1
|
Finney LJ, Fenwick P, Kemp SV, Singanayagam A, Edwards MR, Belchamber KBR, Kebadze T, Regis E, Donaldson GD, Mallia P, Donnelly LE, Johnston SL, Wedzicha JA. Impaired antiviral immunity in frequent exacerbators of chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol 2025; 328:L120-L133. [PMID: 39560620 DOI: 10.1152/ajplung.00118.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024] Open
Abstract
Respiratory viruses cause chronic obstructive pulmonary disease (COPD) exacerbations. Rhinoviruses (RVs) are the most frequently detected. Some patients with COPD experience frequent exacerbations (≥2 exacerbations/yr). The relationship between exacerbation frequency and antiviral immunity remains poorly understood. The objective of this study was to investigate the relationship between exacerbation frequency and antiviral immunity in COPD. Alveolar macrophages and bronchial epithelial cells (BECs) were obtained from patients with COPD and healthy participants. Alveolar macrophages were infected with RV-A16 multiplicity of infection (MOI) 5 and BECs infected with RV-A16 MOI 1 for 24. Interferons (IFNs) and proinflammatory cytokines IL-1β, IL-6, C-X-C motif chemokine ligand (CXCL)-8, and TNF were measured in cell supernatants using a mesoscale discovery platform. Viral load and interferon-stimulated genes were measured in cell lysates using quantitative PCR. Spontaneous and RV-induced IFN-β, IFN-γ, and CXCL-11 release were significantly reduced in alveolar macrophages from patients with COPD compared with healthy subjects. IFN-β was further impaired in uninfected alveolar macrophages from patients with COPD with frequent exacerbations 82.0 pg/mL versus infrequent exacerbators 234.7 pg/mL, P = 0.008 and RV-infected alveolar macrophages from frequent exacerbators 158.1 pg/mL versus infrequent exacerbators 279.5 pg/mL, P = 0.022. Release of proinflammatory cytokines CXCL-8, IL-6, TNF, and IL-1β was higher in uninfected BECs from patients with COPD compared with healthy subjects but there was no difference in proinflammatory response to RV between groups. IFN responses to RV were impaired in alveolar macrophages from patients with COPD and further reduced in patients with frequent exacerbations.NEW & NOTEWORTHY COPD exacerbations are commonly triggered by viral infections. Some patients with COPD have frequent exacerbations leading to rapid lung function decline and increased mortality. In this study, antiviral responses (interferons) from bronchial epithelial cells and alveolar macrophages were reduced in patients with COPD compared with healthy participants and further reduced in patients with COPD with frequent exacerbations. Impaired antiviral immunity may lead to frequent COPD exacerbations. Targeted vaccinations and antiviral therapy may reduce exacerbations in COPD.
Collapse
Affiliation(s)
- Lydia J Finney
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Peter Fenwick
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Samuel V Kemp
- Royal Brompton and Harefield Hospitals, London, United Kingdom
| | - Aran Singanayagam
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Michael R Edwards
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Kylie B R Belchamber
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Tatiana Kebadze
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Eteri Regis
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Gavin D Donaldson
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Patrick Mallia
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Louise E Donnelly
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Sebastian L Johnston
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Jadwiga A Wedzicha
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
2
|
Regis E, Fontanella S, Curtin JA, Pinot de Moira A, Edwards MR, Murray CS, Simpson A, Johnston SL, Custovic A. Association between polymorphisms on chromosome 17q12-q21 and rhinovirus-induced interferon responses. J Allergy Clin Immunol 2024; 154:308-315. [PMID: 38494094 DOI: 10.1016/j.jaci.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/23/2024] [Accepted: 03/01/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Single nucleotide polymorphisms (SNPs) in genes on chromosome 17q12-q21 are associated with childhood-onset asthma and rhinovirus-induced wheeze. There are few mechanistic data linking chromosome 17q12-q21 to wheezing illness. OBJECTIVE We investigated whether 17q12-q21 risk alleles were associated with impaired interferon responses to rhinovirus. METHODS In a population-based birth cohort of European ancestry, we stimulated peripheral blood mononuclear cells with rhinovirus A1 (RV-A1) and rhinovirus A16 (RV-A16) and measured IFN and IFN-induced C-X-C motif chemokine ligand 10 (aka IP10) responses in supernatants. We investigated associations between virus-induced cytokines and 6 SNPs in 17q12-q21. Bayesian profile regression was applied to identify clusters of individuals with different immune response profiles and genetic variants. RESULTS Five SNPs (in high linkage disequilibrium, r2 ≥ 0.8) were significantly associated with RV-A1-induced IFN-β (rs9303277, P = .010; rs11557467, P = .012; rs2290400, P = .006; rs7216389, P = .008; rs8079416, P = .005). A reduction in RV-A1-induced IFN-β was observed among individuals with asthma risk alleles. There were no significant associations for RV-A1-induced IFN-α or CXCL10, or for any RV-A16-induced IFN/CXCL10. Bayesian profile regression analysis identified 3 clusters that differed in IFN-β induction to RV-A1 (low, medium, high). The typical genetic profile of the cluster associated with low RV-A1-induced IFN-β responses was characterized by a very high probability of being homozygous for the asthma risk allele for all SNPs. Children with persistent wheeze were almost 3 times more likely to be in clusters with reduced/average RV-A1-induced IFN-β responses than in the high immune response cluster. CONCLUSIONS Polymorphisms on chromosome 17q12-q21 are associated with rhinovirus-induced IFN-β, suggesting a novel mechanism-impaired IFN-β induction-links 17q12-q21 risk alleles with asthma/wheeze.
Collapse
Affiliation(s)
- Eteri Regis
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Sara Fontanella
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - John A Curtin
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester and University Hospital of South Manchester NHS Foundation Trust, Manchester, United Kingdom
| | | | - Michael R Edwards
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Clare S Murray
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester and University Hospital of South Manchester NHS Foundation Trust, Manchester, United Kingdom
| | - Angela Simpson
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester and University Hospital of South Manchester NHS Foundation Trust, Manchester, United Kingdom
| | - Sebastian L Johnston
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Adnan Custovic
- National Heart and Lung Institute, Imperial College London, London, United Kingdom.
| |
Collapse
|
3
|
Liu T, Woodruff PG, Zhou X. Advances in non-type 2 severe asthma: from molecular insights to novel treatment strategies. Eur Respir J 2024; 64:2300826. [PMID: 38697650 PMCID: PMC11325267 DOI: 10.1183/13993003.00826-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 04/18/2024] [Indexed: 05/05/2024]
Abstract
Asthma is a prevalent pulmonary disease that affects more than 300 million people worldwide and imposes a substantial economic burden. While medication can effectively control symptoms in some patients, severe asthma attacks, driven by airway inflammation induced by environmental and infectious exposures, continue to be a major cause of asthma-related mortality. Heterogeneous phenotypes of asthma include type 2 (T2) and non-T2 asthma. Non-T2 asthma is often observed in patients with severe and/or steroid-resistant asthma. This review covers the molecular mechanisms, clinical phenotypes, causes and promising treatments of non-T2 severe asthma. Specifically, we discuss the signalling pathways for non-T2 asthma including the activation of inflammasomes, interferon responses and interleukin-17 pathways, and their contributions to the subtypes, progression and severity of non-T2 asthma. Understanding the molecular mechanisms and genetic determinants underlying non-T2 asthma could form the basis for precision medicine in severe asthma treatment.
Collapse
Affiliation(s)
- Tao Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine and Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, Nanjing, China
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Prescott G Woodruff
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine and Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Sang L, Gong X, Huang Y, Zhang L, Sun J. Immunotherapeutic implications on targeting the cytokines produced in rhinovirus-induced immunoreactions. FRONTIERS IN ALLERGY 2024; 5:1427762. [PMID: 38859875 PMCID: PMC11163110 DOI: 10.3389/falgy.2024.1427762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 06/12/2024] Open
Abstract
Rhinovirus is a widespread virus associated with several respiratory diseases, especially asthma exacerbation. Currently, there are no accurate therapies for rhinovirus. Encouragingly, it is found that during rhinovirus-induced immunoreactions the levels of certain cytokines in patients' serum will alter. These cytokines may have pivotal pro-inflammatory or anti-inflammatory effects via their specific mechanisms. Thus far, studies have shown that inhibitions of cytokines such as IL-1, IL-4, IL-5, IL-6, IL-13, IL-18, IL-25, and IL-33 may attenuate rhinovirus-induced immunoreactions, thereby relieving rhinovirus infection. Furthermore, such therapeutics for rhinovirus infection can be applied to viruses of other species, with certain practicability.
Collapse
Affiliation(s)
- Le Sang
- Department of Medicine, Shaoxing University, Shaoxing City, Zhejiang Province, China
| | - Xia Gong
- Department of Medicine, Shaoxing University, Shaoxing City, Zhejiang Province, China
| | - Yunlei Huang
- Department of Medicine, Shaoxing University, Shaoxing City, Zhejiang Province, China
| | - Linling Zhang
- Department of Respiratory Medicine, Shaoxing People’s Hospital, Shaoxing City, Zhejiang Province, China
| | - Jian Sun
- Department of Respiratory Medicine, Shaoxing People’s Hospital, Shaoxing City, Zhejiang Province, China
| |
Collapse
|
5
|
Liu YG, Jin SW, Zhang SS, Xia TJ, Liao YH, Pan RL, Yan MZ, Chang Q. Interferon lambda in respiratory viral infection: immunomodulatory functions and antiviral effects in epithelium. Front Immunol 2024; 15:1338096. [PMID: 38495892 PMCID: PMC10940417 DOI: 10.3389/fimmu.2024.1338096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/19/2024] [Indexed: 03/19/2024] Open
Abstract
Type III interferon (IFN-λ), a new member of the IFN family, was initially considered to possess antiviral functions similar to those of type I interferon, both of which are induced via the JAK/STAT pathway. Nevertheless, recent findings demonstrated that IFN-λ exerts a nonredundant antiviral function at the mucosal surface, preferentially produced in epithelial cells in contrast to type I interferon, and its function cannot be replaced by type I interferon. This review summarizes recent studies showing that IFN-λ inhibits the spread of viruses from the cell surface to the body. Further studies have found that the role of IFN-λ is not only limited to the abovementioned functions, but it can also can exert direct and/or indirect effects on immune cells in virus-induced inflammation. This review focuses on the antiviral activity of IFN-λ in the mucosal epithelial cells and its action on immune cells and summarizes the pathways by which IFN-λ exerts its action and differentiates it from other interferons in terms of mechanism. Finally, we conclude that IFN-λ is a potent epidermal antiviral factor that enhances the respiratory mucosal immune response and has excellent therapeutic potential in combating respiratory viral infections.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ming-Zhu Yan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi Chang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Zhang H, Xue K, Li W, Yang X, Gou Y, Su X, Qian F, Sun L. Cullin5 drives experimental asthma exacerbations by modulating alveolar macrophage antiviral immunity. Nat Commun 2024; 15:252. [PMID: 38177117 PMCID: PMC10766641 DOI: 10.1038/s41467-023-44168-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 12/01/2023] [Indexed: 01/06/2024] Open
Abstract
Asthma exacerbations caused by respiratory viral infections are a serious global health problem. Impaired antiviral immunity is thought to contribute to the pathogenesis, but the underlying mechanisms remain understudied. Here using mouse models we find that Cullin5 (CUL5), a key component of Cullin-RING E3 ubiquitin ligase 5, is upregulated and associated with increased neutrophil count and influenza-induced exacerbations of house dust mite-induced asthma. By contrast, CUL5 deficiency mitigates neutrophilic lung inflammation and asthma exacerbations by augmenting IFN-β production. Mechanistically, following thymic stromal lymphopoietin stimulation, CUL5 interacts with O-GlcNAc transferase (OGT) and induces Lys48-linked polyubiquitination of OGT, blocking the effect of OGT on mitochondrial antiviral-signaling protein O-GlcNAcylation and RIG-I signaling activation. Our results thus suggest that, in mouse models, pre-existing allergic injury induces CUL5 expression, impairing antiviral immunity and promoting neutrophilic inflammation for asthma exacerbations. Targeting of the CUL5/IFN-β signaling axis may thereby serve as a possible therapy for treating asthma exacerbations.
Collapse
Affiliation(s)
- Haibo Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Keke Xue
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Wen Li
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Xinyi Yang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Yusen Gou
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Xiao Su
- Unit of Respiratory Infection and Immunity, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, 200031, Shanghai, P.R. China
| | - Feng Qian
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.
| | - Lei Sun
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.
| |
Collapse
|
7
|
Mitländer H, Yang Z, Krammer S, Grund JC, Zirlik S, Finotto S. Poly I:C Pre-Treatment Induced the Anti-Viral Interferon Response in Airway Epithelial Cells. Viruses 2023; 15:2328. [PMID: 38140569 PMCID: PMC10747011 DOI: 10.3390/v15122328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Type I and III interferons are among the most important antiviral mediators. Increased susceptibility to infections has been described as being associated with impaired interferon response in asthmatic patients. In this work, we focused on the modulation of interferon dysfunction after the rhinovirus infection of airway epithelial cells. Therefore, we tested polyinosinic:polycytidylic acid (poly I:C), a TLR3 agonist, as a possible preventive pre-treatment to improve this anti-viral response. In our human study on asthma, we found a deficiency in interferon levels in the nasal epithelial cells (NEC) from asthmatics at homeostatic level and after RV infection, which might contribute to frequent airway infection seen in asthmatic patients compared to healthy controls. Finally, pre-treatment with the immunomodulatory substance poly I:C before RV infection restored IFN responses in airway epithelial cells. Altogether, we consider poly I:C pre-treatment as a promising strategy for the induction of interferon response prior to viral infections. These results might help to improve current therapeutic strategies for allergic asthma exacerbations.
Collapse
Affiliation(s)
- Hannah Mitländer
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (H.M.); (Z.Y.); (S.K.); (J.C.G.)
| | - Zuqin Yang
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (H.M.); (Z.Y.); (S.K.); (J.C.G.)
| | - Susanne Krammer
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (H.M.); (Z.Y.); (S.K.); (J.C.G.)
| | - Janina C. Grund
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (H.M.); (Z.Y.); (S.K.); (J.C.G.)
| | - Sabine Zirlik
- Department of Medicine 1, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, 91054 Erlangen, Germany;
| | - Susetta Finotto
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (H.M.); (Z.Y.); (S.K.); (J.C.G.)
| |
Collapse
|
8
|
Almond M, Farne HA, Jackson MM, Jha A, Katsoulis O, Pitts O, Tunstall T, Regis E, Dunning J, Byrne AJ, Mallia P, Kon OM, Saunders KA, Simpson KD, Snelgrove RJ, Openshaw PJM, Edwards MR, Barclay WS, Heaney LM, Johnston SL, Singanayagam A. Obesity dysregulates the pulmonary antiviral immune response. Nat Commun 2023; 14:6607. [PMID: 37857661 PMCID: PMC10587167 DOI: 10.1038/s41467-023-42432-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
Obesity is a well-recognized risk factor for severe influenza infections but the mechanisms underlying susceptibility are poorly understood. Here, we identify that obese individuals have deficient pulmonary antiviral immune responses in bronchoalveolar lavage cells but not in bronchial epithelial cells or peripheral blood dendritic cells. We show that the obese human airway metabolome is perturbed with associated increases in the airway concentrations of the adipokine leptin which correlated negatively with the magnitude of ex vivo antiviral responses. Exogenous pulmonary leptin administration in mice directly impaired antiviral type I interferon responses in vivo and ex vivo in cultured airway macrophages. Obese individuals hospitalised with influenza showed dysregulated upper airway immune responses. These studies provide insight into mechanisms driving propensity to severe influenza infections in obesity and raise the potential for development of leptin manipulation or interferon administration as novel strategies for conferring protection from severe infections in obese higher risk individuals.
Collapse
Affiliation(s)
- Mark Almond
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Hugo A Farne
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Millie M Jackson
- Centre for Bacterial Resistance Biology. Section of Molecular Microbiology. Department of Infectious Disease, Imperial College London, London, UK
| | - Akhilesh Jha
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Orestis Katsoulis
- Centre for Bacterial Resistance Biology. Section of Molecular Microbiology. Department of Infectious Disease, Imperial College London, London, UK
| | - Oliver Pitts
- Centre for Bacterial Resistance Biology. Section of Molecular Microbiology. Department of Infectious Disease, Imperial College London, London, UK
| | | | - Eteri Regis
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Jake Dunning
- Pandemic Sciences Institute, University of Oxford, Oxford, UK
| | - Adam J Byrne
- National Heart and Lung Institute, Imperial College London, London, UK
- School of Medicine and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, 4, Ireland
| | - Patrick Mallia
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Onn Min Kon
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | | | | | | | - Michael R Edwards
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Wendy S Barclay
- Section of Virology, Department of Infectious Disease, Imperial College London, London, UK
| | - Liam M Heaney
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | | | - Aran Singanayagam
- Centre for Bacterial Resistance Biology. Section of Molecular Microbiology. Department of Infectious Disease, Imperial College London, London, UK.
| |
Collapse
|
9
|
Jones AC, Leffler J, Laing IA, Bizzintino J, Khoo SK, LeSouef PN, Sly PD, Holt PG, Strickland DH, Bosco A. LPS binding protein and activation signatures are upregulated during asthma exacerbations in children. Respir Res 2023; 24:184. [PMID: 37438758 DOI: 10.1186/s12931-023-02478-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 06/14/2023] [Indexed: 07/14/2023] Open
Abstract
Asthma exacerbations in children are associated with respiratory viral infection and atopy, resulting in systemic immune activation and infiltration of immune cells into the airways. The gene networks driving the immune activation and subsequent migration of immune cells into the airways remains incompletely understood. Cellular and molecular profiling of PBMC was employed on paired samples obtained from atopic asthmatic children (n = 19) during acute virus-associated exacerbations and later during convalescence. Systems level analyses were employed to identify coexpression networks and infer the drivers of these networks, and validation was subsequently obtained via independent samples from asthmatic children. During exacerbations, PBMC exhibited significant changes in immune cell abundance and upregulation of complex interlinked networks of coexpressed genes. These were associated with priming of innate immunity, inflammatory and remodelling functions. We identified activation signatures downstream of bacterial LPS, glucocorticoids and TGFB1. We also confirmed that LPS binding protein was upregulated at the protein-level in plasma. Multiple gene networks known to be involved positively or negatively in asthma pathogenesis, are upregulated in circulating PBMC during acute exacerbations, supporting the hypothesis that systemic pre-programming of potentially pathogenic as well as protective functions of circulating immune cells preceeds migration into the airways. Enhanced sensitivity to LPS is likely to modulate the severity of acute asthma exacerbations through exposure to environmental LPS.
Collapse
Affiliation(s)
- Anya C Jones
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
- UWA Medical School, University of Western Australia, Nedlands, WA, Australia
| | - Jonatan Leffler
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Ingrid A Laing
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
- Division of Cardiovascular and Respiratory Sciences, The University of Western Australia, Perth, WA, Australia
| | - Joelene Bizzintino
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
- Division of Cardiovascular and Respiratory Sciences, The University of Western Australia, Perth, WA, Australia
| | - Siew-Kim Khoo
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
- Division of Cardiovascular and Respiratory Sciences, The University of Western Australia, Perth, WA, Australia
| | - Peter N LeSouef
- UWA Medical School, University of Western Australia, Nedlands, WA, Australia
| | - Peter D Sly
- Child Health Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Patrick G Holt
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
- Child Health Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Deborah H Strickland
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Anthony Bosco
- Asthma & Airway Disease Research Center, The BIO5 Institute, The University of Arizona, Rm. 329, 1657 E. Helen Street, Tucson, AZ, 85721, USA.
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, AZ, USA.
| |
Collapse
|
10
|
Price AS, Kennedy JL. T-helper 2 mechanisms involved in human rhinovirus infections and asthma. Ann Allergy Asthma Immunol 2022; 129:681-691. [PMID: 36002092 PMCID: PMC10316285 DOI: 10.1016/j.anai.2022.08.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/01/2022] [Accepted: 08/11/2022] [Indexed: 10/15/2022]
Abstract
Human rhinovirus (HRV) is the most common causative agent for the common cold and its respiratory symptoms. For those with asthma, cystic fibrosis, or chronic obstructive pulmonary disease, HRVs can lead to severe and, at times, fatal complications. Furthermore, an array of innate and adaptive host immune responses leads to varying outcomes ranging from subclinical to severe. In this review, we discuss the viral pathogenesis and host immune responses associated with this virus. Specifically, we focus on the immune responses that might skew a T-helper type 2 response, including alarmins, in those with allergic asthma. We also discuss the role of a poor innate immune response with interferons. Finally, we consider therapeutic options for HRV-associated exacerbations of asthma, including biologics and intranasal sprays on the basis of the current literature.
Collapse
Affiliation(s)
- Adam S Price
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas; Arkansas Children's Research Institute, Little Rock, Arkansas
| | - Joshua L Kennedy
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas; Arkansas Children's Research Institute, Little Rock, Arkansas; Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas.
| |
Collapse
|
11
|
Nicholas B, Lee HH, Guo J, Cicmil M, Blume C, Malefyt RDW, Djukanović R. Immunomodulatory regulator blockade in a viral exacerbation model of severe asthma. Front Immunol 2022; 13:973673. [PMID: 36479132 PMCID: PMC9720166 DOI: 10.3389/fimmu.2022.973673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/03/2022] [Indexed: 11/22/2022] Open
Abstract
Asthmatics are more susceptible to viral infections than healthy individuals and are known to have impaired innate anti-viral defences. Influenza A virus causes significant morbidity and mortality in this population. Immuno-modulatory regulators (IMRs) such as PD-1 are activated on T cells following viral infection as part of normal T cell activation responses, and then subside, but remain elevated in cases of chronic exposure to virus, indicative of T cell exhaustion rather than activation. There is evidence that checkpoint inhibition can enhance anti-viral responses during acute exposure to virus through enhancement of CD8+T cell function. Although elevated PD-1 expression has been described in pulmonary tissues in other chronic lung diseases, the role of IMRs in asthma has been relatively unexplored as the basis for immune dysfunction. We first assessed IMR expression in the peripheral circulation and then quantified changes in IMR expression in lung tissue in response to ex-vivo influenza infection. We found that the PD-1 family members are not significantly altered in the peripheral circulation in individuals with severe asthma but are elevated in pulmonary tissues following ex-vivo influenza infection. We then applied PD-1 Mab inhibitor treatment to bronchial biopsy tissues infected with influenza virus and found that PD-1 inhibition was ineffective in asthmatics, but actually increased infection rates in healthy controls. This study, therefore, suggests that PD-1 therapy would not produce harmful side-effects when applied in people with severe asthma, but could have important, as yet undescribed, negative effects on anti-viral responses in healthy individuals that warrant further investigation.
Collapse
Affiliation(s)
- Ben Nicholas
- Division of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital, Hampshire, United Kingdom,*Correspondence: Ben Nicholas,
| | - Hyun-Hee Lee
- Oncology & Immunology Discovery, Merck Research Laboratories, Boston, MA, United States
| | - Jane Guo
- Oncology & Immunology Discovery, Merck Research Laboratories, Boston, MA, United States
| | - Milenko Cicmil
- Oncology & Immunology Discovery, Merck Research Laboratories, Boston, MA, United States
| | - Cornelia Blume
- Division of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital, Hampshire, United Kingdom
| | | | - Ratko Djukanović
- Division of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital, Hampshire, United Kingdom
| |
Collapse
|
12
|
Lee SH, Han MS, Lee TH, Lee DB, Park JH, Lee SH, Kim TH. Rhinovirus-induced anti-viral interferon secretion is not deficient and not delayed in sinonasal epithelial cells of patients with chronic rhinosinusitis with nasal polyp. Front Immunol 2022; 13:1025796. [PMID: 36341332 PMCID: PMC9635927 DOI: 10.3389/fimmu.2022.1025796] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
Dysregulated innate and adaptive immune response to rhinoviral infection plays an important role in the exacerbation or progressive course of chronic rhinosinusitis (CRS). However, few studies have evaluated whether rhinovirus-induced production of anti-viral interferon is deficient or delayed in inflammatory epithelial cells of patients with CRS with nasal polyps. The aim of the present study is to investigate the replication rates of rhinovirus 16 (RV 16), RV16-induced antiviral interferon secretion, and the expression levels of pattern recognition receptors after RV 16 infection or TLR3 stimulation with poly (I: C) in normal and inflammatory epithelial cells. Inflammatory epithelial cells were obtained from CRS patients with nasal polyps and normal epithelial cells were derived from ethmoid sinus mucosa during endoscopic reduction of blowout fracture or uncinate process mucosa of patients with septal deviation. Cultured cells were infected with RV 16 or treated with poly (I: C) for 24, 48, and 72 h. Cells and media were harvested at each time point and used to evaluate RV16 replication rates, the secretion of IFN-β, -λ1, -λ2, viperin, Mx, and OAS, and the expression levels of TRL3, RIG-I, MDA5, phospho-NFκB, and phospho-IRF3. RV replication rates reached peak levels 48 h after inoculation in both normal and inflammatory epithelial cells and showed no difference between both groups of epithelial cells at any time point. The release of IFN-β, -λ1, and -λ2 in normal and inflammatory epithelial cells was also strongly induced 48 h after RV16 inoculation but reached peak levels 24 h after poly (I: C) treatment. The expression levels of viperin, Mx, OAS, TLR3, RIG-I, MDA5, phospho-NFκB, and phospho-IRF3 showed similar patterns in both groups of epithelial cells. These results suggest that the production of RV16-induced antiviral interferons is not deficient or delayed in inflammatory epithelial cells from CRS patients with nasal polyps.
Collapse
|
13
|
Muehling LM, Heymann PW, Carper H, Murphy DD, Rajadhyaksha E, Kennedy J, Early SV, Soto‐Quiros M, Avila L, Workman L, Platts‐Mills TAE, Woodfolk JA. Cluster analysis of nasal cytokines during rhinovirus infection identifies different immunophenotypes in both children and adults with allergic asthma. Clin Exp Allergy 2022; 52:1169-1182. [PMID: 35575980 PMCID: PMC9547929 DOI: 10.1111/cea.14176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/08/2022] [Accepted: 05/11/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Infection with rhinovirus (RV) is a major risk factor for disease exacerbations in patients with allergic asthma. This study analysed a broad set of cytokines in the noses of children and adults with asthma during RV infection in order to identify immunophenotypes that may link to virus-induced episodes. METHODS Nasal wash specimens were analysed in children (n = 279 [healthy, n = 125; stable asthma, n = 64; wheeze, n = 90], ages 2-12) who presented to a hospital emergency department, and in adults (n = 44 [healthy, n = 13; asthma, n = 31], ages 18-38) who were experimentally infected with RV, including a subset who received anti-IgE. Cytokines were measured by multiplex bead assay and data analysed by univariate and multivariate methods to test relationships to viral load, allergic status, airway inflammation, and clinical outcomes. RESULTS Analysis of a core set of 7 cytokines (IL-6, CXCL8/IL-8, IL-15, EGF, G-CSF, CXCL10/IP-10 and CCL22/MDC) revealed higher levels in children with acute wheeze versus those with stable asthma or controls. Multivariate analysis identified two clusters that were enriched for acutely wheezing children; one displaying high viral load ("RV-high") with robust secretion of CXCL10, and the other displaying high IgE with elevated EGF, CXCL8 and both eosinophil- and neutrophil-derived mediators. Broader assessment of 39 cytokines confirmed that children with acute wheeze were not deficient in type 1 anti-viral responses. Analysis of 18 nasal cytokines in adults with asthma who received RV challenge identified two clusters; one that was "RV-high" and linked to robust induction of anti-viral cytokines and anti-IgE; and the other associated with more severe symptoms and a higher inflammatory state featuring eosinophil and neutrophil factors. CONCLUSIONS The results confirm the presence of different immunophenotypes linked to parameters of airway disease in both children and adults with asthma who are infected with RV. Such discrepancies may reflect the ability to regulate anti-viral responses.
Collapse
Affiliation(s)
- Lyndsey M. Muehling
- Department of MedicineUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
| | - Peter W. Heymann
- Department of PediatricsUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
| | - Holliday Carper
- Department of PediatricsUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
| | - Deborah D. Murphy
- Department of PediatricsUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
| | - Evan Rajadhyaksha
- Department of PediatricsUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
| | - Joshua Kennedy
- Department of PediatricsUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA,Department of PediatricsUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Stephen V. Early
- Department of Otolaryngology‐Head and Neck SurgeryUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
| | | | | | - Lisa Workman
- Department of MedicineUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
| | | | - Judith A. Woodfolk
- Department of MedicineUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
| |
Collapse
|
14
|
He L, Liu J, Wang X, Wang Y, Zhu J, Kang X. Identifying a novel serum microRNA biomarker panel for the diagnosis of childhood asthma. Exp Biol Med (Maywood) 2022; 247:1732-1740. [PMID: 36000159 PMCID: PMC9638957 DOI: 10.1177/15353702221114870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The pathological mechanism of childhood asthma is complex, and timely diagnosis is the key to effective prevention and control of childhood asthma. We collected 170 serum samples from 95 children with asthma and 75 healthy children. Serum miRNA biomarkers were analyzed by Illumina sequencing for childhood asthma. Differentially serum miRNAs were confirmed with quantitative reverse transcription polymerase chain reaction (qRT-PCR) assay. The Illumina sequencing data showed the differential expression of 111 serum miRNAs among asthmatic and healthy children. After confirmation of miRNAs expression through qRT-PCR, four of them (namely hsa-miR-106a-5p, hsa-miR-18a-5p, hsa-miR-144-3p, and hsa-miR-375) manifested significant differential expression between asthmatic children and healthy controls. The biomarkers classification tree model created with these four miRNAs using the Biomarker Patterns Software could effectively separate childhood asthma and healthy children, with a specificity of 88.3%, a sensitivity of 95.0%, and an area under the curve (AUC) value of 0.942. The regulatory networks containing miRNAs and their gene targets suggested that the four miRNAs might have gene targets implicated in inflammation, immunity, and transcriptional efficiency. Taken together, this four-serum-miRNA panel is a promising biomarker to diagnose childhood asthma noninvasively.
Collapse
Affiliation(s)
- Linjuan He
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiyan Liu
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China,Department of Academic Journals, Hangzhou Normal University, Hangzhou 311121, China,Jiyan Liu.
| | - Xiaoyue Wang
- Department of Academic Journals, Hangzhou Normal University, Hangzhou 311121, China
| | - Yuanzhao Wang
- Department of Pediatrics, Zhejiang Hospital of Traditional Chinese Medicine, Hangzhou 310006, China
| | - Jiawen Zhu
- Department of Pediatrics, Zhejiang Hospital of Traditional Chinese Medicine, Hangzhou 310006, China
| | - Xuexue Kang
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
15
|
Sanzi Yangqin Decoction Alleviates Allergic Asthma by Modulating Th1/Th2 Balance: Coupling Network Pharmacology with Biochemical Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9037154. [PMID: 36212941 PMCID: PMC9536894 DOI: 10.1155/2022/9037154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/29/2022] [Accepted: 09/14/2022] [Indexed: 11/18/2022]
Abstract
This study aimed to verify that Sanzi Yangqin Decoction (SYD) can relieve asthma in mice and explore the effect on TH1/Th2 balance. The targets of SYD and asthma were explored from the public database using various methods. The potential targets and signaling pathways were identified by KEGG enrichment analysis from DAVID database. Mice asthma models were established using OVA and aluminum hydroxide. Lung tissues of mice were stained with HE and Masson. The contents of IFN-γ, IL-4, and TNF-α in BALF and IgE in mouse serum were detected using ELISA. In addition, the changes in Th1 and Th2 cells of the spleen were detected by flow cytometry. Fourteen core targets including IL4, IFNG, and MMP9 were identified for the treatment of asthma by SYD. The content of IL-4 in the lung tissue and BALF was gradually decreased with the increase in SYD concentration, while the IFN-γ was gradually increased. The drug significantly reduced IgE levels in serum and TNF-α in BALF. The number of Th1 cells in the spleen increased, while Th2 cells decreased in a concentration-dependent manner. SYD can alleviate pulmonary inflammation, restore Th1/Th2 balance, and relieve asthma.
Collapse
|
16
|
Ong HH, Andiappan AK, Duan K, Lum J, Liu J, Tan KS, Howland S, Lee B, Ong YK, Thong M, Chow VT, Wang DY. Transcriptomics of rhinovirus persistence reveals sustained expression of RIG-I and interferon-stimulated genes in nasal epithelial cells in vitro. Allergy 2022; 77:2778-2793. [PMID: 35274302 DOI: 10.1111/all.15280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Human rhinoviruses (HRVs) are frequently associated with asthma exacerbations, and have been found in the airways of asthmatic patients. While HRV-induced acute infection is well-documented, it is less clear whether the nasal epithelium sustains prolonged HRV infections along with the associated activation of host immune responses. OBJECTIVE To investigate sustainably regulated host responses of human nasal epithelial cells (hNECs) during HRV persistence. METHODS Using a time-course study, HRV16 persistence and viral replication dynamics were established using an in vitro infection model of hNECs. RNA sequencing was performed on hNECs in the early and late stages of infection at 3 and 14 days post-infection (dpi), respectively. The functional enrichment of differentially expressed genes (DEGs) was evaluated using gene ontology (GO) and Ingenuity pathway analysis. RESULTS HRV RNA and protein expression persisted throughout prolonged infections, even after decreased production of infectious virus progeny. GO analysis of unique DEGs indicated altered regulation of pathways related to ciliary function and airway remodeling at 3 dpi and serine-type endopeptidase activity at 14 dpi. The functional enrichment of shared DEGs between the two time-points was related to interferon (IFN) and cytoplasmic pattern recognition receptor (PRR) signaling pathways. Validation of the sustained regulation of candidate genes confirmed the persistent expression of RIG-I and revealed its close co-regulation with interferon-stimulated genes (ISGs) during HRV persistence. CONCLUSIONS The persistence of HRV RNA does not necessarily indicate an active infection during prolonged infection. The sustained expression of RIG-I and ISGs in response to viral RNA persistence highlights the importance of assessing how immune-activating host factors can change during active HRV infection and the immune regulation that persists thereafter.
Collapse
Affiliation(s)
- Hsiao Hui Ong
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Anand Kumar Andiappan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Kaibo Duan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Josephine Lum
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jing Liu
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kai Sen Tan
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Biosafety level 3 Core Facility, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore, Singapore
| | - Shanshan Howland
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Bernett Lee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yew Kwang Ong
- Department of Otolaryngology - Head & Neck Surgery, National University Health System, Singapore, Singapore
| | - Mark Thong
- Department of Otolaryngology - Head & Neck Surgery, National University Health System, Singapore, Singapore
| | - Vincent T Chow
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - De-Yun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
17
|
Girkin JLN, Maltby S, Bartlett NW. Toll-like receptor-agonist-based therapies for respiratory viral diseases: thinking outside the cell. Eur Respir Rev 2022; 31:210274. [PMID: 35508333 PMCID: PMC9488969 DOI: 10.1183/16000617.0274-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/21/2022] [Indexed: 11/24/2022] Open
Abstract
Respiratory virus infections initiate in the upper respiratory tract (URT). Innate immunity is critical for initial control of infection at this site, particularly in the absence of mucosal virus-neutralising antibodies. If the innate immune response is inadequate, infection can spread to the lower respiratory tract (LRT) causing community-acquired pneumonia (as exemplified by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)/coronavirus disease 2019). Vaccines for respiratory viruses (influenza and SARS-CoV-2) leverage systemic adaptive immunity to protect from severe lung disease. However, the URT remains vulnerable to infection, enabling viral transmission and posing an ongoing risk of severe disease in populations that lack effective adaptive immunity.Innate immunity is triggered by host cell recognition of viral pathogen-associated molecular patterns via molecular sensors such as Toll-like receptors (TLRs). Here we review the role of TLRs in respiratory viral infections and the potential of TLR-targeted treatments to enhance airway antiviral immunity to limit progression to severe LRT disease and reduce person-to-person viral transmission. By considering cellular localisation and antiviral mechanisms of action and treatment route/timing, we propose that cell surface TLR agonist therapies are a viable strategy for preventing respiratory viral diseases by providing immediate, durable pan-viral protection within the URT.
Collapse
Affiliation(s)
- Jason L N Girkin
- Viral Immunology and Respiratory Disease Group, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
- Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| | - Steven Maltby
- Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| | - Nathan W Bartlett
- Viral Immunology and Respiratory Disease Group, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
- Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| |
Collapse
|
18
|
Effect of Preexisting Asthma on the Risk of ICU Admission, Intubation, and Death from COVID-19: A Systematic Review and Meta-Analysis. Interdiscip Perspect Infect Dis 2022; 2022:8508489. [PMID: 35677466 PMCID: PMC9168826 DOI: 10.1155/2022/8508489] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/17/2022] [Accepted: 05/06/2022] [Indexed: 01/06/2023] Open
Abstract
Background The Centers for Disease Control and Prevention (CDC) identifies asthma as a comorbidity in COVID-19 that increases the risk of severity and death. However, research has shown that asthma is not associated with increased severity and death, thus making the consequences of asthma in COVID-19 unclear. Methods We searched the electronic databases PubMed, WHO COVID-19 database, and Taylor and Francis Online for studies that compared the medical outcomes of COVID-19 between patients with and without asthma, from the emergence of SARS-CoV-2 in December 2019 to the 3rd of September 2021, excluded duplicates, reviews, editorials, and case reports, and screened the titles, abstracts, and full texts. The quality of the included studies was assessed using the Newcastle–Ottawa Scale (NOS) for nonrandomized studies. Rates of intensive care unit (ICU) admission, intubation, and death among patients with and without asthma were compiled and meta-analysis was conducted using a random-effects model. Results Nineteen studies with a total of 289,449 participants met the inclusion criteria. COVID-19 patients with asthma had no significant association with increased risk of ICU admission, intubation, and death as compared with those without asthma ((odds ratio (OR) = 1.25, confidence interval (CI) = 0.90–1.74, I2 = 82%, X2 = 55.13, p < 0.01), (OR = 0.89, CI = 0.59–1.34, I2 = 91%, X2 = 110.82, p < 0.01), and (OR = 0.90, 95% CI = 0.63–1.27, I2 = 88%, X2 = 146.96, p < 0.01)), respectively. Conclusion Preexisting asthma did not significantly increase the risk of poorer prognosis and death from COVID-19.
Collapse
|
19
|
Lawrence MG, Borish L. Specific antibody deficiency: Pearls and pitfalls for diagnosis. Ann Allergy Asthma Immunol 2022; 129:572-578. [PMID: 35671934 DOI: 10.1016/j.anai.2022.05.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Specific antibody deficiency is an immune deficiency defined by the presence of normal quantitative levels of immunoglobulins but impaired antibody responses to polysaccharide antigens in patients presenting with frequent otosinopulmonary infections with pyogenic bacteria. This review summarizes the pitfalls associated with defining exactly what constitutes an "impaired" antibody response to polysaccharide antigens and the importance of documenting actual pyogenic infections before making a diagnosis of an immune deficiency. DATA SOURCES PubMed review using the following words: specific antibody deficiency, pneumococcal vaccination, salmonella vaccination, infectious sinusitis Study Selection: This review focused on key studies that have been utilized to define what constitutes a "normal" humoral immune response to pneumococcal and salmonella vaccination in healthy subjects as well as published papers defining current expert opinion. RESULTS Published studies demonstrate wide variability in response to pneumococcal vaccination in healthy individuals making it daunting to define what constitutes an abnormal response. These challenges are exacerbated by striking laboratory variability in reporting results. CONCLUSION Clinical evaluations in individuals with self-reported recurrent acute sinusitis or lower respiratory infections need to document an infectious etiology with pyogenic bacteria and must rule out an underlying primary airway inflammatory disorder before consideration is made regarding the presence of an immune deficiency. In addition, decision making regarding diagnosis and treatment of patients being evaluated for humoral immunodeficiency should not hinge solely on the strict application of defined cutoffs for "normal" response to a single polysaccharide vaccine, but rather a global assessment of humoral immune function in the context of the clinical presentation.
Collapse
Affiliation(s)
- Monica G Lawrence
- Department of Medicine - University of Virginia, Charlottesville, Virginia; Department of Pediatrics - University of Virginia, Charlottesville, Virginia.
| | - Larry Borish
- Department of Medicine - University of Virginia, Charlottesville, Virginia; Department of Microbiology - University of Virginia, Charlottesville, Virginia
| |
Collapse
|
20
|
Liew KY, Koh SK, Hooi SL, Ng MKL, Chee HY, Harith HH, Israf DA, Tham CL. Rhinovirus-Induced Cytokine Alterations With Potential Implications in Asthma Exacerbations: A Systematic Review and Meta-Analysis. Front Immunol 2022; 13:782936. [PMID: 35242128 PMCID: PMC8886024 DOI: 10.3389/fimmu.2022.782936] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 01/13/2022] [Indexed: 12/01/2022] Open
Abstract
Background Rhinovirus (RV) infections are a major cause of asthma exacerbations. Unlike other respiratory viruses, RV causes minimal cytotoxic effects on airway epithelial cells and cytokines play a critical role in its pathogenesis. However, previous findings on RV-induced cytokine responses were largely inconsistent. Thus, this study sought to identify the cytokine/chemokine profiles induced by RV infection and their correlations with airway inflammatory responses and/or respiratory symptoms using systematic review, and to determine whether a quantitative difference exists in cytokine levels between asthmatic and healthy individuals via meta-analysis. Methods Relevant articles were obtained from PubMed, Scopus, and ScienceDirect databases. Studies that compared RV-induced cytokine responses between asthmatic and healthy individuals were included in the systematic review, and their findings were categorized based on the study designs, which were ex vivo primary bronchial epithelial cells (PBECs), ex vivo peripheral blood mononuclear cells (PBMCs), and human experimental studies. Data on cytokine levels were also extracted and analyzed using Review Manager 5.4. Results Thirty-four articles were included in the systematic review, with 18 of these further subjected to meta-analysis. Several studies reported the correlations between the levels of cytokines, such as IL-8, IL-4, IL-5, and IL-13, and respiratory symptoms. Evidence suggests that IL-25 and IL-33 may be the cytokines that promote type 2 inflammation in asthmatics after RV infection. Besides that, a meta-analysis revealed that PBECs from children with atopic asthma produced significantly lower levels of IFN-β [Effect size (ES): -0.84, p = 0.030] and IFN-λ (ES: -1.00, p = 0.002), and PBECs from adult atopic asthmatics produced significantly lower levels of IFN-β (ES: -0.68, p = 0.009), compared to healthy subjects after RV infection. A trend towards a deficient production of IFN-γ (ES: -0.56, p = 0.060) in PBMCs from adult atopic asthmatics was observed. In lower airways, asthmatics also had significantly lower baseline IL-15 (ES: -0.69, p = 0.020) levels. Conclusion Overall, RV-induced asthma exacerbations are potentially caused by an imbalance between Th1 and Th2 cytokines, which may be contributed by defective innate immune responses at cellular levels. Exogenous IFNs delivery may be beneficial as a prophylactic approach for RV-induced asthma exacerbations. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=184119, identifier CRD42020184119.
Collapse
Affiliation(s)
- Kong Yen Liew
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Sue Kie Koh
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Suet Li Hooi
- School of Science, Monash University Malaysia, Subang Jaya, Malaysia
| | | | - Hui-Yee Chee
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Hanis Hazeera Harith
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Daud Ahmad Israf
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Chau Ling Tham
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
21
|
Carr TF, Peters MC. Novel potential treatable traits in asthma: Where is the research taking us? THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2022; 1:27-36. [PMID: 37780590 PMCID: PMC10509971 DOI: 10.1016/j.jacig.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 10/03/2023]
Abstract
Asthma is a complex, heterogeneous disease in which the underlying mechanisms are not fully understood. Patients are often grouped into phenotypes (based on clinical, biologic, and physiologic characteristics) and endotypes (based on distinct genetic or molecular mechanisms). Recently, patients with asthma have been broadly split into 2 phenotypes based on their levels of type 2 inflammation: type 2 and non-type 2 asthma. However, this approach is likely oversimplified, and our understanding of the non-type 2 mechanisms in asthma remains extremely limited. A better understanding of asthma phenotypes and endotypes may assist in development of drugs for new therapeutic targets in asthma. One approach is to identify "treatable traits," which are specific patient characteristics related to phenotypes and endotypes that can be targeted by therapies. This review will focus on emerging treatable traits in asthma and aim to describe novel patient subgroups and endotypes that may represent the next step in the search for new therapeutic approaches.
Collapse
Affiliation(s)
- Tara F. Carr
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Ariz
| | - Michael C. Peters
- Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, Calif
| |
Collapse
|
22
|
Cameron A, Dhariwal J, Upton N, Ranz Jimenez I, Paulsen M, Wong E, Trujillo‐Torralbo M, del Rosario A, Jackson DJ, Edwards MR, Johnston SL, Walton RP, the MRC‐GSK Strategic Alliance Consortium. Type I conventional dendritic cells relate to disease severity in virus-induced asthma exacerbations. Clin Exp Allergy 2022; 52:550-560. [PMID: 35212067 PMCID: PMC9310571 DOI: 10.1111/cea.14116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/31/2022] [Accepted: 02/10/2022] [Indexed: 01/07/2023]
Abstract
RATIONALE Rhinoviruses are the major precipitant of asthma exacerbations and individuals with asthma experience more severe/prolonged rhinovirus infections. Concurrent viral infection and allergen exposure synergistically increase exacerbation risk. Although dendritic cells orchestrate immune responses to both virus and allergen, little is known about their role in viral asthma exacerbations. OBJECTIVES To characterize dendritic cell populations present in the lower airways, and to assess whether their numbers are altered in asthma compared to healthy subjects prior to infection and during rhinovirus-16 infection. METHODS Moderately-severe atopic asthmatic patients and healthy controls were experimentally infected with rhinovirus-16. Bronchoalveolar lavage was collected at baseline, day 3 and day 8 post infection and dendritic cells isolated using fluorescence activated cell sorting. MEASUREMENTS AND MAIN RESULTS Numbers of type I conventional dendritic cells, which cross prime CD8+ T helper cells and produce innate interferons, were significantly reduced in the lower airways of asthma patients compared to healthy controls at baseline. This reduction was associated serum IgE at baseline and with reduced numbers of CD8+ T helper cells and with increased viral replication, airway eosinophils and reduced lung function during infection. IgE receptor expression on lower airway plasmacytoid dendritic cells was significantly increased in asthma, consistent with a reduced capacity to produce innate interferons. CONCLUSIONS Reduced numbers of anti-viral type I conventional dendritic cells in asthma are associated with adverse outcomes during rhinovirus infection. This, with increased FcεR1α expression on lower airway plasmacytoid DCs could mediate the more permissive respiratory viral infection observed in asthma patients.
Collapse
Affiliation(s)
- Aoife Cameron
- National Heart and Lung InstituteLondonUK,MRC Asthma UK Centre in Allergic Mechanisms of AsthmaLondonUK
| | - Jaideep Dhariwal
- National Heart and Lung InstituteLondonUK,MRC Asthma UK Centre in Allergic Mechanisms of AsthmaLondonUK
| | - Nadine Upton
- MRC Asthma UK Centre in Allergic Mechanisms of AsthmaLondonUK,School of Immunology & Microbial SciencesKing’s College LondonLondonUK
| | - Ismael Ranz Jimenez
- MRC Asthma UK Centre in Allergic Mechanisms of AsthmaLondonUK,School of Immunology & Microbial SciencesKing’s College LondonLondonUK
| | - Malte Paulsen
- St. Mary’s Flow Cytometry Core FacilityLondonUK,Novo Nordisk Foundation Center for Stem Cell MedicineFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Ernie Wong
- National Heart and Lung InstituteLondonUK,MRC Asthma UK Centre in Allergic Mechanisms of AsthmaLondonUK
| | | | - Ajerico del Rosario
- National Heart and Lung InstituteLondonUK,MRC Asthma UK Centre in Allergic Mechanisms of AsthmaLondonUK
| | - David J. Jackson
- MRC Asthma UK Centre in Allergic Mechanisms of AsthmaLondonUK,School of Immunology & Microbial SciencesKing’s College LondonLondonUK,Guy's and St Thomas’ NHS TrustLondonUK
| | - Michael R. Edwards
- National Heart and Lung InstituteLondonUK,MRC Asthma UK Centre in Allergic Mechanisms of AsthmaLondonUK
| | - Sebastian L. Johnston
- National Heart and Lung InstituteLondonUK,MRC Asthma UK Centre in Allergic Mechanisms of AsthmaLondonUK
| | - Ross P. Walton
- National Heart and Lung InstituteLondonUK,MRC Asthma UK Centre in Allergic Mechanisms of AsthmaLondonUK
| | | |
Collapse
|
23
|
Feng X, Lawrence MG, Payne SC, Mattos J, Etter E, Negri JA, Murphy D, Kennedy JL, Steinke JW, Borish L. Lower viral loads in subjects with rhinovirus-challenged allergy despite reduced innate immunity. Ann Allergy Asthma Immunol 2022; 128:414-422.e2. [PMID: 35031416 PMCID: PMC10666001 DOI: 10.1016/j.anai.2022.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/04/2021] [Accepted: 01/05/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Viral infections, especially those caused by rhinovirus, are the most common cause of asthma exacerbations. Previous studies have argued that impaired innate antiviral immunity and, as a consequence, more severe infections contribute to these exacerbations. OBJECTIVE These studies explored the innate immune response in the upper airway of volunteers with allergic rhinitis and asthma in comparison to healthy controls and interrogated how these differences corresponded to severity of infection. METHODS Volunteers with allergic rhinitis, those with asthma, and those who are healthy were inoculated with rhinovirus A16 and monitored for clinical symptoms. Tissue and nasal wash samples were evaluated for antiviral signature and viral load. RESULTS Both subjects with allergic rhinitis and asthma were found to have more severe cold symptoms. Subjects with asthma had worsened asthma control and increased bronchial hyperreactivity in the setting of higher fractional exhaled breath nitric oxide and blood eosinophils. These studies confirmed reduced expression of interferons and virus-specific pattern recognition receptors in both cohorts with atopy. Nevertheless, despite this defect in innate immunity, volunteers with allergic rhinitis/asthma had reduced rhinovirus concentrations in comparison to the controls. CONCLUSION These results confirm that the presence of an allergic inflammatory disorder of the airway is associated with reduced innate immune responsive to rhinovirus infection. Despite this, these volunteers with allergy have reduced viral loads, arguing for the presence of a compensatory mechanism to clear the infection. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT02910401.
Collapse
Affiliation(s)
- Xin Feng
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong, People's Republic of China
| | - Monica G Lawrence
- Department of Medicine, University of Virginia Health System, Charlottesville, Virginia; Department of Pediatrics, University of Virginia Health System, Charlottesville, Virginia
| | - Spencer C Payne
- Department of Otolaryngology, University of Virginia Health System, Charlottesville, Virginia
| | - Jose Mattos
- Department of Otolaryngology, University of Virginia Health System, Charlottesville, Virginia
| | - Elaine Etter
- Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
| | - Julie A Negri
- Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
| | - Deborah Murphy
- Department of Pediatrics, University of Virginia Health System, Charlottesville, Virginia
| | - Joshua L Kennedy
- Department of Pediatrics and Medicine, University of Arkansas for Medical Sciences, Arkansas Children's Hospital Research Institute, Little Rock, Arkansas
| | - John W Steinke
- Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
| | - Larry Borish
- Department of Medicine, University of Virginia Health System, Charlottesville, Virginia; Department of Microbiology, University of Virginia Health System, Charlottesville, Virginia.
| |
Collapse
|
24
|
Cojocaru E, Cojocaru C, Antoniu SA, Stafie CS, Rajnoveanu A, Rajnoveanu RM. Inhaled interferons beta and SARS-COV2 infection: a preliminary therapeutic perspective. Expert Rev Respir Med 2022; 16:257-261. [PMID: 34793285 PMCID: PMC8726005 DOI: 10.1080/17476348.2022.2008910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022]
Abstract
INTRODUCTION SARS-COV2 infection represents a therapeutic challenge due to the limited number of effective therapies available and due to the fact that it is not clear which host response in terms of inflammation pattern is the most predictive for an optimal (and rapid) recovery. Interferon β pathway is impaired in SARS-COV2 infection and this is associated with a bigger disease burden. Exogenous inhaled interferon might be beneficial in this setting. AREAS COVERED Nebulized interferon-β is currently investigated as a potential therapy for SARS-COV2 because the available data from a phase II study demonstrate that this medication is able to accelerate the recovery from disease. EXPERT OPINION Further clinical studies are needed in order to better document the efficacy of this therapy especially in severe forms of COVID-19, the optimal duration of therapy and if such a medication is appropriate for domiciliary use. Also combined regimens with antivirals or with compounds which are able to enhance the endogenous production of interferon might be of promise.
Collapse
Affiliation(s)
- Elena Cojocaru
- Morpho-Functional Sciences II Department, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
| | - Cristian Cojocaru
- Medical III Department, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
| | | | - Celina Silvia Stafie
- Preventive Medicine and Interdisciplinarity Department, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
| | - Armand Rajnoveanu
- Occupational Medicine Department, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | |
Collapse
|
25
|
Govers C, Calder PC, Savelkoul HFJ, Albers R, van Neerven RJJ. Ingestion, Immunity, and Infection: Nutrition and Viral Respiratory Tract Infections. Front Immunol 2022; 13:841532. [PMID: 35296080 PMCID: PMC8918570 DOI: 10.3389/fimmu.2022.841532] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/02/2022] [Indexed: 12/12/2022] Open
Abstract
Respiratory infections place a heavy burden on the health care system, particularly in the winter months. Individuals with a vulnerable immune system, such as very young children and the elderly, and those with an immune deficiency, are at increased risk of contracting a respiratory infection. Most respiratory infections are relatively mild and affect the upper respiratory tract only, but other infections can be more serious. These can lead to pneumonia and be life-threatening in vulnerable groups. Rather than focus entirely on treating the symptoms of infectious disease, optimizing immune responsiveness to the pathogens causing these infections may help steer towards a more favorable outcome. Nutrition may have a role in such prevention through different immune supporting mechanisms. Nutrition contributes to the normal functioning of the immune system, with various nutrients acting as energy sources and building blocks during the immune response. Many micronutrients (vitamins and minerals) act as regulators of molecular responses of immune cells to infection. It is well described that chronic undernutrition as well as specific micronutrient deficiencies impair many aspects of the immune response and make individuals more susceptible to infectious diseases, especially in the respiratory and gastrointestinal tracts. In addition, other dietary components such as proteins, pre-, pro- and synbiotics, and also animal- and plant-derived bioactive components can further support the immune system. Both the innate and adaptive defense systems contribute to active antiviral respiratory tract immunity. The initial response to viral airway infections is through recognition by the innate immune system of viral components leading to activation of adaptive immune cells in the form of cytotoxic T cells, the production of neutralizing antibodies and the induction of memory T and B cell responses. The aim of this review is to describe the effects of a range different dietary components on anti-infective innate as well as adaptive immune responses and to propose mechanisms by which they may interact with the immune system in the respiratory tract.
Collapse
Affiliation(s)
- Coen Govers
- Cell Biology and Immunology, Wageningen University and Research, Wageningen, Netherlands
| | - Philip C. Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton National Health Service (NHS) Foundation Trust and University of Southampton, Southampton, United Kingdom
| | - Huub F. J. Savelkoul
- Cell Biology and Immunology, Wageningen University and Research, Wageningen, Netherlands
| | | | - R. J. Joost van Neerven
- Cell Biology and Immunology, Wageningen University and Research, Wageningen, Netherlands
- Research & Development, FrieslandCampina, Amersfoort, Netherlands
| |
Collapse
|
26
|
Sunil AA, Skaria T. Novel regulators of airway epithelial barrier function during inflammation: potential targets for drug repurposing. Expert Opin Ther Targets 2022; 26:119-132. [PMID: 35085478 DOI: 10.1080/14728222.2022.2035720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Endogenous inflammatory signaling molecules resulting from deregulated immune responses, can impair airway epithelial barrier function and predispose individuals with airway inflammatory diseases to exacerbations and lung infections. Targeting the specific endogenous factors disrupting the airway barrier therefore has the potential to prevent disease exacerbations without affecting the protective immune responses. AREAS COVERED Here, we review the endogenous factors and specific mechanisms disrupting airway epithelial barrier during inflammation and reflect on whether these factors can be specifically targeted by repurposed existing drugs. Literature search was conducted using PubMed, drug database of US FDA and European Medicines Agency until and including September 2021. EXPERT OPINION IL-4 and IL-13 signaling are the major pathways disrupting the airway epithelial barrier during airway inflammation. However, blocking IL-4/IL-13 signaling may adversely affect protective immune responses and increase susceptibility of host to infections. An alternate approach to modulate airway epithelial barrier function involves targeting specific downstream component of IL-4/IL-13 signaling or different inflammatory mediators responsible for regulation of airway epithelial barrier. Airway epithelium-targeted therapy using inhibitors of HDAC, HSP90, MIF, mTOR, IL-17A and VEGF may be a potential strategy to prevent airway epithelial barrier dysfunction in airway inflammatory diseases.
Collapse
Affiliation(s)
- Ahsan Anjoom Sunil
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Tom Skaria
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| |
Collapse
|
27
|
Sex differences in innate anti-viral immune responses to respiratory viruses and in their clinical outcomes in a birth cohort study. Sci Rep 2021; 11:23741. [PMID: 34887467 PMCID: PMC8660814 DOI: 10.1038/s41598-021-03044-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/23/2021] [Indexed: 11/21/2022] Open
Abstract
The mechanisms explaining excess morbidity and mortality in respiratory infections among males are poorly understood. Innate immune responses are critical in protection against respiratory virus infections. We hypothesised that innate immune responses to respiratory viruses may be deficient in males. We stimulated peripheral blood mononuclear cells from 345 participants at age 16 years in a population-based birth cohort with three live respiratory viruses (rhinoviruses A16 and A1, and respiratory syncytial virus) and two viral mimics (R848 and CpG-A, to mimic responses to SARS-CoV-2) and investigated sex differences in interferon (IFN) responses. IFN-α responses to all viruses and stimuli were 1.34-2.06-fold lower in males than females (P = 0.018 - < 0.001). IFN-β, IFN-γ and IFN-induced chemokines were also deficient in males across all stimuli/viruses. Healthcare records revealed 12.1% of males and 6.6% of females were hospitalized with respiratory infections in infancy (P = 0.017). In conclusion, impaired innate anti-viral immunity in males likely results in high male morbidity and mortality from respiratory virus infections.
Collapse
|
28
|
Ackland J, Watson A, Wilkinson TMA, Staples KJ. Interrupting the Conversation: Implications for Crosstalk Between Viral and Bacterial Infections in the Asthmatic Airway. FRONTIERS IN ALLERGY 2021; 2:738987. [PMID: 35386999 PMCID: PMC8974750 DOI: 10.3389/falgy.2021.738987] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/20/2021] [Indexed: 12/20/2022] Open
Abstract
Asthma is a heterogeneous, chronic respiratory disease affecting 300 million people and is thought to be driven by different inflammatory endotypes influenced by a myriad of genetic and environmental factors. The complexity of asthma has rendered it challenging to develop preventative and disease modifying therapies and it remains an unmet clinical need. Whilst many factors have been implicated in asthma pathogenesis and exacerbations, evidence indicates a prominent role for respiratory viruses. However, advances in culture-independent detection methods and extensive microbial profiling of the lung, have also demonstrated a role for respiratory bacteria in asthma. In particular, airway colonization by the Proteobacteria species Nontypeable Haemophilus influenzae (NTHi) and Moraxella catarrhalis (Mcat) is associated with increased risk of developing recurrent wheeze and asthma in early life, poor clinical outcomes in established adult asthma and the development of more severe inflammatory phenotypes. Furthermore, emerging evidence indicates that bacterial-viral interactions may influence exacerbation risk and disease severity, highlighting the need to consider the impact chronic airway colonization by respiratory bacteria has on influencing host responses to viral infection. In this review, we first outline the currently understood role of viral and bacterial infections in precipitating asthma exacerbations and discuss the underappreciated potential impact of bacteria-virus crosstalk in modulating host responses. We discuss the mechanisms by which early life infection may predispose to asthma development. Finally, we consider how infection and persistent airway colonization may drive different asthma phenotypes, with a view to identifying pathophysiological mechanisms that may prove tractable to new treatment modalities.
Collapse
Affiliation(s)
- Jodie Ackland
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
| | - Alastair Watson
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Tom M. A. Wilkinson
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
- Wessex Investigational Sciences Hub, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, United Kingdom
| | - Karl J. Staples
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
- Wessex Investigational Sciences Hub, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, United Kingdom
- *Correspondence: Karl J. Staples
| |
Collapse
|
29
|
Yang Z, Mitländer H, Vuorinen T, Finotto S. Mechanism of Rhinovirus Immunity and Asthma. Front Immunol 2021; 12:731846. [PMID: 34691038 PMCID: PMC8526928 DOI: 10.3389/fimmu.2021.731846] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/20/2021] [Indexed: 12/30/2022] Open
Abstract
The majority of asthma exacerbations in children are caused by Rhinovirus (RV), a positive sense single stranded RNA virus of the Picornavirus family. The host has developed virus defense mechanisms that are mediated by the upregulation of interferon-activated signaling. However, the virus evades the immune system by inducing immunosuppressive cytokines and surface molecules like programmed cell death protein 1 (PD-1) and its ligand (PD-L1) on immunocompetent cells. Initially, RV infects epithelial cells, which constitute a physiologic mucosal barrier. Upon virus entrance, the host cell immediately recognizes viral components like dsRNA, ssRNA, viral glycoproteins or CpG-DNA by host pattern recognition receptors (PRRs). Activation of toll like receptors (TLR) 3, 7 and 8 within the endosome and through MDA-5 and RIG-I in the cytosol leads to the production of interferon (IFN) type I and other antiviral agents. Every cell type expresses IFNAR1/IFNAR2 receptors thus allowing a generalized antiviral activity of IFN type I resulting in the inhibition of viral replication in infected cells and preventing viral spread to non-infected cells. Among immune evasion mechanisms of the virus, there is downregulation of IFN type I and its receptor as well as induction of the immunosuppressive cytokine TGF-β. TGF-β promotes viral replication and is associated with induction of the immunosuppression signature markers LAP3, IDO and PD-L1. This article reviews the recent advances on the regulation of interferon type I expression in association with RV infection in asthmatics and the immunosuppression induced by the virus.
Collapse
Affiliation(s)
- Zuqin Yang
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Hannah Mitländer
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Tytti Vuorinen
- Medical Microbiology, Turku University Hospital, Institut of Biomedicine, University of Turku, Turku, Finland
| | - Susetta Finotto
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
30
|
Wisnu Wardana VA, Rosyid AN. Inflammatory Mechanism and Clinical Implication of Asthma in COVID-19. CLINICAL MEDICINE INSIGHTS-CIRCULATORY RESPIRATORY AND PULMONARY MEDICINE 2021; 15:11795484211042711. [PMID: 34594145 PMCID: PMC8477697 DOI: 10.1177/11795484211042711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022]
Abstract
Asthma is a chronic inflammatory disease of the respiratory tract that has become a public health problem in various countries. Referring to the Global Initiative for Asthma, the prevalence of asthma continues to increase especially in children. Coronavirus Disease 2019 (COVID-19) is an infectious disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) that has declared a pandemic by the world health organization on March 2020. For many years, it has been known that people with asthma have a worse impact on respiratory viral infections. Asthma has been listed by the centers for disease control and prevention as one of the risk factors for COVID-19, although several studies have different results. SARS-CoV-2 utilizes angiotensin-converting enzyme 2 (ACE2) as its cellular receptor, and it has been known that the expression of the ACE2 receptor is reduced in asthma patients. This reduced expression could also be accounted from the therapy of asthma. This paper aims to discuss the pathophysiology of asthma and COVID-19 and the susceptibility of asthma patients in contracting COVID-19.
Collapse
Affiliation(s)
- Vasa Adi Wisnu Wardana
- Airlangga University, Surabaya, Indonesia.,Universitas Airlangga Hospital, Surabaya, Indonesia
| | - Alfian Nur Rosyid
- Airlangga University, Surabaya, Indonesia.,Universitas Airlangga Hospital, Surabaya, Indonesia
| |
Collapse
|
31
|
Howell D, Verma H, Ho KS, Narasimhan B, Steiger D, Rogers L. Asthma and COVID-19: lessons learned and questions that remain. Expert Rev Respir Med 2021; 15:1377-1386. [PMID: 34570678 DOI: 10.1080/17476348.2021.1985763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Asthma is one of the most common chronic diseases worldwide. As a disease of the respiratory tract, the site of entry for the SARS-CoV-2 virus, there may be an important interplay between asthma and COVID-19 disease. AREAS COVERED We report asthma prevalence among hospitalized cohorts with COVID-19. Those with non-allergic and severe asthma may be at increased risk of a worsened clinical outcome from COVID-19 infection. We explore the epidemiology of asthma as a risk factor for the severity of COVID-19 infection. We then consider the role COVID-19 may play in leading to exacerbations of asthma. The impact of asthma endotype on outcome is discussed. Lastly, we address the safety of common asthma therapeutics. A literature search was performed with relevant terms for each of the sections of the review using PubMed, Google Scholar, and Medline. EXPERT OPINION Asthma diagnosis may be a risk factor for severe COVID-19 especially for those with severe disease or nonallergic phenotypes. COVID-19 does not appear to provoke asthma exacerbations and asthma therapeutics should be continued for patients with exposure to COVID-19. Clearly much regarding this topic remains unknown and we identify some key questions that may be of interest for future researchers.[Figure: see text].
Collapse
Affiliation(s)
- Daniel Howell
- Division of Pulmonary and Critical Care, Woodhull Hospital, New York University, New York, USA
| | - Hannah Verma
- Icahn School of Medicine at Mount Sinai, New York, USA
| | - Kam Sing Ho
- Department of Medicine, Mount Sinai Morningside & Mount Sinai West Hospitals, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Bharat Narasimhan
- Department of Medicine, Mount Sinai Morningside & Mount Sinai West Hospitals, Icahn School of Medicine at Mount Sinai, New York, USA
| | - David Steiger
- Division of Pulmonary & Critical Care, Mount Sinai Beth Israel, Mount Sinai Morningside, & Mount Sinai West Hospitals, Icahn School of Medicine at Mount Sinai, New York, USA
| | | |
Collapse
|
32
|
Reply to Betsch and Sprengholz: Higher SARS-CoV-2 infection numbers related to more airborne pollen, regardless of testing frequency. Proc Natl Acad Sci U S A 2021; 118:2110982118. [PMID: 34400507 PMCID: PMC8403936 DOI: 10.1073/pnas.2110982118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
33
|
Menzel M, Akbarshahi H, Mahmutovic Persson I, Andersson C, Puthia M, Uller L. NFκB1 Dichotomously Regulates Pro-Inflammatory and Antiviral Responses in Asthma. J Innate Immun 2021; 14:182-191. [PMID: 34350857 DOI: 10.1159/000517847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/13/2021] [Indexed: 11/19/2022] Open
Abstract
Asthma exacerbations are commonly triggered by rhinovirus infections. Viruses can activate the NFκB pathway resulting in airway inflammation and increased Th2 cytokine expression. NFκB signaling is also involved in early activation of IFNβ, which is a central mediator of antiviral responses to rhinovirus infection. Using a mouse model, this study tests our hypothesis that NFκB signaling is involved in impaired IFNβ production at viral-induced asthma exacerbations. C57BL/6 wild-type and NFκB1-/- mice were challenged with house dust mite for 3 weeks and were subsequently stimulated with the rhinoviral mimic poly(I:C). General lung inflammatory parameters and levels of the Th2 upstream cytokine IL-33 were measured after allergen challenge. At exacerbation, production of IFNβ and antiviral proteins as well as gene expression of pattern recognition receptors and IRF3/IRF7 was assessed. In the asthma exacerbation mouse model, lack of NFκB1 resulted in lower levels of IL-33 after allergen challenge alone and was associated with reduced eosinophilia. At exacerbation, mice deficient in NFκB1 exhibited enhanced expression of IFNβ and antiviral proteins. This was accompanied by increased IRF3/IRF7 expression and induction of pattern recognition receptor expression. In a human asthma dataset, a negative correlation between IRF3 and NFκB1 expression was observed. NFκB may impair antiviral responses at exacerbation, possibly by reducing expression of the transcription factors IRF3/IRF7. These findings suggest a therapeutic potential for targeting NFκB pathways at viral infection-induced exacerbations.
Collapse
Affiliation(s)
- Mandy Menzel
- Respiratory Immunopharmacology, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Hamid Akbarshahi
- Respiratory Immunopharmacology, Department of Experimental Medical Sciences, Lund University, Lund, Sweden.,Respiratory Medicine and Allergology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Irma Mahmutovic Persson
- Respiratory Immunopharmacology, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Cecilia Andersson
- Respiratory Cell Biology, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Manoj Puthia
- Division of Dermatology and Venerology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Lena Uller
- Respiratory Immunopharmacology, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
34
|
Padayachee Y, Flicker S, Linton S, Cafferkey J, Kon OM, Johnston SL, Ellis AK, Desrosiers M, Turner P, Valenta R, Scadding GK. Review: The Nose as a Route for Therapy. Part 2 Immunotherapy. FRONTIERS IN ALLERGY 2021; 2:668781. [PMID: 35387044 PMCID: PMC8974912 DOI: 10.3389/falgy.2021.668781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
The nose provides a route of access to the body for inhalants and fluids. Unsurprisingly it has a strong immune defense system, with involvement of innate (e.g., epithelial barrier, muco- ciliary clearance, nasal secretions with interferons, lysozyme, nitric oxide) and acquired (e.g., secreted immunoglobulins, lymphocytes) arms. The lattice network of dendritic cells surrounding the nostrils allows rapid uptake and sampling of molecules able to negotiate the epithelial barrier. Despite this many respiratory infections, including SARS-CoV2, are initiated through nasal mucosal contact, and the nasal mucosa is a significant "reservoir" for microbes including Streptococcus pneumoniae, Neisseria meningitidis and SARS -CoV-2. This review includes consideration of the augmentation of immune defense by the nasal application of interferons, then the reduction of unnecessary inflammation and infection by alteration of the nasal microbiome. The nasal mucosa and associated lymphoid tissue (nasopharynx-associated lymphoid tissue, NALT) provides an important site for vaccine delivery, with cold-adapted live influenza strains (LAIV), which replicate intranasally, resulting in an immune response without significant clinical symptoms, being the most successful thus far. Finally, the clever intranasal application of antibodies bispecific for allergens and Intercellular Adhesion Molecule 1 (ICAM-1) as a topical treatment for allergic and RV-induced rhinitis is explained.
Collapse
Affiliation(s)
- Yorissa Padayachee
- Department of Respiratory Medicine, Faculty of Medicine, Imperial College Healthcare NHS Trust, Imperial College London, London, United Kingdom
| | - Sabine Flicker
- Center for Pathophysiology, Infectiology and Immunology, Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Sophia Linton
- Division of Allergy and Immunology, Department of Medicine, Queen's University, Kingston, ON, Canada
- Allergy Research Unit, Kingston Health Sciences Centre (KHSC), Kingston, ON, Canada
| | - John Cafferkey
- Department of Respiratory Medicine, Faculty of Medicine, Imperial College Healthcare NHS Trust, Imperial College London, London, United Kingdom
| | - Onn Min Kon
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Sebastian L. Johnston
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Anne K. Ellis
- Division of Allergy and Immunology, Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Martin Desrosiers
- Department of Otorhinolaryngologie, The University of Montreal Hospital Research Centre (CRCHUM), Montreal, QC, Canada
| | - Paul Turner
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Rudolf Valenta
- Division of Immunopathology, Medical University of Vienna, Vienna, Austria
| | - Glenis Kathleen Scadding
- Royal National Ear Nose and Throat Hospital, University College London Hospitals NHS Foundation Trust, London, United Kingdom
- Division of Infection and Immunity, Faculty of Medical Sciences, University College London, London, United Kingdom
| |
Collapse
|
35
|
Santos RVC, Cunha EGC, de Mello GSV, Rizzo JÂ, de Oliveira JF, do Carmo Alves de Lima M, da Rocha Pitta I, da Rocha Pitta MG, de Melo Rêgo MJB. New Oxazolidines Inhibit the Secretion of IFN-γ and IL-17 by PBMCS from Moderate to Severe Asthmatic Patients. Med Chem 2021; 17:289-297. [PMID: 32914717 DOI: 10.2174/1573406416666200910151950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 07/01/2020] [Accepted: 07/20/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Moderate to severe asthma could be induced by diverse proinflammatory cytokines, as IL-17 and IFN-γ, which are also related to treatment resistance and airway hyperresponsiveness. Oxazolidines emerged as a novel approach for asthma treatment, since some chemical peculiarities were suggested by previous studies. OBJECTIVE The present study aimed to evaluate the IL-17A and IFN-γ modulatory effect of two new oxazolidine derivatives (LPSF/NB-12 and -13) on mononucleated cells of patients with moderate and severe asthma. METHODS The study first looked at potential targets for oxazolidine derivatives using SWISS-ADME. After the synthesis of the compounds, cytotoxicity and cytokine levels were analyzed. RESULTS We demonstrated that LPSF/NB-12 and -13 reduced IFN-γ and IL-17 production in peripheral blood mononucleated cells from asthmatic patients in a concentrated manner. Our in silico analysis showed the neurokinin-1 receptor as a common target for both compounds, which is responsible for diverse proinflammatory effects of moderate and severe asthma. CONCLUSION The work demonstrated a novel approach against asthma, which deserves further studies of its mechanisms of action.
Collapse
Affiliation(s)
- Renata Virgínia Cavalcanti Santos
- Laboratorio de Imunomodulacao e Novas Abordagens Terapeuticas (LINAT), Nucleo de Pesquisa em Inovacao Terapeutica Suely Galdino (NUPIT-SG), Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Eudes Gustavo Constantino Cunha
- Laboratorio de Imunomodulacao e Novas Abordagens Terapeuticas (LINAT), Nucleo de Pesquisa em Inovacao Terapeutica Suely Galdino (NUPIT-SG), Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Gabriela Souto Vieira de Mello
- Laboratorio de Imunomodulacao e Novas Abordagens Terapeuticas (LINAT), Nucleo de Pesquisa em Inovacao Terapeutica Suely Galdino (NUPIT-SG), Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - José Ângelo Rizzo
- Servico de Pneumologia, Hospital das Clinicas, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Jamerson Ferreira de Oliveira
- Laboratorio de Quimica e Inovacao Terapeutica (LQIT), Departamento de Antibioticos, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Maria do Carmo Alves de Lima
- Laboratorio de Quimica e Inovacao Terapeutica (LQIT), Departamento de Antibioticos, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Ivan da Rocha Pitta
- Laboratorio de Imunomodulacao e Novas Abordagens Terapeuticas (LINAT), Nucleo de Pesquisa em Inovacao Terapeutica Suely Galdino (NUPIT-SG), Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Maira Galdino da Rocha Pitta
- Laboratorio de Imunomodulacao e Novas Abordagens Terapeuticas (LINAT), Nucleo de Pesquisa em Inovacao Terapeutica Suely Galdino (NUPIT-SG), Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Moacyr Jesus Barreto de Melo Rêgo
- Laboratorio de Imunomodulacao e Novas Abordagens Terapeuticas (LINAT), Nucleo de Pesquisa em Inovacao Terapeutica Suely Galdino (NUPIT-SG), Universidade Federal de Pernambuco, Recife, PE, Brazil
| |
Collapse
|
36
|
Loss of regulatory capacity in Treg cells following rhinovirus infection. J Allergy Clin Immunol 2021; 148:1016-1029.e16. [PMID: 34153372 DOI: 10.1016/j.jaci.2021.05.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 05/15/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Respiratory infections with rhinoviruses (RV) are strongly associated with development and exacerbations of asthma, and they pose an additional health risk for subjects with allergy. OBJECTIVE How RV infections and chronic allergic diseases are linked and what role RV plays in the breaking of tolerance in regulatory T (Treg) cells is unknown. Therefore, this study aims to investigate the effects of RV on Treg cells. METHODS Treg cells were isolated from subjects with asthma and controls after experimental infection with the RV-A16 (RV16) and analyzed with next-generation sequencing. Additionally, suppression assays, quantitative PCR assays, and protein quantifications were performed with Treg cells after in vitro RV16 infection. RESULTS RV16 induced a strong antiviral response in Treg cells from subjects with asthma and controls, including the upregulation of IFI44L, MX1, ISG15, IRF7, and STAT1. In subjects with asthma, the inflammatory response was exaggerated and showed a dysregulated immune response compared with that in the controls. Furthermore, subjects with asthma failed to upregulate several immunosuppressive molecules such as CTLA4 and CD69, and they upregulated the inflammasome-related genes PYCARD and AIM2. Additionally, RV16 reduced the suppressive capacity of Treg cells from healthy subjects and subjects with asthma in vitro and increased TH2 cell-type cytokine production. CONCLUSIONS Treg cells from healthy subjects and subjects with asthma displayed an antiviral response after RV infection and showed reduced suppressive capacity. These data suggest that Treg cell function might be altered or impaired during RV infections, which might play an important role in the association between RV and the development of asthma and asthma exacerbations.
Collapse
|
37
|
Krug J, Kiefer A, Koelle J, Vuorinen T, Xepapadaki P, Stanic B, Chiriac MT, Akdis M, Zimmermann T, Papadopoulos NG, Finotto S. TLR7/8 regulates type I and type III interferon signalling in rhinovirus 1b-induced allergic asthma. Eur Respir J 2021; 57:13993003.01562-2020. [PMID: 33303556 DOI: 10.1183/13993003.01562-2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 11/05/2020] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Interferon (IFN) responses have been reported to be defective in rhinovirus (RV)-induced asthma. The heterodimeric receptor of type I IFN (IFN-α/β) is composed of IFN-αR1 and IFN-αR2. Ligand binding to the IFN-α/β receptor complex activates signal transducer and activator of transcription (STAT) proteins STAT1 and STAT2 intracellularly. Although type III IFN (IFN-λ) binds to a different receptor containing IFN-λR1 and interleukin-10R2, its triggering leads to activation of the same downstream transcription factors. Here, we analysed the effects of RV on IFN type I and III receptors, and asked about possible Toll-like receptor 7/8 (TLR7/8) agonist R848-mediated IFN-αR1 and IFN-λR1 regulation. METHODS We measured IFN-α, IFN-β and IFN-λ and their receptor levels in peripheral blood mononuclear cell (PBMC) supernatants and cell pellets stimulated with RV1b and R848 in two cohorts of children with and without asthma recruited at pre-school age (PreDicta) and at primary school age (AGENDAS) as well as in cell supernatants from total lung cells isolated from mice. RESULTS We observed that R848 induced IFN-λR mRNA expression in PBMCs of healthy and asthmatic children, but suppressed IFN-αR mRNA levels. In murine lung cells, RV1b alone and together with R848 suppressed IFN-αR protein in T-cells compared with controls and in total lung IFN-λR mRNA compared with RV1b infection alone. CONCLUSIONS In PBMCs from pre-school age children, IFN-αR mRNA was reduced and IFN-λR1 mRNA was induced upon treatment with the TLR7/8 agonist R848, thus suggesting new avenues for induction of antiviral immune responses in paediatric asthma.
Collapse
Affiliation(s)
- Jasmin Krug
- Dept of Molecular Pneumology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Alexander Kiefer
- Dept of Allergy and Pneumology, Children's Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Julia Koelle
- Dept of Molecular Pneumology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | | | - Paraskevi Xepapadaki
- Dept of Allergy, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Barbara Stanic
- Musculoskeletal Infection, AO Research Institute Davos, Davos Platz, Switzerland
| | - Mircea T Chiriac
- I Medical Clinic, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research, University of Zurich, Davos Wolfgang, Switzerland
| | - Theodor Zimmermann
- Dept of Allergy and Pneumology, Children's Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Nikolaos G Papadopoulos
- Dept of Allergy, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece.,Centre for Respiratory Medicine and Allergy, University of Manchester, Manchester, UK
| | - Susetta Finotto
- Dept of Molecular Pneumology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
38
|
Fong WCG, Borca F, Phan H, Moyses HE, Dennison P, Kurukulaaratchy RJ, Haitchi HM. Asthma did not increase in-hospital COVID-19-related mortality in a tertiary UK hospital. Clin Exp Allergy 2021; 51:939-941. [PMID: 33626216 PMCID: PMC8013857 DOI: 10.1111/cea.13855] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/02/2021] [Accepted: 02/19/2021] [Indexed: 12/20/2022]
Affiliation(s)
- Wei Chern Gavin Fong
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,David Hide Asthma and Allergy Research Centre, Isle of Wight NHS Trust, Newport, UK
| | - Florina Borca
- National Institute for Health Research (NIHR) Southampton Biomedical Research Centre (BRC) at University Hospital Southampton NHS Foundation Trust, Southampton, UK.,Clinical Informatics Research Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Hang Phan
- National Institute for Health Research (NIHR) Southampton Biomedical Research Centre (BRC) at University Hospital Southampton NHS Foundation Trust, Southampton, UK.,Clinical Informatics Research Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Helen E Moyses
- National Institute for Health Research (NIHR) Southampton Biomedical Research Centre (BRC) at University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Paddy Dennison
- National Institute for Health Research (NIHR) Southampton Biomedical Research Centre (BRC) at University Hospital Southampton NHS Foundation Trust, Southampton, UK.,Asthma, Allergy and Clinical Immunology Department, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Ramesh J Kurukulaaratchy
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,David Hide Asthma and Allergy Research Centre, Isle of Wight NHS Trust, Newport, UK.,National Institute for Health Research (NIHR) Southampton Biomedical Research Centre (BRC) at University Hospital Southampton NHS Foundation Trust, Southampton, UK.,Asthma, Allergy and Clinical Immunology Department, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Hans Michael Haitchi
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,National Institute for Health Research (NIHR) Southampton Biomedical Research Centre (BRC) at University Hospital Southampton NHS Foundation Trust, Southampton, UK.,Asthma, Allergy and Clinical Immunology Department, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,Institute for Life Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
39
|
Root-Bernstein R. Innate Receptor Activation Patterns Involving TLR and NLR Synergisms in COVID-19, ALI/ARDS and Sepsis Cytokine Storms: A Review and Model Making Novel Predictions and Therapeutic Suggestions. Int J Mol Sci 2021; 22:ijms22042108. [PMID: 33672738 PMCID: PMC7924650 DOI: 10.3390/ijms22042108] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 01/08/2023] Open
Abstract
Severe COVID-19 is characterized by a “cytokine storm”, the mechanism of which is not yet understood. I propose that cytokine storms result from synergistic interactions among Toll-like receptors (TLR) and nucleotide-binding oligomerization domain-like receptors (NLR) due to combined infections of SARS-CoV-2 with other microbes, mainly bacterial and fungal. This proposition is based on eight linked types of evidence and their logical connections. (1) Severe cases of COVID-19 differ from healthy controls and mild COVID-19 patients in exhibiting increased TLR4, TLR7, TLR9 and NLRP3 activity. (2) SARS-CoV-2 and related coronaviruses activate TLR3, TLR7, RIG1 and NLRP3. (3) SARS-CoV-2 cannot, therefore, account for the innate receptor activation pattern (IRAP) found in severe COVID-19 patients. (4) Severe COVID-19 also differs from its mild form in being characterized by bacterial and fungal infections. (5) Respiratory bacterial and fungal infections activate TLR2, TLR4, TLR9 and NLRP3. (6) A combination of SARS-CoV-2 with bacterial/fungal coinfections accounts for the IRAP found in severe COVID-19 and why it differs from mild cases. (7) Notably, TLR7 (viral) and TLR4 (bacterial/fungal) synergize, TLR9 and TLR4 (both bacterial/fungal) synergize and TLR2 and TLR4 (both bacterial/fungal) synergize with NLRP3 (viral and bacterial). (8) Thus, a SARS-CoV-2-bacterium/fungus coinfection produces synergistic innate activation, resulting in the hyperinflammation characteristic of a cytokine storm. Unique clinical, experimental and therapeutic predictions (such as why melatonin is effective in treating COVID-19) are discussed, and broader implications are outlined for understanding why other syndromes such as acute lung injury, acute respiratory distress syndrome and sepsis display varied cytokine storm symptoms.
Collapse
|
40
|
Marcellini A, Swieboda D, Guedán A, Farrow SN, Casolari P, Contoli M, Johnston SL, Papi A, Solari R. Glucocorticoids impair type I IFN signalling and enhance rhinovirus replication. Eur J Pharmacol 2021; 893:173839. [PMID: 33359650 DOI: 10.1016/j.ejphar.2020.173839] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/15/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023]
Abstract
Inhaled corticosteroids (ICS) are recommended treatments for all degrees of asthma severity and in combination with bronchodilators are indicated for COPD patients with a history of frequent exacerbations. However, the long-term side effects of glucocorticoids (GCs) may include increased risk of respiratory infections, including viral triggered exacerbations. Rhinovirus (RV) infection is the main trigger of asthma and COPD exacerbations. Thus, we sought to explore the influence of GCs on viral replication. We demonstrate the ICS fluticasone propionate (FP) and two selective non-steroidal (GRT7) and steroidal (GRT10) glucocorticoid receptor (GR) agonists significantly suppress pro-inflammatory (IL-6 and IL-8) and antiviral (IFN-λ1) cytokine production and the expression of the interferon-stimulated genes (ISGs) OAS and viperin in RV-infected bronchial epithelial cells, with a consequent increase of viral replication. We also show that FP, GRT7 and GRT10 inhibit STAT1 Y701 and/or STAT2 Y690 phosphorylation and ISG mRNA induction following cell stimulation with recombinant IFN-β. In addition, we investigated the effects of the ICS budesonide (BD) and the long-acting β2 agonist (LABA) formoterol, alone or as an ICS/LABA combination, on RV-induced ISG expression and viral replication. Combination of BD/formoterol increases the suppression of OAS and viperin mRNA observed with both BD and formoterol alone, but an increase in viral RNA was only observed with BD treatment and not with formoterol. Overall, we provide evidence of an impairment of the innate antiviral immune response by GC therapy and the potential for GCs to enhance viral replication. These findings could have important clinical implications.
Collapse
Affiliation(s)
- Andrea Marcellini
- Research Centre on Asthma and COPD, University of Ferrara, Ferrara, Italy.
| | - Dawid Swieboda
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Anabel Guedán
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Stuart N Farrow
- Cancer Research Therapeutic Discovery Laboratories, Cambridge, UK
| | - Paolo Casolari
- Research Centre on Asthma and COPD, University of Ferrara, Ferrara, Italy
| | - Marco Contoli
- Research Centre on Asthma and COPD, University of Ferrara, Ferrara, Italy
| | | | - Alberto Papi
- Research Centre on Asthma and COPD, University of Ferrara, Ferrara, Italy
| | - Roberto Solari
- National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
41
|
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infects both children and adults but epidemiological and clinical data demonstrate that children are less likely to have a severe disease course or die. Furthermore, asthmatic children show less severe disease manifestations when infected with SARS-CoV-2 comparing to adults. This review focuses on SARS-CoV-2 and childhood asthma interaction and aims at summarizing the current knowledge of the potential mechanisms that ameliorate disease symptomatology in asthmatic children.
Collapse
Affiliation(s)
| | - Ahmad Kantar
- Pediatric Asthma and Cough Centre, Instituti Ospedalieri Bergamaschi, University and Research Hospitals, Bergamo, Italy
| |
Collapse
|
42
|
Hinks TSC, Levine SJ, Brusselle GG. Treatment options in type-2 low asthma. Eur Respir J 2021; 57:13993003.00528-2020. [PMID: 32586877 DOI: 10.1183/13993003.00528-2020] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/01/2020] [Indexed: 12/17/2022]
Abstract
Monoclonal antibodies targeting IgE or the type-2 cytokines interleukin (IL)-4, IL-5 and IL-13 are proving highly effective in reducing exacerbations and symptoms in people with severe allergic and eosinophilic asthma, respectively. However, these therapies are not appropriate for 30-50% of patients in severe asthma clinics who present with non-allergic, non-eosinophilic, "type-2 low" asthma. These patients constitute an important and common clinical asthma phenotype, driven by distinct, yet poorly understood pathobiological mechanisms. In this review we describe the heterogeneity and clinical characteristics of type-2 low asthma and summarise current knowledge on the underlying pathobiological mechanisms, which includes neutrophilic airway inflammation often associated with smoking, obesity and occupational exposures and may be driven by persistent bacterial infections and by activation of a recently described IL-6 pathway. We review the evidence base underlying existing treatment options for specific treatable traits that can be identified and addressed. We focus particularly on severe asthma as opposed to difficult-to-treat asthma, on emerging data on the identification of airway bacterial infection, on the increasing evidence base for the use of long-term low-dose macrolides, a critical appraisal of bronchial thermoplasty, and evidence for the use of biologics in type-2 low disease. Finally, we review ongoing research into other pathways including tumour necrosis factor, IL-17, resolvins, apolipoproteins, type I interferons, IL-6 and mast cells. We suggest that type-2 low disease frequently presents opportunities for identification and treatment of tractable clinical problems; it is currently a rapidly evolving field with potential for the development of novel targeted therapeutics.
Collapse
Affiliation(s)
- Timothy S C Hinks
- Respiratory Medicine Unit and National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), Nuffield Dept of Medicine, Experimental Medicine, University of Oxford, Oxford, UK
| | - Stewart J Levine
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Guy G Brusselle
- Dept of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium.,Depts of Epidemiology and Respiratory Medicine, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
43
|
Narayanan D, Grayson MH. Comparing respiratory syncytial virus and rhinovirus in development of post-viral airway disease. J Asthma 2020; 59:434-441. [PMID: 33345668 DOI: 10.1080/02770903.2020.1862186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Respiratory syncytial virus (RSV) and rhinovirus (RV) are common viral infections that may result in post-viral airway/atopic disease. By understanding the antiviral immune response involved, and the mechanisms that translate/associate with post-viral airway disease, further research can be directed to potential treatments that affect these mechanisms. DATA SOURCES Utilized peer-reviewed manuscripts listed in PubMed that had relevance to RSV/RV and development of atopic/airway disease in both humans and mice. STUDY SELECTIONS Studies that explained the mechanisms behind antiviral response were selected. RESULTS RSV infections have been associated with post-viral airway disease primarily in those without preexisting atopy; however, the mechanistic link connecting the viral infection with atopy is less clear. Mouse models (in particular those using Sendai virus, a virus related to RSV) provide a potential mechanistic pathway that may explain the linkage between RSV and post-viral airway disease. RV infection also can drive post-viral airway disease, but unlike RSV, this seems to occur only in those with preexisting atopy. Studies explore this link by demonstrating an impaired interferon response in atopic individuals, which may make them more susceptible to development of post-viral airway disease with RV infection. CONCLUSION Both RSV and RV are associated with a risk for developing post-viral airway disease and atopy. However, the mechanisms that connect these viruses with post-viral disease appear to be disparate, suggesting that treatments to prevent post-viral airway disease may need to be specific to the viral etiology.
Collapse
Affiliation(s)
- Deepika Narayanan
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children's Hospital - The Ohio State University College of Medicine, Columbus, OH, USA
| | - Mitchell H Grayson
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children's Hospital - The Ohio State University College of Medicine, Columbus, OH, USA.,The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| |
Collapse
|
44
|
Lin TY, Lo CY, Tsao KC, Chang PJ, Kuo CHS, Lo YL, Lin SM, Hsieh MH, Wang TY, Hsu PC, Lin HC. Impaired interferon-α expression in plasmacytoid dendritic cells in asthma. IMMUNITY INFLAMMATION AND DISEASE 2020; 9:183-195. [PMID: 33236850 PMCID: PMC7860612 DOI: 10.1002/iid3.376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 01/23/2023]
Abstract
Background Toll‐like receptor (TLR)‐7‐associated rhinovirus (RV) activation is involved in the pathogenesis of asthma. Plasmacytoid dendritic cells (pDCs) are the main interferon‐α‐producing cells against viruses. Objective To determine whether asthmatic patients and control subjects differ in terms of interferon‐α expression in pDCs under TLR‐7 or RV stimulation. Methods pDCs were identified in BDCA‐2+ and HLA‐DR+ peripheral blood mononuclear cells. Interferon‐α expression of pDCs was analyzed after TLR‐7 stimulation with or without interleukin 4 (IL‐4)/IL‐13 pretreatment. Interferon‐α expression was also analyzed after RV stimulation over periods of 24, 48, or 96 h with or without IL‐4 pretreatment. RV detection and molecular typing were assayed from throat swabs. Results Following TLR‐7 stimulation, the expression of intracellular interferon‐α was higher in the pDCs of normal subjects than those of asthmatic patients; however, pretreatment with IL‐4 was shown to reduce this effect. After 48‐ and 96‐h RV stimulation, we observed a notable increase in the production of interferon‐α of pDCs in normal subjects but not in asthmatic patients. Baseline interferon‐α expression in pDCs and the incidence of asthma exacerbation to emergency was higher among the 13% of patients identified as rhinovirus+ than among their RV counterparts. Conclusion Our study discovered the response to TLR‐7 stimulation in pDCs was compromised and the sustainability of interferon‐α expression to RV stimulation was reduced in pDCs of asthmatic patients, which provide further evidence of defective innate response and subspeciality to RV infection in asthma. The high exacerbation history founded in RV+ patients agrees with these findings. Further research is required for the modulatory effect of IL‐4 on TLR‐7 stimulated pDCs.
Collapse
Affiliation(s)
- Ting-Yu Lin
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan.,Department of Medicine, School of Medicine, Chang Gung University, Taipei, Taiwan
| | - Chun-Yu Lo
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan.,Department of Medicine, School of Medicine, Chang Gung University, Taipei, Taiwan
| | - Kuo-Chien Tsao
- Department of Laboratory Medicine, Lin-Kou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Po-Jui Chang
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan.,Department of Medicine, School of Medicine, Chang Gung University, Taipei, Taiwan
| | - Chih-His Scott Kuo
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan.,Department of Medicine, School of Medicine, Chang Gung University, Taipei, Taiwan
| | - Yu-Lun Lo
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan.,Department of Medicine, School of Medicine, Chang Gung University, Taipei, Taiwan
| | - Shu-Min Lin
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan.,Department of Medicine, School of Medicine, Chang Gung University, Taipei, Taiwan
| | - Meng-Heng Hsieh
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan.,Department of Medicine, School of Medicine, Chang Gung University, Taipei, Taiwan
| | - Tsai-Yu Wang
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan.,Department of Medicine, School of Medicine, Chang Gung University, Taipei, Taiwan
| | - Ping-Chih Hsu
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan.,Department of Medicine, School of Medicine, Chang Gung University, Taipei, Taiwan
| | - Horng-Chyuan Lin
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan.,Department of Medicine, School of Medicine, Chang Gung University, Taipei, Taiwan
| |
Collapse
|
45
|
Rich HE, Antos D, Melton NR, Alcorn JF, Manni ML. Insights Into Type I and III Interferons in Asthma and Exacerbations. Front Immunol 2020; 11:574027. [PMID: 33101299 PMCID: PMC7546400 DOI: 10.3389/fimmu.2020.574027] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/25/2020] [Indexed: 01/16/2023] Open
Abstract
Asthma is a highly prevalent, chronic respiratory disease that impacts millions of people worldwide and causes thousands of deaths every year. Asthmatics display different phenotypes with distinct genetic components, environmental causes, and immunopathologic signatures, and are broadly characterized into type 2-high or type 2-low (non-type 2) endotypes by linking clinical characteristics, steroid responsiveness, and molecular pathways. Regardless of asthma severity and adequate disease management, patients may experience acute exacerbations of symptoms and a loss of disease control, often triggered by respiratory infections. The interferon (IFN) family represents a group of cytokines that play a central role in the protection against and exacerbation of various infections and pathologies, including asthma. Type I and III IFNs in particular play an indispensable role in the host immune system to fight off pathogens, which seems to be altered in both pediatric and adult asthmatics. Impaired IFN production leaves asthmatics susceptible to infection and with uncontrolled type 2 immunity, promotes airway hyperresponsiveness (AHR), and inflammation which can lead to asthma exacerbations. However, IFN deficiency is not observed in all asthmatics, and alterations in IFN expression may be independent of type 2 immunity. In this review, we discuss the link between type I and III IFNs and asthma both in general and in specific contexts, including during viral infection, co-infection, and bacterial/fungal infection. We also highlight several studies which examine the potential role for type I and III IFNs as asthma-related therapies.
Collapse
Affiliation(s)
- Helen E Rich
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Danielle Antos
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Natalie R Melton
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - John F Alcorn
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Michelle L Manni
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
46
|
Xu Y, Zhang YH, Li J, Pan XY, Huang T, Cai YD. New Computational Tool Based on Machine-learning Algorithms for the Identification of Rhinovirus Infection-Related Genes. Comb Chem High Throughput Screen 2020; 22:665-674. [PMID: 31782358 DOI: 10.2174/1386207322666191129114741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 05/22/2019] [Accepted: 07/09/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Human rhinovirus has different identified serotypes and is the most common cause of cold in humans. To date, many genes have been discovered to be related to rhinovirus infection. However, the pathogenic mechanism of rhinovirus is difficult to elucidate through experimental approaches due to the high cost and consuming time. METHODS AND RESULTS In this study, we presented a novel approach that relies on machine-learning algorithms and identified two genes OTOF and SOCS1. The expression levels of these genes in the blood samples can be used to accurately distinguish virus-infected and non-infected individuals. CONCLUSION Our findings suggest the crucial roles of these two genes in rhinovirus infection and the robustness of the computational tool in dissecting pathogenic mechanisms.
Collapse
Affiliation(s)
- Yan Xu
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yu-Hang Zhang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - JiaRui Li
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Xiao Y Pan
- BASF & IDLab, Ghent University, Ghent, Belgium
| | - Tao Huang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
47
|
Lejeune S, Deschildre A, Le Rouzic O, Engelmann I, Dessein R, Pichavant M, Gosset P. Childhood asthma heterogeneity at the era of precision medicine: Modulating the immune response or the microbiota for the management of asthma attack. Biochem Pharmacol 2020; 179:114046. [PMID: 32446884 PMCID: PMC7242211 DOI: 10.1016/j.bcp.2020.114046] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022]
Abstract
Exacerbations are a main characteristic of asthma. In childhood, the risk is increasing with severity. Exacerbations are a strong phenotypic marker, particularly of severe and therapy-resistant asthma. These early-life events may influence the evolution and be involved in lung function decline. In children, asthma attacks are facilitated by exposure to allergens and pollutants, but are mainly triggered by microbial agents. Multiple studies have assessed immune responses to viruses, and to a lesser extend bacteria, during asthma exacerbation. Research has identified impairment of innate immune responses in children, related to altered pathogen recognition, interferon release, or anti-viral response. Influence of this host-microbiota dialog on the adaptive immune response may be crucial, leading to the development of biased T helper (Th)2 inflammation. These dynamic interactions may impact the presentations of asthma attacks, and have long-term consequences. The aim of this review is to synthesize studies exploring immune mechanisms impairment against viruses and bacteria promoting asthma attacks in children. The potential influence of the nature of infectious agents and/or preexisting microbiota on the development of exacerbation is also addressed. We then discuss our understanding of how these diverse host-microbiota interactions in children may account for the heterogeneity of endotypes and clinical presentations. Finally, improving the knowledge of the pathophysiological processes induced by infections has led to offer new opportunities for the development of preventive or curative therapeutics for acute asthma. A better definition of asthma endotypes associated with precision medicine might lead to substantial progress in the management of severe childhood asthma.
Collapse
Affiliation(s)
- Stéphanie Lejeune
- CHU Lille, Univ. Lille, Pediatric Pulmonology and Allergy Department, Hôpital Jeanne de Flandre, F-59000 Lille, France; Univ. Lille, INSERM Unit 1019, CNRS UMR 9017, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, F-59019 Lille Cedex, France
| | - Antoine Deschildre
- CHU Lille, Univ. Lille, Pediatric Pulmonology and Allergy Department, Hôpital Jeanne de Flandre, F-59000 Lille, France; Univ. Lille, INSERM Unit 1019, CNRS UMR 9017, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, F-59019 Lille Cedex, France
| | - Olivier Le Rouzic
- Univ. Lille, INSERM Unit 1019, CNRS UMR 9017, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, F-59019 Lille Cedex, France; CHU Lille, Univ. Lille, Department of Respiratory Diseases, F-59000 Lille Cedex, France
| | - Ilka Engelmann
- Univ. Lille, Virology Laboratory, EA3610, Institute of Microbiology, CHU Lille, F-59037 Lille Cedex, France
| | - Rodrigue Dessein
- Univ. Lille, INSERM Unit 1019, CNRS UMR 9017, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, F-59019 Lille Cedex, France; Univ. Lille, Bacteriology Department, Institute of Microbiology, CHU Lille, F-59037 Lille Cedex, France
| | - Muriel Pichavant
- Univ. Lille, INSERM Unit 1019, CNRS UMR 9017, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, F-59019 Lille Cedex, France
| | - Philippe Gosset
- Univ. Lille, INSERM Unit 1019, CNRS UMR 9017, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, F-59019 Lille Cedex, France.
| |
Collapse
|
48
|
Lejeune S, Pichavant M, Engelmann I, Béghin L, Drumez E, Le Rouzic O, Dessein R, Rogeau S, Beke T, Kervoaze G, Delvart C, Ducoin H, Pouessel G, Le Mée A, Boileau S, Roussel J, Bonnel C, Mordacq C, Thumerelle C, Gosset P, Deschildre A. Severe preschool asthmatics have altered cytokine and anti-viral responses during exacerbation. Pediatr Allergy Immunol 2020; 31:651-661. [PMID: 32352598 DOI: 10.1111/pai.13268] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 11/27/2022]
Abstract
BACKGROUND Preschool asthma/recurrent wheeze is a heterogeneous condition. Different clinical phenotypes have been described, including episodic viral wheeze (EVW), severe intermittent wheeze (SIW), and multiple-trigger wheeze (MTW). OBJECTIVE To compare clinical, viral, and inflammatory/immune profiling at exacerbation between MTW, SIW, and EVW phenotypes. METHODS Multicenter, prospective, observational cohort (VIRASTHMA-2). Children (1-5 years) with preschool asthma were enrolled during hospitalization for a severe exacerbation. History and anamnestic data, plasma, and nasal samples were collected at exacerbation (T1) and at steady state, 8 weeks later (T2), and sputum samples were collected at T1. RESULTS A total of 147 children were enrolled, 37 (25%) had SIW, 18 (12.2%) EVW, and 92 (63%) MTW. They were atopic (47%), exposed to mold (22%) and cigarette smoke (50%), and prone to exacerbations (≥2 in the previous year in 70%). At exacerbation, at least one virus was isolated in 94% and rhinovirus in 75%, with no difference between phenotypes. Children with MTW and SIW phenotypes displayed lower plasma concentrations of IFN-γ (P = .002), IL-5 (P = .020), TNF-α (P = .038), IL-10 (P = .002), IFN-β (P = .036), and CXCL10 (P = .006) and lower levels of IFN-γ (P = .047) in sputum at exacerbation than children with EVW. At T2, they also displayed lower plasma levels of IFN-γ (P = .045) and CXCL10 (P = .013). CONCLUSION Among preschool asthmatic children, MTW and SIW, prone to exacerbations, display lower systemic levels of Th1, Th2 cytokines, pro- and anti-inflammatory cytokines, and antiviral responses during severe virus-induced exacerbation.
Collapse
Affiliation(s)
- Stéphanie Lejeune
- Pediatric Pulmonology and Allergy Department, Hôpital Jeanne de Flandre, CHU Lille, Univ. Lille, Lille cedex, France.,INSERM Unit 1019, CNRS UMR 9017, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, CHU Lille, Univ. Lille, Lille cedex, France
| | - Muriel Pichavant
- INSERM Unit 1019, CNRS UMR 9017, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, CHU Lille, Univ. Lille, Lille cedex, France
| | - Ilka Engelmann
- Virology Laboratory, EA3610, Institute of Microbiology, CHU Lille, Univ. Lille, Lille cedex, France
| | - Laurent Béghin
- LIRIC UMR 995 Inserm, Clinical Investigation Center, CIC-1403-Inserm-CHU, CHU Lille, Univ. Lille, Lille, France
| | - Elodie Drumez
- ULR 2694 - METRICS: Évaluation des technologies de santé et des pratiques médicales, CHU Lille, Univ. Lille, Lille, France.,Department of Biostatistics, CHU Lille, Lille, France
| | - Olivier Le Rouzic
- INSERM Unit 1019, CNRS UMR 9017, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, CHU Lille, Univ. Lille, Lille cedex, France
| | - Rodrigue Dessein
- INSERM Unit 1019, CNRS UMR 9017, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, CHU Lille, Univ. Lille, Lille cedex, France.,Bacteriology Department, Institute of Microbiology, CHU Lille, Univ. Lille, Lille cedex, France
| | - Stéphanie Rogeau
- Institute of Immunology, CHU Lille, Univ. Lille, Lille, Lille cedex, France
| | - Timothée Beke
- INSERM Unit 1019, CNRS UMR 9017, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, CHU Lille, Univ. Lille, Lille cedex, France
| | - Gwenola Kervoaze
- INSERM Unit 1019, CNRS UMR 9017, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, CHU Lille, Univ. Lille, Lille cedex, France
| | | | - Héloïse Ducoin
- Pediatric Department, CH Lens E. Schaffner, Lens cedex, France
| | | | | | | | | | - Cécile Bonnel
- Pediatric Department, CH Bethune, Bethune cedex, France
| | - Clémence Mordacq
- Pediatric Pulmonology and Allergy Department, Hôpital Jeanne de Flandre, CHU Lille, Univ. Lille, Lille cedex, France.,INSERM Unit 1019, CNRS UMR 9017, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, CHU Lille, Univ. Lille, Lille cedex, France
| | - Caroline Thumerelle
- Pediatric Pulmonology and Allergy Department, Hôpital Jeanne de Flandre, CHU Lille, Univ. Lille, Lille cedex, France.,INSERM Unit 1019, CNRS UMR 9017, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, CHU Lille, Univ. Lille, Lille cedex, France
| | - Philippe Gosset
- INSERM Unit 1019, CNRS UMR 9017, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, CHU Lille, Univ. Lille, Lille cedex, France
| | - Antoine Deschildre
- Pediatric Pulmonology and Allergy Department, Hôpital Jeanne de Flandre, CHU Lille, Univ. Lille, Lille cedex, France.,INSERM Unit 1019, CNRS UMR 9017, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, CHU Lille, Univ. Lille, Lille cedex, France
| |
Collapse
|
49
|
Johnston SL. Asthma and COVID-19: Is asthma a risk factor for severe outcomes? Allergy 2020; 75:1543-1545. [PMID: 32358994 PMCID: PMC7267381 DOI: 10.1111/all.14348] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 04/26/2020] [Indexed: 12/28/2022]
|
50
|
Kim SY, Oh DJ, Choi HG. Asthma increases the risk of herpes zoster: a nested case-control study using a national sample cohort. Allergy Asthma Clin Immunol 2020; 16:52. [PMID: 32944021 PMCID: PMC7491354 DOI: 10.1186/s13223-020-00453-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 06/15/2020] [Indexed: 01/20/2023] Open
Abstract
Background This study aimed to complement previous studies on the risk of herpes zoster in the asthmatic adult population. Methods The Korean Health Insurance Review and Assessment Service—National Sample Cohort (HIRA-NSC) from 2002 through 2013 was used. A total of 64,152 participants with herpes zoster were matched for age, sex, income, region of residence, hypertension, diabetes, and dyslipidemia with 239,780 participants who were included as a control group. In both the herpes zoster and control groups, previous history of asthma were investigated. The crude and adjusted odds ratios (ORs) and 95% confidence intervals (CI) of asthma for herpes zoster were analyzed using unconditional logistic regression analysis. Subgroup analyses were conducted according to age and sex. Results Approximately 16.2% (9728/59,945) and 12.8% (30,752/239,780) of participants in the herpes zoster and control groups, respectively, had a previous history of asthma (P < 0.001). The herpes zoster group demonstrated a 1.32-times higher odds of asthma than the control group (95% CI 1.28–1.35, P < 0.001). The increased odds of asthma in the herpes zoster group persisted in all the age and sex subgroups. Conclusions The odds for asthma were higher in the herpes zoster group.
Collapse
Affiliation(s)
- So Young Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, South Korea
| | - Dong Jun Oh
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyo Geun Choi
- Department of Otorhinolaryngology-Head & Neck Surgery, Hallym University College of Medicine, Sacred Heart Hospital, 22, Gwanpyeong-ro 170beon-gil, Dongan-gu, Anyang-Si, Gyeonggi-do 14068 Republic of Korea.,Hallym Data Science Laboratory, Hallym University College of Medicine, Anyang, Republic of Korea
| |
Collapse
|