1
|
Peng B, Ye W, Liu S, Jiang Y, Meng Z, Guo M, Zhi L, Chang X, Shao L. Sex differences in asthma: omics evidence and future directions. Front Genet 2025; 16:1560276. [PMID: 40110046 PMCID: PMC11920188 DOI: 10.3389/fgene.2025.1560276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 02/11/2025] [Indexed: 03/22/2025] Open
Abstract
Asthma is a common and complex heterogeneous disease, with prevalence and severity varying across different age groups and sexes. Over the past few decades, with the development of high-throughput technologies, various "omics" analyses have emerged and been applied to asthma research, providing us with significant opportunities to study the genetic mechanisms underlying asthma. However, despite these advancements, the differences and specificities in the genetic mechanisms of asthma between sexes remain to be fully explored. Moreover, clinical guidelines have yet to incorporate or recommend sex-specific asthma management based on high-quality omics evidence. In this article, we review recent omics-level findings on sex differ-ences in asthma and discuss how to better integrate these multidimensional findings to generate further insights and advance the precision and effectiveness of asthma treatment.
Collapse
Affiliation(s)
- Bichen Peng
- College of Medical Information and Artificial Intelligence, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Weiyi Ye
- College of Medical Information and Artificial Intelligence, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Shuai Liu
- Agricultural Products Quality and Safety Center of Ji'nan, Jinan, Shandong, China
| | - Yue Jiang
- College of Medical Information and Artificial Intelligence, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ziang Meng
- College of Medical Information and Artificial Intelligence, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Miao Guo
- School of Life Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Lili Zhi
- Department of Allergy, Shandong Institute of Respiratory Diseases, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Xiao Chang
- College of Medical Information and Artificial Intelligence, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Lei Shao
- Department of infectious Disease, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
2
|
Liu Y, Kong X, Zhang X, Chen Z, Wang J, Chen H, Jiang L. SERPINA3, FGA, AGP1, ITIH3 and SAA1 as novel biomarkers for eosinophilic granulomatosis with polyangiitis diagnosis and activity assessment. Rheumatology (Oxford) 2025; 64:1316-1325. [PMID: 38552326 DOI: 10.1093/rheumatology/keae187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/16/2024] [Indexed: 03/06/2025] Open
Abstract
OBJECTIVE The objective of this study was to identify novel biomarkers for diagnosis and prediction of active eosinophilic granulomatosis with polyangiitis (EGPA) through data-independent acquisition (DIA) analysis. METHODS Plasma samples from 11 EGPA patients and 10 healthy controls (HCs) were analysed through DIA to identify potential biomarkers. The results were validated in 32 EGPA patients, 24 disease controls (DCs), and 20 HCs using ELISA. The receiver operating characteristic (ROC) curve was used to assess the diagnostic value of candidate biomarkers. RESULTS Thirty-five differentially expressed proteins (DEPs) (24 upregulated and 11 downregulated) were screened between the EGPA and HC groups. Five proteins, including serine proteinase inhibitor A3 (SERPINA3), alpha-fibrinogen (FGA), alpha-1 acid glycoprotein 1(AGP1), inter-alpha-trypsin inhibitor heavy chain H3 (ITIH3), and serum amyloid A1 (SAA1), were significantly upregulated in EGPA compared with HCs. Apart from SAA1, all proteins were also higher in EGPA patients compared with DCs. Furthermore, a panel of SERPINA3 and SAA1 exhibited potential diagnostic value for EGPA, with an area under the curve (AUC) of 0.953, while a panel of SERPINA3, FGA, AGP1 and ITIH3 showed good discriminative power for differentiating EGPA from DCs, with an AUC of 0.926. Moreover, SERPINA3, FGA and AGP levels were significantly higher in active EGPA and correlated well with disease activity. A combination of SERPINA3 and AGP1 exhibited an excellent AUC of 0.918 for disease activity assessment. CONCLUSION SERPINA3, FGA, AGP1, ITIH3 and SAA1 were identified as potential biomarkers for EGPA diagnosis and disease activity assessment. Among them, as a single biomarker, SERPINA3 had the best diagnostic performance.
Collapse
Affiliation(s)
- Yun Liu
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiufang Kong
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiao Zhang
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhihong Chen
- Department of Pulmonary and Critical Care Medicine, Shanghai Institute of Respiratory Disease, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jinghua Wang
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Huiyong Chen
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lindi Jiang
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China
- Center of Clinical Epidemiology and Evidence-based Medicine, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Meng M, Ma Y, Xu J, Chen G, Mahato RK. DNA methylation-mediated FGFR1 silencing enhances NF-κB signaling: implications for asthma pathogenesis. Front Mol Biosci 2024; 11:1433557. [PMID: 39377013 PMCID: PMC11456769 DOI: 10.3389/fmolb.2024.1433557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/19/2024] [Indexed: 10/09/2024] Open
Abstract
Background Fibroblast growth factor receptor 1 (FGFR1) is known to play a crucial role in the pathogenesis of asthma, although the precise mechanism remains unclear. This study aims to investigate how DNA methylation-mediated silencing of FGFR1 contributes to the enhancement of NF-κB signaling, thereby influencing the progression of asthma. Methods RT-qPCR was utilized to assess FGFR1 mRNA levels in the serum of asthma patients and BEAS-2B, HBEpiC, and PCS-301-011 cells. CCK8 assays were conducted to evaluate the impact of FGFR1 overexpression on the proliferation of BEAS-2B, PCS-301-011, and HBEpiC cells. Dual-luciferase and DNA methylation inhibition assays were performed to elucidate the underlying mechanism of FGFR1 gene in asthma. The MassARRAY technique was employed to measure the methylation levels of the FGFR1 DNA. Results Elevated FGFR1 mRNA levels were observed in the serum of asthma patients compared to healthy controls. Overexpression of FGFR1 in BEAS-2B cells significantly enhanced cell proliferation and stimulated NF-ĸB transcriptional activity in HERK-293T cells. Furthermore, treatment with 5-Aza-CdR, a DNA demethylating agent, markedly increased the expression of FGFR1 mRNA in BEAS-2B, PCS-301-011, and HBEpiC cells. Luciferase activity analysis confirmed heightened NF-ĸB transcriptional activity in FGFR1-overexpressing BEAS-2B cells and BEAS-2B cells treated with 5-Aza-CdR. Additionally, a decrease in methylation levels in the FGFR1 DNA promoter was detected in the serum of asthma patients using the MassARRAY technique. Conclusion Our findings reveal a potential mechanism involving FGFR1 in the progression of asthma. DNA methylation of FGFR1 inactivates the NF-ĸB signaling pathway, suggesting a promising avenue for developing effective therapeutic strategies for asthma.
Collapse
Affiliation(s)
- Minglu Meng
- School of Public Health, Youjiang Medical University for Nationalities, Baise, China
- Faculty of Public Health, Khon Kaen University, Khon Kaen, Thailand
| | - Yingjiao Ma
- School of Public Health, Youjiang Medical University for Nationalities, Baise, China
| | - Jianguo Xu
- Department of Respiratory Medicine, Affiliated Hospital of YouJiang Medical University for Nationalities, Baise, China
| | - Gao Chen
- Department of Laboratory Medicine, The People’s Hospital of Hechi, Hechi, China
| | | |
Collapse
|
4
|
Ahmad S, Single S, Liu Y, Hough KP, Wang Y, Thannickal VJ, Athar M, Goliwas KF, Deshane JS. Heavy Metal Exposure-Mediated Dysregulation of Sphingolipid Metabolism. Antioxidants (Basel) 2024; 13:978. [PMID: 39199224 DOI: 10.3390/antiox13080978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
Exposure to heavy metals (HMs) is often associated with inflammation and cell death, exacerbating respiratory diseases including asthma. Most inhaled particulate HM exposures result in the deposition of HM-bound fine particulate matter, PM2.5, in pulmonary cell populations. While localized high concentrations of HMs may be a causative factor, existing studies have mostly evaluated the effects of systemic or low-dose chronic HM exposures. This report investigates the impact of local high concentrations of specific HMs (NaAsO2, MnCl2, and CdCl2) on sphingolipid homeostasis and oxidative stress, as both play a role in mediating responses to HM exposure and have been implicated in asthma. Utilizing an in vitro model system and three-dimensional ex vivo human tissue models, we evaluated the expression of enzymatic regulators of the salvage, recycling, and de novo synthesis pathways of sphingolipid metabolism, and observed differential modulation in these enzymes between HM exposures. Sphingolipidomic analyses of specific HM-exposed cells showed increased levels of anti-apoptotic sphingolipids and reduced pro-apoptotic sphingolipids, suggesting activation of the salvage and de novo synthesis pathways. Differential sphingolipid regulation was observed within HM-exposed lung tissues, with CdCl2 exposure and NaAsO2 exposure activating the salvage and de novo synthesis pathway, respectively. Additionally, using spatial transcriptomics and quantitative real-time PCR, we identified HM exposure-induced transcriptomic signatures of oxidative stress in epithelial cells and human lung tissues.
Collapse
Affiliation(s)
- Shaheer Ahmad
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294-0006, USA
| | - Sierra Single
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294-0006, USA
| | - Yuelong Liu
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294-0006, USA
| | - Kenneth P Hough
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294-0006, USA
| | - Yong Wang
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294-0006, USA
| | - Victor J Thannickal
- John W. Deming Department of Medicine, Tulane University School of Medicine and Southeast Veterans Healthcare System, New Orleans, LA 70119-6535, USA
| | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kayla F Goliwas
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294-0006, USA
| | - Jessy S Deshane
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294-0006, USA
| |
Collapse
|
5
|
Potaczek DP, Bazan-Socha S, Wypasek E, Wygrecka M, Garn H. Recent Developments in the Role of Histone Acetylation in Asthma. Int Arch Allergy Immunol 2024; 185:641-651. [PMID: 38522416 DOI: 10.1159/000536460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/22/2024] [Indexed: 03/26/2024] Open
Abstract
BACKGROUND Epigenetic modifications are known to mediate both beneficial and unfavorable effects of environmental exposures on the development and clinical course of asthma. On the molecular level, epigenetic mechanisms participate in multiple aspects of the emerging and ongoing asthma pathology. SUMMARY Studies performed in the last several years expand our knowledge on the role of histone acetylation, a classical epigenetic mark, in the regulation of (patho)physiological processes of diverse cells playing a central role in asthma, including those belonging to the immune system (e.g., CD4+ T cells, macrophages) and lung structure (e.g., airway epithelial cells, pulmonary fibroblasts). Those studies demonstrate a number of specific histone acetylation-associated mechanisms and pathways underlying pathological processes characteristic for asthma, as well as report their modification modalities. KEY MESSAGES Dietary modulation of histone acetylation levels in the immune system might protect against the development of asthma and other allergies. Interfering with the enzymes controlling the histone acetylation status of structural lung and (local) immune cells might provide future therapeutic options for asthmatics. Despite some methodological obstacles, analysis of the histone acetylation levels might improve asthma diagnostics.
Collapse
Affiliation(s)
- Daniel P Potaczek
- Translational Inflammation Research Division and Core Facility for Single Cell Multiomics, Medical Faculty, Philipps University of Marburg, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center (UGMLC), Marburg, Germany
- Center for Infection and Genomics of the Lung (CIGL), Member of the Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- Bioscientia MVZ Labor Mittelhessen GmbH, Giessen, Germany
| | - Stanisława Bazan-Socha
- Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Ewa Wypasek
- Krakow Center for Medical Research and Technology, John Paul II Hospital, Krakow, Poland
- Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, Krakow, Poland
| | - Małgorzata Wygrecka
- Center for Infection and Genomics of the Lung (CIGL), Member of the Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- Institute of Lung Health, Member of the German Center for Lung Research (DZL), Giessen, Germany
- CSL Behring Innovation GmbH, Marburg, Germany
| | - Holger Garn
- Translational Inflammation Research Division and Core Facility for Single Cell Multiomics, Medical Faculty, Philipps University of Marburg, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center (UGMLC), Marburg, Germany
| |
Collapse
|
6
|
Clay S, Alladina J, Smith NP, Visness CM, Wood RA, O'Connor GT, Cohen RT, Khurana Hershey GK, Kercsmar CM, Gruchalla RS, Gill MA, Liu AH, Kim H, Kattan M, Bacharier LB, Rastogi D, Rivera-Spoljaric K, Robison RG, Gergen PJ, Busse WW, Villani AC, Cho JL, Medoff BD, Gern JE, Jackson DJ, Ober C, Dapas M. Gene-based association study of rare variants in children of diverse ancestries implicates TNFRSF21 in the development of allergic asthma. J Allergy Clin Immunol 2024; 153:809-820. [PMID: 37944567 PMCID: PMC10939893 DOI: 10.1016/j.jaci.2023.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/25/2023] [Accepted: 10/12/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Most genetic studies of asthma and allergy have focused on common variation in individuals primarily of European ancestry. Studying the role of rare variation in quantitative phenotypes and in asthma phenotypes in populations of diverse ancestries can provide additional, important insights into the development of these traits. OBJECTIVE We sought to examine the contribution of rare variants to different asthma- or allergy-associated quantitative traits in children with diverse ancestries and explore their role in asthma phenotypes. METHODS We examined whole-genome sequencing data from children participants in longitudinal studies of asthma (n = 1035; parent-identified as 67% Black and 25% Hispanic) to identify rare variants (minor allele frequency < 0.01). We assigned variants to genes and tested for associations using an omnibus variant-set test between each of 24,902 genes and 8 asthma-associated quantitative traits. On combining our results with external data on predicted gene expression in humans and mouse knockout studies, we identified 3 candidate genes. A burden of rare variants in each gene and in a combined 3-gene score was tested for its associations with clinical phenotypes of asthma. Finally, published single-cell gene expression data in lower airway mucosal cells after allergen challenge were used to assess transcriptional responses to allergen. RESULTS Rare variants in USF1 were significantly associated with blood neutrophil count (P = 2.18 × 10-7); rare variants in TNFRSF21 with total IgE (P = 6.47 × 10-6) and PIK3R6 with eosinophil count (P = 4.10 × 10-5) reached suggestive significance. These 3 findings were supported by independent data from human and mouse studies. A burden of rare variants in TNFRSF21 and in a 3-gene score was associated with allergy-related phenotypes in cohorts of children with mild and severe asthma. Furthermore, TNFRSF21 was significantly upregulated in bronchial basal epithelial cells from adults with allergic asthma but not in adults with allergies (but not asthma) after allergen challenge. CONCLUSIONS We report novel associations between rare variants in genes and allergic and inflammatory phenotypes in children with diverse ancestries, highlighting TNFRSF21 as contributing to the development of allergic asthma.
Collapse
Affiliation(s)
- Selene Clay
- Department of Human Genetics, University of Chicago, Chicago, Ill.
| | - Jehan Alladina
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Mass; Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Mass
| | - Neal P Smith
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Mass; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Mass; Massachusetts General Hospital Cancer Center, Boston, Mass
| | | | - Robert A Wood
- Pediatric Allergy and Immunology Department, Johns Hopkins Bloomberg School of Public Health, Baltimore, Md
| | - George T O'Connor
- Department of Pediatrics, Boston University School of Medicine, Boston, Mass
| | - Robyn T Cohen
- Department of Pediatrics, Boston University School of Medicine, Boston, Mass
| | | | - Carolyn M Kercsmar
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Rebecca S Gruchalla
- Internal Medicine and Pediatrics, University of Texas Southwestern Medical Center, Dallas, Tex
| | - Michelle A Gill
- Pediatric Infectious Diseases, St. Louis Children's Hospital, St Louis, Mo
| | - Andrew H Liu
- Breathing Institute, Children's Hospital Colorado, Aurora, Colo
| | - Haejin Kim
- Allergy and Immunology, Henry Ford Health, Detroit, Mich
| | - Meyer Kattan
- Department of Pediatrics, Columbia University Medical Center, New York, NY
| | - Leonard B Bacharier
- Department of Pediatrics, Monroe Carell Jr Children's Hospital at Vanderbilt University Medical Center, Nashville, Tenn
| | - Deepa Rastogi
- Division of Pulmonology and Sleep Medicine, Children's National Hospital, Washington, DC
| | - Katherine Rivera-Spoljaric
- Department of Pediatric Allergy, Immunology, and Pulmonary Medicine, Washington University School of Medicine, St Louis, Mo
| | - Rachel G Robison
- Department of Pediatrics, Monroe Carell Jr Children's Hospital at Vanderbilt University Medical Center, Nashville, Tenn; Ann & Robert H. Lurie Children's Hospital, Chicago, Ill
| | - Peter J Gergen
- National Institute of Allergy and Infectious Diseases, Rockville, Md
| | - William W Busse
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Alexandra-Chloe Villani
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Mass; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Mass; Massachusetts General Hospital Cancer Center, Boston, Mass
| | - Josalyn L Cho
- Division of Pulmonary, Critical Care and Occupational Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Benjamin D Medoff
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Mass; Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Mass
| | - James E Gern
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Daniel J Jackson
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, Ill
| | - Matthew Dapas
- Department of Human Genetics, University of Chicago, Chicago, Ill
| |
Collapse
|
7
|
Sio YY, Gan WL, Ng WS, Matta SA, Say YH, Teh KF, Wong YR, Rawanan Shah SM, Reginald K, Chew FT. The ERBB2 Exonic Variant Pro1170Ala Modulates Mitogen-Activated Protein Kinase Signaling Cascades and Associates with Allergic Asthma. Int Arch Allergy Immunol 2023; 184:1010-1021. [PMID: 37336194 DOI: 10.1159/000530960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/30/2023] [Indexed: 06/21/2023] Open
Abstract
INTRODUCTION Previous studies have indicated the ERBB2 genetic variants in the 17q12 locus might be associated with asthma; however, the functional effects of these variants on asthma risk remain inconclusive. This study aimed to characterize the functional roles of asthma-associated ERBB2 single nucleotide polymorphisms (SNPs) in asthma pathogenesis by performing genetic association and functional analysis studies. METHODS This study belongs to a part of an ongoing Singapore/Malaysia cross-sectional genetics and epidemiological study (SMCSGES). Genotype-phenotype associations were assessed by performing a genotyping assay on n = 4,348 ethnic Chinese individuals from the SMCSGES cohort. The phosphorylation levels of receptors and signaling proteins in the MAPK signaling cascades, including ErbB2, EGFR, and ERK1/2, were compared across the genotypes of asthma-associated SNPs through in vitro and ex vivo approaches. RESULTS The ERBB2 tag-SNP rs1058808 was significantly associated with allergic asthma, with the allele "G" identified as protective against the disease (adjusted logistic p = 6.56 × 10-9, OR = 0.625, 95% CI: 0.544-0.718). The allele "G" of rs1058808 resulted in a Pro1170Ala mutation that results in lower phosphorylation levels of ErbB2 in HaCat cells (p < 0.001), whereas the overall ERBB2 mRNA expression and the phosphorylation levels of EGFR remained unaffected. In the SMCSGES cohort, individuals carrying the genotype "GG" of rs1058808 had lower phosphorylated ERK1/2 proteins in the MAPK signaling cascade. A lower phosphorylation level of ERK1/2 was also associated with reduced asthma risk. CONCLUSIONS The present findings highlighted the involvement of a functional exonic variant of ERBB2 in asthma development via modulating the MAPK signaling cascade.
Collapse
Affiliation(s)
- Yang Yie Sio
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore,
| | - Wei Liang Gan
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Wing Shan Ng
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Sri Anusha Matta
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Yee-How Say
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR)Kampar Campus, Kampar, Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Malaysia
| | - Keng Foo Teh
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Malaysia
| | - Yi Ru Wong
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Malaysia
| | - Smyrna Moti Rawanan Shah
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Malaysia
| | - Kavita Reginald
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Malaysia
| | - Fook Tim Chew
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
8
|
James BN, Weigel C, Green CD, Brown RDR, Palladino END, Tharakan A, Milstien S, Proia RL, Martin RK, Spiegel S. Neutrophilia in severe asthma is reduced in Ormdl3 overexpressing mice. FASEB J 2023; 37:e22799. [PMID: 36753412 PMCID: PMC9990076 DOI: 10.1096/fj.202201821r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 02/09/2023]
Abstract
Genome-wide association studies have linked the ORM (yeast)-like protein isoform 3 (ORMDL3) to asthma severity. Although ORMDL3 is a member of a family that negatively regulates serine palmitoyltransferase (SPT) and thus biosynthesis of sphingolipids, it is still unclear whether ORMDL3 and altered sphingolipid synthesis are causally related to non-Th2 severe asthma associated with a predominant neutrophil inflammation and high interleukin-17 (IL-17) levels. Here, we examined the effects of ORMDL3 overexpression in a preclinical mouse model of allergic lung inflammation that is predominantly neutrophilic and recapitulates many of the clinical features of severe human asthma. ORMDL3 overexpression reduced lung and circulating levels of dihydrosphingosine, the product of SPT. However, the most prominent effect on sphingolipid levels was reduction of circulating S1P. The LPS/OVA challenge increased markers of Th17 inflammation with a predominant infiltration of neutrophils into the lung. A significant decrease of neutrophil infiltration was observed in the Ormdl3 transgenic mice challenged with LPS/OVA compared to the wild type and concomitant decrease in IL-17, that plays a key role in the pathogenesis of neutrophilic asthma. LPS decreased survival of murine neutrophils, which was prevented by co-treatment with S1P. Moreover, S1P potentiated LPS-induced chemotaxis of neutrophil, suggesting that S1P can regulate neutrophil survival and recruitment following LPS airway inflammation. Our findings reveal a novel connection between ORMDL3 overexpression, circulating levels of S1P, IL-17 and neutrophil recruitment into the lung, and questions the potential involvement of ORMDL3 in the pathology, leading to development of severe neutrophilic asthma.
Collapse
Affiliation(s)
- Briana N. James
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Cynthia Weigel
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Christopher D. Green
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Ryan D. R. Brown
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Elisa N. D. Palladino
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Anuj Tharakan
- Department of Microbiology and ImmunologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Sheldon Milstien
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Richard L. Proia
- Genetics and Biochemistry BranchNational Institute of Diabetes and Digestive and Kidney Diseases, NIHBethesdaMarylandUSA
| | - Rebecca K. Martin
- Department of Microbiology and ImmunologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| |
Collapse
|
9
|
Nowakowska J, Olechnowicz A, Langwiński W, Koteluk O, Lemańska Ż, Jóźwiak K, Kamiński K, Łosiewski W, Stegmayr J, Wagner D, Alsafadi HN, Lindstedt S, Dziuba M, Bielicka A, Graczyk Z, Szczepankiewicz A. Increased expression of ORMDL3 in allergic asthma: a case control and in vitro study. J Asthma 2023; 60:458-467. [PMID: 35321632 DOI: 10.1080/02770903.2022.2056896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Asthma is the most frequent chronic disease in children. One of the most replicated genetic findings in childhood asthma is the ORMDL3 gene confirmed in several GWA studies in several pediatric populations. OBJECTIVES The purpose of this study was to analyze ORMDL3 variants and expression in childhood asthma in the Polish population. METHODS In the study we included 416 subject, 223 asthmatic children and 193 healthy control subjects. The analysis of two SNPs (rs3744246 and rs8076131) was performed using genotyping with TaqMan probes. The methylation of the ORMDL3 promoter was examined with Methylation Sensitive HRM (MS-HRM), covering 9 CpG sites. The expression of ORMDL3 was analyzed in PBMCs from pediatric patients diagnosed with allergic asthma and primary human bronchial epithelial cells derived from healthy subjects treated with IL-13, IL-4, or co-treatment with both cytokines to model allergic airway inflammation. RESULTS We found that ORMDL3 expression was increased in allergic asthma both in PBMCs from asthmatic patients as well as in human bronchial epithelial cells stimulated with the current cytokines. We did not observe significant differences between cases and controls either in the genotype distribution of analyzed SNPs (rs3744246 and rs8076131) nor in the level of promoter methylation. CONCLUSIONS Increased ORMDL3 expression is associated with pediatric allergic asthma and upregulated in the airways upon Th2-cytokines stimulation, but further functional studies are required to fully understand its role in this disease.
Collapse
Affiliation(s)
- Joanna Nowakowska
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Olechnowicz
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Wojciech Langwiński
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Oliwia Koteluk
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Żaneta Lemańska
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Kacper Jóźwiak
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Kacper Kamiński
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Wojciech Łosiewski
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - John Stegmayr
- Lung Bioengineering and Regeneration, Department of Experimental Medical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Darcy Wagner
- Lung Bioengineering and Regeneration, Department of Experimental Medical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Hani N Alsafadi
- Lung Bioengineering and Regeneration, Department of Experimental Medical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Sandra Lindstedt
- Lung Bioengineering and Regeneration, Department of Experimental Medical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Maria Dziuba
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Antonina Bielicka
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Zuzanna Graczyk
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Aleksandra Szczepankiewicz
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
10
|
The Genetic Factors of the Airway Epithelium Associated with the Pathology of Asthma. Genes (Basel) 2022; 13:genes13101870. [PMID: 36292755 PMCID: PMC9601469 DOI: 10.3390/genes13101870] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/04/2022] Open
Abstract
Asthma is a chronic disease of the airways characterized by inflammation, tightened muscles, and thickened airway walls leading to symptoms such as shortness of breath, chest tightness, and cough in patients. The increased risk of asthma in children of asthmatics parents supports the existence of genetic factors involved in the pathogenesis of this disease. Genome-wide association studies have discovered several single nucleotide polymorphisms associated with asthma. These polymorphisms occur within several genes and can contribute to different asthma phenotypes, affect disease severity, and clinical response to different therapies. The complexity in the etiology of asthma also results from interactions between environmental and genetic factors. Environmental exposures have been shown to increase the prevalence of asthma in individuals who are genetically susceptible. This review summarizes what is currently known about the genetics of asthma in relation to risk, response to common treatments, and gene-environmental interactions.
Collapse
|
11
|
Díaz-Perales A, Escribese MM, Garrido-Arandia M, Obeso D, Izquierdo-Alvarez E, Tome-Amat J, Barber D. The Role of Sphingolipids in Allergic Disorders. FRONTIERS IN ALLERGY 2022; 2:675557. [PMID: 35386967 PMCID: PMC8974723 DOI: 10.3389/falgy.2021.675557] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
Allergy is defined as a complex chronic inflammatory condition in which genetic and environmental factors are implicated. Sphingolipids are involved in multiple biological functions, from cell membrane components to critical signaling molecules. To date, sphingolipids have been studied in different human pathologies such as neurological disorders, cancer, autoimmunity, and infections. Sphingolipid metabolites, in particular, ceramide and sphingosine-1-phosphate (S1P), regulate a diverse range of cellular processes that are important in immunity and inflammation. Moreover, variations in the sphingolipid concentrations have been strongly associated with allergic diseases. This review will focus on the role of sphingolipids in the development of allergic sensitization and allergic inflammation through the activation of immune cells resident in tissues, as well as their role in barrier remodeling and anaphylaxis. The knowledge gained in this emerging field will help to develop new therapeutic options for allergic disorders.
Collapse
Affiliation(s)
- Araceli Díaz-Perales
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Maria M Escribese
- Basic Medical Sciences Department, Facultad de Medicina, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo CEU, CEU Universities, Madrid, Spain
| | - María Garrido-Arandia
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - David Obeso
- Centro de Excelencia en Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo CEU, CEU Universities, Madrid, Spain
| | - Elena Izquierdo-Alvarez
- Basic Medical Sciences Department, Facultad de Medicina, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo CEU, CEU Universities, Madrid, Spain
| | - Jaime Tome-Amat
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Domingo Barber
- Basic Medical Sciences Department, Facultad de Medicina, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo CEU, CEU Universities, Madrid, Spain
| |
Collapse
|
12
|
Weng N, Miller M, Pham AK, Komor AC, Broide DH. Single-base editing of rs12603332 on chromosome 17q21 with a cytosine base editor regulates ORMDL3 and ATF6α expression. Allergy 2022; 77:1139-1149. [PMID: 34525218 DOI: 10.1111/all.15092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Genetic association studies have demonstrated that the SNP rs12603332 located on chromosome 17q21 is highly associated with the risk of the development of asthma. METHODS To determine whether SNP rs1260332 is functional in regulating levels of ORMDL3 expression, we used a Cytosine Base Editor (CBE) plasmid DNA or a CBE mRNA to edit the rs12603332 C risk allele to the T non-risk allele in a human lymphocyte cell line (i.e., Jurkat cells) and in primary human CD4 T cells that carry the C risk alleles. RESULTS Jurkat cells with the rs12603332 C risk allele expressed significantly higher levels of ORMDL3 mRNA, as well as the ORMDL3 regulated gene ATF6α as assessed by qPCR compared to Jurkat clones with the T non-risk allele. In primary human CD4 T cells, we edited 90 ± 3% of the rs12603332-C risk allele to the T non-risk allele and observed a reduction in ORMDL3 and ATF6α expression. Bioinformatic analysis predicted that the non-risk allele rs12603332-T could be the central element of the E-box binding motif (CANNTG) recognized by the E47 transcription factor. An EMSA assay confirmed the bioinformatics prediction demonstrating that a rs12603332-T containing probe bound to the transcription factor E47 in vitro. CONCLUSIONS SNP rs12603332 is functional in regulating the expression of ORMDL3 as well as ORMDL3 regulated gene ATF6α expression. In addition, we demonstrate the use of CBE technology in functionally interrogating asthma-associated SNPs using studies of primary human CD4 cells.
Collapse
Affiliation(s)
- Ning Weng
- Department of Medicine University of California San Diego La Jolla California USA
| | - Marina Miller
- Department of Medicine University of California San Diego La Jolla California USA
| | - Alexa K. Pham
- Department of Medicine University of California San Diego La Jolla California USA
| | - Alexis C. Komor
- Department of Chemistry and Biochemistry University of California San Diego La Jolla California USA
| | - David H. Broide
- Department of Medicine University of California San Diego La Jolla California USA
| |
Collapse
|
13
|
Alsheikh AJ, Wollenhaupt S, King EA, Reeb J, Ghosh S, Stolzenburg LR, Tamim S, Lazar J, Davis JW, Jacob HJ. The landscape of GWAS validation; systematic review identifying 309 validated non-coding variants across 130 human diseases. BMC Med Genomics 2022; 15:74. [PMID: 35365203 PMCID: PMC8973751 DOI: 10.1186/s12920-022-01216-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/17/2022] [Indexed: 02/08/2023] Open
Abstract
Background The remarkable growth of genome-wide association studies (GWAS) has created a critical need to experimentally validate the disease-associated variants, 90% of which involve non-coding variants. Methods To determine how the field is addressing this urgent need, we performed a comprehensive literature review identifying 36,676 articles. These were reduced to 1454 articles through a set of filters using natural language processing and ontology-based text-mining. This was followed by manual curation and cross-referencing against the GWAS catalog, yielding a final set of 286 articles. Results We identified 309 experimentally validated non-coding GWAS variants, regulating 252 genes across 130 human disease traits. These variants covered a variety of regulatory mechanisms. Interestingly, 70% (215/309) acted through cis-regulatory elements, with the remaining through promoters (22%, 70/309) or non-coding RNAs (8%, 24/309). Several validation approaches were utilized in these studies, including gene expression (n = 272), transcription factor binding (n = 175), reporter assays (n = 171), in vivo models (n = 104), genome editing (n = 96) and chromatin interaction (n = 33). Conclusions This review of the literature is the first to systematically evaluate the status and the landscape of experimentation being used to validate non-coding GWAS-identified variants. Our results clearly underscore the multifaceted approach needed for experimental validation, have practical implications on variant prioritization and considerations of target gene nomination. While the field has a long way to go to validate the thousands of GWAS associations, we show that progress is being made and provide exemplars of validation studies covering a wide variety of mechanisms, target genes, and disease areas. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01216-w.
Collapse
Affiliation(s)
- Ammar J Alsheikh
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA.
| | - Sabrina Wollenhaupt
- Information Research, AbbVie Deutschland GmbH & Co. KG, 67061, Knollstrasse, Ludwigshafen, Germany
| | - Emily A King
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | - Jonas Reeb
- Information Research, AbbVie Deutschland GmbH & Co. KG, 67061, Knollstrasse, Ludwigshafen, Germany
| | - Sujana Ghosh
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | | | - Saleh Tamim
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | - Jozef Lazar
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | - J Wade Davis
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | - Howard J Jacob
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| |
Collapse
|
14
|
Laubhahn K, Böck A, Zeber K, Unterschemmann S, Kunze S, Schedel M, Schaub B. 17q12-21 risk-variants influence cord blood immune regulation and multitrigger-wheeze. Pediatr Allergy Immunol 2022; 33:e13721. [PMID: 34919286 DOI: 10.1111/pai.13721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Childhood wheeze represents a first symptom of asthma. Early identification of children at risk for wheeze related to 17q12-21 variants and their underlying immunological mechanisms remain unknown. We aimed to assess the influence of 17q12-21 variants and mRNA expression at birth on the development of wheeze. METHODS Children were classified as multitrigger/viral/no wheeze until six years of age. The PAULINA/PAULCHEN birth cohorts were genotyped (n = 216; GSA-chip). mRNA expression of 17q21 and innate/adaptive genes was measured (qRT-PCR) in cord blood mononuclear cells. Expression quantitative trait loci (eQTL) and mediation analyses were performed. Genetic variation of 17q12-21 asthma-single nucleotide polymorphisms (SNPs) was summarized as the first principal component (PC1) and used to classify single SNP effects on gene expression as (locus)-dependent/independent eQTL SNPs. RESULTS Core region risk variants (IKZF3, ZPBP2, GSDMB, ORMDL3) were associated with multitrigger wheeze (OR: 3.05-5.43) and were locus-dependent eQTL SNPs with higher GSDMA, TLR2, TLR5, and lower TGFB1 expression. Increased risk of multitrigger wheeze with rs9303277 was in part mediated by TLR2 expression. Risk variants distal to the core region were mainly locus-independent eQTL SNPs with decreased CD209, CD86, TRAF6, RORA, and IL-9 expression. Distinct immune signatures in cord blood were associated either with multitrigger wheeze (increased innate genes, e.g., TLR2, IPS1, LY75) or viral wheeze (decreased NF-κB genes, e.g., TNFAIP3 and TNIP2). CONCLUSION Locus-dependent eQTL SNPs (core region) associated with increased inflammatory genes (primarily TLR2) at birth and subsequent multitrigger wheeze indicate that early priming and imbalance may be crucial for asthma pathophysiology. Locus-independent eQTL SNPs (mainly distal region, rs1007654) may be involved in the initiation of dendritic cell activation/maturation (TRAF6) and interaction with T cells (CD209, CD86). Identifying potential mechanistic pathways at birth may point to critical key points during early immune development predisposing to asthma.
Collapse
Affiliation(s)
- Kristina Laubhahn
- Pediatric Allergology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany.,Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research - DZL, LMU Munich, Munich, Germany
| | - Andreas Böck
- Pediatric Allergology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany.,Member of the CHildhood Allergy and tolerance consortium (CHAMP), LMU Munich, Munich, Germany
| | - Kathrin Zeber
- Pediatric Allergology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany.,Member of the CHildhood Allergy and tolerance consortium (CHAMP), LMU Munich, Munich, Germany
| | - Sandra Unterschemmann
- Pediatric Allergology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Sonja Kunze
- Research Unit of Molecular Epidemiology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.,Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Michaela Schedel
- Department of Pulmonary Medicine, University Medical Center Essen-Ruhrlandklinik, Essen, Germany.,Department of Pulmonary Medicine, University Medicine Essen-University Hospital, Essen, Germany
| | - Bianca Schaub
- Pediatric Allergology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany.,Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research - DZL, LMU Munich, Munich, Germany.,Member of the CHildhood Allergy and tolerance consortium (CHAMP), LMU Munich, Munich, Germany
| |
Collapse
|
15
|
Worgall TS. Sphingolipids and Asthma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1372:145-155. [DOI: 10.1007/978-981-19-0394-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Sasset L, Di Lorenzo A. Sphingolipid Metabolism and Signaling in Endothelial Cell Functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1372:87-117. [PMID: 35503177 DOI: 10.1007/978-981-19-0394-6_8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The endothelium, inner layer of blood vessels, constitutes a metabolically active paracrine, endocrine, and autocrine organ, able to sense the neighboring environment and exert a variety of biological functions important to preserve the health of vasculature, tissues, and organs. Sphingolipids are both fundamental structural components of the eukaryotic membranes and signaling molecules regulating a variety of biological functions. Ceramide and sphingosine-1-phosphate (S1P), bioactive sphingolipids, have emerged as important regulators of cardiovascular functions in health and disease. In this review we discuss recent insights into the role of ceramide and S1P biosynthesis and signaling in regulating endothelial cell functions, in health and diseases. We also highlight advances into the mechanisms regulating serine palmitoyltransferase, the first and rate-limiting enzyme of de novo sphingolipid biosynthesis, with an emphasis on its inhibitors, ORMDL and NOGO-B. Understanding the molecular mechanisms regulating the sphingolipid de novo biosynthesis may provide the foundation for therapeutic modulation of this pathway in a variety of conditions, including cardiovascular diseases, associated with derangement of this pathway.
Collapse
Affiliation(s)
- Linda Sasset
- Department of Pathology and Laboratory Medicine, Cardiovascular Research Institute, Feil Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Annarita Di Lorenzo
- Department of Pathology and Laboratory Medicine, Cardiovascular Research Institute, Feil Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
17
|
Zack DE, Stern DA, Willis AL, Kim AS, Mansfield CJ, Reed DR, Brooks SG, Adappa ND, Palmer JN, Cohen NA, Chiu AG, Song BH, Le CH, Chang EH. The GSDMB rs7216389 SNP is associated with chronic rhinosinusitis in a multi-institutional cohort. Int Forum Allergy Rhinol 2021; 11:1647-1653. [PMID: 34076350 PMCID: PMC8636513 DOI: 10.1002/alr.22824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/23/2021] [Accepted: 05/05/2021] [Indexed: 11/11/2022]
Abstract
BACKGROUND Chronic rhinosinusitis (CRS) is a multifactorial disease with a high co-occurrence with asthma. In this multicohort study, we tested whether single nucleotide polymorphisms (SNPs) associated with childhood asthma and rhinovirus (RV)-associated disease are related to an increased susceptibility to adult CRS in a multicohort retrospective case-control study. METHODS Participants at two tertiary academic rhinology centers, University of Arizona (UofA) and University of Pennsylvania (UPenn) were recruited. Cases were defined as those with physician diagnosed CRS (UofA, n = 149; UPenn, n = 250), and healthy controls were those without CRS (UofA, n = 66; UPenn, n = 275). Genomic DNA was screened for the GSDMB rs7216389 SNP and CDHR3 rs6967330 SNP. Gene dosage, or the number of combined risk alleles in a single subject was calculated. Meta-analysis of the association between GSDMB or CDHR3 genotypes and CRS was performed and additive gene dosage effect for each population calculated using p for trend. RESULTS A meta-analysis revealed a combined increased risk for CRS in subjects with the GSDMB rs7216389 SNP (odds ratio [OR] 1.40; 95% confidence interval [CI], 1.16-1.76; p = 0.004). Both the UofA (OR 1.73; 95% CI, 1.23-2.43; p = 0.002) and UPenn (OR 1.27; 95% CI, 1.02-1.58; p = 0.035) populations showed a significant positive association between the number of combined risk alleles of GSDMB rs7216389 SNP and CDHR3 rs6967330 SNP and risk for CRS. CONCLUSION Carriers of the GSDMB rs7216389 SNP and CDHR3 rs6967330 SNP are at increased susceptibility for CRS. These data suggest that therapeutic approaches to target aberrant responses to RV infection may play a role in the treatment of unified airway disease.
Collapse
Affiliation(s)
- Dana E Zack
- Department of Otolaryngology, University of Arizona, Tucson, Arizona, USA
| | - Debra A Stern
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Arizona, USA
| | - Amanda L Willis
- Department of Otolaryngology, University of Arizona, Tucson, Arizona, USA
| | - Alexander S Kim
- Department of Otolaryngology, University of Arizona, Tucson, Arizona, USA
| | - Corinne J Mansfield
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Danielle R Reed
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA
| | - Steven G Brooks
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nithin D Adappa
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - James N Palmer
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Noam A Cohen
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA
| | - Alexander G Chiu
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Brian H Song
- Department of Otolaryngology, University of Arizona, Tucson, Arizona, USA
| | - Chris H Le
- Department of Otolaryngology, University of Arizona, Tucson, Arizona, USA
| | - Eugene H Chang
- Department of Otolaryngology, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
18
|
Chatelier J, Chan S, Tan JA, Stewart AG, Douglass JA. Managing Exacerbations in Thunderstorm Asthma: Current Insights. J Inflamm Res 2021; 14:4537-4550. [PMID: 34526800 PMCID: PMC8436255 DOI: 10.2147/jir.s324282] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/25/2021] [Indexed: 12/23/2022] Open
Abstract
Epidemic thunderstorm asthma (ETSA) occurs following a thunderstorm due to the interaction of environmental and immunologic factors. Whilst first reported in the 1980s, the world's largest event in Melbourne, Australia, on November 21, 2016 has led to a wealth of clinical literature seeking to identify its mechanisms, susceptibility risk factors, and management approaches. Thunderstorm asthma (TA) typically presents during an aeroallergen season in individuals sensitized to perennial rye grass pollen (RGP) in Australia, or fungus in the United Kingdom, in combination with meteorological factors such as thunderstorms and lightning activity. It is now well recognized that large pollen grains, which usually lodge in the upper airway causing seasonal allergic rhinitis (SAR), are ruptured during these events, leading to sub-pollen particles respirable to the lower respiratory tract causing acute asthma. The identified risk factors of aeroallergen sensitization, specifically to RGP in Australians with a history of SAR, and individuals born in Australia of South-East Asian descent as a risk factor for TA has been key in selecting appropriate patients for preventative management. Moreover, severity-determining risk factors for ETSA-related asthma admission or mortality, including pre-existing asthma or prior hospitalization, poor inhaled corticosteroid adherence, and outdoor location at the time of the storm are important in identifying those who may require more aggressive treatment approaches. Basic treatments include optimizing asthma control and adherence to inhaled corticosteroid therapy, treatment of SAR, and education regarding TA to increase recognition of at-risk days. Precision treatment approaches may be more beneficial in select individuals, including the use of allergen immunotherapy and even biologic treatment to mitigate asthma severity. Finally, we discuss the importance of environmental health literacy in the context of concerns surrounding the increased frequency of ETSA due to climate change and its implications for the frequency and severity of future events.
Collapse
Affiliation(s)
- Josh Chatelier
- Department of Clinical Immunology and Allergy, Royal Melbourne Hospital, Parkville, Victoria, Australia
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Samantha Chan
- Department of Clinical Immunology and Allergy, Royal Melbourne Hospital, Parkville, Victoria, Australia
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
- Immunology Division, The Walter & Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Ju Ann Tan
- Department of Clinical Immunology and Allergy, Royal Melbourne Hospital, Parkville, Victoria, Australia
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Alastair G Stewart
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, University of Melbourne, Melbourne, Victoria, Australia
- ARC Centre for Personalised Therapeutics Technologies, University of Melbourne, Melbourne, Victoria, Australia
| | - Jo Anne Douglass
- Department of Clinical Immunology and Allergy, Royal Melbourne Hospital, Parkville, Victoria, Australia
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
19
|
James BN, Oyeniran C, Sturgill JL, Newton J, Martin RK, Bieberich E, Weigel C, Maczis MA, Palladino END, Lownik JC, Trudeau JB, Cook-Mills JM, Wenzel S, Milstien S, Spiegel S. Ceramide in apoptosis and oxidative stress in allergic inflammation and asthma. J Allergy Clin Immunol 2021; 147:1936-1948.e9. [PMID: 33130063 PMCID: PMC8081742 DOI: 10.1016/j.jaci.2020.10.024] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Nothing is known about the mechanisms by which increased ceramide levels in the lung contribute to allergic responses and asthma severity. OBJECTIVE We sought to investigate the functional role of ceramide in mouse models of allergic airway disease that recapitulate the cardinal clinical features of human allergic asthma. METHODS Allergic airway disease was induced in mice by repeated intranasal administration of house dust mite or the fungal allergen Alternaria alternata. Processes that can be regulated by ceramide and are important for severity of allergic asthma were correlated with ceramide levels measured by mass spectrometry. RESULTS Both allergens induced massive pulmonary apoptosis and also significantly increased reactive oxygen species in the lung. Prevention of increases in lung ceramide levels mitigated allergen-induced apoptosis, reactive oxygen species, and neutrophil infiltration. In contrast, dietary supplementation of the antioxidant α-tocopherol decreased reactive oxygen species but had no significant effects on elevation of ceramide level or apoptosis, indicating that the increases in lung ceramide levels in allergen-challenged mice are not mediated by oxidative stress. Moreover, specific ceramide species were altered in bronchoalveolar lavage fluid from patients with severe asthma compared with in bronchoalveolar lavage fluid from individuals without asthma. CONCLUSION Our data suggest that elevation of ceramide level after allergen challenge contributes to the apoptosis, reactive oxygen species generation, and neutrophilic infiltrate that characterize the severe asthmatic phenotype. Ceramide might be the trigger of formation of Creola bodies found in the sputum of patients with severe asthma and could be a biomarker to optimize diagnosis and to monitor and improve clinical outcomes in this disease.
Collapse
Affiliation(s)
- Briana N James
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Va
| | - Clement Oyeniran
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Va
| | - Jamie L Sturgill
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kentucky College of Medicine, Lexington, Ky
| | - Jason Newton
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Va
| | - Rebecca K Martin
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Va
| | - Erhard Bieberich
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Ky
| | - Cynthia Weigel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Va
| | - Melissa A Maczis
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Va
| | - Elisa N D Palladino
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Va
| | - Joseph C Lownik
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Va
| | - John B Trudeau
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pa
| | - Joan M Cook-Mills
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana School of Medicine, Indianapolis, Ind
| | - Sally Wenzel
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pa
| | - Sheldon Milstien
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Va
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Va.
| |
Collapse
|
20
|
Green CD, Weigel C, Oyeniran C, James BN, Davis D, Mahawar U, Newton J, Wattenberg BW, Maceyka M, Spiegel S. CRISPR/Cas9 deletion of ORMDLs reveals complexity in sphingolipid metabolism. J Lipid Res 2021; 62:100082. [PMID: 33939982 PMCID: PMC8167824 DOI: 10.1016/j.jlr.2021.100082] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 04/16/2021] [Indexed: 12/26/2022] Open
Abstract
The serine palmitoyltransferase (SPT) complex catalyzes the rate-limiting step in the de novo biosynthesis of ceramides, the precursors of sphingolipids. The mammalian ORMDL isoforms (ORMDL1-3) are negative regulators of SPT. However, the roles of individual ORMDL isoforms are unclear. Using siRNA against individual ORMDLs, only single siORMDL3 had modest effects on dihydroceramide and ceramide levels, whereas downregulation of all three ORMDLs induced more pronounced increases. With the CRISPR/Cas9-based genome-editing strategy, we established stable single ORMDL3 KO (ORMDL3-KO) and ORMDL1/2/3 triple-KO (ORMDL-TKO) cell lines to further understand the roles of ORMDL proteins in sphingolipid biosynthesis. While ORMDL3-KO modestly increased dihydroceramide and ceramide levels, ORMDL-TKO cells had dramatic increases in the accumulation of these sphingolipid precursors. SPT activity was increased only in ORMDL-TKO cells. In addition, ORMDL-TKO but not ORMDL3-KO dramatically increased levels of galactosylceramides, glucosylceramides, and lactosylceramides, the elevated N-acyl chain distributions of which broadly correlated with the increases in ceramide species. Surprisingly, although C16:0 is the major sphingomyelin species, it was only increased in ORMDL3-KO, whereas all other N-acyl chain sphingomyelin species were significantly increased in ORMDL-TKO cells. Analysis of sphingoid bases revealed that although sphingosine was only increased 2-fold in ORMDL-TKO cells, levels of dihydrosphingosine, dihydrosphingosine-1-phosphate, and sphingosine-1-phosphate were hugely increased in ORMDL-TKO cells and not in ORMDL3-KO cells. Thus, ORMDL proteins may have a complex, multifaceted role in the biosynthesis and regulation of cellular sphingolipids.
Collapse
Affiliation(s)
- Christopher D Green
- Department of Biochemistry and Molecular Biology, VCU School of Medicine, Richmond, VA, USA
| | - Cynthia Weigel
- Department of Biochemistry and Molecular Biology, VCU School of Medicine, Richmond, VA, USA
| | - Clement Oyeniran
- Department of Biochemistry and Molecular Biology, VCU School of Medicine, Richmond, VA, USA
| | - Briana N James
- Department of Biochemistry and Molecular Biology, VCU School of Medicine, Richmond, VA, USA
| | - Deanna Davis
- Department of Biochemistry and Molecular Biology, VCU School of Medicine, Richmond, VA, USA
| | - Usha Mahawar
- Department of Biochemistry and Molecular Biology, VCU School of Medicine, Richmond, VA, USA
| | - Jason Newton
- Department of Biochemistry and Molecular Biology, VCU School of Medicine, Richmond, VA, USA
| | - Binks W Wattenberg
- Department of Biochemistry and Molecular Biology, VCU School of Medicine, Richmond, VA, USA
| | - Michael Maceyka
- Department of Biochemistry and Molecular Biology, VCU School of Medicine, Richmond, VA, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, VCU School of Medicine, Richmond, VA, USA.
| |
Collapse
|
21
|
MacBeth M, Joetham A, Gelfand EW, Schedel M. Plasticity of Naturally Occurring Regulatory T Cells in Allergic Airway Disease Is Modulated by the Transcriptional Activity of Il-6. Int J Mol Sci 2021; 22:ijms22094582. [PMID: 33925531 PMCID: PMC8123826 DOI: 10.3390/ijms22094582] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 12/27/2022] Open
Abstract
The impact of naturally occurring regulatory T cells (nTregs) on the suppression or induction of lung allergic responses in mice depends on the nuclear environment and the production of the pro-inflammatory cytokine interleukin 6 (IL-6). These activities were shown to be different in nTregs derived from wild-type (WT) and CD8-deficient mice (CD8−/−), with increased IL-6 levels in nTregs from CD8−/− mice in comparison to WT nTregs. Thus, identification of the molecular mechanisms regulating IL-6 production is critical to understanding the phenotypic plasticity of nTregs. Electrophoretic mobility shift assays (EMSA) were performed to determine transcription factor binding to four Il-6 promoter loci using nuclear extracts from nTregs of WT and CD8−/− mice. Increased transcription factor binding for each of the Il-6 loci was identified in CD8−/− compared to WT nTregs. The impact of transcription factor binding and a novel short tandem repeat (STR) on Il-6 promoter activity was analyzed by luciferase reporter assays. The Il-6 promoter regions closer to the transcription start site (TSS) were more relevant to the regulation of Il-6 depending on NF-κB, c-Fos, and SP and USF family members. Two Il-6 promoter loci were most critical for the inducibility by lipopolysaccharide (LPS) and tumor necrosis factor α (TNFα). A novel STR of variable length in the Il-6 promoter was identified with diverging prevalence in nTregs from WT or CD8−/− mice. The predominant GT repeat in CD8−/− nTregs revealed the highest luciferase activity. These novel regulatory mechanisms controlling the transcriptional regulation of the Il-6 promoter are proposed to contribute to nTregs plasticity and may be central to disease pathogenesis.
Collapse
Affiliation(s)
- Morgan MacBeth
- Division of Allergy and Immunology and Cell Biology, Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA; (M.M.); (A.J.); (E.W.G.)
- Department of Medical Oncology, University of Colorado, Denver, CO 80206, USA
| | - Anthony Joetham
- Division of Allergy and Immunology and Cell Biology, Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA; (M.M.); (A.J.); (E.W.G.)
| | - Erwin W. Gelfand
- Division of Allergy and Immunology and Cell Biology, Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA; (M.M.); (A.J.); (E.W.G.)
| | - Michaela Schedel
- Division of Allergy and Immunology and Cell Biology, Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA; (M.M.); (A.J.); (E.W.G.)
- Department of Pulmonary Medicine, University Medical Center Essen-Ruhrlandklinik, 45239 Essen, Germany
- University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
- Correspondence: ; Tel.: +49-201-723-82545
| |
Collapse
|
22
|
Pham AK, Miller M, Rosenthal P, Das S, Weng N, Jang S, Kurten RC, Badrani J, Doherty TA, Oliver B, Broide DH. ORMDL3 expression in ASM regulates hypertrophy, hyperplasia via TPM1 and TPM4, and contractility. JCI Insight 2021; 6:136911. [PMID: 33661765 PMCID: PMC8119187 DOI: 10.1172/jci.insight.136911] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 02/26/2021] [Indexed: 12/21/2022] Open
Abstract
ORM1-like 3 (ORMDL3) has strong genetic linkage to childhood onset asthma. To determine whether ORMDL3 selective expression in airway smooth muscle (ASM) influences ASM function, we used Cre-loxP techniques to generate transgenic mice (hORMDL3Myh11eGFP-cre), which express human ORMDL3 selectively in smooth muscle cells. In vitro studies of ASM cells isolated from the bronchi of hORMDL3Myh11eGFP-cre mice demonstrated that they developed hypertrophy (quantitated by FACS and image analysis), developed hyperplasia (assessed by BrdU incorporation), and expressed increased levels of tropomysin proteins TPM1 and TPM4. siRNA knockdown of TPM1 or TPM4 demonstrated their importance to ORMDL3-mediated ASM proliferation but not hypertrophy. In addition, ASM derived from hORMDL3Myh11eGFP-cre mice had increased contractility to histamine in vitro, which was associated with increased levels of intracellular Ca2+; increased cell surface membrane Orai1 Ca2+ channels, which mediate influx of Ca2+ into the cytoplasm; and increased expression of ASM contractile genes sarco/endoplasmic reticulum Ca2+ ATPase 2b and smooth muscle 22. In vivo studies of hORMDL3Myh11eGFP-cre mice demonstrated that they had a spontaneous increase in ASM and airway hyperreactivity (AHR). ORMDL3 expression in ASM thus induces changes in ASM (hypertrophy, hyperplasia, increased contractility), which may explain the contribution of ORMDL3 to the development of AHR in childhood onset asthma, which is highly linked to ORMDL3 on chromosome 17q12-21.
Collapse
Affiliation(s)
- Alexa K. Pham
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Marina Miller
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Peter Rosenthal
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Sudipta Das
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Ning Weng
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Sunghoon Jang
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Richard C. Kurten
- Department of Pediatrics, Arkansas Children’s Research Institute, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jana Badrani
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Taylor A. Doherty
- Department of Medicine, University of California San Diego, La Jolla, California, USA
- Veterans Affairs San Diego Health Care System, La Jolla, California, USA
| | - Brian Oliver
- School of Life Sciences, University of Technology Sydney, Sydney, Australia
| | - David H. Broide
- Department of Medicine, University of California San Diego, La Jolla, California, USA
- School of Life Sciences, University of Technology Sydney, Sydney, Australia
| |
Collapse
|
23
|
Luthers CR, Dunn TM, Snow AL. ORMDL3 and Asthma: Linking Sphingolipid Regulation to Altered T Cell Function. Front Immunol 2020; 11:597945. [PMID: 33424845 PMCID: PMC7793773 DOI: 10.3389/fimmu.2020.597945] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/02/2020] [Indexed: 12/21/2022] Open
Abstract
Orosomucoid like 3 (ORMDL3) encodes an ER-resident transmembrane protein that regulates the activity of serine palmitoyltransferase (SPT), the first and rate-limiting enzyme for sphingolipid biosynthesis in cells. A decade ago, several genome wide association studies revealed single nucleotide polymorphisms associated with increased ORMDL3 protein expression and susceptibility to allergic asthma. Since that time, numerous studies have investigated how altered ORMDL3 expression might predispose to asthma and other autoimmune/inflammatory diseases. In this brief review, we focus on growing evidence suggesting that heightened ORMDL3 expression specifically in CD4+ T lymphocytes, the central orchestrators of adaptive immunity, constitutes a major underlying mechanism of asthma pathogenesis by skewing their differentiation and function. Furthermore, we explore how sphingolipid modulation in T cells might be responsible for these effects, and how further studies may interrogate this intriguing hypothesis.
Collapse
Affiliation(s)
- Christopher R Luthers
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Teresa M Dunn
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.,Department of Biochemistry, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Andrew L Snow
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
24
|
The Aryl Hydrocarbon Receptor in Asthma: Friend or Foe? Int J Mol Sci 2020; 21:ijms21228797. [PMID: 33233810 PMCID: PMC7699852 DOI: 10.3390/ijms21228797] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that has emerged as an important player in asthma control. AhR is responsive to environmental molecules and endogenous or dietary metabolites and regulates innate and adaptive immune responses. Binding of this receptor by different ligands has led to seemingly opposite responses in different asthma models. In this review, we present two sides of the same coin, with the beneficial and deleterious roles of AhR evaluated using known endogenous or exogenous ligands, deficient mice or antagonists. On one hand, AhR has an anti-inflammatory role since its activation in dendritic cells blocks the generation of pro-inflammatory T cells or shifts macrophages toward an anti-inflammatory M2 phenotype. On the other hand, AhR activation by particle-associated polycyclic aromatic hydrocarbons from the environment is pro-inflammatory, inducing mucus hypersecretion, airway remodelling, dysregulation of antigen presenting cells and exacerbates asthma features. Data concerning the role of AhR in cells from asthmatic patients are also reviewed, since AhR could represent a potential target for therapeutic immunomodulation.
Collapse
|
25
|
Maturation of the gut microbiome during the first year of life contributes to the protective farm effect on childhood asthma. Nat Med 2020; 26:1766-1775. [PMID: 33139948 DOI: 10.1038/s41591-020-1095-x] [Citation(s) in RCA: 208] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 09/08/2020] [Indexed: 12/19/2022]
Abstract
Growing up on a farm is associated with an asthma-protective effect, but the mechanisms underlying this effect are largely unknown. In the Protection against Allergy: Study in Rural Environments (PASTURE) birth cohort, we modeled maturation using 16S rRNA sequence data of the human gut microbiome in infants from 2 to 12 months of age. The estimated microbiome age (EMA) in 12-month-old infants was associated with previous farm exposure (β = 0.27 (0.12-0.43), P = 0.001, n = 618) and reduced risk of asthma at school age (odds ratio (OR) = 0.72 (0.56-0.93), P = 0.011). EMA mediated the protective farm effect by 19%. In a nested case-control sample (n = 138), we found inverse associations of asthma with the measured level of fecal butyrate (OR = 0.28 (0.09-0.91), P = 0.034), bacterial taxa that predict butyrate production (OR = 0.38 (0.17-0.84), P = 0.017) and the relative abundance of the gene encoding butyryl-coenzyme A (CoA):acetate-CoA-transferase, a major enzyme in butyrate metabolism (OR = 0.43 (0.19-0.97), P = 0.042). The gut microbiome may contribute to asthma protection through metabolites, supporting the concept of a gut-lung axis in humans.
Collapse
|
26
|
Li Y, Li X, Zhou W, Yu Q, Lu Y. ORMDL3 modulates airway epithelial cell repair in children with asthma under glucocorticoid treatment via regulating IL-33. Pulm Pharmacol Ther 2020; 64:101963. [PMID: 33035699 DOI: 10.1016/j.pupt.2020.101963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/30/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Study found that glucocorticoids, as first-line treatments for asthma, fails to prevent asthma recurrence. Orosomucoid-like (ORMDL) 3 is associated to childhood asthma onset and involved in the inflammation and repair of airway epithelium. We explored the functional role of ORMDL3 in glucocorticoid treatment for childhood asthma. METHODS Mice were sensitized with Ovalbumin (OVA) and treated with Dexamethasone (Dex), followed by OVA challenge to establish a mouse model of asthma. Histopathological changes in lung tissues were observed by hematoxylin-eosin and masson staining. Human bronchial epithelial (16HBE-14°) cells were transfected with ORMDL3 overexpression plasmid and siRNA-interleukin (IL)-33 alone or in combination, followed by Dex. Cell viability was measured by MTT assay. Cell migration was evaluated by wound healing assay. The expressions of E-cadherin and Vimentin and the activation of NF-κB and MAPK/ERK in 16HBE-14° cells were assessed by Western blot. The expressions of ORMDL3 and IL-33 in lung tissues and 16HBE-14° cells were analyzed by qRT-PCR or Western blot. RESULTS Dex treatment alleviated the histopathological abnormality and reversed the overexpressions of ORMDL3 and IL-33 in the lung tissues of asthmatic mice. Overexpressed ORMDL3 enhanced migration and viability, decreased E-cadherin level, increased the levels of IL-33 and Vimentin, and promoted the phosphorylation of NF-κB and MAPK/ERK in Dex-treated 16HBE-14° cells, thus reversing the effect of Dex treatment. However, siRNA-IL-33 inhibited viability and migration, increased E-cadherin level, decreased Vimentin level, and suppressed the phosphorylation of NF-κB and MAPK/ERK, thus reversing the effect of overexpressed ORMDL3 in Dex-treated 16HBE-14° cells. CONCLUSION ORMDL3 overexpression helped airway epithelial cellrepairin asthma via regulating IL-33 expression.
Collapse
Affiliation(s)
- Yaqin Li
- Department of Pediatrics, South Campus, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No.2000, Jiangyue Road, Pujiang, Minhang District, Shanghai, 201112, China
| | - Xiaoyan Li
- Department of Pediatrics, South Campus, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No.2000, Jiangyue Road, Pujiang, Minhang District, Shanghai, 201112, China
| | - Wenjing Zhou
- Department of Pediatrics, South Campus, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No.2000, Jiangyue Road, Pujiang, Minhang District, Shanghai, 201112, China
| | - Qing Yu
- Department of Pediatrics, South Campus, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No.2000, Jiangyue Road, Pujiang, Minhang District, Shanghai, 201112, China
| | - Yanming Lu
- Department of Pediatrics, South Campus, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No.2000, Jiangyue Road, Pujiang, Minhang District, Shanghai, 201112, China.
| |
Collapse
|
27
|
Vohra M, Sharma AR, Prabhu B N, Rai PS. SNPs in Sites for DNA Methylation, Transcription Factor Binding, and miRNA Targets Leading to Allele-Specific Gene Expression and Contributing to Complex Disease Risk: A Systematic Review. Public Health Genomics 2020; 23:155-170. [PMID: 32966991 DOI: 10.1159/000510253] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 07/16/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION The complex genetic diversity among human populations results from an assortment of factors acting at various sequential levels, including mutations, population migrations, genetic drift, and selection. Although there are a plethora of DNA sequence variations identified through genome-wide association studies (GWAS), the challenge remains to explain the mechanisms underlying interindividual phenotypic disparity accounting for disease susceptibility. Single nucleotide polymorphisms (SNPs) present in the sites for DNA methylation, transcription factor (TF) binding, or miRNA targets can alter the gene expression. The systematic review aimed to evaluate the complex crosstalk among SNPs, miRNAs, DNA methylation, and TFs for complex multifactorial disease risk. METHODS PubMed and Scopus databases were used from inception until May 15, 2019. Initially, screening of articles involved studies assessing the interaction of SNPs with TFs, DNA methylation, or miRNAs resulting in allele-specific gene expression in complex multifactorial diseases. We also included the studies which provided experimental validation of the interaction of SNPs with each of these factors. The results from various studies on multifactorial diseases were assessed. RESULTS A total of 11 articles for SNPs interacting with DNA methylation, 30 articles for SNPs interacting with TFs, and 11 articles for SNPs in miRNA binding sites were selected. The interactions of SNPs with epigenetic factors were found to be implicated in different types of cancers, autoimmune diseases, cardiovascular diseases, diabetes, and asthma. CONCLUSION The systematic review provides evidence for the interplay between genetic and epigenetic risk factors through allele-specific gene expression in various complex multifactorial diseases.
Collapse
Affiliation(s)
- Manik Vohra
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Anu Radha Sharma
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Navya Prabhu B
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Padmalatha S Rai
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India,
| |
Collapse
|
28
|
Jin R, Zhang ZX, Zhu LH, Zhuang LL, Chen XQ. [Expression of CREB in children with recurrent wheezing and its effect on ORMDL3 gene expression]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2020; 22:980-983. [PMID: 32933630 PMCID: PMC7499448 DOI: 10.7499/j.issn.1008-8830.2003278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVE To study the expression level of cAMP response element-binding protein (CREB) in children with recurrent wheezing under three years of age and its effect on the expression of the serum orosomucoid 1-like protein 3 (ORMDL3) gene. METHODS Thirty-six children with recurrent wheezing under three years of age who visited the hospital from June 2017 to June 2019 were selected as the recurrent wheezing group. Twenty-four healthy children from physical examination were selected as the control group. The CREB expression level in peripheral blood was measured by quantitative real-time PCR. Human bronchial epithelial cells (BEAS-2B) were cultured, and dual-luciferase reporter assay and quantitative real-time PCR were used to investigate the effects of overexpression and siRNA interference of CREB on the promoter activity and mRNA expression of the ORMDL3 gene in the BEAS-2B cells. RESULTS The expression level of CREB in the recurrent wheezing group was significantly higher than that in the control group (P<0.001). In BEAS-2B cells, overexpression of CREB significantly up-regulated the promoter activity and mRNA expression of the ORMDL3 gene (P<0.05), while siRNA interference of CREB significantly reduced the promoter activity and mRNA expression of the ORMDL3 gene (P<0.05). CONCLUSIONS The expression of CREB is increased in children with recurrent wheezing, and CREB may be involved in the pathogenesis of recurrent wheezing by regulating expression of the ORMDL3 gene.
Collapse
Affiliation(s)
- Rui Jin
- Department of Pediatrics, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China.
| | | | | | | | | |
Collapse
|
29
|
Dileepan M, Ha SG, Rastle-Simpson S, Ge XN, Greenberg YG, Wijesinghe DS, Contaifer D, Rao SP, Sriramarao P. Pulmonary delivery of ORMDL3 short hairpin RNA - a potential tool to regulate allergen-induced airway inflammation. Exp Lung Res 2020; 46:243-257. [PMID: 32578458 DOI: 10.1080/01902148.2020.1781297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Aim/Purpose: Exposure to various allergens has been shown to increase expression of ORMDL3 in the lung in models of allergic asthma. Studies using genetically modified (transgenic or knock out) mice have revealed some of the functions of ORMDL3 in asthma pathogenesis, although amid debate. The goal of this study was to use targeted post-transcriptional downregulation of ORMDL3 in allergen-challenged wild-type (WT) mice by RNA interference to further elucidate the functional role of ORMDL3 in asthma pathogenesis and evaluate a potential therapeutic option.Methods: Allergen (ovalbumin [OVA])-challenged WT mice were administered intranasally (i.n) with a single dose of five short hairpin RNA (shRNA) constructs with different target sequence for murine ORMDL3 cloned in a lentiviral vector or with the empty vector (control). Mice were evaluated for allergen-induced airway hyperresponsiveness (AHR) and various features of airway inflammation after 72 hours.Results: I.n administration of a single dose of ORMDL3 shRNAs to OVA-challenged mice resulted in reduction of ORMDL3 gene expression in the lungs associated with a significant reduction in AHR to inhaled methacholine and in the number of inflammatory cells recruited in the airways, specifically eosinophils, as well as in airway mucus secretion compared to OVA-challenged mice that received the empty vector. Administration of ORMDL3 shRNAs also significantly inhibited levels of IL-13, eotaxin-2 and sphingosine in the lungs. Additionally, ORMDL3 shRNAs significantly inhibited the allergen-mediated increase in monohexyl ceramides C22:0 and C24:0.Conclusions: Post-transcriptional down regulation of ORMDL3 in allergic lungs using i.n-delivered ORMDL3 shRNA (akin to inhaled therapy) attenuates development of key features of airway allergic disease, confirming the involvement of ORMDL3 in allergic asthma pathogenesis and serving as a model for a potential therapeutic strategy.
Collapse
Affiliation(s)
- Mythili Dileepan
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA
| | - Sung Gil Ha
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA
| | | | - Xiao Na Ge
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA.,Merck & Co., Inc, Palo Alto, CA, USA
| | - Yana G Greenberg
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA
| | - Dayanjan S Wijesinghe
- Department of Pharmacotherapy and Outcomes Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Daniel Contaifer
- Department of Pharmacotherapy and Outcomes Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Savita P Rao
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA
| | - P Sriramarao
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
30
|
Ono JG, Kim BI, Zhao Y, Christos PJ, Tesfaigzi Y, Worgall TS, Worgall S. Decreased sphingolipid synthesis in children with 17q21 asthma-risk genotypes. J Clin Invest 2020; 130:921-926. [PMID: 31929190 PMCID: PMC6994114 DOI: 10.1172/jci130860] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/31/2019] [Indexed: 02/06/2023] Open
Abstract
Risk for childhood asthma is conferred by alleles within the 17q21 locus affecting ORMDL sphingolipid biosynthesis regulator 3 (ORMDL3) expression. ORMDL3 inhibits sphingolipid de novo synthesis. Although the effects of 17q21 genotypes on sphingolipid synthesis in human asthma remain unclear, both decreased sphingolipid synthesis and ORMDL3 overexpression are linked to airway hyperreactivity. To characterize the relationship of genetic asthma susceptibility with sphingolipid synthesis, we analyzed asthma-associated 17q21 genotypes (rs7216389, rs8076131, rs4065275, rs12603332, and rs8067378) in both children with asthma and those without asthma, quantified plasma and whole-blood sphingolipids, and assessed sphingolipid de novo synthesis in peripheral blood cells by measuring the incorporation of stable isotope-labeled serine (substrate) into sphinganine and sphinganine-1-phosphate. Whole-blood dihydroceramides and ceramides were decreased in subjects with the 17q21 asthma-risk alleles rs7216389 and rs8076131. Children with nonallergic asthma had lower dihydroceramides, ceramides, and sphingomyelins than did controls. Children with allergic asthma had higher dihydroceramides, ceramides, and sphingomyelins compared with children with nonallergic asthma. Additionally, de novo sphingolipid synthesis was lower in children with asthma compared with controls. These findings connect genetic 17q21 variations that are associated with asthma risk and higher ORMDL3 expression to lower sphingolipid synthesis in humans. Altered sphingolipid synthesis may therefore be a critical factor in asthma pathogenesis and may guide the development of future therapeutics.
Collapse
Affiliation(s)
- Jennie G. Ono
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Benjamin I. Kim
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Yize Zhao
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, USA
| | - Paul J. Christos
- Department of Healthcare Policy and Research, Weill Cornell Medicine, New York, New York, USA
| | - Yohannes Tesfaigzi
- Department of Pulmonary and Critical Care Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Tilla S. Worgall
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Stefan Worgall
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
- Department of Genetic Medicine, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
31
|
James B, Milstien S, Spiegel S. ORMDL3 and allergic asthma: From physiology to pathology. J Allergy Clin Immunol 2019; 144:634-640. [PMID: 31376405 DOI: 10.1016/j.jaci.2019.07.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/18/2019] [Accepted: 07/26/2019] [Indexed: 01/10/2023]
Abstract
There is a strong genetic component to asthma, and numerous genome-wide association studies have identified ORM1 (yeast)-like protein 3 (ORMDL3) as a gene associated with asthma susceptibility. However, how ORMDL3 contributes to asthma pathogenesis and its physiologic functions is not well understood and a matter of great debate. This rostrum describes recent advances and new insights in understanding of the multifaceted functions of ORMDL3 in patients with allergic asthma. We also suggest a potential unifying paradigm and discuss molecular mechanisms for the pathologic functions of ORMDL3 in asthma related to its evolutionarily conserved role in regulation of sphingolipid homeostasis. Finally, we briefly survey the utility of sphingolipid metabolites as potential biomarkers for allergic asthma.
Collapse
Affiliation(s)
- Briana James
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Va
| | - Sheldon Milstien
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Va
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Va.
| |
Collapse
|
32
|
de Oliveira Costa GN, Figueiredo CA, Conceição JS, Strina A, Genser B, da Silva TM, Alcantara-Neves NM, Fiaccone RL, Rodrigues LC, Barreto ML. Genetic variants in 17q12-21 locus and childhood asthma in Brazil: Interaction with Varicella zoster virus seropositivity. Gene 2019; 715:143991. [PMID: 31357023 DOI: 10.1016/j.gene.2019.143991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 01/06/2023]
Abstract
BACKGROUND Asthma is a complex disease with worldwide public health relevance, is related to environmental causes and a genetic predisposition. The chromosomal 17q12-21 locus has been consistently demonstrated to be associated with asthma risk. The effects of variants in the 17q12-21 locus on childhood asthma were first identified in a genome wide- association study. Since that time, those findings have been replicated in different populations but not in South American populations. OBJECTIVE This study aimed to investigate the role of variants in the 17q12-21 locus on asthma in a sample of Brazilian children. METHODS This was a cross-sectional study conducted on a cohort of 1247 children. These analyses used 50 Single Nucleotide Variants (SNVs) in the 17q12-21 locus were genotyped as part of a genome wide association study (GWAS). RESULTS Four SNVs (rs4065275, rs12603332, rs73985228 and rs77777702) were associated with childhood asthma. The rs73985228 exhibited the strongest association across the different genetic models (OR, 95%CI 2.8, 1.44-3.21, p < 0.01). In an analysis that was stratified by atopy, two SNVs (rs73985228 and rs2715555) were found to be associated with atopic and non-atopic asthma. For the first time, we observed a significant interaction with seropositivity for the Varicella zoster virus (for rs4065275, p = 0.02, and for rs12603332, p = 0.04); i.e., the association was found in those who were seropositive but not in those who were seronegative for this virus. CONCLUSIONS We confirmed the associations of variants in the 17q12-21 locus with atopic and non-atopic asthma and identified an interaction with seropositivity for the Varicella zoster virus.
Collapse
Affiliation(s)
- Gustavo Nunes de Oliveira Costa
- Instituto de Saúde Coletiva, Universidade Federal da Bahia, Salvador, Brazil; Departamento de Ciências da Saúde, Universidade Salvador (UNIFACS), Brazil.
| | | | | | - Agostino Strina
- Instituto de Saúde Coletiva, Universidade Federal da Bahia, Salvador, Brazil
| | - Bernd Genser
- Mannheim Institute of Public Health, Social and Preventive Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | | | | | - Rosemeire Leovigildo Fiaccone
- Instituto de Saúde Coletiva, Universidade Federal da Bahia, Salvador, Brazil; Instituto de Matemática, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Laura Cunha Rodrigues
- Department of Epidemiology and Populations Health, London School of Hygiene and Tropical Medicine, UK
| | - Mauricio Lima Barreto
- Center of Data and Knowledge Integration for Health, Instituto Gonçalo Muniz, Fundação Osvaldo Cruz, Salvador, Brazil; Fundação Osvaldo Cruz, Salvador, Brazil
| |
Collapse
|
33
|
Li Y, Cao L, Yu Q, Xue H, Lu Y. Association between peripheral blood mononuclear cell ORMDL3 expression and the asthma predictive index in preschool children. J Int Med Res 2019; 47:3727-3736. [PMID: 31342811 PMCID: PMC6726768 DOI: 10.1177/0300060519862674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Yaqin Li
- 1 Department of Pediatrics, South Campus, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lanfang Cao
- 2 Department of Pediatrics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Yu
- 1 Department of Pediatrics, South Campus, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haiyan Xue
- 2 Department of Pediatrics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanming Lu
- 1 Department of Pediatrics, South Campus, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
34
|
Debeuf N, Zhakupova A, Steiner R, Van Gassen S, Deswarte K, Fayazpour F, Van Moorleghem J, Vergote K, Pavie B, Lemeire K, Hammad H, Hornemann T, Janssens S, Lambrecht BN. The ORMDL3 asthma susceptibility gene regulates systemic ceramide levels without altering key asthma features in mice. J Allergy Clin Immunol 2019; 144:1648-1659.e9. [PMID: 31330218 DOI: 10.1016/j.jaci.2019.06.041] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Genome-wide association studies in asthma have repeatedly identified single nucleotide polymorphisms in the ORM (yeast)-like protein isoform 3 (ORMDL3) gene across different populations. Although the ORM homologues in yeast are well-known inhibitors of sphingolipid synthesis, it is still unclear whether and how mammalian ORMDL3 regulates sphingolipid metabolism and whether altered sphingolipid synthesis would be causally related to asthma risk. OBJECTIVE We sought to examine the in vivo role of ORMDL3 in sphingolipid metabolism and allergic asthma. METHODS Ormdl3-LacZ reporter mice, gene-deficient Ormdl3-/- mice, and overexpressing Ormdl3Tg/wt mice were exposed to physiologically relevant aeroallergens, such as house dust mite (HDM) or Alternaria alternata, to induce experimental asthma. Mass spectrometry-based sphingolipidomics were performed, and airway eosinophilia, TH2 cytokine production, immunoglobulin synthesis, airway remodeling, and bronchial hyperreactivity were measured. RESULTS HDM challenge significantly increased levels of total sphingolipids in the lungs of HDM-sensitized mice compared with those in control mice. In Ormdl3Tg/wt mice the allergen-induced increase in lung ceramide levels was significantly reduced, whereas total sphingolipid levels were not affected. Conversely, in liver and serum, levels of total sphingolipids, including ceramides, were increased in Ormdl3-/- mice, whereas they were decreased in Ormdl3Tg/wt mice. This difference was independent of allergen exposure. Despite these changes, all features of asthma were identical between wild-type, Ormdl3Tg/wt, and Ormdl3-/- mice across several models of experimental asthma. CONCLUSION ORMDL3 regulates systemic ceramide levels, but genetically interfering with Ormdl3 expression does not result in altered experimental asthma.
Collapse
Affiliation(s)
- Nincy Debeuf
- Laboratory of Mucosal Immunology and Immunoregulation, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Assem Zhakupova
- Institute of Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland
| | - Regula Steiner
- Institute of Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland
| | - Sofie Van Gassen
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium; Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Kim Deswarte
- Laboratory of Mucosal Immunology and Immunoregulation, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Farzaneh Fayazpour
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Laboratory for ER Stress and Inflammation, VIB Center for Inflammation Research, Ghent, Belgium
| | - Justine Van Moorleghem
- Laboratory of Mucosal Immunology and Immunoregulation, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Karl Vergote
- Laboratory of Mucosal Immunology and Immunoregulation, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Benjamin Pavie
- VIB Bioimaging Core, VIB Center for Inflammation Research, Ghent, Belgium; Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Kelly Lemeire
- Biomedical Molecular Biology, Ghent University, Ghent, Belgium; VIB Center for Inflammation Research, Ghent, Belgium
| | - Hamida Hammad
- Laboratory of Mucosal Immunology and Immunoregulation, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Thorsten Hornemann
- Institute of Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland
| | - Sophie Janssens
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Laboratory for ER Stress and Inflammation, VIB Center for Inflammation Research, Ghent, Belgium
| | - Bart N Lambrecht
- Laboratory of Mucosal Immunology and Immunoregulation, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
35
|
Miller M, Broide DH. Why Is ORMDL3 on Chromosome 17q21 Highly Linked to Asthma? Am J Respir Crit Care Med 2019; 199:404-406. [PMID: 30365391 DOI: 10.1164/rccm.201810-1941ed] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Marina Miller
- 1 Department of Medicine University of California San Diego La Jolla, California
| | - David H Broide
- 1 Department of Medicine University of California San Diego La Jolla, California
| |
Collapse
|
36
|
Boeck A, Landgraf-Rauf K, Vogelsang V, Siemens D, Prazeres da Costa O, Klucker E, von Mutius E, Buch T, Mansmann U, Schaub B. Ca 2+ and innate immune pathways are activated and differentially expressed in childhood asthma phenotypes. Pediatr Allergy Immunol 2018; 29:823-833. [PMID: 30102794 DOI: 10.1111/pai.12971] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/26/2018] [Accepted: 07/26/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND Asthma is the most common chronic disease in children. Underlying immunologic mechanisms-in particular of different phenotypes-are still just partly understood. The objective of the study was the identification of distinct cellular pathways in allergic asthmatics (AA) and nonallergic asthmatics (NA) vs healthy controls (HC). METHODS Peripheral blood mononuclear cells (PBMCs) of steroid-naïve children (n(AA/NA/HC) = 35/13/34)) from the CLARA study (n = 275) were stimulated (anti-CD3/CD28, LpA) or kept unstimulated. Gene expression was investigated by transcriptomics and quantitative RT-PCR. Differentially regulated pathways between phenotypes were assessed after adjustment for sex and age (KEGG pathways). Networks based on correlations of gene expression were built using force-directed graph drawing. RESULTS Allergic asthmatics vs NA and asthmatics overall vs HC showed significantly different expression of Ca2+ and innate immunity-associated pathways. PCR analysis confirmed significantly increased Ca2+ -associated gene regulation (ORMDL3 and ATP2A3) in asthmatics vs HC, most prominent in AA. Innate immunity receptors (LY75, TLR7), relevant for virus infection, were also upregulated in AA and NA compared to HC. AA and NA could be differentiated by increased ATP2A3 and FPR2 in AA, decreased CLEC4E in AA, and increased IFIH1 expression in NA following anti-CD3/28 stimulation vs unstimulated (fold change). CONCLUSIONS Ca2+ regulation and innate immunity response pattern to viruses were activated in PBMCs of asthmatics. Asthma phenotypes were differentially characterized by distinct regulation of ATP2A3 and expression of innate immune receptors (FPR2, CLEC4E, IFIH1). These genes may present promising targets for future in-depth investigation with the long-term goal of more phenotype-specific therapeutic interventions in asthmatics.
Collapse
Affiliation(s)
- Andreas Boeck
- Department of Asthma & Allergy, University Children's Hospital Munich, LMU Munich, Munich, Germany
| | - Katja Landgraf-Rauf
- Department of Asthma & Allergy, University Children's Hospital Munich, LMU Munich, Munich, Germany.,Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Vanessa Vogelsang
- Department of Asthma & Allergy, University Children's Hospital Munich, LMU Munich, Munich, Germany
| | - Diana Siemens
- Department of Asthma & Allergy, University Children's Hospital Munich, LMU Munich, Munich, Germany
| | | | - Elisabeth Klucker
- Department of Asthma & Allergy, University Children's Hospital Munich, LMU Munich, Munich, Germany
| | - Erika von Mutius
- Department of Asthma & Allergy, University Children's Hospital Munich, LMU Munich, Munich, Germany.,Member of the German Center for Lung Research (DZL), Munich, Germany.,Institute for Asthma and Allergy Prevention, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Thorsten Buch
- Institute of Laboratory Animal Science, University of Zurich, Zurich, Switzerland
| | - Ulrich Mansmann
- Institute for Medical Information Processing, Biometry and Epidemiology, LMU, Munich, Germany
| | - Bianca Schaub
- Department of Asthma & Allergy, University Children's Hospital Munich, LMU Munich, Munich, Germany.,Member of the German Center for Lung Research (DZL), Munich, Germany
| |
Collapse
|
37
|
Evaluation of Soluble CD48 Levels in Patients with Allergic and Nonallergic Asthma in Relation to Markers of Type 2 and Non-Type 2 Immunity: An Observational Study. J Immunol Res 2018; 2018:4236263. [PMID: 30306094 PMCID: PMC6165012 DOI: 10.1155/2018/4236263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 07/25/2018] [Accepted: 08/14/2018] [Indexed: 01/26/2023] Open
Abstract
CD48 is a costimulatory receptor associated with human asthma. We aimed to assess the significance of the soluble form of CD48 (sCD48) in allergic and nonallergic asthma. Volunteer patients completed an asthma and allergy questionnaire, spirometry, methacholine challenge test, a common allergen skin prick test, and a complete blood count. sCD48, IgE, IL5, IL17A, IL33, and IFNγ were quantitated in serum by ELISA. Asthma was defined as positive methacholine challenge test or a 15% increase in FEV1 post bronchodilator in symptomatic individuals. Allergy was defined as positive skin test or IgE levels > 200 IU/l in symptomatic individuals. 137 individuals participated in the study: 82 (60%) were diagnosed with asthma of which 53 (64%) was allergic asthma. sCD48 levels were significantly elevated in patients with nonallergic asthma compared to control and to the allergic asthma cohort (median (IQR) pg/ml, 1487 (1338–1758) vs. 1308 (1070–1581), p < 0.01, and 1336 (1129–1591), p = 0.02, respectively). IL17A, IL33, and IFNγ levels were significantly elevated in allergic and nonallergic asthmatics when compared to control. No correlation was found between sCD48 level and other disease markers. sCD48 is elevated in nonallergic asthma. Additional studies are required for understanding the role of sCD48 in airway disease.
Collapse
|
38
|
Kothari PH, Qiu W, Croteau-Chonka DC, Martinez FD, Liu AH, Lemanske RF, Ober C, Krishnan JA, Nicolae DL, Barnes KC, London SJ, Barraza-Villarreal A, White SR, Naureckas ET, Millstein J, Gauderman WJ, Gilliland FD, Carey VJ, Weiss ST, Raby BA. Role of local CpG DNA methylation in mediating the 17q21 asthma susceptibility gasdermin B (GSDMB)/ORMDL sphingolipid biosynthesis regulator 3 (ORMDL3) expression quantitative trait locus. J Allergy Clin Immunol 2018; 141:2282-2286.e6. [PMID: 29374573 DOI: 10.1016/j.jaci.2017.11.057] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 11/10/2017] [Accepted: 11/16/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Parul H Kothari
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass; Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass.
| | - Weiliang Qiu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Damien C Croteau-Chonka
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Fernando D Martinez
- Asthma and Airway Disease Research Center, University of Arizona Health Sciences, Tucson, Ariz
| | - Andrew H Liu
- Section of Pulmonary Medicine, Department of Pediatrics, Children's Hospital Colorado, National Jewish Health and University of Colorado School of Medicine, Denver, Colo
| | - Robert F Lemanske
- University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, Ill
| | - Jerry A Krishnan
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Ill
| | - Dan L Nicolae
- Department of Human Genetics, University of Chicago, Chicago, Ill; Departments of Medicine and Statistics, University of Chicago, Chicago, Ill
| | - Kathleen C Barnes
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado, the Anschutz Medical Campus, Aurora, Colo
| | - Stephanie J London
- Division of Intramural Research, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC
| | | | - Steven R White
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Ill
| | - Edward T Naureckas
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Ill
| | - Joshua Millstein
- Division of Biostatistics, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - W James Gauderman
- Division of Biostatistics, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Frank D Gilliland
- Division of Environmental Health, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Vincent J Carey
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Scott T Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass; Partners HealthCare Personalized Medicine, Partners Health Care, Boston, Mass
| | - Benjamin A Raby
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass; Pulmonary Genetics Center and Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | | |
Collapse
|
39
|
A decade of research on the 17q12-21 asthma locus: Piecing together the puzzle. J Allergy Clin Immunol 2018; 142:749-764.e3. [PMID: 29307657 PMCID: PMC6172038 DOI: 10.1016/j.jaci.2017.12.974] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/13/2017] [Accepted: 12/16/2017] [Indexed: 12/20/2022]
Abstract
Chromosome 17q12–21 remains the most highly replicated and significant asthma locus. Genotypes in the core region defined by the first genome-wide association study correlate with expression of 2 genes, ORM1-like 3 (ORMDL3) and gasdermin B (GSDMB), making these prime candidate asthma genes, although recent studies have implicated gasdermin A (GSDMA) distal to and post-GPI attachment to proteins 3 (PGAP3) proximal to the core region as independent loci. We review 10 years of studies on the 17q12–21 locus and suggest that genotype-specific risks for asthma at the proximal and distal loci are not specific to early-onset asthma and mediated by PGAP3, ORMDL3, and/or GSDMA expression. We propose that the weak and inconsistent associations of 17q single nucleotide polymorphisms with asthma in African Americans is due to the high frequency of some 17q alleles, the breakdown of linkage disequilibrium on African-derived chromosomes, and possibly different early-life asthma endotypes in these children. Finally, the inconsistent association between asthma and gene expression levels in blood or lung cells from older children and adults suggests that genotype effects may mediate asthma risk or protection during critical developmental windows and/or in response to relevant exposures in early life. Thus studies of young children and ethnically diverse populations are required to fully understand the relationship between genotype and asthma phenotype and the gene regulatory architecture at this locus. (J Allergy Clin Immunol 2018;142:749–64.)
Collapse
|
40
|
Liu YP, Rajamanikham V, Baron M, Patel S, Mathur SK, Schwantes EA, Ober C, Jackson DJ, Gern JE, Lemanske RF, Smith JA. Association of ORMDL3 with rhinovirus-induced endoplasmic reticulum stress and type I Interferon responses in human leucocytes. Clin Exp Allergy 2017; 47:371-382. [PMID: 28192616 DOI: 10.1111/cea.12903] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 01/11/2017] [Accepted: 02/06/2017] [Indexed: 02/01/2023]
Abstract
BACKGROUND Children with risk alleles at the 17q21 genetic locus who wheeze during rhinovirus illnesses have a greatly increased likelihood of developing childhood asthma. In mice, overexpression of the 17q21 gene ORMDL3 leads to airway remodelling and hyperresponsiveness. However, the mechanisms by which ORMDL3 predisposes to asthma are unclear. Previous studies have suggested that ORMDL3 induces endoplasmic reticulum (ER) stress and production of the type I interferon (IFN)-regulated chemokine CXCL10. OBJECTIVE The purpose of this study was to determine the relationship between ORMDL3 and rhinovirus-induced ER stress and type I IFN in human leucocytes. METHODS ER stress was monitored by measuring HSPA5, CHOP and spliced XBP1 gene expression, and type I IFN by measuring IFNB1 (IFN-β) and CXCL10 expression in human cell lines and primary leucocytes following treatment with rhinovirus. Requirements for cell contact and specific cell type in ORMDL3 induction were examined by transwell assay and depletion experiments, respectively. Finally, the effects of 17q21 genotype on the expression of ORMDL3, IFNB1 and ER stress genes were assessed. RESULTS THP-1 monocytes overexpressing ORMDL3 responded to rhinovirus with increased IFNB1 and HSPA5. Rhinovirus-induced ORMDL3 expression in primary leucocytes required cell-cell contact, and induction was suppressed by plasmacytoid dendritic cell depletion. The degree of rhinovirus-induced ORMDL3, HSPA5 and IFNB1 expression varied by leucocyte type and 17q21 genotype, with the highest expression of these genes in the asthma-associated genotype. CONCLUSIONS AND CLINICAL RELEVANCE Multiple lines of evidence support an association between higher ORMDL3 and increased rhinovirus-induced HSPA5 and type I IFN gene expression. These associations with ORMDL3 are cell type specific, with the most significant 17q21 genotype effects on ORMDL3 expression and HSPA5 induction evident in B cells. Together, these findings have implications for how the interaction of increased ORMDL3 and rhinovirus may predispose to asthma.
Collapse
Affiliation(s)
- Y-P Liu
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - V Rajamanikham
- Department of Biostatistics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - M Baron
- Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - S Patel
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - S K Mathur
- Division of Allergy, Pulmonary and Critical Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - E A Schwantes
- Division of Allergy, Pulmonary and Critical Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - C Ober
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - D J Jackson
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - J E Gern
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - R F Lemanske
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - J A Smith
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
41
|
Schwantes EA, Evans MD, Cuskey A, Burford A, Smith JA, Lemanske RF, Jarjour NN, Mathur SK. Elevated fractional exhaled nitric oxide and blood eosinophil counts are associated with a 17q21 asthma risk allele in adult subjects. J Asthma Allergy 2017; 11:1-9. [PMID: 29296089 PMCID: PMC5741070 DOI: 10.2147/jaa.s149183] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Background and objectives Genome-wide association studies identified single-nucleotide polymorphisms (SNPs) at the 17q21 locus conferring increased risk for childhood-onset asthma. Little is known about how these SNPs impact adult asthma patients. We sought to examine an adult population for associations between rs7216389 (17q21-associated SNP) and features of asthma including fractional exhaled nitric oxide (FeNO), eosinophil counts, and age of asthma onset. Methods Subjects were genotyped at SNP rs7216389. The geometric mean of FeNO measurements and peripheral blood eosinophil counts from 2008 to 2015 were collected. Demographics and medical history were collected including self-reported allergy diagnoses and age of asthma onset. Eosinophils, monocytes, and peripheral blood mononuclear cells (PBMCs) were isolated for the examination of ORMDL3 expression. Results FeNO levels from 157 genotyped subjects (31CC, 72CT, and 54TT) and peripheral eosinophil counts from 252 genotyped subjects (46CC, 122CT, and 84TT) were analyzed. In a sub-group analysis of asthma subjects, the number of attributable T alleles was associated with significantly lower age of asthma onset (P=0.03) and greater FeNO levels (geometric mean 30.0 ppb TT, 20.0 ppb CT, 20.0 ppb CC, P=0.02). In the total cohort of subjects, the T allele was associated with a higher percentage of individual eosinophil counts >200/mm3 (45% TT, 26% CT, 24% CC, P=0.005). Eosinophils expressed ORMDL3 mRNA and protein. Conclusion In adult subjects, the number of T alleles at SNP rs7216389 corresponds to significantly greater FeNO levels and peripheral eosinophil counts. The expression of ORMDL3 in eosinophils suggests that they may participate in mediating the asthma risk associated with the 17q21 locus.
Collapse
Affiliation(s)
| | | | - Alex Cuskey
- Division of Allergy, Pulmonary and Critical Care, Department of Medicine
| | - Alex Burford
- Division of Allergy, Pulmonary and Critical Care, Department of Medicine
| | - Judith A Smith
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Robert F Lemanske
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Nizar N Jarjour
- Division of Allergy, Pulmonary and Critical Care, Department of Medicine
| | - Sameer K Mathur
- Division of Allergy, Pulmonary and Critical Care, Department of Medicine
| |
Collapse
|
42
|
Loxham M, Davies DE. Phenotypic and genetic aspects of epithelial barrier function in asthmatic patients. J Allergy Clin Immunol 2017; 139:1736-1751. [PMID: 28583446 PMCID: PMC5457128 DOI: 10.1016/j.jaci.2017.04.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/13/2017] [Accepted: 04/14/2017] [Indexed: 12/22/2022]
Abstract
The bronchial epithelium is continuously exposed to a multitude of noxious challenges in inhaled air. Cellular contact with most damaging agents is reduced by the action of the mucociliary apparatus and by formation of a physical barrier that controls passage of ions and macromolecules. In conjunction with these defensive barrier functions, immunomodulatory cross-talk between the bronchial epithelium and tissue-resident immune cells controls the tissue microenvironment and barrier homeostasis. This is achieved by expression of an array of sensors that detect a wide variety of viral, bacterial, and nonmicrobial (toxins and irritants) agents, resulting in production of many different soluble and cell-surface molecules that signal to cells of the immune system. The ability of the bronchial epithelium to control the balance of inhibitory and activating signals is essential for orchestrating appropriate inflammatory and immune responses and for temporally modulating these responses to limit tissue injury and control the resolution of inflammation during tissue repair. In asthmatic patients abnormalities in many aspects of epithelial barrier function have been identified. We postulate that such abnormalities play a causal role in immune dysregulation in the airways by translating gene-environment interactions that underpin disease pathogenesis and exacerbation.
Collapse
Affiliation(s)
- Matthew Loxham
- Clinical and Experimental Sciences and the Southampton NIHR Respiratory Biomedical Research Unit, University of Southampton Faculty of Medicine, Sir Henry Wellcome Laboratories, University Hospital Southampton, Southampton, United Kingdom
| | - Donna E Davies
- Clinical and Experimental Sciences and the Southampton NIHR Respiratory Biomedical Research Unit, University of Southampton Faculty of Medicine, Sir Henry Wellcome Laboratories, University Hospital Southampton, Southampton, United Kingdom.
| |
Collapse
|
43
|
Das S, Miller M, Broide DH. Chromosome 17q21 Genes ORMDL3 and GSDMB in Asthma and Immune Diseases. Adv Immunol 2017; 135:1-52. [PMID: 28826527 DOI: 10.1016/bs.ai.2017.06.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chromosome 17q21 contains a cluster of genes including ORMDL3 and GSDMB, which have been highly linked to asthma in genome-wide association studies. ORMDL3 is localized to the endoplasmic reticulum and regulates downstream pathways including sphingolipids, metalloproteases, remodeling genes, and chemokines. ORMDL3 inhibits serine palmitoyl-CoA transferase, the rate-limiting enzyme for sphingolipid biosynthesis. In addition, ORMDL3 activates the ATF6α branch of the unfolded protein response which regulates SERCA2b and IL-6, pathways of potential importance to asthma. The SNP-linking chromosome 17q21 to asthma is associated with increased ORMDL3 and GSDMB expression. Mice expressing either increased levels of human ORMDL3, or human GSDMB, have an asthma phenotype characterized by increased airway responsiveness and increased airway remodeling (increased smooth muscle and fibrosis) in the absence of airway inflammation. GSDMB regulates expression of 5-LO and TGF-β1 which are known pathways involved in the pathogenesis of asthma. GSDMB is one of four members of the GSDM family (GSDMA, GSDMB, GSDMC, and GSDMD). GSDMD (located on chromosome 8q24 and not linked to asthma) has emerged as a key mediator of pyroptosis. GSDMD is a key component of the NLPR3 inflammasome and is required for its activation. GSDMD undergoes proteolytic cleavage by caspase-1 to release its N-terminal fragment, which in turn mediates pyroptosis and IL-1β secretion. Chromosome 17q21 has not only been linked to asthma but also to type 1 diabetes, inflammatory bowel disease, and primary biliary cirrhosis suggesting that future insights into the biology of genes located in this region will increase our understanding of these diseases.
Collapse
Affiliation(s)
- Sudipta Das
- University of California, San Diego, CA, United States
| | - Marina Miller
- University of California, San Diego, CA, United States
| | | |
Collapse
|
44
|
Abstract
The mucosal surfaces of the human body are typically colonized by polymicrobial communities seeded in infancy and are continuously shaped by environmental exposures. These communities interact with the mucosal immune system to maintain homeostasis in health, but perturbations in their composition and function are associated with lower airway diseases, including asthma, a developmental and heterogeneous chronic disease with various degrees and types of airway inflammation. This review will summarize recent studies examining airway microbiota dysbioses associated with asthma and their relationship with the pathophysiology of this disease.
Collapse
|
45
|
Rowe RK, Gill MA. Effects of Allergic Sensitization on Antiviral Immunity: Allergen, Virus, and Host Cell Mechanisms. Curr Allergy Asthma Rep 2017; 17:9. [PMID: 28233152 DOI: 10.1007/s11882-017-0677-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Multiple clinical and epidemiological studies demonstrate links between allergic sensitization and virus-induced atopic disease exacerbations. This review summarizes the recent findings regarding allergen, viral, and host cellular mechanisms relevant to these observations. RECENT FINDINGS Recent studies have focused on the molecular pathways and genetic influences involved in allergen-mediated inhibition of innate antiviral immune responses. Multiple tissue and cell types from atopic individuals across the atopy spectrum exhibit deficient interferon responses to a variety of virus infections. Impairment in barrier function, viral RNA and DNA recognition by intracellular sensing molecules, and dysregulation of signaling components are broadly affected by allergic sensitization. Finally, genetic predisposition by numerous nucleotide polymorphisms also impacts immune pathways and potentially contributes to virus-associated atopic disease pathogenesis. Allergen-virus interactions in the setting of atopy involve complex tissue and cellular mechanisms. Future studies defining the pathways underlying these interactions could uncover potential therapeutic targets. Available data suggest that therapies tailored to restore specific components of antiviral responses will likely lead to improved clinical outcomes in allergic disease.
Collapse
Affiliation(s)
- Regina K Rowe
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9063, USA
| | - Michelle A Gill
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9063, USA. .,Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA. .,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
46
|
Liu AH, Anderson WC, Dutmer CM, Searing DA, Szefler SJ. Advances in asthma 2015: Across the lifespan. J Allergy Clin Immunol 2017; 138:397-404. [PMID: 27497278 DOI: 10.1016/j.jaci.2016.06.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/21/2016] [Accepted: 06/23/2016] [Indexed: 12/19/2022]
Abstract
In 2015, progress in understanding asthma ranged from insights to asthma inception, exacerbations, and severity to advancements that will improve disease management throughout the lifespan. 2015's insights to asthma inception included how the intestinal microbiome affects asthma expression with the identification of specific gastrointestinal bacterial taxa in early infancy associated with less asthma risk, possibly by promoting regulatory immune development at a critical early age. The relevance of epigenetic mechanisms in regulating asthma-related gene expression was strengthened. Predicting and preventing exacerbations throughout life might help to reduce progressive lung function decrease and disease severity in adulthood. Although allergy has long been linked to asthma exacerbations, a mechanism through which IgE impairs rhinovirus immunity and underlies asthma exacerbations was demonstrated and improved by anti-IgE therapy (omalizumab). Other key molecular pathways underlying asthma exacerbations, such as cadherin-related family member 3 (CDHR3) and orosomucoid like 3 (ORMDL3), were elucidated. New anti-IL-5 therapeutics, mepolizumab and reslizumab, were US Food and Drug Administration approved for the treatment of patients with severe eosinophilic asthma. In a clinical trial the novel therapeutic inhaled GATA3 mRNA-specific DNAzyme attenuated early- and late-phase allergic responses to inhaled allergen. These current findings are significant steps toward addressing unmet needs in asthma prevention, severity modification, disparities, and lifespan outcomes.
Collapse
Affiliation(s)
- Andrew H Liu
- Breathing Institute and Pulmonary Medicine Section, Children's Hospital Colorado and University of Colorado School of Medicine, Aurora, Colo.
| | - William C Anderson
- Allergy & Immunology Section, Children's Hospital Colorado and University of Colorado School of Medicine, Aurora, Colo
| | - Cullen M Dutmer
- Allergy & Immunology Section, Children's Hospital Colorado and University of Colorado School of Medicine, Aurora, Colo
| | - Daniel A Searing
- Allergy & Immunology Section, Children's Hospital Colorado and University of Colorado School of Medicine, Aurora, Colo
| | - Stanley J Szefler
- Breathing Institute and Pulmonary Medicine Section, Children's Hospital Colorado and University of Colorado School of Medicine, Aurora, Colo
| |
Collapse
|
47
|
Identification of the functional variant driving ORMDL3 and GSDMB expression in human chromosome 17q12-21 in primary biliary cholangitis. Sci Rep 2017; 7:2904. [PMID: 28588209 PMCID: PMC5460198 DOI: 10.1038/s41598-017-03067-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/21/2017] [Indexed: 12/20/2022] Open
Abstract
Numerous genome-wide association studies (GWAS) have been performed to identify susceptibility genes to various human complex diseases. However, in many cases, neither a functional variant nor a disease susceptibility gene have been clarified. Here, we show an efficient approach for identification of a functional variant in a primary biliary cholangitis (PBC)-susceptible region, chromosome 17q12-21 (ORMDL3-GSDMB-ZPBP2-IKZF3). High-density association mapping was carried out based on SNP imputation analysis by using the whole-genome sequence data from a reference panel of 1,070 Japanese individuals (1KJPN), together with genotype data from our previous GWAS (PBC patients: n = 1,389; healthy controls: n = 1,508). Among 23 single nucleotide polymorphisms (SNPs) with P < 1.0 × 10-8, rs12946510 was identified as the functional variant that influences gene expression via alteration of Forkhead box protein O1 (FOXO1) binding affinity in vitro. Moreover, expression-quantitative trait locus (e-QTL) analyses showed that the PBC susceptibility allele of rs12946510 was significantly associated with lower endogenous expression of ORMDL3 and GSDMB in whole blood and spleen. This study not only identified the functional variant in chr.17q12-21 and its molecular mechanism through which it conferred susceptibility to PBC, but it also illustrated an efficient systematic approach for post-GWAS analysis that is applicable to other complex diseases.
Collapse
|
48
|
Gangwar RS, Minai-Fleminger Y, Seaf M, Gutgold A, Shikotra A, Barber C, Chauhan A, Holgate S, Bradding P, Howarth P, Eliashar R, Berkman N, Levi-Schaffer F. CD48 on blood leukocytes and in serum of asthma patients varies with severity. Allergy 2017; 72:888-895. [PMID: 27859399 DOI: 10.1111/all.13082] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND CD48 is a membrane receptor (mCD48) on eosinophils and mast cells and exists in a soluble form (sCD48). CD48 has a pivotal role in murine asthma and in the proinflammatory interactions of mast cells with eosinophils via its ligand CD244. Thus, CD48 might be important in human asthma. METHODS Therefore, two separate cohorts (IL and UK) comprising mild, moderate, and severe asthma and healthy volunteers were evaluated for blood leukocyte mCD48 expression and sCD48 in serum. Asthmatic bronchial biopsies were immunostained for CD48. sCD48 effect on CD244-dependent eosinophil activation was evaluated. RESULTS Eosinophil mCD48 expression was significantly elevated in moderate while downregulated in severe asthma. mCD48 expression on B, T, and NK cells and monocytes in severe asthma was significantly increased. sCD48 levels were significantly higher in mild while reduced in severe asthma. sCD48 optimal cutoff values for differentiating asthma from health were identified as >1482 pg/ml (IL) and >1619 pg/ml (UK). In asthmatic bronchial biopsies, mCD48 was expressed predominantly by eosinophils. sCD48 inhibited anti-CD244-induced eosinophil activation. CONCLUSIONS mCD48 and sCD48 are differentially expressed in the peripheral blood of asthma patients of varying severity. sCD48 inhibits CD244-mediated eosinophil activation. These findings suggest that CD48 may play an important role in human asthma.
Collapse
Affiliation(s)
- R. S. Gangwar
- Pharmacology & Experimental Therapeutics Unit; Institute for Drug Research; School of Pharmacy; Faculty of Medicine; The Hebrew University of Jerusalem; Jerusalem Israel
| | - Y. Minai-Fleminger
- Pharmacology & Experimental Therapeutics Unit; Institute for Drug Research; School of Pharmacy; Faculty of Medicine; The Hebrew University of Jerusalem; Jerusalem Israel
| | - M. Seaf
- Pharmacology & Experimental Therapeutics Unit; Institute for Drug Research; School of Pharmacy; Faculty of Medicine; The Hebrew University of Jerusalem; Jerusalem Israel
| | - A. Gutgold
- Pharmacology & Experimental Therapeutics Unit; Institute for Drug Research; School of Pharmacy; Faculty of Medicine; The Hebrew University of Jerusalem; Jerusalem Israel
| | - A. Shikotra
- Department of Infection, Immunity and Inflammation; Institute for Lung Health; University of Leicester; Leicester UK
| | - C. Barber
- Clinical and Experimental Sciences; Faculty of Medicine; University of Southampton; Southampton UK
- NIHR Respiratory Biomedical Research Unit; Southampton General Hospital; Southampton UK
| | - A. Chauhan
- Portsmouth Hospitals NHS Trust; Portsmouth UK
| | - S. Holgate
- Clinical and Experimental Sciences; Faculty of Medicine; University of Southampton; Southampton UK
- NIHR Respiratory Biomedical Research Unit; Southampton General Hospital; Southampton UK
| | - P. Bradding
- Department of Infection, Immunity and Inflammation; Institute for Lung Health; University of Leicester; Leicester UK
| | - P. Howarth
- Clinical and Experimental Sciences; Faculty of Medicine; University of Southampton; Southampton UK
- NIHR Respiratory Biomedical Research Unit; Southampton General Hospital; Southampton UK
| | - R. Eliashar
- Department of Otolaryngology/Head and Neck Surgery; Hadassah Hebrew University Medical Center; Jerusalem Israel
| | - N. Berkman
- Institute of Pulmonary Medicine; Hadassah Hebrew University Medical Center; Jerusalem Israel
| | - F. Levi-Schaffer
- Pharmacology & Experimental Therapeutics Unit; Institute for Drug Research; School of Pharmacy; Faculty of Medicine; The Hebrew University of Jerusalem; Jerusalem Israel
| |
Collapse
|
49
|
Role of DNA methylation in expression control of the IKZF3-GSDMA region in human epithelial cells. PLoS One 2017; 12:e0172707. [PMID: 28241063 PMCID: PMC5328393 DOI: 10.1371/journal.pone.0172707] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 02/08/2017] [Indexed: 12/29/2022] Open
Abstract
Chromosomal region 17q12-q21 is associated with asthma and harbors regulatory polymorphisms that influence expression levels of all five protein-coding genes in the region: IKAROS family zinc finger 3 (Aiolos) (IKZF3), zona pellucida binding protein 2 (ZPBP2), ORMDL sphingolipid biosynthesis regulator 3 (ORMDL3), and gasdermins A and B (GSDMA, GSDMB). Furthermore, DNA methylation in this region has been implicated as a potential modifier of the genetic risk of asthma development. To further characterize the effect of DNA methylation, we examined the impact of treatment with DNA methyltransferase inhibitor 5-aza-2’-deoxycytidine (5-aza-dC) that causes DNA demethylation, on expression and promoter methylation of the five 17q12-q21 genes in the human airway epithelium cell line NuLi-1, embryonic kidney epithelium cell line 293T and human adenocarcinoma cell line MCF-7. 5-aza-dC treatment led to upregulation of expression of GSDMA in all three cell lines. ZPBP2 was upregulated in NuLi-1, but remained repressed in 293T and MCF-7 cells, whereas ORMDL3 was upregulated in 293T and MCF-7 cells, but not NuLi-1. Upregulation of ZPBP2 and GSDMA was accompanied by a decrease in promoter methylation. Moreover, 5-aza-dC treatment modified allelic expression of ZPBP2 and ORMDL3 suggesting that different alleles may respond differently to treatment. We also identified a polymorphic CTCF-binding site in intron 1 of ORMDL3 carrying a CG SNP rs4065275 and determined its methylation level. The site’s methylation was unaffected by 5-aza-dC treatment in NuLi-1 cells. We conclude that modest changes (8–13%) in promoter methylation levels of ZPBP2 and GSDMA may cause substantial changes in RNA levels and that allelic expression of ZPBP2 and ORMDL3 is mediated by DNA methylation.
Collapse
|
50
|
17q21 asthma-risk variants switch CTCF binding and regulate IL-2 production by T cells. Nat Commun 2016; 7:13426. [PMID: 27848966 PMCID: PMC5116091 DOI: 10.1038/ncomms13426] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 10/03/2016] [Indexed: 12/20/2022] Open
Abstract
Asthma and autoimmune disease susceptibility has been strongly linked to genetic variants in the 17q21 haploblock that alter the expression of ORMDL3; however, the molecular mechanisms by which these variants perturb gene expression and the cell types in which this effect is most prominent are unclear. We found several 17q21 variants overlapped enhancers present mainly in primary immune cell types. CD4+ T cells showed the greatest increase (threefold) in ORMDL3 expression in individuals carrying the asthma-risk alleles, where ORMDL3 negatively regulated interleukin-2 production. The asthma-risk variants rs4065275 and rs12936231 switched CTCF-binding sites in the 17q21 locus, and 4C-Seq assays showed that several distal cis-regulatory elements upstream of the disrupted ZPBP2 CTCF-binding site interacted with the ORMDL3 promoter region in CD4+ T cells exclusively from subjects carrying asthma-risk alleles. Overall, our results suggested that T cells are one of the most prominent cell types affected by 17q21 variants. Variations in the 17q21 locus are linked to asthma susceptibility and other autoimmune diseases. Here, the authors perform cell type-specific functional genomic analyses of asthma-risk SNPs, and show a genotype specific mechanism of differential gene regulation relevant to immune function.
Collapse
|