1
|
Zhao C, Wang N, Wang C, Yuan Y, Du H, Ding Y, An H. Quercetin Alleviates Chronic Urticaria by Negatively Regulating IgE-Mediated Mast Cell Activation Through CD300f. Phytother Res 2025. [PMID: 40309955 DOI: 10.1002/ptr.8516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 03/05/2025] [Accepted: 03/20/2025] [Indexed: 05/02/2025]
Abstract
Chronic urticaria (CU) is a skin allergy caused by the excessive activation of mast cells. The main etiology of CU is a type I allergic reaction mediated by immunoglobulin (Ig)E. This study mainly explored the therapeutic effect of quercetin in ovalbumin (OVA)-induced CU mice and investigated its target and mechanism in vitro. The CU symptom-alleviating effect of quercetin was assessed by the CU model. The possible molecular mechanisms of quercetin were initially inferred through bioinformatic and multi-database analyses. Quercetin targets were examined using mast cell activation experiments with CD300f knockdown. RT-PCR and western blot experiments were performed to verify the molecular mechanisms of quercetin. Quercetin relieved wheal and scratching times on the back skin of mice as well as reduced eosinophilic infiltration and mast cell degranulation in the skin lesions and inhibited the release of IgE, histamine, TNF-α, MCP-1, and IL-13 in the serum of mice. In addition, it exhibited potential therapeutic effects on CU through the PI3K-Akt signaling pathway. Meanwhile, quercetin upregulated CD300f in the skin of CU, activated CD300f, and induced downstream SHP-1 phosphorylation. Of note, quercetin bound to CD300f to prevent IgE-mediated LAD2 cell β-hexosaminidase release, histamine release, Ca2+ influx, mast cell degranulation, and F-actin cytoskeleton remodeling by inhibiting the AKT/IKK/NF-κB inflammatory pathway. The study results suggest that quercetin alleviates CU by activating the CD300f/SHP-1 signaling pathway. In addition, it activates CD300f to inhibit IgE-mediated mast cell degranulation and F-actin cytoskeleton remodeling by inhibiting the AKT/IKK/NF-κB inflammatory pathway.
Collapse
Affiliation(s)
- Chenrui Zhao
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- College of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Na Wang
- Department of Otolaryngology, Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei, China
| | - Chao Wang
- College of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yujuan Yuan
- College of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hongfen Du
- College of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yuanyuan Ding
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- College of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hongli An
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- College of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
2
|
Voss OH, Moin I, Gaytan H, Sadik M, Ullah S, Rahman MS. Phosphatidylserine-binding receptor, CD300f, on macrophages mediates host invasion of pathogenic and non-pathogenic rickettsiae. Infect Immun 2025:e0005925. [PMID: 40310290 DOI: 10.1128/iai.00059-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 04/01/2025] [Indexed: 05/02/2025] Open
Abstract
Some arthropod-borne obligate intracellular rickettsiae are among the most virulent human pathogens. Rickettsia species modulate immune (e.g., macrophages; MΦ) and non-immune cell (e.g., endothelial cells) responses to create a habitable environment for host colonization. MΦ play a crucial role in either terminating an infection at an early stage or succumbing to bacterial replication and colonization. However, our understanding of how Rickettsia species invade host cells, including MΦ, remains poorly defined. In this study, we describe a mechanism of host invasion by Rickettsia species, involving rickettsial phosphatidylserine (PS), as a ligand, and the CD300f receptor on MΦ. Our data reveal that engulfment of both pathogenic Rickettsia typhi (the etiologic agent of murine typhus) and Rickettsia rickettsii (the etiologic agent of Rocky Mountain spotted fever) species, as well as the non-pathogenic Rickettsia montanensis, is significantly reduced in bone marrow-derived macrophages (BMDMΦ) from CD300f-/- mice, as compared to that of wild-type (WT) animals. Furthermore, our mechanistic analysis suggests bacterial PS as the potential source for the CD300f-mediated rickettsiae engulfment by MΦ. In vivo infection studies using WT and CD300f-/- C57BL/6J mice show that CD300f-/- animals are protected against R. typhi- or R. rickettsii-induced fatal rickettsiosis, which corroborates with the level of the bacterial burden detected in the spleens of the mice. Adoptive transfer studies reveal that CD300f-expressing MΦ are important mediators to control rickettsiosis in vivo. Collectively, our findings describe a previously unappreciated role for the efferocytic receptor, CD300f, to facilitate engulfment of rickettsiae within the host.
Collapse
Affiliation(s)
- Oliver H Voss
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Imran Moin
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Hodalis Gaytan
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mohammad Sadik
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Saif Ullah
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - M Sayeedur Rahman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Lee H, Nakahashi-Oda C, Lyu W, Tanaka M, Rai A, Muramoto Y, Wang Y, Mizuno S, Shibuya K, Shibuya A. Inhibitory immunoreceptors CD300a and CD300lf cooperate to regulate mast cell activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkae030. [PMID: 40073110 DOI: 10.1093/jimmun/vkae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/07/2024] [Indexed: 03/14/2025]
Abstract
Mast cells (MCs) play a central role in allergic immune responses. MC activation is regulated by several inhibitory immunoreceptors. The CD300 family members CD300a and CD300lf recognize phospholipid ligands and inhibit the FcεRI-mediated activating signal in MCs. While CD300a binds to phosphatidylserine (PS) to inhibit MCs activation, CD300lf function is less clear due to its ability to bind with ceramide and PS. Moreover, it also remains blurring whether CD300a and CD300lf function independently, cooperatively, or by interfering with each other in regulating MC activation. Using imaging and flow cytometric analyses of bone marrow-derived cultured MCs (BMMCs) from wild-type (WT), Cd300a-/-, Cd300lf-/-, and Cd300a-/-Cd300lf-/- mice, we show that CD300lf and CD300a colocalized with PS externalized to the outer leaflet of the plasma membrane with a polar formation upon activation, and CD300lf cooperates with CD300a to inhibit BMMCs activation. CD300lf also colocalized with extracellular ceramide in addition to the internal PS on the cell surface, which results in stronger inhibition of MC activation than CD300lf binding to PS alone. Similarly, although both Cd300a-/- and Cd300lf-/- mice showed decreased rectal temperatures compared with WT mice in the model of passive systemic anaphylaxis, Cd300a-/-Cd300lf-/- mice showed lower rectal temperature than either Cd300a-/- or Cd300lf-/- mice. Our results demonstrate the cooperativity of multiple inhibitory receptors expressed on MCs and their regulatory functions upon binding to respective ligands.
Collapse
Affiliation(s)
- Hanbin Lee
- Department of Immunology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Ph.D. Program in Human Biology, Graduate School of Comprehensive Human Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Chigusa Nakahashi-Oda
- Department of Immunology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- R&D Center for Innovative Drug Discovery, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Wenxin Lyu
- Department of Immunology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Ph.D. Program in Human Biology, Graduate School of Comprehensive Human Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Mamoru Tanaka
- Department of Immunology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Master's Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Akiyoshi Rai
- Department of Immunology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- School of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoichi Muramoto
- Department of Immunology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- School of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yaqiu Wang
- Department of Immunology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Ph.D. Program in Human Biology, Graduate School of Comprehensive Human Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kazuko Shibuya
- Department of Immunology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- R&D Center for Innovative Drug Discovery, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Akira Shibuya
- Department of Immunology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- R&D Center for Innovative Drug Discovery, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), Tsukuba, Ibaraki, Japan
| |
Collapse
|
4
|
Zhao C, Ding Y, Huang Y, Wang C, Guo B, Zhang T. Quercetin Attenuates MRGPRX2-Mediated Mast Cell Degranulation via the MyD88/IKK/NF-κB and PI3K/AKT/ Rac1/Cdc42 Pathway. J Inflamm Res 2024; 17:7099-7110. [PMID: 39398230 PMCID: PMC11468308 DOI: 10.2147/jir.s480644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/22/2024] [Indexed: 10/15/2024] Open
Abstract
Background CMRF35-like molecule-1 (CLM-1) is a receptor of the CD300 family that inhibits MRGPRX2-mediated mast cell degranulation. Understanding the role and mechanism of CLM-1 agonist has significant implications for the treatment of allergic disease. Quercetin is a natural small molecule compound derived from plants and vegetables that has been shown to prevent histamine release by immune cells. Objective This study aims to examine the inhibitory effects of quercetin on MRGPRX2-mediated mast cell degranulation via CLM-1. Results We found that C48/80 stimulation resulted in significantly increased release of β-hexosaminidase, histamine and Ca2+ in CLM-1-knockdown LAD2 cells than in NC-LAD2 cells. Surface plasmon resonance (SPR) and molecular docking analyses revealed high-affinity binding between quercetin and CLM-1 (K D = 2.962×10-5 mol/L) mediated by the formation of hydrogen bonds. In addition, quercetin can selectively bind to CLM-1 on mast cells, leading to SHP-1 phosphorylation and subsequent inhibition of downstream MyD88/IKK/NF-κB signaling. Furthermore, activation of CLM-1 modulated the surface expression of MRGPRX2 by inhibiting F-actin, leading to internalization of the MRGPRX2 receptor via the PI3K/AKT/ Rac1/Cdc42 pathway. Conclusion Quercetin is a promising treatment for allergic diseases by acting as a CLM-1 agonist that inhibits MRGPRX2-mediated mast cell degranulation.
Collapse
Affiliation(s)
- Chenrui Zhao
- Department of Anesthesiology, Xi’an Honghui Hospital, Xi’an Jiaotong University, Xi’an, 710054, People’s Republic of China
- College of Pharmacy, Xi’an Jiaotong University, Xi’an, 710061, People’s Republic of China
| | - Yuanyuan Ding
- College of Pharmacy, Xi’an Jiaotong University, Xi’an, 710061, People’s Republic of China
| | - Yihan Huang
- College of Pharmacy, Xi’an Jiaotong University, Xi’an, 710061, People’s Republic of China
| | - Chao Wang
- College of Pharmacy, Xi’an Jiaotong University, Xi’an, 710061, People’s Republic of China
| | - Bin Guo
- Department of Anesthesiology, Xi’an Honghui Hospital, Xi’an Jiaotong University, Xi’an, 710054, People’s Republic of China
| | - Tao Zhang
- College of Pharmacy, Xi’an Jiaotong University, Xi’an, 710061, People’s Republic of China
| |
Collapse
|
5
|
Zhu T, Ma Y, Wang J, Xiong W, Mao R, Cui B, Min Z, Song Y, Chen Z. Serum Metabolomics Reveals Metabolomic Profile and Potential Biomarkers in Asthma. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2024; 16:235-252. [PMID: 38910282 PMCID: PMC11199150 DOI: 10.4168/aair.2024.16.3.235] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 11/05/2023] [Accepted: 01/27/2024] [Indexed: 06/25/2024]
Abstract
PURPOSE Asthma is a highly heterogeneous disease. Metabolomics plays a pivotal role in the pathogenesis and development of asthma. The main aims of our study were to explore the underlying mechanism of asthma and to identify novel biomarkers through metabolomics approach. METHODS Serum samples from 102 asthmatic patients and 18 healthy controls were collected and analyzed using liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) system. Multivariate analysis and weighted gene co-expression network analysis (WGCNA) were performed to explore asthma-associated metabolomics profile and metabolites. The Kyoto Encyclopedia of Genes and Genomes (KEGG) was used for pathway enrichment analysis. Subsequently, 2 selected serum hub metabolites, myristoleic acid and dodecanoylcarnitine, were replicated in a validation cohort using ultra-high performance LC-MS/MS system (UHPLC-MS/MS). RESULTS Distinct metabolomics profile of asthma was revealed by multivariate analysis. Then, 116 overlapped asthma-associated metabolites between multivariate analysis and WGCNA, including 12 hub metabolites, were identified. Clinical features-associated hub metabolites were also identified by WGCNA. Among 116 asthma-associated metabolites, Sphingolipid metabolism and valine, leucine and isoleucine biosynthesis were revealed by KEGG analysis. Furthermore, serum myristoleic acid and dodecanoylcarnitine were significantly higher in asthmatic patients than in healthy controls in validation cohort. Additionally, serum myristoleic acid and dodecanoylcarnitine demonstrated high sensitivities and specificities in predicting asthma. CONCLUSIONS Collectively, asthmatic patients showed a unique serum metabolome. Sphingolipid metabolism and valine, leucine and isoleucine biosynthesis were involved in the pathogenesis of asthma. Furthermore, our results suggest the promising values of serum myristoleic acid and dodecanoylcarnitine for asthma diagnosis in adults.
Collapse
Affiliation(s)
- Tao Zhu
- Department of Respiratory Medicine and Critical Care Medicine, and Preclinical Research Center, Suining Central Hospital, Suining, China
| | - Yuan Ma
- Department of Respiratory and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai Institute of Respiratory Disease, Shanghai, China
| | - Jiajia Wang
- Rheumatology Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Xiong
- Department of Respiratory Medicine and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ruolin Mao
- Department of Respiratory and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai Institute of Respiratory Disease, Shanghai, China
| | - Bo Cui
- Department of Respiratory and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai Institute of Respiratory Disease, Shanghai, China
| | - Zhihui Min
- Research Center of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuanlin Song
- Department of Respiratory and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai Institute of Respiratory Disease, Shanghai, China.
| | - Zhihong Chen
- Department of Respiratory and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai Institute of Respiratory Disease, Shanghai, China.
| |
Collapse
|
6
|
Ide T, Izawa K, Diono W, Kamei A, Ando T, Kaitani A, Maehara A, Yoshikawa A, Yamamoto R, Uchida S, Wang H, Kojima M, Maeda K, Nakano N, Nakamura M, Shimizu T, Ogawa H, Okumura K, Matsumoto F, Ikeda K, Goto M, Kitaura J. Intranasal administration of ceramide liposome suppresses allergic rhinitis by targeting CD300f in murine models. Sci Rep 2024; 14:8398. [PMID: 38600251 PMCID: PMC11006841 DOI: 10.1038/s41598-024-58923-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
Allergic rhinitis (AR) is caused by type I hypersensitivity reaction in the nasal tissues. The interaction between CD300f and its ligand ceramide suppresses immunoglobulin E (IgE)-mediated mast cell activation. However, whether CD300f inhibits the development of allergic rhinitis (AR) remains elusive. We aimed to investigate the roles of CD300f in the development of AR and the effectiveness of intranasal administration of ceramide liposomes on AR in murine models. We used ragweed pollen-induced AR models in mice. Notably, CD300f deficiency did not significantly influence the ragweed-specific IgE production, but increased the frequency of mast cell-dependent sneezing as well as the numbers of degranulated mast cells and eosinophils in the nasal tissues in our models. Similar results were also obtained for MCPT5-exprssing mast cell-specific loss of CD300f. Importantly, intranasal administration of ceramide liposomes reduced the frequency of sneezing as well as the numbers of degranulated mast cells and eosinophils in the nasal tissues in AR models. Thus, CD300f-ceramide interaction, predominantly in mast cells, alleviates the symptoms and progression of AR. Therefore, intranasal administration of ceramide liposomes may be a promising therapeutic approach against AR by targeting CD300f.
Collapse
Affiliation(s)
- Takuma Ide
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
- Department of Otorhinolaryngology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Kumi Izawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan.
| | - Wahyu Diono
- Department of Materials Process Engineering, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, 464-8603, Japan
| | - Anna Kamei
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
- Department of Science of Allergy and Inflammation, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Tomoaki Ando
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Ayako Kaitani
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Akie Maehara
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Akihisa Yoshikawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
- Department of Otorhinolaryngology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Risa Yamamoto
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Shino Uchida
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
- Department of Gastroenterology Immunology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Hexing Wang
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
- Department of Science of Allergy and Inflammation, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Mayuki Kojima
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Keiko Maeda
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
- Department of Immunological Diagnosis, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Nobuhiro Nakano
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Masahiro Nakamura
- Department of Otorhinolaryngology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Toshiaki Shimizu
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Hideoki Ogawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Ko Okumura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Fumihiko Matsumoto
- Department of Otorhinolaryngology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Katsuhisa Ikeda
- Department of Otorhinolaryngology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Motonobu Goto
- Department of Materials Process Engineering, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, 464-8603, Japan
| | - Jiro Kitaura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan.
- Department of Science of Allergy and Inflammation, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
7
|
Alí-Ruiz D, Vitureira N, Peluffo H. Microglial CD300f immune receptor contributes to the maintenance of neuron viability in vitro and after a penetrating brain injury. Sci Rep 2023; 13:16796. [PMID: 37798310 PMCID: PMC10556028 DOI: 10.1038/s41598-023-43840-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023] Open
Abstract
Emerging evidences suggest that immune receptors participate in diverse microglial and macrophage functions by regulating their immunometabolism, inflammatory phenotype and phagocytosis. CD300f, a TREM2-like lipid sensing immune receptor, that integrates activating and inhibitory cell-signalling pathways, modulates inflammation, efferocytosis and microglial metabolic fitness. In particular, CD300f overexpression was described to be neuroprotective after an acute brain injury, suggesting a role for this immune receptor in neurotrophic interactions. Thus, we hypothesised that CD300f modulates neuronal survival through neuron-microglial interactions. In order to study its biological function, we used in vitro and in vivo approaches, CD300f-/- animals and rCD300f-Fc, a fusion protein that interrupts the endogen interaction between CD300f receptor-ligands. In hippocampal cocultures containing neurons and mixed glia, we observed that rCD300f-Fc, but not control IgGs induced neuronal death. In accordance, in vivo studies performed by injecting rCD300f-Fc or control IgGs into rat or WT or CD300 KO mice neocortex, showed an increased lesioned area after a penetrating brain injury. Interestingly, this neuronal death was dependent on glia, and the neurotoxic mechanism did not involve the increase of proinflammatory cytokines, the participation of NMDA receptors or ATP release. However, exogenous addition of glial cell line-derived neurotrophic factor (GDNF) prevented this process. Taken together, our results suggest that CD300f modulates neuronal survival in vitro and after a penetrating brain injury in vivo and that CD300f inhibition alters microglial phenotype generating a neurotoxic microenvironment.
Collapse
Affiliation(s)
- Daniela Alí-Ruiz
- Neuroinflammation and Gene Therapy Lab., Institut Pasteur de Montevideo, Montevideo, Uruguay
- Departamento de Histología y Embriología, Facultad de Medicina, UdelaR, Montevideo, Uruguay
| | - Nathalia Vitureira
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Hugo Peluffo
- Neuroinflammation and Gene Therapy Lab., Institut Pasteur de Montevideo, Montevideo, Uruguay.
- Departamento de Histología y Embriología, Facultad de Medicina, UdelaR, Montevideo, Uruguay.
- Unitat de Bioquímica i Biología Molecular, Departamento de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain.
- Institut de Neurociències, Universitat de Barcelona (UB), Barcelona, Spain.
| |
Collapse
|
8
|
Garcia C, Andersen CJ, Blesso CN. The Role of Lipids in the Regulation of Immune Responses. Nutrients 2023; 15:3899. [PMID: 37764683 PMCID: PMC10535783 DOI: 10.3390/nu15183899] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Lipid metabolism plays a major role in the regulation of the immune system. Exogenous (dietary and microbial-derived) and endogenous (non-microbial-derived) lipids play a direct role in regulating immune cell activation, differentiation and expansion, and inflammatory phenotypes. Understanding the complexities of lipid-immune interactions may have important implications for human health, as certain lipids or immune pathways may be beneficial in circumstances of acute infection yet detrimental in chronic inflammatory diseases. Further, there are key differences in the lipid effects between specific immune cell types and location (e.g., gut mucosal vs. systemic immune cells), suggesting that the immunomodulatory properties of lipids may be tissue-compartment-specific, although the direct effect of dietary lipids on the mucosal immune system warrants further investigation. Importantly, there is recent evidence to suggest that lipid-immune interactions are dependent on sex, metabolic status, and the gut microbiome in preclinical models. While the lipid-immune relationship has not been adequately established in/translated to humans, research is warranted to evaluate the differences in lipid-immune interactions across individuals and whether the optimization of lipid-immune interactions requires precision nutrition approaches to mitigate or manage disease. In this review, we discuss the mechanisms by which lipids regulate immune responses and the influence of dietary lipids on these processes, highlighting compelling areas for future research.
Collapse
Affiliation(s)
| | | | - Christopher N. Blesso
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; (C.G.); (C.J.A.)
| |
Collapse
|
9
|
Sutherland SIM, Ju X, Silveira PA, Kupresanin F, Horvath LG, Clark GJ. CD300f signalling induces inhibitory human monocytes/macrophages. Cell Immunol 2023; 390:104731. [PMID: 37302321 DOI: 10.1016/j.cellimm.2023.104731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 05/11/2023] [Accepted: 05/30/2023] [Indexed: 06/13/2023]
Abstract
The CD300 glycoproteins are a family of related leucocyte surface molecules that regulate the immune response via their paired triggering and inhibitory receptors. Here we studied CD300f, an apoptotic cell receptor, and how it modulates the function of human monocytes and macrophages. We showed that CD300f signalling by crosslinking with anti-CD300f mAb (DCR-2) suppressed monocytes causing upregulation of the inhibitory molecule, CD274 (PD-L1) and their inhibition of T cell proliferation. Furthermore, CD300f signalling drove macrophages preferentially towards M2-type with upregulation of CD274, which was further enhanced by IL-4. CD300f signalling activates the PI3K/Akt pathway in monocytes. Inhibition of PI3K/Akt signalling resulting from CD300f crosslinking leads to downregulation of CD274 expression on monocytes. These findings highlight the potential use of CD300f blockade in cancer immune therapy to target immune suppressive macrophages in the tumour microenvironment, a known resistance mechanism to PD-1/PD-L1 checkpoint inhibitors.
Collapse
Affiliation(s)
- Sarah I M Sutherland
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Chris O'Brien Lifehouse, Sydney, NSW, Australia
| | - Xinsheng Ju
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Pablo A Silveira
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Fiona Kupresanin
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia
| | - Lisa G Horvath
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Chris O'Brien Lifehouse, Sydney, NSW, Australia; Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Georgina J Clark
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
10
|
Parente R, Giudice V, Cardamone C, Serio B, Selleri C, Triggiani M. Secretory and Membrane-Associated Biomarkers of Mast Cell Activation and Proliferation. Int J Mol Sci 2023; 24:ijms24087071. [PMID: 37108232 PMCID: PMC10139107 DOI: 10.3390/ijms24087071] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Mast cells (MCs) are immune cells distributed in many organs and tissues and involved in the pathogenesis of allergic and inflammatory diseases as a major source of pro-inflammatory and vasoactive mediators. MC-related disorders are heterogeneous conditions characterized by the proliferation of MC within tissues and/or MC hyper-reactivity that leads to the uncontrolled release of mediators. MC disorders include mastocytosis, a clonal disease characterized by tissue MC proliferation, and MC activation syndromes that can be primary (clonal), secondary (related to allergic disorders), or idiopathic. Diagnosis of MC disorders is difficult because symptoms are transient, unpredictable, and unspecific, and because these conditions mimic many other diseases. Validation of markers of MC activation in vivo will be useful to allow faster diagnosis and better management of MC disorders. Tryptase, being the most specific MC product, is a widely used biomarker of proliferation and activation. Other mediators, such as histamine, cysteinyl leukotrienes, and prostaglandin D2, are unstable molecules and have limitations in their assays. Surface MC markers, detected by flow cytometry, are useful for the identification of neoplastic MC in mastocytosis but, so far, none of them has been validated as a biomarker of MC activation. Further studies are needed to identify useful biomarkers of MC activation in vivo.
Collapse
Affiliation(s)
- Roberta Parente
- Division of Allergy and Clinical Immunology, University of Salerno, 84081 Baronissi, Italy
| | - Valentina Giudice
- Division of Hematology and Transplant Center, University of Salerno, 84081 Baronissi, Italy
| | - Chiara Cardamone
- Division of Allergy and Clinical Immunology, University of Salerno, 84081 Baronissi, Italy
| | - Bianca Serio
- Division of Hematology and Transplant Center, University of Salerno, 84081 Baronissi, Italy
| | - Carmine Selleri
- Division of Hematology and Transplant Center, University of Salerno, 84081 Baronissi, Italy
| | - Massimo Triggiani
- Division of Allergy and Clinical Immunology, University of Salerno, 84081 Baronissi, Italy
| |
Collapse
|
11
|
Dang B, Hu S, Zhang Y, Huang Y, Zhang T, An H. Myricetin served as antagonist for negatively regulate MRGPRX2 mediated pseudo-allergic reactions through CD300f/SHP1/SHP2 phosphorylation. Int Immunopharmacol 2023; 118:110034. [PMID: 36958208 DOI: 10.1016/j.intimp.2023.110034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/04/2023] [Accepted: 03/10/2023] [Indexed: 03/25/2023]
Abstract
BACKGROUND Mas-related G protein-coupled receptor X2 (MRGPRX2) plays a vital role in mast cells (MCs) degranulation and pseudo-allergic reactions. Leukocyte mono-immunoglobulin-like receptor 3 (CD300f) can negatively regulate MCs degranulation. Identification of drug candidates which target CD300f represents a promising prospect in drug development. Myricetin is widely distributed in plants and has been reported to inhibit allergic reactions in OVA-induced murine models. OBJECTIVE This study aims to determine whether myricetin can activate CD300f to arrest MCs degranulation mediated by MRGPRX2. RESULTS Myricetin inhibited the allergic mediator and cytokine release triggered by MRGPRX2 in vivo and in vitro. Under C48/80 stimulation, the release of β-hexosaminidase, TNF-α, IL-8 and MCP-1 in CD300f knockdown in LAD2 cells was significantly increased compared with NC-LAD2 cells. Myricetin displayed good structural affinity (KD = 7.21 × 10-5) with CD300f by SPR. Molecular docking results showed that hydrogen bonds were formed between myricetin and CD300f, indicating high binding ability (5.6653). Myricetin can upregulate the phosphorylation of SHP-1 and SHP-2 and dephosphorylation in the MRGPRX2 signaling pathway, involving PLCγ1, AKT, P38, and ERK1/2. CONCLUSION In the present study, myricetin is identified as an exogenous ligand for CD300f, which negatively regulates MRGPRX2-mediated MCs activation via CD300f to inhibit MCs degranulation and pseudo-allergic reactions.
Collapse
Affiliation(s)
- Baowen Dang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; College of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Shiting Hu
- College of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yonghui Zhang
- College of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yihan Huang
- College of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Tao Zhang
- College of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China.
| | - Hongli An
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
12
|
Hu Q, Yang L, Shan Z, Wen S, Lu H, Zou Z, Guo J, Liu X, Xie W, Cao Y, Wang Z, Yang L, Wang X. The interaction of CD300lf and ceramide reduces the development of periodontitis by inhibiting osteoclast differentiation. J Clin Periodontol 2023; 50:183-199. [PMID: 36089906 DOI: 10.1111/jcpe.13724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/24/2022] [Accepted: 09/06/2022] [Indexed: 01/20/2023]
Abstract
AIM The regulation of osteoclasts (OCs) by inhibitory immunoreceptors maintains bone homeostasis and is considered an important determinant of the extent of periodontal pathology. The aim of this study was to investigate the role of the inhibitory immunoreceptor CD300lf and its ligand ceramide in osteoclastogenesis in periodontitis. MATERIALS AND METHODS The expression of CD300lf was measured in vitro and in a ligature-induced periodontitis model. The effect of CD300lf ablation on osteoclastogenesis was examined in ligature-retained and ligature removal periodontitis models. The effect of ceramide, the ligand of CD300lf, was examined in osteoclastogenesis in vitro and in vivo by smearing 20 μg of ceramide dissolved in carboxymethylcellulose on teeth and gingiva every other day in an experimental periodontitis model and ligature removal model. RESULTS CD300lf expression was downregulated during osteoclastogenesis. Ablation of CD300lf in the ligature-induced periodontitis model increased the number of OCs and exacerbated bone damage. Bone resorption caused by CD300lf ablation was reversible following ligature removal. CD300lf-ceramide binding suppressed osteoclastogenesis in vitro and inhibited alveolar bone loss in a mouse periodontitis model. CONCLUSIONS Our findings reveal that CD300lf-ceramide binding plays a critical negative role in alveolar bone loss in periodontitis by inhibiting OCs differentiation.
Collapse
Affiliation(s)
- Qiannan Hu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Lisa Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhongyan Shan
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shuqiong Wen
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Huanzi Lu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhaolei Zou
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Junyi Guo
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiangqi Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Wenqiang Xie
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yang Cao
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhi Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Le Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xi Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
13
|
Kamei A, Izawa K, Ando T, Kaitani A, Yamamoto R, Maehara A, Ide T, Yamada H, Kojima M, Wang H, Tokushige K, Nakano N, Shimizu T, Ogawa H, Okumura K, Kitaura J. Development of mouse model for oral allergy syndrome to identify IgE cross-reactive pollen and food allergens: ragweed pollen cross-reacts with fennel and black pepper. Front Immunol 2022; 13:945222. [PMID: 35958602 PMCID: PMC9358994 DOI: 10.3389/fimmu.2022.945222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/27/2022] [Indexed: 11/27/2022] Open
Abstract
Oral allergy syndrome (OAS) is an IgE-mediated immediate food allergy that is localized to the oral mucosa. Pollen food allergy syndrome (PFAS), a pollinosis-associated OAS, is caused by cross-reactivity between food and pollen allergens. However, we need to more precisely understand the underlying pathogenesis of OAS/PFAS. In the present study, we developed a method to comprehensively identify cross-reactive allergens by using murine model of OAS and protein microarray technology. We focused on lip angioedema, which is one of the most common symptoms of OAS, and confirmed that mast cells reside in the tissues inside the lower lip of the mice. Interestingly, when the food allergen ovalbumin (OVA) was injected inside the lower lip of mice with high levels of OVA-specific IgE followed by an intravenous injection of the Evans blue dye, we found immediate dye extravasation in the skin of the neck in a mast cell-dependent manner. In addition, the degree of mast cell degranulation in the oral cavity, reflecting the severity of oral allergic responses, can be estimated by measuring the amount of extravasated dye in the skin. Therefore, we used this model of OAS to examine IgE cross-reactive allergens in vivo. Protein microarray analysis showed that serum IgE from mice intraperitoneally sensitized with ragweed pollen, one of the major pollens causing pollinosis, bound highly to protein extracts from several edible plants including black peppercorn and fennel. We confirmed that the levels of black pepper-specific IgE and fennel-specific IgE were significantly higher in the serum from ragweed pollen-sensitized mice than in the serum from non-sensitized control mice. Importantly, analysis of murine model of OAS showed that the injection of black pepper or fennel extract induced apparent oral allergic responses in ragweed pollen-sensitized mice. These results indicate IgE cross-reactivity of ragweed pollen with black pepper and fennel. In conclusion, we developed mouse model of OAS to identify IgE cross-reactive pollen and food allergens, which will help understand the pathogenesis of OAS/PFAS.
Collapse
Affiliation(s)
- Anna Kamei
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Science of Allergy and Inflammation, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kumi Izawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- *Correspondence: Kumi Izawa, ; Jiro Kitaura,
| | - Tomoaki Ando
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ayako Kaitani
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Risa Yamamoto
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akie Maehara
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takuma Ide
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Otorhinolaryngology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hiromichi Yamada
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Mayuki Kojima
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hexing Wang
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Science of Allergy and Inflammation, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Koji Tokushige
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Science of Allergy and Inflammation, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Nobuhiro Nakano
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Toshiaki Shimizu
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hideoki Ogawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ko Okumura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Jiro Kitaura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- *Correspondence: Kumi Izawa, ; Jiro Kitaura,
| |
Collapse
|
14
|
Fernández-Castañeda A, Lu P, Geraghty AC, Song E, Lee MH, Wood J, O'Dea MR, Dutton S, Shamardani K, Nwangwu K, Mancusi R, Yalçın B, Taylor KR, Acosta-Alvarez L, Malacon K, Keough MB, Ni L, Woo PJ, Contreras-Esquivel D, Toland AMS, Gehlhausen JR, Klein J, Takahashi T, Silva J, Israelow B, Lucas C, Mao T, Peña-Hernández MA, Tabachnikova A, Homer RJ, Tabacof L, Tosto-Mancuso J, Breyman E, Kontorovich A, McCarthy D, Quezado M, Vogel H, Hefti MM, Perl DP, Liddelow S, Folkerth R, Putrino D, Nath A, Iwasaki A, Monje M. Mild respiratory COVID can cause multi-lineage neural cell and myelin dysregulation. Cell 2022; 185:2452-2468.e16. [PMID: 35768006 PMCID: PMC9189143 DOI: 10.1016/j.cell.2022.06.008] [Citation(s) in RCA: 308] [Impact Index Per Article: 102.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/04/2022] [Accepted: 06/07/2022] [Indexed: 12/13/2022]
Abstract
COVID survivors frequently experience lingering neurological symptoms that resemble cancer-therapy-related cognitive impairment, a syndrome for which white matter microglial reactivity and consequent neural dysregulation is central. Here, we explored the neurobiological effects of respiratory SARS-CoV-2 infection and found white-matter-selective microglial reactivity in mice and humans. Following mild respiratory COVID in mice, persistently impaired hippocampal neurogenesis, decreased oligodendrocytes, and myelin loss were evident together with elevated CSF cytokines/chemokines including CCL11. Systemic CCL11 administration specifically caused hippocampal microglial reactivity and impaired neurogenesis. Concordantly, humans with lasting cognitive symptoms post-COVID exhibit elevated CCL11 levels. Compared with SARS-CoV-2, mild respiratory influenza in mice caused similar patterns of white-matter-selective microglial reactivity, oligodendrocyte loss, impaired neurogenesis, and elevated CCL11 at early time points, but after influenza, only elevated CCL11 and hippocampal pathology persisted. These findings illustrate similar neuropathophysiology after cancer therapy and respiratory SARS-CoV-2 infection which may contribute to cognitive impairment following even mild COVID.
Collapse
Affiliation(s)
| | - Peiwen Lu
- Department of Immunobiology, Yale University, New Haven, CT, USA
| | - Anna C Geraghty
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Eric Song
- Department of Immunobiology, Yale University, New Haven, CT, USA
| | - Myoung-Hwa Lee
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Jamie Wood
- Abilities Research Center, Department of Rehabilitation and Human Performance, Mount Sinai School of Medicine, New York, NY, USA
| | - Michael R O'Dea
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA
| | - Selena Dutton
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Kiarash Shamardani
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Kamsi Nwangwu
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Rebecca Mancusi
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Belgin Yalçın
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Kathryn R Taylor
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Lehi Acosta-Alvarez
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Karen Malacon
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Michael B Keough
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Lijun Ni
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Pamelyn J Woo
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | | | | | | | - Jon Klein
- Department of Immunobiology, Yale University, New Haven, CT, USA
| | | | - Julio Silva
- Department of Immunobiology, Yale University, New Haven, CT, USA
| | | | - Carolina Lucas
- Department of Immunobiology, Yale University, New Haven, CT, USA
| | - Tianyang Mao
- Department of Immunobiology, Yale University, New Haven, CT, USA
| | | | | | - Robert J Homer
- Department of Pathology, Yale University, New Haven, CT, USA
| | - Laura Tabacof
- Abilities Research Center, Department of Rehabilitation and Human Performance, Mount Sinai School of Medicine, New York, NY, USA
| | - Jenna Tosto-Mancuso
- Abilities Research Center, Department of Rehabilitation and Human Performance, Mount Sinai School of Medicine, New York, NY, USA
| | - Erica Breyman
- Abilities Research Center, Department of Rehabilitation and Human Performance, Mount Sinai School of Medicine, New York, NY, USA
| | - Amy Kontorovich
- Cardiovascular Research Institute, Mount Sinai School of Medicine, New York, NY, USA
| | - Dayna McCarthy
- Abilities Research Center, Department of Rehabilitation and Human Performance, Mount Sinai School of Medicine, New York, NY, USA
| | | | - Hannes Vogel
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Marco M Hefti
- Department of Pathology, University of Iowa, Iowa City, IA, USA
| | - Daniel P Perl
- Department of Pathology, Uniformed Services University of Health Sciences, Bethesda, MD, USA
| | - Shane Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA; Departments of Neuroscience & Physiology and of Ophthalmology, NYU Grossman School of Medicine, New York, NY, USA; Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | | | - David Putrino
- Abilities Research Center, Department of Rehabilitation and Human Performance, Mount Sinai School of Medicine, New York, NY, USA
| | - Avindra Nath
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University, New Haven, CT, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT, USA.
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Pathology, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
15
|
Ogasawara H, Noguchi M. Therapeutic Potential of MRGPRX2 Inhibitors on Mast Cells. Cells 2021; 10:cells10112906. [PMID: 34831128 PMCID: PMC8616451 DOI: 10.3390/cells10112906] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 12/16/2022] Open
Abstract
Mast cells (MCs) act as primary effectors in inflammatory and allergic reactions by releasing intracellularly-stored inflammatory mediators in diseases. The two major pathways for MC activation are known to be immunoglobulin E (IgE)-dependent and -independent. Although IgE-dependent signaling is the main pathway to MC activation, IgE-independent pathways have also been found to serve pivotal roles in the pathophysiology of various inflammatory conditions. Recent studies have shown that human and mouse MCs express several regulatory receptors such as toll-like receptors (TLRs), CD48, C300a, and GPCRs, including mas-related GPCR-X2 (MRGPRX2). MRGPRX2 has been reported as a novel GPCR that is expressed in MCs activated by basic secretagogues, neurokinin peptides, host defense antimicrobial peptides, and small molecule compounds (e.g., neuromuscular blocking agents) and leads to MC degranulation and eicosanoids release under in vitro experimental condition. Functional analyses of MRGPRX2 and Mrgprb2 (mouse ortholog) indicate that MRGPRX2 is involved in MC hypersensitivity reactions causing neuroinflammation such as postoperative pain, type 2 inflammation, non-histaminergic itch, and drug-induced anaphylactic-like reactions. In this review, we discuss the roles in innate immunity through functional studies on MRGPRX2-mediated IgE-independent MC activation and also the therapeutic potential of MRGPRX2 inhibitors on allergic and inflammatory diseases.
Collapse
Affiliation(s)
- Hiroyuki Ogasawara
- Pharmaceutical Frontier Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Yokohama 236-0004, Japan;
- Correspondence: ; Tel.: +81-45-786-7690
| | - Masato Noguchi
- Pharmaceutical Frontier Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Yokohama 236-0004, Japan;
- Office of Research Development and Sponsored Projects, Shinanomachi Campus, Keio University, Tokyo 160-8582, Japan
| |
Collapse
|
16
|
Wang C, Jiang S, Zhang S, Ouyang Z, Wang G, Wang F. Research Progress of Metabolomics in Asthma. Metabolites 2021; 11:567. [PMID: 34564383 PMCID: PMC8466166 DOI: 10.3390/metabo11090567] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 12/25/2022] Open
Abstract
Asthma is a highly heterogeneous disease, but the pathogenesis of asthma is still unclear. It is well known that the airway inflammatory immune response is the pathological basis of asthma. Metabolomics is a systems biology method to analyze the difference of low molecular weight metabolites (<1.5 kDa) and explore the relationship between metabolic small molecules and pathophysiological changes of the organisms. The functional interdependence between immune response and metabolic regulation is one of the cores of the body's steady-state regulation, and its dysfunction will lead to a series of metabolic disorders. The signal transduction effect of specific metabolites may affect the occurrence of the airway inflammatory immune response, which may be closely related to the pathogenesis of asthma. Emerging metabolomic analysis may provide insights into the pathogenesis and diagnosis of asthma. The review aims to analyze the changes of metabolites in blood/serum/plasma, urine, lung tissue, and exhaled breath condensate (EBC) samples, and further reveals the potential pathogenesis of asthma according to the disordered metabolic pathways.
Collapse
Affiliation(s)
- Chao Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (C.W.); (S.J.); (S.Z.)
| | - Shengyu Jiang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (C.W.); (S.J.); (S.Z.)
| | - Siyu Zhang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (C.W.); (S.J.); (S.Z.)
| | - Zhuoer Ouyang
- Department of Cellular Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China;
| | - Guoqiang Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (C.W.); (S.J.); (S.Z.)
| | - Fang Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (C.W.); (S.J.); (S.Z.)
| |
Collapse
|
17
|
Positive and negative roles of lipids in mast cells and allergic responses. Curr Opin Immunol 2021; 72:186-195. [PMID: 34174696 DOI: 10.1016/j.coi.2021.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/15/2021] [Accepted: 06/03/2021] [Indexed: 11/21/2022]
Abstract
Mast cells are a central immune cell population that are crucial in allergic responses. They secrete granule contents and cytokines and produce a panel of lipid mediators in response to FcεRI-dependent or independent stimuli. Leukotrienes and prostaglandins derived from ω6 arachidonic acid, or specialized pro-resolving lipid mediators derived from ω3 eicosapentaenoic and docosahexaenoic acids, exert pleiotropic effects on various cells in the tissue microenvironment, thereby positively or negatively regulating allergic responses. Mast cells also express the inhibitory receptors CD300a and CD300f, which recognize structural lipids. CD300a or CD300f binding to externalized phosphatidylserine or extracellular ceramides, respectively, inhibits FcεRI-mediated mast cell activation. The inhibitory CD300-lipid axis downregulates IgE-driven, mast cell-dependent type I hypersensitivity through different mechanisms. Herein, we provide an overview of our current understanding of the biological roles of lipids in mast cell-dependent allergic responses.
Collapse
|
18
|
Zenarruzabeitia O, Astarloa-Pando G, Terrén I, Orrantia A, Pérez-Garay R, Seijas-Betolaza I, Nieto-Arana J, Imaz-Ayo N, Pérez-Fernández S, Arana-Arri E, Borrego F. T Cell Activation, Highly Armed Cytotoxic Cells and a Shift in Monocytes CD300 Receptors Expression Is Characteristic of Patients With Severe COVID-19. Front Immunol 2021; 12:655934. [PMID: 33777054 PMCID: PMC7991729 DOI: 10.3389/fimmu.2021.655934] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
COVID-19 manifests with a wide diversity of clinical phenotypes characterized by dysfunctional and exaggerated host immune responses. Many results have been described on the status of the immune system of patients infected with SARS-CoV-2, but there are still aspects that have not been fully characterized or understood. In this study, we have analyzed a cohort of patients with mild, moderate and severe disease. We performed flow cytometric studies and correlated the data with the clinical characteristics and clinical laboratory values of the patients. Both conventional and unsupervised data analyses concluded that patients with severe disease are characterized, among others, by a higher state of activation in all T cell subsets (CD4, CD8, double negative and T follicular helper cells), higher expression of perforin and granzyme B in cytotoxic cells, expansion of adaptive NK cells and the accumulation of activated and immature dysfunctional monocytes which are identified by a low expression of HLA-DR and an intriguing shift in the expression pattern of CD300 receptors. More importantly, correlation analysis showed a strong association between the alterations in the immune cells and the clinical signs of severity. These results indicate that patients with severe COVID-19 have a broad perturbation of their immune system, and they will help to understand the immunopathogenesis of COVID-19.
Collapse
Affiliation(s)
- Olatz Zenarruzabeitia
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | | | - Iñigo Terrén
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Ane Orrantia
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Raquel Pérez-Garay
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Iratxe Seijas-Betolaza
- Intensive Care Medicine Service, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Spain
| | - Javier Nieto-Arana
- Infectious Disease Service, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Spain
| | - Natale Imaz-Ayo
- Scientific Coordination Facility, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Silvia Pérez-Fernández
- Scientific Coordination Facility, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Eunate Arana-Arri
- Scientific Coordination Facility, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Francisco Borrego
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
19
|
Guo C, Sun L, Zhang L, Dong F, Zhang X, Yao L, Chang C. Serum sphingolipid profile in asthma. J Leukoc Biol 2021; 110:53-59. [PMID: 33600023 DOI: 10.1002/jlb.3ma1120-719r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/01/2021] [Accepted: 01/28/2021] [Indexed: 12/17/2022] Open
Abstract
Sphingolipids metabolism is an important cell process and plays critical roles in asthma. However, the involvement of sphingolipids in the pathogenesis of asthma and its subtypes is unknown. The present study aimed to determine the role of sphingolipids in asthma and its subtypes. Clinical data from 51 asthma patients and 9 healthy individuals were collected and serum samples were performed to analyze the levels of serum sphingolipids by liquid chromatography-mass spectrometry-based targeted metabolomics. Results showed that the levels of sphingomyelin (SM) including SM34:2, SM38:1, and SM40:1 were significantly decreased in asthmatic patients compared to healthy controls. Moreover, serum SM levels were obviously decreased in the blood noneosinophilic asthma (bNEA) group compared with blood eosinophilic asthma group. Similar tendencies of serum SM level changes were observed in the early-onset group compared with late-onset group. Correlation analysis revealed that SM 40:1 was negatively related to sputum IL-17A (r = -0.621, P = 0.042). The present study presented that the SM may be a protective factor of asthma and contributes to the mechanism of asthma, especially bNEA. SM may be a potential biomarker and therapeutic target in asthma.
Collapse
Affiliation(s)
- Chenglin Guo
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Lina Sun
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Linlin Zhang
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Fawu Dong
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Xu Zhang
- Tianjin Key Laboratory of Metabolic Diseases, Key Laboratory of Immune Microenvironment and Disease-Ministry of Education, Department of Physiology and Pathophysiology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Liu Yao
- Tianjin Key Laboratory of Metabolic Diseases, Key Laboratory of Immune Microenvironment and Disease-Ministry of Education, Department of Physiology and Pathophysiology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Chun Chang
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| |
Collapse
|
20
|
Strategies for Mast Cell Inhibition in Food Allergy. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2020; 93:719-731. [PMID: 33380934 PMCID: PMC7757070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mast cells are tissue resident allergic effector cells that drive IgE-mediated food allergies. There are several steps leading to mast cell activation in the context of allergic disease that can be targeted to prevent mast cell activation and degranulation. These include blocking IgE-FcεRI crosslinking and type 2 cytokine receptor activation; modulating cell-surface neural chemical receptors; stabilizing mast cell membranes to prevent co-localization of activating receptors; impeding intracellular signaling; and engaging cell surface inhibitory receptors. This review highlights several ITIM-containing inhibitory mast cell surface receptors that could serve as pharmaceutical targets to prevent mast cell activation and degranulation in the context of food allergy. When activated, these ITIM-containing inhibitory receptors recruit the phosphatases SHP-1, SHP-2, and/or SHIP to dephosphorylate the tyrosine kinases responsible for activation signals downstream of the IgE-FcεRI complex. We describe several members of the Ig and Ig-like inhibitory receptor and C-type lectin inhibitory receptor superfamilies. Fundamental studies exploring the behavior of these receptors within the context of experimental food allergy models are needed. A deeper understanding of how these receptors modulate mast cell-driven food allergic responses will shape future strategies to harness these inhibitory receptors to treat food allergy.
Collapse
|
21
|
Kalinski AL, Yoon C, Huffman LD, Duncker PC, Kohen R, Passino R, Hafner H, Johnson C, Kawaguchi R, Carbajal KS, Jara JS, Hollis E, Geschwind DH, Segal BM, Giger RJ. Analysis of the immune response to sciatic nerve injury identifies efferocytosis as a key mechanism of nerve debridement. eLife 2020; 9:60223. [PMID: 33263277 PMCID: PMC7735761 DOI: 10.7554/elife.60223] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022] Open
Abstract
Sciatic nerve crush injury triggers sterile inflammation within the distal nerve and axotomized dorsal root ganglia (DRGs). Granulocytes and pro-inflammatory Ly6Chigh monocytes infiltrate the nerve first and rapidly give way to Ly6Cnegative inflammation-resolving macrophages. In axotomized DRGs, few hematogenous leukocytes are detected and resident macrophages acquire a ramified morphology. Single-cell RNA-sequencing of injured sciatic nerve identifies five macrophage subpopulations, repair Schwann cells, and mesenchymal precursor cells. Macrophages at the nerve crush site are molecularly distinct from macrophages associated with Wallerian degeneration. In the injured nerve, macrophages ‘eat’ apoptotic leukocytes, a process called efferocytosis, and thereby promote an anti-inflammatory milieu. Myeloid cells in the injured nerve, but not axotomized DRGs, strongly express receptors for the cytokine GM-CSF. In GM-CSF-deficient (Csf2-/-) mice, inflammation resolution is delayed and conditioning-lesion-induced regeneration of DRG neuron central axons is abolished. Thus, carefully orchestrated inflammation resolution in the nerve is required for conditioning-lesion-induced neurorepair.
Collapse
Affiliation(s)
- Ashley L Kalinski
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
| | - Choya Yoon
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
| | - Lucas D Huffman
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States.,Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, United States
| | - Patrick C Duncker
- Department of Neurology, University of Michigan Medical School, Ann Arbor, United States
| | - Rafi Kohen
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States.,Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, United States
| | - Ryan Passino
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
| | - Hannah Hafner
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
| | - Craig Johnson
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
| | - Riki Kawaguchi
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
| | - Kevin S Carbajal
- Department of Neurology, University of Michigan Medical School, Ann Arbor, United States
| | | | - Edmund Hollis
- Burke Neurological Institute, White Plains, United States.,The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, United States
| | - Daniel H Geschwind
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
| | - Benjamin M Segal
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, United States.,The Neurological Institute, The Ohio State University, Columbus, United States
| | - Roman J Giger
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States.,Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, United States.,Department of Neurology, University of Michigan Medical School, Ann Arbor, United States
| |
Collapse
|
22
|
Vitallé J, Terrén I, Orrantia A, Bilbao A, Gamboa PM, Borrego F, Zenarruzabeitia O. The Expression and Function of CD300 Molecules in the Main Players of Allergic Responses: Mast Cells, Basophils and Eosinophils. Int J Mol Sci 2020; 21:ijms21093173. [PMID: 32365988 PMCID: PMC7247439 DOI: 10.3390/ijms21093173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/17/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023] Open
Abstract
Allergy is the host immune response against non-infectious substances called allergens. The prevalence of allergic diseases is increasing worldwide. However, while some drugs counteract the symptomatology caused by allergic reactions, no completely effective treatments for allergic diseases have been developed yet. In this sense, the ability of surface activating and inhibitory receptors to modulate the function of the main effector cells of allergic responses makes these molecules potential pharmacological targets. The CD300 receptor family consists of members with activating and inhibitory capabilities mainly expressed on the surface of immune cells. Multiple studies in the last few years have highlighted the importance of CD300 molecules in several pathological conditions. This review summarizes the literature on CD300 receptor expression, regulation and function in mast cells, basophils and eosinophils, the main players of allergic responses. Moreover, we review the involvement of CD300 receptors in the pathogenesis of certain allergic diseases, as well as their prospective use as therapeutic targets for the treatment of IgE-dependent allergic responses.
Collapse
Affiliation(s)
- Joana Vitallé
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (J.V.); (I.T.); (A.O.); (A.B.); (P.M.G.); (F.B.)
| | - Iñigo Terrén
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (J.V.); (I.T.); (A.O.); (A.B.); (P.M.G.); (F.B.)
| | - Ane Orrantia
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (J.V.); (I.T.); (A.O.); (A.B.); (P.M.G.); (F.B.)
| | - Agurtzane Bilbao
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (J.V.); (I.T.); (A.O.); (A.B.); (P.M.G.); (F.B.)
- Pediatrics Service, Cruces University Hospital, 48903 Barakaldo, Spain
| | - Pedro M. Gamboa
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (J.V.); (I.T.); (A.O.); (A.B.); (P.M.G.); (F.B.)
- Allergology Service, Cruces University Hospital, 48903 Barakaldo, Spain
| | - Francisco Borrego
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (J.V.); (I.T.); (A.O.); (A.B.); (P.M.G.); (F.B.)
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Olatz Zenarruzabeitia
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (J.V.); (I.T.); (A.O.); (A.B.); (P.M.G.); (F.B.)
- Correspondence: ; Tel.: +34-699-227-735
| |
Collapse
|
23
|
Lago N, Kaufmann FN, Negro-Demontel ML, Alí-Ruiz D, Ghisleni G, Rego N, Arcas-García A, Vitureira N, Jansen K, Souza LM, Silva RA, Lara DR, Pannunzio B, Abin-Carriquiry JA, Amo-Aparicio J, Martin-Otal C, Naya H, McGavern DB, Sayós J, López-Vales R, Kaster MP, Peluffo H. CD300f immunoreceptor is associated with major depressive disorder and decreased microglial metabolic fitness. Proc Natl Acad Sci U S A 2020; 117:6651-6662. [PMID: 32152116 PMCID: PMC7104369 DOI: 10.1073/pnas.1911816117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A role for microglia in neuropsychiatric diseases, including major depressive disorder (MDD), has been postulated. Regulation of microglial phenotype by immune receptors has become a central topic in many neurological conditions. We explored preclinical and clinical evidence for the role of the CD300f immune receptor in the fine regulation of microglial phenotype and its contribution to MDD. We found that a prevalent nonsynonymous single-nucleotide polymorphism (C/T, rs2034310) of the human CD300f receptor cytoplasmic tail inhibits the protein kinase C phosphorylation of a threonine and is associated with protection against MDD, mainly in women. Interestingly, CD300f-/- mice displayed several characteristic MDD traits such as augmented microglial numbers, increased interleukin 6 and interleukin 1 receptor antagonist messenger RNA, alterations in synaptic strength, and noradrenaline-dependent and persistent depressive-like and anhedonic behaviors in females. This behavioral phenotype could be potentiated inducing the lipopolysaccharide depression model. RNA sequencing and biochemical studies revealed an association with impaired microglial metabolic fitness. In conclusion, we report a clear association that links the function of the CD300f immune receptor with MDD in humans, depressive-like and anhedonic behaviors in female mice, and altered microglial metabolic reprogramming.
Collapse
MESH Headings
- Anhedonia
- Animals
- Behavior, Animal
- Cohort Studies
- Depressive Disorder, Major/genetics
- Depressive Disorder, Major/metabolism
- Depressive Disorder, Major/pathology
- Depressive Disorder, Major/psychology
- Female
- Gene Expression Profiling
- Humans
- Inflammation/etiology
- Inflammation/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microglia/metabolism
- Microglia/pathology
- Polymorphism, Single Nucleotide
- Receptors, Immunologic/genetics
- Receptors, Immunologic/physiology
- Synapses
Collapse
Affiliation(s)
- Natalia Lago
- Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur de Montevideo, 11400 Montevideo, Uruguay
| | - Fernanda N Kaufmann
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, 88040-900 Santa Catarina, Brazil
| | - María Luciana Negro-Demontel
- Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur de Montevideo, 11400 Montevideo, Uruguay
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, 11200 Montevideo, Uruguay
| | - Daniela Alí-Ruiz
- Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur de Montevideo, 11400 Montevideo, Uruguay
| | - Gabriele Ghisleni
- Department of Life and Health Sciences, Catholic University of Pelotas, 96015-560 Rio Grande do Sul, Brazil
| | - Natalia Rego
- Bioinformatics Unit, Institut Pasteur de Montevideo, 11400 Montevideo, Uruguay
| | - Andrea Arcas-García
- Immune Regulation and Immunotherapy Group, CIBBIM-Nanomedicine, Vall d'Hebrón Institut de Recerca, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Nathalia Vitureira
- Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur de Montevideo, 11400 Montevideo, Uruguay
- Department of Physiology, Facultad de Medicina, Universidad de la República, 11200 Montevideo, Uruguay
| | - Karen Jansen
- Department of Life and Health Sciences, Catholic University of Pelotas, 96015-560 Rio Grande do Sul, Brazil
| | - Luciano M Souza
- Department of Life and Health Sciences, Catholic University of Pelotas, 96015-560 Rio Grande do Sul, Brazil
| | - Ricardo A Silva
- Department of Life and Health Sciences, Catholic University of Pelotas, 96015-560 Rio Grande do Sul, Brazil
| | - Diogo R Lara
- Department of Cellular and Molecular Biology, Pontifical Catholic University of Rio Grande do Sul, 90619-900 Porto Alegre, Brazil
| | - Bruno Pannunzio
- Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur de Montevideo, 11400 Montevideo, Uruguay
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, 11200 Montevideo, Uruguay
| | | | - Jesús Amo-Aparicio
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Institut de Neurociències, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Celia Martin-Otal
- Immune Regulation and Immunotherapy Group, CIBBIM-Nanomedicine, Vall d'Hebrón Institut de Recerca, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Hugo Naya
- Immune Regulation and Immunotherapy Group, CIBBIM-Nanomedicine, Vall d'Hebrón Institut de Recerca, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Dorian B McGavern
- Viral Immunology and Intravital Imaging Section, National Institute for Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Joan Sayós
- Immune Regulation and Immunotherapy Group, CIBBIM-Nanomedicine, Vall d'Hebrón Institut de Recerca, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Rubèn López-Vales
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Institut de Neurociències, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Manuella P Kaster
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, 88040-900 Santa Catarina, Brazil
| | - Hugo Peluffo
- Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur de Montevideo, 11400 Montevideo, Uruguay;
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, 11200 Montevideo, Uruguay
| |
Collapse
|
24
|
Differential Lipid Recognition by Mouse versus Human CD300f, Inhibiting Passive Cutaneous Anaphylaxis, Depends on a Single Amino Acid Substitution in its Immunoglobulin-Like Domain. J Invest Dermatol 2020; 140:710-713.e3. [DOI: 10.1016/j.jid.2019.08.439] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 01/10/2023]
|
25
|
Spertini F. Metabolomics and allergy: Opening Pandora's box. J Allergy Clin Immunol 2020; 145:782-784. [PMID: 31981625 DOI: 10.1016/j.jaci.2020.01.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/07/2020] [Accepted: 01/14/2020] [Indexed: 12/18/2022]
Affiliation(s)
- François Spertini
- Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
| |
Collapse
|
26
|
Graziano VR, Wei J, Wilen CB. Norovirus Attachment and Entry. Viruses 2019; 11:E495. [PMID: 31151248 PMCID: PMC6630345 DOI: 10.3390/v11060495] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/24/2019] [Accepted: 05/25/2019] [Indexed: 12/19/2022] Open
Abstract
Human norovirus is a major human pathogen causing the majority of cases of viral gastroenteritis globally. Viral entry is the first step of the viral life cycle and is a significant determinant of cell tropism, host range, immune interactions, and pathogenesis. Bile salts and histo-blood group antigens are key mediators of norovirus entry; however, the molecular mechanisms by which these molecules promote infection and the identity of a potential human norovirus receptor remain unknown. Recently, there have been several important advances in norovirus entry biology including the identification of CD300lf as the receptor for murine norovirus and of the role of the minor capsid protein VP2 in viral genome release. Here, we will review the current understanding about norovirus attachment and entry and highlight important future directions.
Collapse
Affiliation(s)
- Vincent R Graziano
- Departments of Laboratory Medicine and Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Jin Wei
- Departments of Laboratory Medicine and Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Craig B Wilen
- Departments of Laboratory Medicine and Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
27
|
Takahashi M, Izawa K, Urai M, Yamanishi Y, Maehara A, Isobe M, Matsukawa T, Kaitani A, Takamori A, Uchida S, Yamada H, Nagamine M, Ando T, Shimizu T, Ogawa H, Okumura K, Kinjo Y, Kitamura T, Kitaura J. The phytosphingosine-CD300b interaction promotes zymosan-induced, nitric oxide-dependent neutrophil recruitment. Sci Signal 2019; 12:12/564/eaar5514. [PMID: 30647146 DOI: 10.1126/scisignal.aar5514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Zymosan is a glucan that is a component of the yeast cell wall. Here, we determined the mechanisms underlying the zymosan-induced accumulation of neutrophils in mice. Loss of the receptor CD300b reduced the number of neutrophils recruited to dorsal air pouches in response to zymosan, but not in response to lipopolysaccharide (LPS), a bacterial membrane component recognized by Toll-like receptor 4 (TLR4). An inhibitor of nitric oxide (NO) synthesis reduced the number of neutrophils in the zymosan-treated air pouches of wild-type mice to an amount comparable to that in CD300b-/- mice. Treatment with clodronate liposomes decreased the number of NO-producing, CD300b+ inflammatory dendritic cells (DCs) in wild-type mice, thus decreasing NO production and neutrophil recruitment. Similarly, CD300b deficiency decreased the NO-dependent recruitment of neutrophils to zymosan-treated joint cavities, thus ameliorating subsequent arthritis. We identified phytosphingosine, a lipid component of zymosan, as a potential ligand of CD300b. Phytosphingosine stimulated NO production in inflammatory DCs and promoted neutrophil recruitment in a CD300b-dependent manner. Together, these results suggest that the phytosphingosine-CD300b interaction promotes zymosan-dependent neutrophil accumulation by inducing NO production by inflammatory DCs and that CD300b may contribute to antifungal immunity.
Collapse
Affiliation(s)
- Mariko Takahashi
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Kumi Izawa
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.,Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Makoto Urai
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yoshinori Yamanishi
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.,Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Akie Maehara
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.,Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Masamichi Isobe
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.,Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Toshihiro Matsukawa
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.,Department of Hematology, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-0808, Japan
| | - Ayako Kaitani
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.,Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Ayako Takamori
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Shino Uchida
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.,Departments of Gastroenterology Immunology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Hiromichi Yamada
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.,Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Masakazu Nagamine
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Tomoaki Ando
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Toshiaki Shimizu
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.,Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Hideoki Ogawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Ko Okumura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yuki Kinjo
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| | - Jiro Kitaura
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan. .,Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
28
|
Robida PA, Puzzovio PG, Pahima H, Levi-Schaffer F, Bochner BS. Human eosinophils and mast cells: Birds of a feather flock together. Immunol Rev 2019; 282:151-167. [PMID: 29431215 DOI: 10.1111/imr.12638] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
While the origin of the phrase "birds of a feather flock together" is unclear, it has been in use for centuries and is typically employed to describe the phenomenon that people with similar tastes or interests tend to seek each other out and congregate together. In this review, we have co-opted this phrase to compare innate immune cells of related origin, the eosinophil and mast cell, because they very often accumulate together in tissue sites under both homeostatic and inflammatory conditions. To highlight overlapping yet distinct features, their hematopoietic development, cell surface phenotype, mediator release profiles and roles in diseases have been compared and contrasted. What emerges is a sense that these two cell types often interact with each other and their tissue environment to provide synergistic contributions to a variety of normal and pathologic immune responses.
Collapse
Affiliation(s)
- Piper A Robida
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Pier Giorgio Puzzovio
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hadas Pahima
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Bruce S Bochner
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
29
|
Vitallé J, Terrén I, Orrantia A, Zenarruzabeitia O, Borrego F. CD300 receptor family in viral infections. Eur J Immunol 2018; 49:364-374. [DOI: 10.1002/eji.201847951] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/02/2018] [Accepted: 11/26/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Joana Vitallé
- Immunopathology GroupBiocruces Bizkaia Health Research Institute Barakaldo Bizkaia Spain
| | - Iñigo Terrén
- Immunopathology GroupBiocruces Bizkaia Health Research Institute Barakaldo Bizkaia Spain
| | - Ane Orrantia
- Immunopathology GroupBiocruces Bizkaia Health Research Institute Barakaldo Bizkaia Spain
| | - Olatz Zenarruzabeitia
- Immunopathology GroupBiocruces Bizkaia Health Research Institute Barakaldo Bizkaia Spain
| | - Francisco Borrego
- Immunopathology GroupBiocruces Bizkaia Health Research Institute Barakaldo Bizkaia Spain
- IkerbasqueBasque Foundation for Science Bilbao Bizkaia Spain
- Basque Center for Transfusion and Human Tissues Galdakao Spain
| |
Collapse
|
30
|
Takamori A, Izawa K, Kaitani A, Ando T, Okamoto Y, Maehara A, Tanabe A, Nagamine M, Yamada H, Uchida S, Uchida K, Isobe M, Hatayama T, Watanabe D, Ando T, Ide T, Matsuzawa M, Maeda K, Nakano N, Tamura N, Ikeda K, Ebihara N, Shimizu T, Ogawa H, Okumura K, Kitaura J. Identification of inhibitory mechanisms in pseudo-allergy involving Mrgprb2/MRGPRX2-mediated mast cell activation. J Allergy Clin Immunol 2018; 143:1231-1235.e12. [PMID: 30414859 DOI: 10.1016/j.jaci.2018.10.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/18/2018] [Accepted: 10/09/2018] [Indexed: 02/08/2023]
Affiliation(s)
- Ayako Takamori
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Kumi Izawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Ayako Kaitani
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Tomoaki Ando
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Yoko Okamoto
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan; Department of Pediatrics, Graduate School of Medicine, Tokyo University, Bunkyo-ku, Tokyo, Japan
| | - Akie Maehara
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Atsushi Tanabe
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Masakazu Nagamine
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Hiromichi Yamada
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan; Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Shino Uchida
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan; Department of Gastroenterology Immunology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Koichiro Uchida
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Masamichi Isobe
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Tomoki Hatayama
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Daiki Watanabe
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Taiki Ando
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Takuma Ide
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Moe Matsuzawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Keiko Maeda
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Nobuhiro Nakano
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Naoto Tamura
- Department of Internal Medicine and Rheumatology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Katsuhisa Ikeda
- Department of Otorhinolaryngology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Nobuyuki Ebihara
- Department of Ophthalmology, Juntendo University Urayasu Hospital, Tomioka, Urayasu, Chiba, Japan
| | - Toshiaki Shimizu
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan; Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Hideoki Ogawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Ko Okumura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Jiro Kitaura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
31
|
Zenarruzabeitia O, Vitallé J, Terrén I, Orrantia A, Astigarraga I, Dopazo L, Gonzalez C, Santos-Díez L, Tutau C, Gamboa PM, Bilbao A, Borrego F. CD300c costimulates IgE-mediated basophil activation, and its expression is increased in patients with cow's milk allergy. J Allergy Clin Immunol 2018; 143:700-711.e5. [PMID: 29906528 DOI: 10.1016/j.jaci.2018.05.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 05/08/2018] [Accepted: 05/25/2018] [Indexed: 01/21/2023]
Abstract
BACKGROUND Basophils express high-affinity IgE receptors (FcεRI), which play an essential role in allergic diseases. It is important to characterize new cell-surface receptors that modulate IgE-mediated basophil activation threshold to design promising immunomodulatory therapies. OBJECTIVES We sought to analyze the expression of CD300 receptors on human basophils and their implication in IgE-mediated basophil activation processes. METHODS Blood samples from healthy subjects and patients with cow's milk allergy were collected through the Basque Biobank under an institutional review board-approved protocol. PBMCs were obtained by means of density centrifugation, basophils were purified with a specific isolation kit, and phenotypic and functional studies were performed by using flow cytometry. RESULTS We demonstrate that basophils express the activating receptor CD300c, which is specifically upregulated in response to IL-3. CD300c works as a costimulatory molecule during IgE-mediated basophil activation, as shown by a significant increase in degranulation and cytokine production when basophils are activated in the presence of CD300c cross-linking compared with activation through the IgE/FcεRI axis alone. Coligation of FcεRI and CD300c increased intracellular calcium mobilization and phosphorylation of signaling intermediates evoked only by FcεRI ligation. We show that the natural ligands of CD300c, phosphatidylserine and phosphatidylethanolamine, modulate IgE-mediated basophil activation. Furthermore, we have observed that CD300c expression in children with cow's milk allergy is increased compared with that in healthy control subjects and that the intensity of expression correlates with the severity of the hypersensitivity symptoms. CONCLUSION CD300c could be considered a biomarker and therapeutic target in patients with IgE-mediated allergic diseases because it seems to be involved in the modulation of IgE-mediated basophil activation.
Collapse
Affiliation(s)
- Olatz Zenarruzabeitia
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.
| | - Joana Vitallé
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Iñigo Terrén
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Ane Orrantia
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Itziar Astigarraga
- Pediatric Oncology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain; Pediatrics Service, Cruces University Hospital, Barakaldo, Spain; Department of Pediatrics, Faculty of Medicine and Nursing, University of the Basque Country, Leioa, Spain
| | - Leire Dopazo
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain; Pediatrics Service, Cruces University Hospital, Barakaldo, Spain
| | - Carlos Gonzalez
- Department of Pediatrics, Faculty of Medicine and Nursing, University of the Basque Country, Leioa, Spain; Pediatrics Service, Basurto University Hospital, Bilbao, Spain
| | - Laura Santos-Díez
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain; Pediatrics Service, Cruces University Hospital, Barakaldo, Spain
| | - Carlos Tutau
- Pediatrics Service, Cruces University Hospital, Barakaldo, Spain
| | - Pedro M Gamboa
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain; Allergology Service, Cruces University Hospital, Barakaldo, Spain
| | - Agurtzane Bilbao
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain; Pediatrics Service, Cruces University Hospital, Barakaldo, Spain
| | - Francisco Borrego
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain; Basque Center for Transfusion and Human Tissues, Galdakao, Spain.
| |
Collapse
|
32
|
Kaitani A, Izawa K, Maehara A, Isobe M, Takamori A, Matsukawa T, Takahashi M, Yamanishi Y, Oki T, Yamada H, Nagamine M, Uchida S, Uchida K, Ando T, Maeda K, Nakano N, Shimizu T, Takai T, Ogawa H, Okumura K, Kitamura T, Kitaura J. Leukocyte mono-immunoglobulin-like receptor 8 (LMIR8)/CLM-6 is an FcRγ-coupled receptor selectively expressed in mouse tissue plasmacytoid dendritic cells. Sci Rep 2018; 8:8259. [PMID: 29844322 PMCID: PMC5974347 DOI: 10.1038/s41598-018-25646-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/26/2018] [Indexed: 01/19/2023] Open
Abstract
Plasmacytoid dendritic cells (pDCs) produce large amounts of type-I interferon (IFN) in response to viral infection or self nucleic acids. Leukocyte mono-immunoglobulin-like receptor 8 (LMIR8), also called CMRF-35-like molecule-6 (CLM-6), is a putative activating receptor among mouse LMIR/CLM/CD300 members; however, the expression and function of LMIR8 remain unclear. Here, we characterize mouse LMIR8 as a pDC receptor. Analysis of Flag-tagged LMIR8-transduced bone marrow (BM)-derived mast cells demonstrated that LMIR8 can transmit an activating signal by interacting with immunoreceptor tyrosine-based activating motif (ITAM)-containing FcRγ. Flow cytometric analysis using a specific antibody for LMIR8 showed that LMIR8 expression was restricted to mouse pDCs residing in BM, spleen, or lymph node. FcRγ deficiency dampened surface expression of LMIR8 in mouse pDCs. Notably, LMIR8 was detected only in pDCs, irrespective of TLR9 stimulation, suggesting that LMIR8 is a suitable marker for pDCs in mouse tissues; LMIR8 is weakly expressed in Flt3 ligand-induced BM-derived pDCs (BMpDCs). Crosslinking of transduced LMIR8 in BMpDCs with anti-LMIR8 antibody did not induce IFN-α production, but rather suppressed TLR9-mediated production of IFN-α. Taken together, these observations indicate that LMIR8 is an FcRγ-coupled receptor selectively expressed in mouse tissue pDCs, which might suppress pDC activation through the recognition of its ligands.
Collapse
Affiliation(s)
- Ayako Kaitani
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.,Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Kumi Izawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.,Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Akie Maehara
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.,Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Masamichi Isobe
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.,Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Ayako Takamori
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Toshihiro Matsukawa
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.,Department of Hematology, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, 060-0808, Japan
| | - Mariko Takahashi
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Yoshinori Yamanishi
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.,Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Toshihiko Oki
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Hiromichi Yamada
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.,Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Masakazu Nagamine
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Shino Uchida
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.,Departments of Gastroenterology Immunology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Koichiro Uchida
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Tomoaki Ando
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Keiko Maeda
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Nobuhiro Nakano
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Toshiaki Shimizu
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.,Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Toshiyuki Takai
- Department of Experimental Immunology, Institute of Development, Aging, and Cancer, Tohoku University, 4-1 Seiryo, Sendai, 980-8575, Japan
| | - Hideoki Ogawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Ko Okumura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
| | - Jiro Kitaura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan. .,Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
| |
Collapse
|
33
|
Maehara A, Kaitani A, Izawa K, Shiba E, Nagamine M, Takamori A, Isobe M, Uchida S, Uchida K, Ando T, Maeda K, Nakano N, Voehringer D, Roers A, Shimizu T, Ogawa H, Okumura K, Kitamura T, Kitaura J. Role of the Ceramide-CD300f Interaction in Gram-Negative Bacterial Skin Infections. J Invest Dermatol 2018; 138:1221-1224. [DOI: 10.1016/j.jid.2017.11.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/08/2017] [Accepted: 11/19/2017] [Indexed: 11/25/2022]
|
34
|
Isobe M, Izawa K, Sugiuchi M, Sakanishi T, Kaitani A, Takamori A, Maehara A, Matsukawa T, Takahashi M, Yamanishi Y, Oki T, Uchida S, Uchida K, Ando T, Maeda K, Nakano N, Yagita H, Takai T, Ogawa H, Okumura K, Kitamura T, Kitaura J. The CD300e molecule in mice is an immune-activating receptor. J Biol Chem 2018; 293:3793-3805. [PMID: 29358324 DOI: 10.1074/jbc.ra117.000696] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/29/2017] [Indexed: 01/14/2023] Open
Abstract
CD300 molecules (CD300s) belong to paired activating and inhibitory receptor families, which mediate immune responses. Human CD300e (hCD300e) is expressed in monocytes and myeloid dendritic cells and transmits an immune-activating signal by interacting with DNAX-activating protein 12 (DAP12). However, the CD300e ortholog in mice (mCD300e) is poorly characterized. Here, we found that mCD300e is also an immune-activating receptor. We found that mCD300e engagement triggers cytokine production in mCD300e-transduced bone marrow-derived mast cells (BMMCs). Loss of DAP12 and another signaling protein, FcRγ, did not affect surface expression of transduced mCD300e, but abrogated mCD300e-mediated cytokine production in the BMMCs. Co-immunoprecipitation experiments revealed that mCD300e physically interacts with both FcRγ and DAP12, suggesting that mCD300e delivers an activating signal via these two proteins. Binding and reporter assays with the mCD300e extracellular domain identified sphingomyelin as a ligand of both mCD300e and hCD300e. Notably, the binding of sphingomyelin to mCD300e stimulated cytokine production in the transduced BMMCs in an FcRγ- and DAP12-dependent manner. Flow cytometric analysis with an mCD300e-specific Ab disclosed that mCD300e expression is highly restricted to CD115+Ly-6Clow/int peripheral blood monocytes, corresponding to CD14dim/+CD16+ human nonclassical and intermediate monocytes. Loss of FcRγ or DAP12 lowered the surface expression of endogenous mCD300e in the CD115+Ly-6Clow/int monocytes. Stimulation with sphingomyelin failed to activate the CD115+Ly-6Clow/int mouse monocytes, but induced hCD300e-mediated cytokine production in the CD14dimCD16+ human monocytes. Taken together, these observations indicate that mCD300e recognizes sphingomyelin and thereby regulates nonclassical and intermediate monocyte functions through FcRγ and DAP12.
Collapse
Affiliation(s)
- Masamichi Isobe
- From the Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421.,the Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639
| | - Kumi Izawa
- From the Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421.,the Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639
| | - Masahiro Sugiuchi
- the Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639
| | - Tamami Sakanishi
- the Laboratory of Cell Biology, Research Support Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyoku, Tokyo
| | - Ayako Kaitani
- From the Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421.,the Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639
| | - Ayako Takamori
- From the Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421
| | - Akie Maehara
- From the Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421
| | - Toshihiro Matsukawa
- the Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639.,the Department of Hematology, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-0808
| | - Mariko Takahashi
- the Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639
| | - Yoshinori Yamanishi
- the Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639.,the Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510
| | - Toshihiko Oki
- the Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639
| | - Shino Uchida
- From the Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421.,the Departments of Gastroenterology Immunology and
| | - Koichiro Uchida
- From the Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421
| | - Tomoaki Ando
- From the Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421
| | - Keiko Maeda
- From the Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421
| | - Nobuhiro Nakano
- From the Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421
| | - Hideo Yagita
- Immunology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, and
| | - Toshiyuki Takai
- the Department of Experimental Immunology, Institute of Development, Aging, and Cancer, Tohoku University, 4-1 Seiryo, Sendai 980-8575, Japan
| | - Hideoki Ogawa
- From the Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421
| | - Ko Okumura
- From the Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421
| | - Toshio Kitamura
- the Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639,
| | - Jiro Kitaura
- From the Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, .,the Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639
| |
Collapse
|
35
|
Effect of Specific Mutations in Cd300 Complexes Formation; Potential Implication of Cd300f in Multiple Sclerosis. Sci Rep 2017; 7:13544. [PMID: 29051512 PMCID: PMC5648872 DOI: 10.1038/s41598-017-12881-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/15/2017] [Indexed: 12/15/2022] Open
Abstract
Herein, we have used bioinformatics tools to predict five clusters defining ligand-binding sites on the extracellular domain of human CD300b receptor, presumably involved in the formation of both homodimers and heterodimers with other CD300 family members. Site-directed mutagenesis revealed residues glutamic acid 28 and glutamine 29 in cluster 5 to be necessary for the formation of CD300b complexes. Surprisingly, the disruption of cluster 2 and 4 reconstituted the binding capability lost by the mutation of residues glutamic acid 28 to alanine, glutamine 29 to alanine (E28A-Q29G). We identified a missense mutation arginine 33 to glutamine (R33Q) in CD300f by direct sequencing of exon 2 in peripheral blood samples from 50 patients with multiple sclerosis (MS). Levels of expression of CD300f were almost undetectable on monocytes from the patient bearing the R33Q mutation compared with healthy individuals. Whereas R33Q mutation had no effect in the formation of CD300f complexes, the inhibition of protein synthesis with cycloheximide indicated that CD300f R33Q is less stable than native CD300f. Finally, we report that the levels of expression of CD300f on the surface of classical and intermediate monocytes from MS patients are significantly lower when compared to the same cell populations in healthy individuals.
Collapse
|
36
|
Abstract
Mast cells and basophils represent the most relevant source of histamine in the immune system. Histamine is stored in cytoplasmic granules along with other amines (e.g., serotonin), proteases, proteoglycans, cytokines/chemokines, and angiogenic factors and rapidly released upon triggering with a variety of stimuli. Moreover, mast cell and basophil histamine release is regulated by several activating and inhibitory receptors. The engagement of different receptors can trigger different modalities of histamine release and degranulation. Histamine released from mast cells and basophils exerts its biological activities by activating four G protein-coupled receptors, namely H1R, H2R, H3R (expressed mainly in the brain), and the recently identified H4R. While H1R and H2R activation accounts mainly for some mast cell- and basophil-mediated allergic disorders, the selective expression of H4R on immune cells is uncovering new roles for histamine (possibly derived from mast cells and basophils) in allergic, inflammatory, and autoimmune disorders. Thus, the in-depth knowledge of mast cell and basophil histamine release and its biologic effects is poised to uncover new therapeutic avenues for a wide spectrum of disorders.
Collapse
|
37
|
Bulfone-Paus S, Nilsson G, Draber P, Blank U, Levi-Schaffer F. Positive and Negative Signals in Mast Cell Activation. Trends Immunol 2017; 38:657-667. [DOI: 10.1016/j.it.2017.01.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/17/2017] [Accepted: 01/27/2017] [Indexed: 01/05/2023]
|
38
|
CD300f:IL-5 cross-talk inhibits adipose tissue eosinophil homing and subsequent IL-4 production. Sci Rep 2017; 7:5922. [PMID: 28725048 PMCID: PMC5517555 DOI: 10.1038/s41598-017-06397-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/09/2017] [Indexed: 12/22/2022] Open
Abstract
Eosinophils and their associated cytokines IL-4 and IL-5 are emerging as central orchestrators of the immune-metabolic axis. Herein, we demonstrate that cross-talk between the Ig-superfamily receptor CD300f and IL-5 is a key checkpoint that modifies the ability of eosinophils to regulate metabolic outcomes. Generation of Il5 Tg /Cd300f -/- mice revealed marked and distinct increases in eosinophil levels and their production of IL-4 in the white and brown adipose tissues. Consequently, Il5 Tg /Cd300f -/- mice had increased alternatively activated macrophage accumulation in the adipose tissue. Cd300f -/- mice displayed age-related accumulation of eosinophils and macrophages in the adipose tissue and decreased adipose tissue weight, which was associated with decreased diet-induced weight gain and insulin resistance. Notably, Il5 Tg /CD300f -/- were protected from diet-induced weight gain and glucose intolerance. These findings highlight the cross-talk between IL-5 receptor and CD300f as a novel pathway regulating adipose tissue eosinophils and offer new entry points for therapeutic intervention for obesity and its complications.
Collapse
|
39
|
Disrupting ceramide-CD300f interaction prevents septic peritonitis by stimulating neutrophil recruitment. Sci Rep 2017; 7:4298. [PMID: 28655892 PMCID: PMC5487349 DOI: 10.1038/s41598-017-04647-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/17/2017] [Indexed: 12/15/2022] Open
Abstract
Sepsis is a serious clinical problem. Negative regulation of innate immunity is associated with sepsis progression, but the underlying mechanisms remains unclear. Here we show that the receptor CD300f promotes disease progression in sepsis. CD300f -/- mice were protected from death after cecal ligation and puncture (CLP), a murine model of septic peritonitis. CD300f was highly expressed in mast cells and recruited neutrophils in the peritoneal cavity. Analysis of mice (e.g., mast cell-deficient mice) receiving transplants of wild-type or CD300f -/- mast cells or neutrophils indicated that CD300f deficiency did not influence intrinsic migratory abilities of neutrophils, but enhanced neutrophil chemoattractant production (from mast cells and neutrophils) in the peritoneal cavity of CLP-operated mice, leading to robust accumulation of neutrophils which efficiently eliminated Escherichia coli. Ceramide-CD300f interaction suppressed the release of neutrophil chemoattractants from Escherichia coli-stimulated mast cells and neutrophils. Administration of the reagents that disrupted the ceramide-CD300f interaction prevented CLP-induced sepsis by stimulating neutrophil recruitment, whereas that of ceramide-containing vesicles aggravated sepsis. Extracellular concentrations of ceramides increased in the peritoneal cavity after CLP, suggesting a possible role of extracellular ceramides, CD300f ligands, in the negative-feedback suppression of innate immune responses. Thus, CD300f is an attractive target for the treatment of sepsis.
Collapse
|
40
|
Lipid Mediators of Allergic Disease: Pathways, Treatments, and Emerging Therapeutic Targets. Curr Allergy Asthma Rep 2017; 16:48. [PMID: 27333777 DOI: 10.1007/s11882-016-0628-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Bioactive lipids are critical regulators of inflammation. Over the last 75 years, these diverse compounds have emerged as clinically-relevant mediators of allergic disease pathophysiology. Animal and human studies have demonstrated the importance of lipid mediators in the development of asthma, allergic rhinitis, urticaria, anaphylaxis, atopic dermatitis, and food allergy. Lipids are critical participants in cell signaling events which influence key physiologic (bronchoconstriction) and immune phenomena (degranulation, chemotaxis, sensitization). Lipid-mediated cellular mechanisms including: (1) formation of structural support platforms (lipid rafts) for receptor signaling complexes, (2) activation of a diverse family of G-protein coupled receptors, and (3) mediating intracellular signaling cascades by acting as second messengers. Here, we review four classes of bioactive lipids (platelet activating factor, the leukotrienes, the prostanoids, and the sphingolipids) with special emphasis on lipid synthesis pathways and signaling, atopic disease pathology, and the ongoing development of atopy treatments targeting lipid mediator pathways.
Collapse
|
41
|
Shiba E, Izawa K, Kaitani A, Isobe M, Maehara A, Uchida K, Maeda K, Nakano N, Ogawa H, Okumura K, Kitamura T, Shimizu T, Kitaura J. Ceramide-CD300f Binding Inhibits Lipopolysaccharide-induced Skin Inflammation. J Biol Chem 2017; 292:2924-2932. [PMID: 28073916 PMCID: PMC5314187 DOI: 10.1074/jbc.m116.768366] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 01/08/2017] [Indexed: 01/10/2023] Open
Abstract
LPS triggers inflammatory responses; however, the negative regulation of LPS responses in vivo remains poorly understood. CD300f is an inhibitory receptor among the CD300 family of paired activating and inhibitory receptors. We have previously identified ceramide as a ligand for CD300f and shown that the binding of ceramide to CD300f inhibits IgE-mediated mast cell activation and allergic responses in mouse models. Here we identify the critical role of CD300f in inhibiting LPS-induced skin inflammation. CD300f deficiency remarkably enhanced LPS-induced skin edema and neutrophil recruitment in mice. Higher levels of factors that increase vascular permeability and of factors that induce neutrophil recruitment were detected in LPS-injected skin pouch exudates of CD300f-/- mice as compared with wild-type mice. CD300f was highly expressed in mast cells and recruited neutrophils, but not in macrophages, among skin myeloid cells. CD300f deficiency failed to influence the intrinsic migratory ability of neutrophils. Ceramide-CD300f binding suppressed the release of chemical mediators from mast cells and from neutrophils in response to LPS. Adoptive transfer experiments indicated that mast cells mediated enhanced edema in LPS-stimulated skin of CD300f-/- mice, whereas mast cells together with recruited neutrophils mediated robust neutrophil accumulation. Importantly, administering a ceramide antibody or ceramide-containing vesicles enhanced or suppressed LPS-induced skin inflammation of wild-type mice, respectively. Thus, ceramide-CD300f binding inhibits LPS-induced skin inflammation, implicating CD300f as a negative regulator of Toll-like receptor 4 (TLR4) signaling in vivo.
Collapse
Affiliation(s)
- Emiko Shiba
- From the Atopy Research Center and.,Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, and
| | - Kumi Izawa
- From the Atopy Research Center and.,the Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Ayako Kaitani
- From the Atopy Research Center and.,the Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Masamichi Isobe
- From the Atopy Research Center and.,the Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Akie Maehara
- From the Atopy Research Center and.,the Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | | - Toshio Kitamura
- the Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Toshiaki Shimizu
- From the Atopy Research Center and.,Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, and
| | - Jiro Kitaura
- From the Atopy Research Center and .,the Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
42
|
Functional receptor molecules CD300lf and CD300ld within the CD300 family enable murine noroviruses to infect cells. Proc Natl Acad Sci U S A 2016; 113:E6248-E6255. [PMID: 27681626 DOI: 10.1073/pnas.1605575113] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Norovirus is the leading cause of acute gastroenteritis worldwide. Since the discovery of human norovirus (HuNoV), an efficient and reproducible norovirus replication system has not been established in cultured cells. Although limited amounts of virus particles can be produced when the HuNoV genome is directly transfected into cells, the HuNoV cycle of infection has not been successfully reproduced in any currently available cell-culture system. Those results imply that the identification of a functional cell-surface receptor for norovirus might be the key to establishing a norovirus culture system. Using a genome-wide CRISPR/Cas9 guide RNA library, we identified murine CD300lf and CD300ld as functional receptors for murine norovirus (MNV). The treatment of susceptible cells with polyclonal antibody against CD300lf significantly reduced the production of viral progeny. Additionally, ectopic CD300lf expression in nonsusceptible cell lines derived from other animal species enabled MNV infection and progeny production, suggesting that CD300lf has potential for dictating MNV host tropism. Furthermore, CD300ld, which has an amino acid sequence in the N-terminal region of its extracellular domain that is highly homologous to that of CD300lf, also functions as a receptor for MNV. Our results indicate that direct interaction of MNV with two cell-surface molecules, CD300lf and CD300ld, dictates permissive noroviral infection.
Collapse
|
43
|
Sphingolipids as Mediators in the Crosstalk between Microbiota and Intestinal Cells: Implications for Inflammatory Bowel Disease. Mediators Inflamm 2016; 2016:9890141. [PMID: 27656050 PMCID: PMC5021499 DOI: 10.1155/2016/9890141] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/10/2016] [Accepted: 07/14/2016] [Indexed: 12/21/2022] Open
Abstract
Inflammatory bowel disease (IBD) describes different illnesses characterized by chronic inflammation of the gastrointestinal tract. Although the pathogenic mechanisms leading to IBD are poorly understood, immune system disturbances likely underlie its development. Sphingolipids (SLs) have been identified as important players and promising therapeutic targets to control inflammation in IBD. Interestingly, it seems that microorganisms of the normal gut microbiota and probiotics are involved in sphingolipid function. However, there is a great need to investigate the role of SLs as intermediates in the crosstalk between intestinal immunity and microorganisms. This review focuses on recent investigations that describe some mechanisms involved in the regulation of cytokine profiles by SLs. We also describe the importance of gut microbiota in providing signaling molecules that favor the communication between resident bacteria and intestinal cells. This, in turn, modulates the immune response in the bowel and likely in other peripheral organs. The potential of SLs and gut microbiota as targets or therapeutic agents for IBD is also discussed.
Collapse
|
44
|
Peluffo H, Solari-Saquieres P, Negro-Demontel ML, Francos-Quijorna I, Navarro X, López-Vales R, Sayós J, Lago N. CD300f immunoreceptor contributes to peripheral nerve regeneration by the modulation of macrophage inflammatory phenotype. J Neuroinflammation 2015; 12:145. [PMID: 26259611 PMCID: PMC4531482 DOI: 10.1186/s12974-015-0364-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 07/21/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND It has recently become evident that activating/inhibitory cell surface immune receptors play a critical role in regulating immune and inflammatory processes in the central nervous system (CNS). The immunoreceptor CD300f expressed on monocytes, neutrophils, and mast cells modulates inflammation, phagocytosis, and outcome in models of autoimmune demyelination, allergy, and systemic lupus erythematosus. On the other hand, a finely regulated inflammatory response is essential to induce regeneration after injury to peripheral nerves since hematogenous macrophages, together with resident macrophages and de-differentiated Schwann cells, phagocyte distal axonal and myelin debris in a well-orchestrated inflammatory response. The possible roles and expression of CD300f and its ligands have not been reported under these conditions. METHODS By using quantitative PCR (QPCR) and CD300f-IgG2a fusion protein, we show the expression of CD300f and its ligands in the normal and crush injured sciatic nerve. The putative role of CD300f in peripheral nerve regeneration was analyzed by blocking receptor-ligand interaction with the same CD300f-IgG2a soluble receptor fusion protein in sciatic nerves of Thy1-YFP-H mice injected at the time of injury. Macrophage M1/M2 polarization phenotype was also analyzed by CD206 and iNOS expression. RESULTS We found an upregulation of CD300f mRNA and protein expression after injury. Moreover, the ligands are present in restricted membrane patches of Schwann cells, which remain stable after the lesion. The lesioned sciatic nerves of Thy1-YFP-H mice injected with a single dose of CD300f-IgG2a show long lasting effects on nerve regeneration characterized by a lower number of YFP-positive fibres growing into the tibial nerve after 10 days post lesion (dpl) and a delayed functional recovery when compared to PBS- or IgG2a-administered control groups. Animals treated with CD300f-IgG2a show at 10 dpl higher numbers of macrophages and CD206-positive cells and lower levels of iNOS expression than both control groups. At later time points (28 dpl), increased numbers of macrophages and iNOS expression occur. CONCLUSIONS Taken together, these results show that the pair CD300f ligand is implicated in Wallerian degeneration and nerve regeneration by modulating both the influx and phenotype of macrophages.
Collapse
Affiliation(s)
- Hugo Peluffo
- Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur Montevideo, Mataojo 2020, CP 11400, Montevideo, Uruguay.
- Department of Histology and Embryology, Faculty of Medicine, UDELAR, Montevideo, Uruguay.
| | - Patricia Solari-Saquieres
- Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur Montevideo, Mataojo 2020, CP 11400, Montevideo, Uruguay.
| | - Maria Luciana Negro-Demontel
- Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur Montevideo, Mataojo 2020, CP 11400, Montevideo, Uruguay.
| | - Isaac Francos-Quijorna
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain.
| | - Xavier Navarro
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain.
| | - Ruben López-Vales
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain.
| | - Joan Sayós
- Immunobiology Group, CIBBIM-Nanomedicine Program, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autonoma de Barcelona, Barcelona, Spain.
| | - Natalia Lago
- Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur Montevideo, Mataojo 2020, CP 11400, Montevideo, Uruguay.
- Neurodegeneration Laboratory, Institut Pasteur Montevideo, Montevideo, Uruguay.
| |
Collapse
|
45
|
Niizuma K, Tahara-Hanaoka S, Noguchi E, Shibuya A. Identification and Characterization of CD300H, a New Member of the Human CD300 Immunoreceptor Family. J Biol Chem 2015. [PMID: 26221034 DOI: 10.1074/jbc.m115.643361] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recruitment of circulating monocytes and neutrophils to infection sites is essential for host defense against infections. Here, we identified a previously unannotated gene that encodes an immunoglobulin-like receptor, designated CD300H, which is located in the CD300 gene cluster. CD300H has a short cytoplasmic tail and associates with the signaling adaptor proteins, DAP12 and DAP10. CD300H is expressed on CD16(+) monocytes and myeloid dendritic cells. Ligation of CD300H on CD16(+) monocytes and myeloid dendritic cells with anti-CD300H monoclonal antibody induced the production of neutrophil chemoattractants. Interestingly, CD300H expression varied among healthy subjects, who could be classified into two groups according to "positive" and "negative" expression. Genomic sequence analysis revealed a single-nucleotide substitution (rs905709 (G → A)) at a splice donor site on intron 1 on either one or both alleles. The International HapMap Project database has demonstrated that homozygosity for the A allele of single nucleotide polymorphism (SNP) rs905709 ("negative" expression) is highly frequent in Han Chinese in Beijing, Japanese in Tokyo, and Europeans (A/A genotype frequencies 0.349, 0.167, and 0.138, respectively) but extremely rare in Sub-Saharan African populations. Together, these results suggest that CD300H may play an important role in innate immunity, at least in populations that carry the G/G or G/A genotype of CD300H.
Collapse
Affiliation(s)
- Kouta Niizuma
- From the Departments of Immunology and the Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Satoko Tahara-Hanaoka
- From the Departments of Immunology and the Center for Tsukuba Advanced Research Alliance (TARA), the Japan Science and Technology Agency, CREST, and
| | - Emiko Noguchi
- Medical Genetics, Faculty of Medicine, the Japan Science and Technology Agency, CREST, and
| | - Akira Shibuya
- From the Departments of Immunology and the Center for Tsukuba Advanced Research Alliance (TARA), the Japan Science and Technology Agency, CREST, and
| |
Collapse
|
46
|
Borriello F, Granata F, Varricchi G, Genovese A, Triggiani M, Marone G. Immunopharmacological modulation of mast cells. Curr Opin Pharmacol 2014; 17:45-57. [PMID: 25063971 DOI: 10.1016/j.coph.2014.07.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 07/02/2014] [Accepted: 07/04/2014] [Indexed: 12/31/2022]
Abstract
Mast cells produce a wide spectrum of mediators and they have been implicated in several physiopathological conditions (e.g. allergic reactions and certain tumors). Pharmacologic agents that modulate the release of mediators from mast cells has helped to elucidate the biochemical mechanisms by which immunological and non-immunological stimuli activate these cells. Furthermore, the study of surface receptors and signaling pathways associated with mast cell activation revealed novel pharmacologic targets. Thus, the development of pharmacologic agents based on this new wave of knowledge holds promise for the treatment of several mast cell-mediated disorders.
Collapse
Affiliation(s)
- Francesco Borriello
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, School of Medicine, Via Pansini 5, 80131 Naples, Italy
| | - Francescopaolo Granata
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, School of Medicine, Via Pansini 5, 80131 Naples, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, School of Medicine, Via Pansini 5, 80131 Naples, Italy
| | - Arturo Genovese
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, School of Medicine, Via Pansini 5, 80131 Naples, Italy
| | - Massimo Triggiani
- Division of Allergy and Clinical Immunology, University of Salerno, School of Medicine, Salerno, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, School of Medicine, Via Pansini 5, 80131 Naples, Italy.
| |
Collapse
|