prevent or alleviate intestinal disease.
Collapse
Affiliation(s)
- Melissa A Kinnebrew
- Infectious Diseases Service, Department of Medicine, Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | |
Collapse
|
21
|
The A subunit of Escherichia coli heat-labile enterotoxin functions as a mucosal adjuvant and promotes IgG2a, IgA, and Th17 responses to vaccine antigens. Infect Immun 2012; 80:2426-35. [PMID: 22526674 DOI: 10.1128/iai.00181-12] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) produces both heat-labile (LT) and heat-stable (ST) enterotoxins and is a major cause of diarrhea in infants in developing countries and in travelers to those regions. In addition to inducing fluid secretion, LT is a powerful mucosal adjuvant capable of promoting immune responses to coadministered antigens. In this study, we examined purified A subunit to further understand the toxicity and adjuvanticity of LT. Purified A subunit was enzymatically active but sensitive to proteolytic degradation and unable to bind gangliosides, and even in the presence of admixed B subunit, it displayed low cyclic AMP (cAMP) induction and no enterotoxicity. Thus, the AB5 structure plays a key role in protecting the A subunit from proteolytic degradation and in delivering the enzymatic signals required for secretion. In contrast, the A subunit alone was capable of activating dendritic cells and enhanced immune responses to multiple antigens following intranasal immunization; therefore, unlike toxicity, LT adjuvanticity is not dependent on the AB5 holotoxin structure or the presence of the B subunit. However, immune responses were maximal when signals were received from both subunits either in an AB5 structure or with A and B admixed. Furthermore, the quality of the immune response (i.e., IgG1/IgG2 balance and mucosal IgA and IL-17 secretion) was determined by the presence of an A subunit, revealing for the first time induction of Th17 responses with the A subunit alone. These results have important implications for understanding ETEC pathogenesis, unraveling immunologic responses induced by LT-based adjuvants, and developing new mucosal vaccines.
Collapse
|
22
|
Napimoga MH, Nunes LHAC, Maciel AAB, Demasi APD, Benatti BB, Santos VR, Bastos MF, de Miranda TS, Duarte PM. Possible involvement of IL-21 and IL-10 on salivary IgA levels in chronic periodontitis subjects. Scand J Immunol 2011; 74:596-602. [PMID: 21815905 DOI: 10.1111/j.1365-3083.2011.02605.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Specific cytokines and the costimulatory protein CD40 play role in inducing immunoglobulin (Ig)A production by B cells in the humoral immune response. However, to date, the role of these mediators was not investigated in chronic periodontitis. Therefore, the aim of this study was to assess the local levels of interleukin (IL)-21, IL-21 receptor (IL-21R), IL-4, IL-10 and CD40 ligand (CD40L) on chronic periodontitis subjects and their relationship with the salivary levels of IgA. Gingival biopsies and un-stimulated saliva were collected from chronic periodontitis (n = 15) and periodontally healthy (n = 15) subjects. The mRNA levels of IL-4, IL-10, IL-21, IL-21R, CD40L in the gingival biopsies were evaluated by quantitative real-time polymerase chain reaction. The salivary levels of IgA and the levels of IL-4 and IL-10 in the gingival biopsies were analyzed by ELISA. The mean levels of IgA were significantly higher in the chronic periodontitis compared to periodontally healthy group (P < 0.05). The mRNA levels for IL-21 was higher (P < 0.05) in the chronic periodontitis when compared to the healthy group. However, the expression of IL-21R and CD40L did not differ between groups. The IL-10 was significantly elevated at mRNA and protein levels in chronic periodontitis when compared to periodontally healthy group (P < 0.05). Conversely, the mRNA levels as well as the protein amount of IL-4 were significantly lower (P < 0.05) in chronic periodontitis than healthy ones. In conclusion, the upregulation of IL-21 and IL-10 and downregulation of IL-4 in periodontitis tissues may be collectively involved in the increased levels of salivary IgA in chronic periodontitis subjects.
Collapse
Affiliation(s)
- M H Napimoga
- Laboratory of Immunology and Molecular Biology, São Leopoldo Mandic Institute and Research Center, Campinas/SP, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Development of mucosal immunity in children: a rationale for sublingual immunotherapy? J Allergy (Cairo) 2011; 2012:492761. [PMID: 22121386 PMCID: PMC3205711 DOI: 10.1155/2012/492761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Accepted: 08/22/2011] [Indexed: 01/14/2023] Open
Abstract
The mucosal immune system has bidirectional tasks to mount an effective defense against invading harmful pathogens and to suppress the immune response to alimentary antigens and commensal bacterial flora. Oral tolerance is a suppression of the mucosal immune pathway related to a specific immunophenotype of the dendritic cells and an induction of the regulatory T cells as well as with the silencing of the effector T cell response by anergy and deletion. The physiological dynamic process of the anatomical and functional maturation of the immune system occurring in children during pre- and postnatal periods is a significant factor, having an impact on the fine balance between the activation and the suppression of the immune response. In this paper, mechanisms of mucosal immunity and tolerance induction in terms of maturational issues are discussed with a special emphasis on the implications for a novel therapeutic intervention in allergic diseases via the sublingual route.
Collapse
|
24
|
Lawson LB, Norton EB, Clements JD. Defending the mucosa: adjuvant and carrier formulations for mucosal immunity. Curr Opin Immunol 2011; 23:414-20. [PMID: 21511452 DOI: 10.1016/j.coi.2011.03.009] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 03/25/2011] [Indexed: 01/10/2023]
Abstract
A majority of infectious microorganisms either colonize or cross mucosal surfaces to enter the host. A major goal in vaccine design is to induce a protective, lasting immune response against potential pathogens at mucosal surfaces. In addition, mucosal vaccines can offer needle-free delivery, thereby improving accessibility, safety, and cost-effectiveness. Challenges to successful mucosal vaccination include poor induction of mucosal immunity, limited understanding of protective mechanisms and crosstalk between mucosal compartments, and the availability of safe, effective mucosal adjuvants and delivery systems. This review focuses on some key advances in the field of mucosal vaccinology within the past 2-3 years, including reports on promising new formulations and investigations into the mechanisms of established mucosal adjuvants and/or particulate carrier systems.
Collapse
Affiliation(s)
- Louise B Lawson
- Department of Microbiology and Immunology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, United States
| | | | | |
Collapse
|
25
|
Chinen J, Shearer WT. Advances in basic and clinical immunology in 2010. J Allergy Clin Immunol 2011; 127:336-41. [PMID: 21281863 PMCID: PMC3057129 DOI: 10.1016/j.jaci.2010.11.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 11/23/2010] [Indexed: 10/18/2022]
Abstract
Reports in basic and clinical immunology in 2010 reflected the use of state-of-the-art genetic and immunologic tools to characterize the pathogenesis of immunologic diseases and the development of novel therapies directed to these conditions. B-cell biology has been explained in greater detail, significantly with lessons from the genetic defects found in the humoral immunodeficiencies. Therapeutic mAbs are given for an increasing number of indications, such as anti-CD20 antibodies or rituximab, which was initially developed for non-Hodgkin lymphomas and is currently used in diverse autoimmune and inflammatory disorders. The report of an infant with severe combined immunodeficiency (SCID) in Massachusetts detected by means of newborn screening and successfully treated with hematopoietic stem cell transplantation validated recent efforts toward newborn screening for SCID. Improvement of survival outcomes for patients with primary immunodeficiencies treated with hematopoietic stem cell transplantation was demonstrated in a large European cohort, with significant appreciation of the type of donor graft, particularly the use of HLA-matched unrelated donors for patients with non-SCID. Progress in cellular mechanisms of drug hypersensitivity included the characterization of nitroso-modified drug metabolites as potent T-cell activators and the identification of the relocation of plasmacytoid dendritic cells from blood to skin as a potential risk factor for reactivation of viral disease.
Collapse
Affiliation(s)
- Javier Chinen
- Allergy and Immunology Section, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA.
| | | |
Collapse
|
26
|
|