1
|
Duthoo E, Beyls E, Backers L, Gudjónsson T, Huang P, Jonckheere L, Riemann S, Parton B, Du L, Debacker V, De Bruyne M, Hoste L, Baeyens A, Vral A, Van Braeckel E, Staal J, Mortier G, Kerre T, Pan-Hammarström Q, Sørensen CS, Haerynck F, Claes KB, Tavernier SJ. Replication stress, microcephalic primordial dwarfism, and compromised immunity in ATRIP deficient patients. J Exp Med 2025; 222:e20241432. [PMID: 40029331 PMCID: PMC11874998 DOI: 10.1084/jem.20241432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/13/2024] [Accepted: 12/23/2024] [Indexed: 03/05/2025] Open
Abstract
Ataxia telangiectasia and Rad3-related (ATR) kinase and its interacting protein ATRIP orchestrate the replication stress response. Homozygous splice variants in the ATRIP gene, resulting in ATRIP deficiency, were identified in two patients of independent ancestry with microcephaly, primordial dwarfism, and recurrent infections. The c.829+5G>T patient exhibited lymphopenia, poor vaccine responses, autoimmune features with hemolytic anemia, and neutropenia. Immunophenotyping revealed reduced CD16+/CD56dim NK cells and absent naïve T cells, MAIT cells, and iNKT cells. Lymphocytic defects were characterized by TCR oligoclonality, abnormal class switch recombination, and impaired T cell proliferation. ATRIP deficiency resulted in low-grade ATR activation but impaired CHK1 phosphorylation under genotoxic stress. ATRIP-deficient cells inadequately regulated DNA replication, leading to chromosomal instability, compromised cell cycle control, and impaired cell viability. CRISPR-SelectTIME confirmed reduced cell fitness for both variants. This study establishes ATRIP deficiency as a monogenic cause of microcephalic primordial dwarfism, highlights ATRIP's critical role in protecting immune cells from replication stress, and offers new insights into its canonical functions.
Collapse
Affiliation(s)
- Evi Duthoo
- Primary Immunodeficiency Research Lab (PIRL), Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Center for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Center, ERN-RITA Reference Center, Ghent University Hospital, Ghent, Belgium
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Elien Beyls
- Primary Immunodeficiency Research Lab (PIRL), Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Center for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Center, ERN-RITA Reference Center, Ghent University Hospital, Ghent, Belgium
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Lynn Backers
- Primary Immunodeficiency Research Lab (PIRL), Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Thorkell Gudjónsson
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peiquan Huang
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Leander Jonckheere
- Respiratory Infection and Defense Lab (RIDL), Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Sebastian Riemann
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Bram Parton
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Likun Du
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Veronique Debacker
- Primary Immunodeficiency Research Lab (PIRL), Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Center for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Center, ERN-RITA Reference Center, Ghent University Hospital, Ghent, Belgium
| | - Marieke De Bruyne
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Levi Hoste
- Primary Immunodeficiency Research Lab (PIRL), Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Pediatrics, Ghent University Hospital, Ghent, Belgium
| | - Ans Baeyens
- Radiobiology Lab, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Anne Vral
- Radiobiology Lab, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Eva Van Braeckel
- Respiratory Infection and Defense Lab (RIDL), Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Jens Staal
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Geert Mortier
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Tessa Kerre
- Center for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Center, ERN-RITA Reference Center, Ghent University Hospital, Ghent, Belgium
- Department of Hematology, Ghent University Hospital, Ghent, Belgium
| | - Qiang Pan-Hammarström
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Claus S. Sørensen
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Filomeen Haerynck
- Primary Immunodeficiency Research Lab (PIRL), Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Center for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Center, ERN-RITA Reference Center, Ghent University Hospital, Ghent, Belgium
- Department of Pediatric Respiratory and Infectious Medicine, Ghent University Hospital, Ghent, Belgium
| | - Kathleen B.M. Claes
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Simon J. Tavernier
- Primary Immunodeficiency Research Lab (PIRL), Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Center for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Center, ERN-RITA Reference Center, Ghent University Hospital, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| |
Collapse
|
2
|
Cuinat S, Chatron N, Petit F, Brunelle P, Dincuff E, Aubert Mucca M, Bieth E, Schmetz A, Rieder H, Wollnik B, Kaulfuß S, Yigit G, McKeown C, Savage T, Mulligan MR, Bicknell LS, Corsten-Janssen N, Edery P, Lesca G, de Villartay JP, Putoux A. XRCC4-related microcephalic primordial dwarfism: description of a clinical series of 7 cases, phenotype expansion and new diagnostic approaches. Eur J Hum Genet 2025:10.1038/s41431-025-01821-0. [PMID: 40114033 DOI: 10.1038/s41431-025-01821-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 01/13/2025] [Accepted: 02/13/2025] [Indexed: 03/22/2025] Open
Abstract
The non-homologous end joining (NHEJ) pathway is essential to repair DNA double-strand breaks. XRCC4 acts as a stabilizer of the DNA ligase LIG4 in the NHEJ process. In humans, XRCC4 pathogenic variants are responsible for a microcephalic primordial dwarfism syndrome (MPD). Currently, 17 patients have been reported with XRCC4-related MPD and we report 7 new patients from 6 different families, including one fetus. The patients present with short stature, severe microcephaly, neurodevelopmental disorder and additional features, such as transient increase in nuchal translucency, congenital glaucoma, thumb anomalies, hepatic steatosis, seizures, essential tremor and oligodontia which have not been previously described. Hyper- and hypopigmented skin macules, dermatofibrosarcoma, mandibular osteoid osteoma and pancytopenia are also new features, reminiscent of cancer susceptibility syndromes. Functional studies were performed on two patients carrying the known pathogenic p.(Trp43Arg) variant in homozygous state, using a fast, cost-effective and non-invasive approach on PBMCs: (1) Survival analyses after ionizing radiation confirm important radiosensitivity. (2) Flow cytometry showed the lack of TCR-Va7+ T-lymphocytes, suggesting recombination defect of V(D)J coding segments. (3) This was confirmed by multiplexed RT-PCR (PROMIDISα biomarker), analyzing the diversity of V(D)J coding segments in a subset of the TCRα repertoire. We therefore extend the phenotype of XRCC4-related MPD and suggest a combination of three functional assays, based on radiosensitivity and V(D)J recombination defect, to improve the interpretation of XRCC4 variants in fast, cost-effective and non-invasive manner. These findings will improve the diagnosis, genetic counselling, follow-up and management of these patients.
Collapse
Affiliation(s)
- Silvestre Cuinat
- Hospices Civils de Lyon, Service de Génétique, Centre Labélisé Anomalies du Développement CLAD Sud-Est, Lyon, France.
- Centre de Recherche en Neurosciences de Lyon, équipe GENDEV, INSERM U1028 CNRS UMR5292, Université Claude Bernard Lyon 1, Lyon, France.
| | - Nicolas Chatron
- Hospices Civils de Lyon, Service de Génétique, Centre Labélisé Anomalies du Développement CLAD Sud-Est, Lyon, France
- Institut Neuromyogène, Laboratoire Physiopathologie et Génétique du Neurone et du Muscle, Equipe Métabolisme énergétique et développement neuronal, CNRS UMR 5310, INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France
| | - Florence Petit
- Univ. Lille, CHU Lille, ULR 7364 - RADEME, F-59000, Lille, France
| | - Perrine Brunelle
- Univ. Lille, CHU Lille, ULR 7364 - RADEME, F-59000, Lille, France
| | - Etienne Dincuff
- Laboratory « Genome Dynamics in the Immune System », INSERM UMR 1163, DGSI, Equipe labellisée La Ligue Nationale Contre le Cancer, Institut Imagine, Université Paris Descartes Sorbonne Paris Cité, 75015, Paris, France
| | | | - Eric Bieth
- Service de Génétique Médicale, Hôpital Purpan, CHU, 31059, Toulouse, France
| | - Ariane Schmetz
- Institute of Human Genetics, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Harald Rieder
- Institute of Human Genetics, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Bernd Wollnik
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Lower Saxony, Gottingen, Germany
- University of Göttingen, Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), Göttingen, Deutschland
| | - Silke Kaulfuß
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Gökhan Yigit
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Lower Saxony, Gottingen, Germany
| | - Colina McKeown
- Genetic Health Service, Wellington Children's Hospital, Wellington, New Zealand
| | - Tim Savage
- General Pediatrics, Diabetes and Endocrinology, Wellington Children's Hospital, Wellington, New Zealand
| | - Meghan R Mulligan
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Louise S Bicknell
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Nicole Corsten-Janssen
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Patrick Edery
- Hospices Civils de Lyon, Service de Génétique, Centre Labélisé Anomalies du Développement CLAD Sud-Est, Lyon, France
- Centre de Recherche en Neurosciences de Lyon, équipe GENDEV, INSERM U1028 CNRS UMR5292, Université Claude Bernard Lyon 1, Lyon, France
| | - Gaetan Lesca
- Hospices Civils de Lyon, Service de Génétique, Centre Labélisé Anomalies du Développement CLAD Sud-Est, Lyon, France
- Institut Neuromyogène, Laboratoire Physiopathologie et Génétique du Neurone et du Muscle, Equipe Métabolisme énergétique et développement neuronal, CNRS UMR 5310, INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France
| | - Jean-Pierre de Villartay
- Laboratory « Genome Dynamics in the Immune System », INSERM UMR 1163, DGSI, Equipe labellisée La Ligue Nationale Contre le Cancer, Institut Imagine, Université Paris Descartes Sorbonne Paris Cité, 75015, Paris, France
| | - Audrey Putoux
- Hospices Civils de Lyon, Service de Génétique, Centre Labélisé Anomalies du Développement CLAD Sud-Est, Lyon, France.
- Centre de Recherche en Neurosciences de Lyon, équipe GENDEV, INSERM U1028 CNRS UMR5292, Université Claude Bernard Lyon 1, Lyon, France.
| |
Collapse
|
3
|
Adelon J, Abolhassani H, Esenboga S, Fouyssac F, Cagdas D, Tezcan I, Kuskonmaz B, Cetinkaya D, Suarez F, Mahdaviani SA, Plassart S, Mathieu AL, Fabien N, Malcus C, Morfin-Sherpa F, Billaud G, Tusseau M, Benezech S, Walzer T, De Villartay JP, Bertrand Y, Belot A. Human DNA-dependent protein kinase catalytic subunit deficiency: A comprehensive review and update. J Allergy Clin Immunol 2024; 154:1300-1312. [PMID: 38977084 DOI: 10.1016/j.jaci.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND DNA-dependent protein kinase catalytic subunit (DNA-PKcs) has an essential role in the non-homologous end-joining pathway that repairs DNA double-strand breaks in V(D)J recombination involved in the expression of T- and B-cell receptors. Whereas homozygous mutations in Prkdc define the Scid mouse, a model that has been widely used in biology, human mutations in PRKDC are extremely rare and the disease spectrum has not been described so far. OBJECTIVES To provide an update on the genetics, clinical spectrum, immunological profile, and therapy of DNA-PKcs deficiency in human. METHODS The clinical, biological, and treatment data from the 6 cases published to date and from 1 new patient were obtained and analyzed. Rubella PCR was performed on available granuloma material. RESULTS We report on 7 patients; 6 patients displayed the autosomal recessive p.L3062R mutation in PRKDC-encoding DNA-PKcs. Atypical severe combined immunodeficiency with inflammatory lesions, granulomas, and autoimmunity was the predominant clinical manifestation (n = 5 of 7). Rubella viral strain was detected in the granuloma of 1 patient over the 2 tested. T-cell counts, including naive CD4+CD45RA+ T cells and T-cell function were low at diagnosis for 6 patients. For most patients with available values, naive CD4+CD45RA+ T cells decreased over time (n = 5 of 6). Hematopoietic stem cell transplantation was performed in 5 patients, of whom 4 are still alive without transplant-related morbidity. Sustained T- and B-cell reconstitution was observed, respectively, for 4 and 3 patients, after a median follow-up of 8 years (range 3-16 years). CONCLUSIONS DNA-PKcs deficiency mainly manifests as an inflammatory disease with granuloma and autoimmune features, along with severe infections.
Collapse
Affiliation(s)
- Jihane Adelon
- Department of Pediatric Immunology and Hematology, Institut d'Hématologie et d'Oncologie Pédiatrique, Lyon, France; Hospices Civils de Lyon, Lyon, France.
| | - Hassan Abolhassani
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden; Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Saliha Esenboga
- Department of Pediatric Immunology, Ihsan Dogramacı Children's Hospital, Hacettepe University, Ankara, Turkey
| | - Fanny Fouyssac
- Department of Pediatric Oncology, Children's Hospital, Nancy, France
| | - Deniz Cagdas
- Department of Pediatric Immunology, Ihsan Dogramacı Children's Hospital, Hacettepe University, Ankara, Turkey
| | - Ilhan Tezcan
- Department of Pediatric Immunology, Ihsan Dogramacı Children's Hospital, Hacettepe University, Ankara, Turkey
| | - Barıs Kuskonmaz
- Department of Pediatric Hematology, Ihsan Dogramacı Children's Hospital, Hacettepe University, Ankara, Turkey
| | - Duygu Cetinkaya
- Department of Pediatric Hematology, Ihsan Dogramacı Children's Hospital, Hacettepe University, Ankara, Turkey
| | - Felipe Suarez
- Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, INSERM UMR1163/CNRS URL 8254, Paris, France; French National Center for Primary Immunodeficiencies, Necker University Hospital, AP-HP, Paris, France; INSERM UMR1163, Imagine Institut, Sorbonne Paris Cité, Paris, France; Department of Hematology, Hôpital Universitaire Necker-Enfants Malades, Assistance Publique des Hôpitaux de Paris, Paris, France; Université Paris Cité, Paris, France
| | - Seyed Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Centre, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Plassart
- Centre de Références Maladies Rares, Rhumatismes inflammatoires et les maladies Auto-Immunes Systémiques rares de l'Enfant (RAISE), Lyon, France
| | - Anne-Laure Mathieu
- Centre de Références Maladies Rares, Rhumatismes inflammatoires et les maladies Auto-Immunes Systémiques rares de l'Enfant (RAISE), Lyon, France; Centre International de Recherche en Infectiologie (CIRI), Institut National de la Santé et de la Recherche Médicale (INSERM) U1111, Centre National de la Recherche Scientifique Unité Mixte de Recherche (UMR) 5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon, Lyon, France
| | - Nicole Fabien
- Department of Immunology, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre-Benite, France
| | - Christophe Malcus
- Department of Immunology, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Florence Morfin-Sherpa
- Laboratoire de Virologie, Institut des Agents Infectieux, Hospices Civils de Lyon, Groupement Hospitalier Nord, Lyon, France; Laboratoire Virologie et Pathologies humaines (VirPath),Centre International de Recherche en Infectiologie (CIRI), Institut National de la Santé et de la Recherche Médicale (INSERM) U1111, Centre National de la Recherche Scientifique Unité Mixte de Recherche (UMR) 5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon, Lyon, France
| | - Geneviève Billaud
- Laboratoire de Virologie, Institut des Agents Infectieux, Hospices Civils de Lyon, Groupement Hospitalier Nord, Lyon, France
| | - Maud Tusseau
- Hospices Civils de Lyon, Lyon, France; Centre International de Recherche en Infectiologie (CIRI), Institut National de la Santé et de la Recherche Médicale (INSERM) U1111, Centre National de la Recherche Scientifique Unité Mixte de Recherche (UMR) 5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon, Lyon, France; Service de Génétique, Groupe Hospitalier Est, Hospices Civils de Lyon, Bron, France
| | - Sarah Benezech
- Department of Pediatric Immunology and Hematology, Institut d'Hématologie et d'Oncologie Pédiatrique, Lyon, France; Hospices Civils de Lyon, Lyon, France; Centre International de Recherche en Infectiologie (CIRI), Institut National de la Santé et de la Recherche Médicale (INSERM) U1111, Centre National de la Recherche Scientifique Unité Mixte de Recherche (UMR) 5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon, Lyon, France
| | - Thierry Walzer
- Centre International de Recherche en Infectiologie (CIRI), Institut National de la Santé et de la Recherche Médicale (INSERM) U1111, Centre National de la Recherche Scientifique Unité Mixte de Recherche (UMR) 5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon, Lyon, France
| | - Jean-Pierre De Villartay
- Laboratory "Genome Dynamics in the Immune System" INSERM UMR 1163, Imagine Institute, Université de Paris Cité, Paris, France
| | - Yves Bertrand
- Department of Pediatric Immunology and Hematology, Institut d'Hématologie et d'Oncologie Pédiatrique, Lyon, France; Hospices Civils de Lyon, Lyon, France
| | - Alexandre Belot
- Hospices Civils de Lyon, Lyon, France; Centre de Références Maladies Rares, Rhumatismes inflammatoires et les maladies Auto-Immunes Systémiques rares de l'Enfant (RAISE), Lyon, France; Centre International de Recherche en Infectiologie (CIRI), Institut National de la Santé et de la Recherche Médicale (INSERM) U1111, Centre National de la Recherche Scientifique Unité Mixte de Recherche (UMR) 5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon, Lyon, France; Department of Pediatrics Nephrology, Rheumatology, and Dermatology, Hôpital Femme-Mère-Enfant, Bron, France.
| |
Collapse
|
4
|
Du L, Oksenych V, Wan H, Ye X, Dong J, Ye AY, Abolhassani H, Vlachiotis S, Zhang X, de la Rosa K, Hammarström L, van der Burg M, Alt FW, Pan-Hammarström Q. Orientation Regulation of Class-switch Recombination in Human B Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1093-1104. [PMID: 39248600 PMCID: PMC11457721 DOI: 10.4049/jimmunol.2300842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 08/16/2024] [Indexed: 09/10/2024]
Abstract
We developed a linear amplification-mediated high-throughput genome-wide translocation sequencing method to profile Ig class-switch recombination (CSR) in human B cells in an unbiased and quantitative manner. This enables us to characterize CSR junctions resulting from either deletional recombination or inversion for each Ig class/subclass. Our data showed that more than 90% of CSR junctions detected in peripheral blood in healthy control subjects were due to deletional recombination. We further identified two major CSR junction signatures/patterns in human B cells. Signature 1 consists of recombination junctions resulting from both IgG and IgA switching, with a dominance of Sµ-Sγ junctions (72%) and deletional recombination (87%). Signature 2 is contributed mainly by Sµ-Sα junctions (96%), and these junctions were almost all due to deletional recombination (99%) and were characterized by longer microhomologies. CSR junctions identified in healthy individuals can be assigned to both signatures but with a dominance of signature 1, whereas almost all CSR junctions found in patients with defects in DNA-PKcs or Artemis, two classical nonhomologous end joining (c-NHEJ) factors, align with signature 2. Thus, signature 1 may represent c-NHEJ activity during CSR, whereas signature 2 is associated with microhomology-mediated alternative end joining in the absence of the studied c-NHEJ factors. Our findings suggest that in human B cells, the efficiency of the c-NHEJ machinery and the features of switch regions are crucial for the regulation of CSR orientation. Finally, our high-throughput method can also be applied to study the mechanism of rare types of recombination, such as switching to IgD and locus suicide switching.
Collapse
Affiliation(s)
- Likun Du
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Valentyn Oksenych
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Hui Wan
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Xiaofei Ye
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Junchao Dong
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Adam Yongxin Ye
- Department of Genetics, Harvard Medical School, Boston, MA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA
- Howard Hughes Medical Institute, Boston, MA
| | - Hassan Abolhassani
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Stelios Vlachiotis
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Xuefei Zhang
- Department of Genetics, Harvard Medical School, Boston, MA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA
- Howard Hughes Medical Institute, Boston, MA
| | - Kathrin de la Rosa
- Department of Cancer and Immunology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Lennart Hammarström
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Mirjam van der Burg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Frederick W. Alt
- Department of Genetics, Harvard Medical School, Boston, MA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA
- Howard Hughes Medical Institute, Boston, MA
| | - Qiang Pan-Hammarström
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
5
|
Ribeiro JH, Altinisik N, Rajan N, Verslegers M, Baatout S, Gopalakrishnan J, Quintens R. DNA damage and repair: underlying mechanisms leading to microcephaly. Front Cell Dev Biol 2023; 11:1268565. [PMID: 37881689 PMCID: PMC10597653 DOI: 10.3389/fcell.2023.1268565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023] Open
Abstract
DNA-damaging agents and endogenous DNA damage constantly harm genome integrity. Under genotoxic stress conditions, the DNA damage response (DDR) machinery is crucial in repairing lesions and preventing mutations in the basic structure of the DNA. Different repair pathways are implicated in the resolution of such lesions. For instance, the non-homologous DNA end joining and homologous recombination pathways are central cellular mechanisms by which eukaryotic cells maintain genome integrity. However, defects in these pathways are often associated with neurological disorders, indicating the pivotal role of DDR in normal brain development. Moreover, the brain is the most sensitive organ affected by DNA-damaging agents compared to other tissues during the prenatal period. The accumulation of lesions is believed to induce cell death, reduce proliferation and premature differentiation of neural stem and progenitor cells, and reduce brain size (microcephaly). Microcephaly is mainly caused by genetic mutations, especially genes encoding proteins involved in centrosomes and DNA repair pathways. However, it can also be induced by exposure to ionizing radiation and intrauterine infections such as the Zika virus. This review explains mammalian cortical development and the major DNA repair pathways that may lead to microcephaly when impaired. Next, we discuss the mechanisms and possible exposures leading to DNA damage and p53 hyperactivation culminating in microcephaly.
Collapse
Affiliation(s)
- Jessica Honorato Ribeiro
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Nazlican Altinisik
- Laboratory for Centrosome and Cytoskeleton Biology, Institute of Human Genetics, University Hospital, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Nicholas Rajan
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Mieke Verslegers
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jay Gopalakrishnan
- Laboratory for Centrosome and Cytoskeleton Biology, Institute of Human Genetics, University Hospital, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Roel Quintens
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| |
Collapse
|
6
|
Yu Y, Sun Y, Li Z, Li J, Tian D. Systematic analysis identifies XRCC4 as a potential immunological and prognostic biomarker associated with pan-cancer. BMC Bioinformatics 2023; 24:44. [PMID: 36765282 PMCID: PMC9921312 DOI: 10.1186/s12859-023-05165-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND XRCC4 is a NHEJ factor identified recently that plays a vital role in repairing DNA double-stranded breaks. Studies have reported the associations between abnormal expression of XRCC4 and tumor susceptibility and radiosensitivity, but the potential biological mechanisms by which XRCC4 exerts effects on tumorigenesis are not fully understood. This study aimed to systematically investigate the role of XRCC4 across cancer types. METHODS The TIMER, GTEX and Xiantao Academic database were used to interpret the expression of XRCC4. Genomic alterations and protein expression in human organic and tumor tissues were applied in cBioPortal and the Human Protein Atlas databases. Correlations between XRCC4 expression and immune and molecular subtypes were analyzed by using the TISIDB database. Protein-protein interactions, GO and KEGG enrichment were also applied for XRCC4-related genes. The TIMER and the Tumor Immune Single Cell Hub (TISCH) online databases were used to explore the relationship between XRCC4 and tumor immune microenvironment. Drug sensitivity information was acquired from the CellMiner database to analyze the effect of XRCC4 on sensitivity analysis. RESULTS The XRCC4 expression was significantly upregulated in 15 tumor types and downregulated in two tumor types compared with the normal tissues, most of which were validated by the results of Xiantao academic platform. XRCC4 was expressed at intermediate level in malignant cells. The XRCC4 expression was related to the molecular and immune subtypes of human cancers, and the survival outcome of 11 types of cancers, including KIRC, STAD and LIHC. The main type of frequent genetic alteration is amplification. Strong correlations were also found between XRCC4 and immune checkpoint genes in 33 human cancers. Furthermore, the abnormal expression of XRCC4 was related to immune cell infiltration and drug sensitivity. Enrichment analysis showed that XRCC4 was significantly correlated with DNA damage response. CONCLUSIONS This comprehensive pan-cancer analysis suggested that XRCC4 may play a vital role in the prognosis and immunotherapy response in cancer patients, and it is a promising therapy target in the future.
Collapse
Affiliation(s)
- Yang Yu
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin, 300190 China
| | - Yanyan Sun
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin, 300190 China
| | - Zhaoxian Li
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin, 300190 China ,grid.216938.70000 0000 9878 7032School of Medicine, Nankai University, 94 Weijin Road, Tianjin, 300071 China
| | - Jiang Li
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin, 300190 China
| | - Dazhi Tian
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin, 300190, China.
| |
Collapse
|
7
|
Panigrahi I, Kaur P, Chaudhry C, Shariq M, Naorem DD, Gowtham B, Kaur A, Dayal D. Short Stature Syndromes: Case Series from India. J Pediatr Genet 2022; 11:279-286. [PMID: 36267864 PMCID: PMC9578783 DOI: 10.1055/s-0041-1726037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/28/2021] [Indexed: 10/21/2022]
Abstract
Syndromes causing short stature include Noonan syndrome (NS), Williams syndrome, and Silver-Russell syndrome (SRS). SRS is a primordial dwarfism with genetic heterogeneity. The SRS children present with prenatal growth retardation, neonatal hypoglycemia, feeding difficulties, physical asymmetry, with scoliosis and cardiac defect in some cases. The incidence is up to 1 in 100,000. Uniparental disomy, methylation abnormalities, and variants in some genes have been found underlying such phenotype. Growth hormone therapy has been used to improve the height gain in these patients. NS has genetic heterogeneity and most patients present with short stature with or without cardiac defect. Multiple genetic variants, mostly autosomal dominant, contribute to the phenotype. With the availability of next-generation sequencing, more and more genetic disorders causing short stature are being identified in different ethnic populations like Kabuki syndrome and Nance-Horan syndrome. Here, we present some cases of SRS and other additional syndromes with dysmorphism seen in past 5 years.
Collapse
Affiliation(s)
- Inusha Panigrahi
- Department of Pediatrics, Advanced Pediatric Center, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Parminder Kaur
- Department of Pediatrics, Advanced Pediatric Center, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Chakshu Chaudhry
- Department of Pediatrics, Advanced Pediatric Center, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Mohd Shariq
- Department of Pediatrics, Advanced Pediatric Center, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Devika D. Naorem
- Department of Pediatrics, Advanced Pediatric Center, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - B.C. Gowtham
- Department of Pediatrics, Advanced Pediatric Center, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Anupriya Kaur
- Department of Pediatrics, Advanced Pediatric Center, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Devi Dayal
- Department of Pediatrics, Advanced Pediatric Center, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| |
Collapse
|
8
|
Biomarkers of DNA Damage Response Enable Flow Cytometry-Based Diagnostic to Identify Inborn DNA Repair Defects in Primary Immunodeficiencies. J Clin Immunol 2021; 42:286-298. [PMID: 34716846 PMCID: PMC8821069 DOI: 10.1007/s10875-021-01156-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/11/2021] [Indexed: 11/03/2022]
Abstract
DNA damage is a constant event in every cell caused by exogenous factors such as ultraviolet and ionizing radiation (UVR/IR) and intercalating drugs, or endogenous metabolic and replicative stress. Proteins of the DNA damage response (DDR) network sense DNA lesions and induce cell cycle arrest, DNA repair, and apoptosis. Genetic defects of DDR or DNA repair proteins can be associated with immunodeficiency, bone marrow failure syndromes, and cancer susceptibility. Although various diagnostic tools are available to evaluate DNA damage, their quality to identify DNA repair deficiencies differs enormously and depends on affected pathways. In this study, we investigated the DDR biomarkers γH2AX (Ser139), p-ATM (Ser1981), and p-CHK2 (Thr68) using flow cytometry on peripheral blood cells obtained from patients with combined immunodeficiencies due to non-homologous end-joining (NHEJ) defects and ataxia telangiectasia (AT) in response to low-dose IR. Significantly reduced induction of all three markers was observed in AT patients compared to controls. However, delayed downregulation of γH2AX was found in patients with NHEJ defects. In contrast to previous reports of DDR in cellular models, these biomarkers were not sensitive enough to identify ARTEMIS deficiency with sufficient reliability. In summary, DDR biomarkers are suitable for diagnosing NHEJ defects and AT, which can be useful in neonates with abnormal TREC levels (T cell receptor excision circles) identified by newborn screening. We conclude that DDR biomarkers have benefits and some limitations depending on the underlying DNA repair deficiency.
Collapse
|
9
|
Asa ADDC, Wanotayan R, Sharma MK, Tsukada K, Shimada M, Matsumoto Y. Functional analysis of XRCC4 mutations in reported microcephaly and growth defect patients in terms of radiosensitivity. JOURNAL OF RADIATION RESEARCH 2021; 62:380-389. [PMID: 33842963 PMCID: PMC8127669 DOI: 10.1093/jrr/rrab016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/01/2021] [Indexed: 05/08/2023]
Abstract
Non-homologous end joining is one of the main pathways for DNA double-strand break (DSB) repair and is also implicated in V(D)J recombination in immune system. Therefore, mutations in non-homologous end-joining (NHEJ) proteins were found to be associated with immunodeficiency in human as well as in model animals. Several human patients with mutations in XRCC4 were reported to exhibit microcephaly and growth defects, but unexpectedly showed normal immune function. Here, to evaluate the functionality of these disease-associated mutations of XRCC4 in terms of radiosensitivity, we generated stable transfectants expressing these mutants in XRCC4-deficient murine M10 cells and measured their radiosensitivity by colony formation assay. V83_S105del, R225X and D254Mfs*68 were expressed at a similar level to wild-type XRCC4, while W43R, R161Q and R275X were expressed at even higher level than wild-type XRCC4. The expression levels of DNA ligase IV in the transfectants with these mutants were comparable to that in the wild-type XRCC4 transfectant. The V83S_S105del transfectant and, to a lesser extent, D254Mfs*68 transfectant, showed substantially increased radiosensitivity compared to the wild-type XRCC4 transfectant. The W43R, R161Q, R225X and R275X transfectants showed a slight but statistically significant increase in radiosensitivity compared to the wild-type XRCC4 transfectant. When expressed as fusion proteins with Green fluorescent protein (GFP), R225X, R275X and D254Mfs*68 localized to the cytoplasm, whereas other mutants localized to the nucleus. These results collectively indicated that the defects of XRCC4 in patients might be mainly due to insufficiency in protein quantity and impaired functionality, underscoring the importance of XRCC4's DSB repair function in normal development.
Collapse
Affiliation(s)
- Anie Day D C Asa
- Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Rujira Wanotayan
- Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology, Tokyo 152-8550, Japan
- Department of Radiological Technology, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Mukesh Kumar Sharma
- Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology, Tokyo 152-8550, Japan
- Department of Zoology, SPC Government College, Ajmer-305001, Rajasthan, India
| | - Kaima Tsukada
- Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Mikio Shimada
- Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Yoshihisa Matsumoto
- Corresponding author. Yoshihisa Matsumoto, Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 Japan. E-mail: ; FAX: +81-3-5734-3703
| |
Collapse
|
10
|
Maruoka M, Zhang P, Mori H, Imanishi E, Packwood DM, Harada H, Kosako H, Suzuki J. Caspase cleavage releases a nuclear protein fragment that stimulates phospholipid scrambling at the plasma membrane. Mol Cell 2021; 81:1397-1410.e9. [PMID: 33725486 DOI: 10.1016/j.molcel.2021.02.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/15/2020] [Accepted: 02/19/2021] [Indexed: 12/25/2022]
Abstract
Phospholipid scrambling in dying cells promotes phosphatidylserine exposure, a critical process for efferocytosis. We previously identified the Xkr family protein Xkr4 as a phospholipid-scrambling protein, but its activation mechanisms remain unknown. Here we show that Xkr4 is activated in two steps: dimer formation by caspase-mediated cleavage and structural change caused by activating factors. To identify the factors, we developed a new screening system, "revival screening," using a CRISPR sgRNA library. Applying this system, we identified the nuclear protein XRCC4 as the single candidate for the Xkr4 activator. Upon apoptotic stimuli, XRCC4, contained in the DNA repair complex, is cleaved by caspases, and its C-terminal fragment with an intrinsically disordered region is released into the cytoplasm. Protein interaction screening showed that the fragment interacts directly with the Xkr4 dimer to activate it. This study demonstrates that caspase-mediated cleavage releases a nuclear protein fragment for direct regulation of lipid dynamics on the plasma membrane.
Collapse
Affiliation(s)
- Masahiro Maruoka
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyoku, Kyoto 606-8501, Japan; Center for Integrated Biosystems, Institute for Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Panpan Zhang
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyoku, Kyoto 606-8501, Japan; Graduate School of Biostudies, Kyoto University, Konoe-cho, Yoshida, Sakyoku, Kyoto 606-8501, Japan
| | - Hiromi Mori
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyoku, Kyoto 606-8501, Japan
| | - Eiichi Imanishi
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyoku, Kyoto 606-8501, Japan
| | - Daniel M Packwood
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyoku, Kyoto 606-8501, Japan
| | - Hiroshi Harada
- Graduate School of Biostudies, Kyoto University, Konoe-cho, Yoshida, Sakyoku, Kyoto 606-8501, Japan
| | - Hidetaka Kosako
- Fujii Memorial Institute of Medical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Jun Suzuki
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyoku, Kyoto 606-8501, Japan; Graduate School of Biostudies, Kyoto University, Konoe-cho, Yoshida, Sakyoku, Kyoto 606-8501, Japan; AMED-FORCE, Japanese Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyodaku, Tokyo 100-0004, Japan; Center for Integrated Biosystems, Institute for Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
11
|
van den Heuvel D, van der Weegen Y, Boer DEC, Ogi T, Luijsterburg MS. Transcription-Coupled DNA Repair: From Mechanism to Human Disorder. Trends Cell Biol 2021; 31:359-371. [PMID: 33685798 DOI: 10.1016/j.tcb.2021.02.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/13/2022]
Abstract
DNA lesions pose a major obstacle during gene transcription by RNA polymerase II (RNAPII) enzymes. The transcription-coupled DNA repair (TCR) pathway eliminates such DNA lesions. Inherited defects in TCR cause severe clinical syndromes, including Cockayne syndrome (CS). The molecular mechanism of TCR and the molecular origin of CS have long remained enigmatic. Here we explore new advances in our understanding of how TCR complexes assemble through cooperative interactions between repair factors stimulated by RNAPII ubiquitylation. Mounting evidence suggests that RNAPII ubiquitylation activates TCR complex assembly during repair and, in parallel, promotes processing and degradation of RNAPII to prevent prolonged stalling. The fate of stalled RNAPII is therefore emerging as a crucial link between TCR and associated human diseases.
Collapse
Affiliation(s)
- Diana van den Heuvel
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Yana van der Weegen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Daphne E C Boer
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Martijn S Luijsterburg
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
12
|
Apelt K, White SM, Kim HS, Yeo JE, Kragten A, Wondergem AP, Rooimans MA, González-Prieto R, Wiegant WW, Lunke S, Flanagan D, Pantaleo S, Quinlan C, Hardikar W, van Attikum H, Vertegaal AC, Wilson BT, Wolthuis RM, Schärer OD, Luijsterburg MS. ERCC1 mutations impede DNA damage repair and cause liver and kidney dysfunction in patients. J Exp Med 2021; 218:e20200622. [PMID: 33315086 PMCID: PMC7927433 DOI: 10.1084/jem.20200622] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/25/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022] Open
Abstract
ERCC1-XPF is a multifunctional endonuclease involved in nucleotide excision repair (NER), interstrand cross-link (ICL) repair, and DNA double-strand break (DSB) repair. Only two patients with bi-allelic ERCC1 mutations have been reported, both of whom had features of Cockayne syndrome and died in infancy. Here, we describe two siblings with bi-allelic ERCC1 mutations in their teenage years. Genomic sequencing identified a deletion and a missense variant (R156W) within ERCC1 that disrupts a salt bridge below the XPA-binding pocket. Patient-derived fibroblasts and knock-in epithelial cells carrying the R156W substitution show dramatically reduced protein levels of ERCC1 and XPF. Moreover, mutant ERCC1 weakly interacts with NER and ICL repair proteins, resulting in diminished recruitment to DNA damage. Consequently, patient cells show strongly reduced NER activity and increased chromosome breakage induced by DNA cross-linkers, while DSB repair was relatively normal. We report a new case of ERCC1 deficiency that severely affects NER and considerably impacts ICL repair, which together result in a unique phenotype combining short stature, photosensitivity, and progressive liver and kidney dysfunction.
Collapse
Affiliation(s)
- Katja Apelt
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Susan M. White
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Parkville, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Australia
| | - Hyun Suk Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea
| | - Jung-Eun Yeo
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea
| | - Angela Kragten
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | | | - Martin A. Rooimans
- Section of Oncogenetics, Department of Clinical Genetics, Vrije Universiteit Medical Center and Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Román González-Prieto
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Wouter W. Wiegant
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Sebastian Lunke
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Parkville, Australia
- Department of Pathology, University of Melbourne, Parkville, Australia
| | - Daniel Flanagan
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Parkville, Australia
| | - Sarah Pantaleo
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Parkville, Australia
| | - Catherine Quinlan
- Department of Paediatrics, University of Melbourne, Parkville, Australia
- Department of Nephrology, Royal Children’s Hospital, Melbourne, Australia
- Department of Kidney Regeneration, Murdoch Children’s Research Institute, Melbourne, Australia
| | - Winita Hardikar
- Department of Paediatrics, University of Melbourne, Parkville, Australia
- Department of Gastroenterology, Royal Children's Hospital, Melbourne, Victoria, Australia
- Murdoch Children’s Research Institute, Parkville, Australia
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Alfred C.O. Vertegaal
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Brian T. Wilson
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne, UK
- Northern Genetics Service, Newcastle upon Tyne Hospitals National Health Service Foundation Trust, International Centre for Life, Newcastle upon Tyne, UK
- Department of Clinical Genetics, Great Ormond Street Hospital, London, UK
| | - Rob M.F. Wolthuis
- Section of Oncogenetics, Department of Clinical Genetics, Vrije Universiteit Medical Center and Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Orlando D. Schärer
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | | |
Collapse
|
13
|
González-Prieto R, Eifler-Olivi K, Claessens LA, Willemstein E, Xiao Z, Talavera Ormeno CMP, Ovaa H, Ulrich HD, Vertegaal ACO. Global non-covalent SUMO interaction networks reveal SUMO-dependent stabilization of the non-homologous end joining complex. Cell Rep 2021; 34:108691. [PMID: 33503430 DOI: 10.1016/j.celrep.2021.108691] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/11/2020] [Accepted: 01/05/2021] [Indexed: 12/17/2022] Open
Abstract
In contrast to our extensive knowledge on covalent small ubiquitin-like modifier (SUMO) target proteins, we are limited in our understanding of non-covalent SUMO-binding proteins. We identify interactors of different SUMO isoforms-monomeric SUMO1, monomeric SUMO2, or linear trimeric SUMO2 chains-using a mass spectrometry-based proteomics approach. We identify 379 proteins that bind to different SUMO isoforms, mainly in a preferential manner. Interestingly, XRCC4 is the only DNA repair protein in our screen with a preference for SUMO2 trimers over mono-SUMO2, as well as the only protein in our screen that belongs to the non-homologous end joining (NHEJ) DNA double-strand break repair pathway. A SUMO interaction motif (SIM) in XRCC4 regulates its recruitment to sites of DNA damage and phosphorylation of S320 by DNA-PKcs. Our data highlight the importance of non-covalent and covalent sumoylation for DNA double-strand break repair via the NHEJ pathway and provide a resource of SUMO isoform interactors.
Collapse
Affiliation(s)
- Román González-Prieto
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands.
| | - Karolin Eifler-Olivi
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands; Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Laura A Claessens
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Edwin Willemstein
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Zhenyu Xiao
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Cami M P Talavera Ormeno
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands; Oncode Institute, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Huib Ovaa
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands; Oncode Institute, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Helle D Ulrich
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Alfred C O Vertegaal
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands.
| |
Collapse
|
14
|
Castañeda-Zegarra S, Fernandez-Berrocal M, Tkachov M, Yao R, Upfold NLE, Oksenych V. Genetic interaction between the non-homologous end-joining factors during B and T lymphocyte development: In vivo mouse models. Scand J Immunol 2020; 92:e12936. [PMID: 32654175 DOI: 10.1111/sji.12936] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/07/2020] [Accepted: 07/06/2020] [Indexed: 12/16/2022]
Abstract
Non-homologous end joining (NHEJ) is the main DNA repair mechanism for the repair of double-strand breaks (DSBs) throughout the course of the cell cycle. DSBs are generated in developing B and T lymphocytes during V(D)J recombination to increase the repertoire of B and T cell receptors. DSBs are also generated during the class switch recombination (CSR) process in mature B lymphocytes, providing distinct effector functions of antibody heavy chain constant regions. Thus, NHEJ is important for both V(D)J recombination and CSR. NHEJ comprises core Ku70 and Ku80 subunits that form the Ku heterodimer, which binds DSBs and promotes the recruitment of accessory factors (e.g., DNA-PKcs, Artemis, PAXX, MRI) and downstream core factors (XLF, Lig4 and XRCC4). In recent decades, new NHEJ proteins have been reported, increasing complexity of this molecular pathway. Numerous in vivo mouse models have been generated and characterized to identify the interplay of NHEJ factors and their role in development of adaptive immune system. This review summarizes the currently available mouse models lacking one or several NHEJ factors, with a particular focus on early B cell development. We also underline genetic interactions and redundancy in the NHEJ pathway in mice.
Collapse
Affiliation(s)
- Sergio Castañeda-Zegarra
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway.,St. Olavs Hospital, Clinic of Medicine, Trondheim University Hospital, Trondheim, Norway
| | - Marion Fernandez-Berrocal
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway.,St. Olavs Hospital, Clinic of Medicine, Trondheim University Hospital, Trondheim, Norway.,Behavioural Neurobiology MS Program, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Max Tkachov
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway.,St. Olavs Hospital, Clinic of Medicine, Trondheim University Hospital, Trondheim, Norway
| | - Rouan Yao
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway.,St. Olavs Hospital, Clinic of Medicine, Trondheim University Hospital, Trondheim, Norway
| | - Nikki Lyn Esnardo Upfold
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway.,St. Olavs Hospital, Clinic of Medicine, Trondheim University Hospital, Trondheim, Norway
| | - Valentyn Oksenych
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway.,St. Olavs Hospital, Clinic of Medicine, Trondheim University Hospital, Trondheim, Norway.,Department of Biosciences and Nutrition (BioNut), Karolinska Institutet, Huddinge, Sweden.,Department of Clinical Medicine, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
15
|
Kalasova I, Hailstone R, Bublitz J, Bogantes J, Hofmann W, Leal A, Hanzlikova H, Caldecott KW. Pathological mutations in PNKP trigger defects in DNA single-strand break repair but not DNA double-strand break repair. Nucleic Acids Res 2020; 48:6672-6684. [PMID: 32504494 PMCID: PMC7337934 DOI: 10.1093/nar/gkaa489] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/30/2020] [Accepted: 06/04/2020] [Indexed: 12/20/2022] Open
Abstract
Hereditary mutations in polynucleotide kinase-phosphatase (PNKP) result in a spectrum of neurological pathologies ranging from neurodevelopmental dysfunction in microcephaly with early onset seizures (MCSZ) to neurodegeneration in ataxia oculomotor apraxia-4 (AOA4) and Charcot-Marie-Tooth disease (CMT2B2). Consistent with this, PNKP is implicated in the repair of both DNA single-strand breaks (SSBs) and DNA double-strand breaks (DSBs); lesions that can trigger neurodegeneration and neurodevelopmental dysfunction, respectively. Surprisingly, however, we did not detect a significant defect in DSB repair (DSBR) in primary fibroblasts from PNKP patients spanning the spectrum of PNKP-mutated pathologies. In contrast, the rate of SSB repair (SSBR) is markedly reduced. Moreover, we show that the restoration of SSBR in patient fibroblasts collectively requires both the DNA kinase and DNA phosphatase activities of PNKP, and the fork-head associated (FHA) domain that interacts with the SSBR protein, XRCC1. Notably, however, the two enzymatic activities of PNKP appear to affect different aspects of disease pathology, with reduced DNA phosphatase activity correlating with neurodevelopmental dysfunction and reduced DNA kinase activity correlating with neurodegeneration. In summary, these data implicate reduced rates of SSBR, not DSBR, as the source of both neurodevelopmental and neurodegenerative pathology in PNKP-mutated disease, and the extent and nature of this reduction as the primary determinant of disease severity.
Collapse
Affiliation(s)
- Ilona Kalasova
- Department of Genome Dynamics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4, 142 20, Czech Republic
| | - Richard Hailstone
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Janin Bublitz
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Jovel Bogantes
- Servicio de Cirugía Reconstructiva, Hospital Rafael Ángel Calderón Guardia, Caja Costarricense de Seguro Social, San José, Costa Rica
| | - Winfried Hofmann
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Alejandro Leal
- Section of Genetics and Biotechnology, School of Biology, University of Costa Rica, San José, Costa Rica
| | - Hana Hanzlikova
- Department of Genome Dynamics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4, 142 20, Czech Republic.,Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Keith W Caldecott
- Department of Genome Dynamics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4, 142 20, Czech Republic.,Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW The most serious DNA damage, DNA double strand breaks (DNA-dsb), leads to mutagenesis, carcinogenesis or apoptosis if left unrepaired. Non-homologous end joining (NHEJ) is the principle repair pathway employed by mammalian cells to repair DNA-dsb. Several proteins are involved in this pathway, defects in which can lead to human disease. This review updates on the most recent information available for the specific diseases associated with the pathway. RECENT FINDINGS A new member of the NHEJ pathway, PAXX, has been identified, although no human disease has been associated with it. The clinical phenotypes of Artemis, DNA ligase 4, Cernunnos-XLF and DNA-PKcs deficiency have been extended. The role of haematopoietic stem cell transplantation, following reduced intensity conditioning chemotherapy, for many of these diseases is being advanced. In the era of newborn screening, urgent genetic diagnosis is necessary to correctly target appropriate treatment for patients with DNA-dsb repair disorders.
Collapse
Affiliation(s)
- Mary A Slatter
- Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Children's Hospital, Clinical Resource Building, Floor 4, Block 2, Newcastle upon Tyne, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Andrew R Gennery
- Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Children's Hospital, Clinical Resource Building, Floor 4, Block 2, Newcastle upon Tyne, UK.
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
17
|
Fredette ME, Lombardi KC, Duker AL, Buck CO, Phornphutkul C, Bober MB, Quintos JB. NOVEL XRCC4 MUTATIONS IN AN INFANT WITH MICROCEPHALIC PRIMORDIAL DWARFISM, DILATED CARDIOMYOPATHY, SUBCLINICAL HYPOTHYROIDISM, AND EARLY DEATH: EXPANDING THE PHENOTYPE OF XRCC4 MUTATIONS. AACE Clin Case Rep 2020; 6:e1-e4. [PMID: 32524007 DOI: 10.4158/accr-2019-0283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/11/2019] [Indexed: 11/15/2022] Open
Abstract
Objective Microcephalic primordial dwarfism (MPD) is a group of clinically and genetically heterogeneous disorders which result in severe prenatal and postnatal growth failure. X-ray repair cross-complementing protein 4 (XRCC4) is a causative gene for an autosomal recessive form of MPD. The objective of this report is to describe novel XRCC4 mutations in a female infant with MPD, dilated cardiomyopathy, and subclinical hypothyroidism. Methods Genetic testing was performed using a comprehensive next generation sequencing panel for MPD, followed by targeted XRCC4 gene sequencing. Results We report the case of a 970-gram, 35-cm, female infant (weight z score -5.05, length z score -4.71) born at 36 weeks and 3 days gestation. Physical examination revealed triangular facies, micrognathism, clinodactyly, and second and third toe syndactyly. Initial echocardiogram at birth was normal. Follow-up echocardiogram at 60 days of life revealed dilated cardiomyopathy with moderate left ventricular systolic dysfunction (ejection fraction was 40 to 45%), and anticongestive therapy was initiated. Thyroid testing revealed subclinical hypothyroidism with elevated thyroid-stimulating hormone of 13.0 μIU/mL (reference range is 0.3 to 5.0 μIU/mL) and normal free thyroxine by dialysis of 1.6 ng/dL (reference range is 0.8 to 2.0 ng/dL). Levothyroxine was initiated. Postnatal growth remained poor (weight z score at 3 months -4.93, length z score at 3 months -6.48), including progressive microcephaly (head circumference z score at 3 months -10.94). Genetic testing revealed novel compound heterozygous XRCC4 variants in trans: c.628A>T and c.638+3A>G. The child ultimately had cardiopulmonary arrest and died at 6 months of life. Conclusion Molecular diagnosis in MPD is key to defining the natural history, management, and prognosis for patients with these rare disorders.
Collapse
|
18
|
Zhang XY, Wei XH, Wang BJ, Yao J. The XRCC4rs1805377 polymorphism is not associated with the risk of cancer: An updated meta-analysis. J Int Med Res 2020; 48:300060520926364. [PMID: 32493081 PMCID: PMC7273771 DOI: 10.1177/0300060520926364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
ObjectivesA growing number of studies have reported that genes involved in the repair of DNA double-strand breaks might be cancer-susceptibility genes. The x-ray cross-complementing group 4 gene ( XRCC4) encodes a protein that functions in the repair of DNA double-strand breaks, and this meta-analysis aimed to investigate the relationship between the XRCC4 rs1805377 polymorphism and cancer occurrence.MethodsWe retrieved case–control studies that met the inclusion criteria from PubMed, Web of Science, Embase, and China National Knowledge Infrastructure databases. Associations between rs1805377 and cancer risk were evaluated by odds ratios (ORs) using a random effects model and 95% confidence intervals (CIs) as well as sensitivity and subgroup analyses.ResultsAfter inclusion criteria were met, the meta-analysis involved 24 studies that included 9,633 cancer patients and 10,544 healthy controls. No significant association was found between rs1805377 and the risk of cancer (pooled OR = 1.107; 95% CI = 0.955–1.284) in the dominant genetic model. Similarly, no significant association was observed in the subgroup analysis.ConclusionsThrough this meta-analysis, we found no association between the rs1805377 polymorphism and cancer occurrence. This may provide useful information for relevant future studies into the etiology of cancer.
Collapse
Affiliation(s)
- Xin-yuan Zhang
- School of Forensic Medicine, China Medical University, Shenyang, Liaoning Province, P. R. China
| | - Xiao-han Wei
- School of Forensic Medicine, China Medical University, Shenyang, Liaoning Province, P. R. China
| | - Bao-jie Wang
- School of Forensic Medicine, China Medical University, Shenyang, Liaoning Province, P. R. China
| | - Jun Yao
- School of Forensic Medicine, China Medical University, Shenyang, Liaoning Province, P. R. China
| |
Collapse
|
19
|
NUS1 mutation in a family with epilepsy, cerebellar ataxia, and tremor. Epilepsy Res 2020; 164:106371. [PMID: 32485575 DOI: 10.1016/j.eplepsyres.2020.106371] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/27/2020] [Accepted: 05/19/2020] [Indexed: 12/14/2022]
Abstract
We report on familial 5 epilepsy patients with autosomal dominant inheritance of a novel heterozygous NUS1 frameshift mutation. All patients had cerebellar ataxia and tremor. Three patients were diagnosed with childhood absence epilepsy, 1 patient with generalized epilepsy, and 1 patient with parkinsonism without epilepsy. Our cases and previously reported cases with deletions of chromosome 6q22 that include NUS1 share these common symptoms. In a cellular experiment, NUS1 mutation led to a substantial reduction of the protein level of NUS1. NUS1 mutation could contribute to epilepsy pathogenesis and also constitute a distinct syndromic entity with cerebellar ataxia and tremor.
Collapse
|
20
|
Recio MJ, Dominguez-Pinilla N, Perrig MS, Rodriguez Vigil-Iturrate C, Salmón-Rodriguez N, Martinez Faci C, Castro-Panete MJ, Blas-Espada J, López-Nevado M, Ruiz-Garcia R, Chaparro-García R, Allende LM, Gonzalez-Granado LI. Extreme Phenotypes With Identical Mutations: Two Patients With Same Non-sense NHEJ1 Homozygous Mutation. Front Immunol 2019; 9:2959. [PMID: 30666249 PMCID: PMC6330288 DOI: 10.3389/fimmu.2018.02959] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 11/30/2018] [Indexed: 12/22/2022] Open
Abstract
Cernunnos/XLF deficiency is a rare primary immunodeficiency classified within the DNA repair defects. Patients present with severe growth retardation, microcephaly, lymphopenia and increased cellular sensitivity to ionizing radiation. Here, we describe two unrelated cases with the same non-sense mutation in the NHEJ1 gene showing significant differences in clinical presentation and immunological profile but a similar DNA repair defect.
Collapse
Affiliation(s)
- Maria J Recio
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, 12 de Octubre Health Research Institute (imas12), Madrid, Spain.,Hospital 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Nerea Dominguez-Pinilla
- Hospital 12 de Octubre Health Research Institute (imas12), Madrid, Spain.,Pediatric Hematology and Oncology Unit, University Hospital Virgen de la Salud, Toledo, Spain
| | - Melina Soledad Perrig
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, 12 de Octubre Health Research Institute (imas12), Madrid, Spain.,Hospital 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | | | - Nerea Salmón-Rodriguez
- Hospital 12 de Octubre Health Research Institute (imas12), Madrid, Spain.,Immunodeficiencies Unit, Pediatrics, University Hospital 12 octubre, Madrid, Spain.,Complutense University School of Medicine, Madrid, Spain
| | - Cristina Martinez Faci
- Pediatric Hematology and Oncology Unit, University Hospital Miguel Servet, Zaragoza, Spain
| | | | - Javier Blas-Espada
- Hospital 12 de Octubre Health Research Institute (imas12), Madrid, Spain.,Department of Immunology, University Hospital 12 Octubre, Madrid, Spain
| | - Marta López-Nevado
- Hospital 12 de Octubre Health Research Institute (imas12), Madrid, Spain.,Department of Immunology, University Hospital 12 Octubre, Madrid, Spain
| | - Raquel Ruiz-Garcia
- Hospital 12 de Octubre Health Research Institute (imas12), Madrid, Spain.,Department of Immunology, University Hospital 12 Octubre, Madrid, Spain
| | - Rebeca Chaparro-García
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Luis M Allende
- Hospital 12 de Octubre Health Research Institute (imas12), Madrid, Spain.,Department of Immunology, University Hospital 12 Octubre, Madrid, Spain
| | - Luis Ignacio Gonzalez-Granado
- Hospital 12 de Octubre Health Research Institute (imas12), Madrid, Spain.,Immunodeficiencies Unit, Pediatrics, University Hospital 12 octubre, Madrid, Spain.,Complutense University School of Medicine, Madrid, Spain
| |
Collapse
|
21
|
Wolska-Kuśnierz B, Gennery AR. Hematopoietic Stem Cell Transplantation for DNA Double Strand Breakage Repair Disorders. Front Pediatr 2019; 7:557. [PMID: 32010653 PMCID: PMC6974535 DOI: 10.3389/fped.2019.00557] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 12/20/2019] [Indexed: 11/25/2022] Open
Abstract
The ubiquitous presence of enzymes required for repair of DNA double strand breaks renders patients with defects in these pathways susceptible to immunodeficiency, an increased risk of infection, autoimmunity, bone marrow failure and malignancies, which are commonly associated with Epstein Barr virus (EBV) infection. Treatment of malignancies is particularly difficult, as the nature of the systemic defect means that patients are sensitive to chemotherapy and radiotherapy. Increasing numbers of patients with Nijmegen Breakage syndrome, Ligase 4 deficiency and Cernunnos-XLF deficiency have been successfully transplanted. Best results are obtained with the use of reduced intensity conditioning. Patients with ataxia-telangiectasia have particularly poor outcomes and the best treatment approach for these patients is still to be determined.
Collapse
Affiliation(s)
| | - Andrew R Gennery
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.,Paediatric Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
22
|
Amiri Moghani AR, Sharma MK, Matsumoto Y. In cellulo phosphorylation of DNA double-strand break repair protein XRCC4 on Ser260 by DNA-PK. JOURNAL OF RADIATION RESEARCH 2018; 59:700-708. [PMID: 30247612 PMCID: PMC6251426 DOI: 10.1093/jrr/rry072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Indexed: 05/16/2023]
Abstract
XRCC4 is one of the core factors for DNA double-strand break (DSB) repair through non-homologous end joining (NHEJ). XRCC4 is phosphorylated by DNA-dependent protein kinase (DNA-PK), with Ser260 and Ser320 (Ser318 in the alternatively spliced form) being the major phosphorylation sites in vitro. It was recently reported that Ser320 is phosphorylated by DNA-PK in response to DNA damage; however, it is currently unclear whether Ser260 is phosphorylated in cellulo in response to DNA damage. Herein, we generated an antibody against XRCC4 phosphorylated on Ser260 and examined its phosphorylation status via Western blotting. XRCC4 Ser260 phosphorylation increased after irradiation with 30-300 Gy of γ-rays and was suppressed by DNA-PK inhibitor but not by ATM inhibitor. Moreover, XRCC4 Ser260 phosphorylation decreased in DNA-PKcs-deficient cells. These observations indicate that XRCC4 Ser260 is phosphorylated by DNA-PK in cellulo. The XRCC4S260A mutant reversed the high radiosensitivity of XRCC4-deficient M10 cells to a similar level to that of wild-type XRCC4. However, the clonogenic survival of cells expressing the XRCC4S260A mutant was slightly but significantly lower than that of those expressing wild-type XRCC4. In addition, XRCC4S260A-expressing cells displayed a significantly greater number of γ-H2AX foci than XRCC4WT-expressing cells 4 h after 1 Gy irradiation and without irradiation. The present results suggest a potential role of XRCC4 Ser260 phosphorylation by DNA-PK in DSB repair.
Collapse
Affiliation(s)
- Ali Reza Amiri Moghani
- Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1-N1–30, Ookayama, Meguro-ku, Tokyo, Japan
| | - Mukesh Kumar Sharma
- Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1-N1–30, Ookayama, Meguro-ku, Tokyo, Japan
- Department of Zoology, SPC Government College, Ajmer, Rajasthan, India
| | - Yoshihisa Matsumoto
- Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1-N1–30, Ookayama, Meguro-ku, Tokyo, Japan
- Corresponding author. Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1-N1–30, Ookayama, Meguro-ku, Tokyo 152-8550, Japan. Tel/Fax: +81-0-3-5734-3703;
| |
Collapse
|
23
|
Diseases Associated with Mutation of Replication and Repair Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1076:215-234. [PMID: 29951822 DOI: 10.1007/978-981-13-0529-0_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alterations in proteins that function in DNA replication and repair have been implicated in the development of human diseases including cancer, premature ageing, skeletal disorders, mental retardation, microcephaly, and neurodegeneration. Drosophila has orthologues of most human replication and repair proteins and high conservation of the relevant cellular pathways, thus providing a versatile system in which to study how these pathways are corrupted leading to the diseased state. In this chapter I will briefly review the diseases associated with defects in replication and repair proteins and discuss how past and future studies on the Drosophila orthologues of such proteins can contribute to the dissection of the mechanisms involved in disease development.
Collapse
|
24
|
The Role of the Core Non-Homologous End Joining Factors in Carcinogenesis and Cancer. Cancers (Basel) 2017; 9:cancers9070081. [PMID: 28684677 PMCID: PMC5532617 DOI: 10.3390/cancers9070081] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 12/20/2022] Open
Abstract
DNA double-strand breaks (DSBs) are deleterious DNA lesions that if left unrepaired or are misrepaired, potentially result in chromosomal aberrations, known drivers of carcinogenesis. Pathways that direct the repair of DSBs are traditionally believed to be guardians of the genome as they protect cells from genomic instability. The prominent DSB repair pathway in human cells is the non-homologous end joining (NHEJ) pathway, which mediates template-independent re-ligation of the broken DNA molecule and is active in all phases of the cell cycle. Its role as a guardian of the genome is supported by the fact that defects in NHEJ lead to increased sensitivity to agents that induce DSBs and an increased frequency of chromosomal aberrations. Conversely, evidence from tumors and tumor cell lines has emerged that NHEJ also promotes chromosomal aberrations and genomic instability, particularly in cells that have a defect in one of the other DSB repair pathways. Collectively, the data present a conundrum: how can a single pathway both suppress and promote carcinogenesis? In this review, we will examine NHEJ's role as both a guardian and a disruptor of the genome and explain how underlying genetic context not only dictates whether NHEJ promotes or suppresses carcinogenesis, but also how it alters the response of tumors to conventional therapeutics.
Collapse
|
25
|
Morio T. Recent advances in the study of immunodeficiency and DNA damage response. Int J Hematol 2017; 106:357-365. [PMID: 28550350 DOI: 10.1007/s12185-017-2263-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 05/17/2017] [Indexed: 12/13/2022]
Abstract
DNA breaks can be induced by exogenous stimuli or by endogenous stress, but are also generated during recombination of V, D, and J genes (V(D)J recombination), immunoglobulin class switch recombination (CSR). Among various DNA breaks generated, DNA double strand break (DSB) is the most deleterious one. DNA damage response (DDR) is initiated when DSBs are detected, leading to DNA break repair by non-homologous end joining (NHEJ). The process is critically important for the generation of diversity for foreign antigens; and failure to exert DNA repair leads to immunodeficiency such as severe combined immunodeficiency and hyper-IgM syndrome. In V(D)J recombination, DSBs are induced by RAG1/2; and generated post-cleavage hairpins are resolved by Artemis/DNA-PKcs/KU70/KU80. DDR is initiated by ataxia-telangiectasia mutated as a master regulator together with MRE11/RAD50/NBS1 complex. Finally, DSBs are repaired by NHEJ. The defect of one of the molecules shows various degree of immunodeficiency and radiosensitivity. Upon CSR inducing signal, DSBs induced by activation-induced cytidine deaminase and endonucleases elicit DDR. Broken ends are repaired either by NHEJ or by mismatch repair system. Patients with radiosensitive SCID require hematopoietic cell transplantation as a curative therapy; but the procedures for eradication of recipient hematopoietic cells are often associated with severe toxicity.
Collapse
Affiliation(s)
- Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan.
| |
Collapse
|
26
|
McKay MJ, Goh SK, McKay JN, Chao M, McKay TM. Non-homologous end-joining protein expression screen from radiosensitive cancer patients yields a novel DNA double strand break repair phenotype. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:96. [PMID: 28361061 DOI: 10.21037/atm.2017.03.04] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Clinical radiosensitivity is a significant impediment to tumour control and cure, in that it restricts the total doses which can safely be delivered to the whole radiotherapy population, within the tissue tolerance of potentially radiosensitive (RS) individuals. Understanding its causes could lead to personalization of radiotherapy. METHODS We screened tissues from a unique bank of RS cancer patients for expression defects in major DNA double-strand break repair proteins, using Western blot analysis and subsequently reverse-transcriptase polymerase chain reaction and pulsed-field gel electrophoresis. RESULTS We hypothesized that abnormalities in expression of these proteins may explain the radiosensitivity of some of our cancer patients. The cells from one patient showed a reproducibly consistent expression reduction in two complex-forming DNA double-strand break repair protein components (DNA Ligase IV and XRCC4). We also showed a corresponding reduction in both gene products at the mRNA level. Additionally, the mRNA inducibility by ionizing radiation was increased for one of the proteins in the patient's cells. We confirmed the likely functional significance of the non-homologous end-joining (NHEJ) expression abnormalities with a DNA double strand break (DNA DSB) repair assay. CONCLUSIONS We have identified a novel biological phenotype linked to clinical radiosensitivity. This is important in that very few molecular defects are known in human radiotherapy subjects. Such knowledge may contribute to the understanding of radiation response mechanisms in cancer patients and to personalization of radiotherapy.
Collapse
Affiliation(s)
- Michael J McKay
- University of Sydney, Department of Medicine, Camperdown, 2050 NSW, Australia
| | - Su Kak Goh
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | | | - Michael Chao
- Genesis Cancer Care, Melbourne, 3001 VIC, Australia
| | | |
Collapse
|
27
|
Rulten SL, Grundy GJ. Non-homologous end joining: Common interaction sites and exchange of multiple factors in the DNA repair process. Bioessays 2017; 39. [PMID: 28133776 DOI: 10.1002/bies.201600209] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Non-homologous end-joining (NHEJ) is the dominant means of repairing chromosomal DNA double strand breaks (DSBs), and is essential in human cells. Fifteen or more proteins can be involved in the detection, signalling, synapsis, end-processing and ligation events required to repair a DSB, and must be assembled in the confined space around the DNA ends. We review here a number of interaction points between the core NHEJ components (Ku70, Ku80, DNA-PKcs, XRCC4 and Ligase IV) and accessory factors such as kinases, phosphatases, polymerases and structural proteins. Conserved protein-protein interaction sites such as Ku-binding motifs (KBMs), XLF-like motifs (XLMs), FHA and BRCT domains illustrate that different proteins compete for the same binding sites on the core machinery, and must be spatially and temporally regulated. We discuss how post-translational modifications such as phosphorylation, ADP-ribosylation and ubiquitinylation may regulate sequential steps in the NHEJ pathway or control repair at different types of DNA breaks.
Collapse
Affiliation(s)
- Stuart L Rulten
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, UK
| | - Gabrielle J Grundy
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, UK
| |
Collapse
|
28
|
Irianto J, Xia Y, Pfeifer CR, Athirasala A, Ji J, Alvey C, Tewari M, Bennett RR, Harding SM, Liu AJ, Greenberg RA, Discher DE. DNA Damage Follows Repair Factor Depletion and Portends Genome Variation in Cancer Cells after Pore Migration. Curr Biol 2016; 27:210-223. [PMID: 27989676 DOI: 10.1016/j.cub.2016.11.049] [Citation(s) in RCA: 207] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/11/2016] [Accepted: 11/23/2016] [Indexed: 11/25/2022]
Abstract
Migration through micron-size constrictions has been seen to rupture the nucleus, release nuclear-localized GFP, and cause localized accumulations of ectopic 53BP1-a DNA repair protein. Here, constricted migration of two human cancer cell types and primary mesenchymal stem cells (MSCs) increases DNA breaks throughout the nucleoplasm as assessed by endogenous damage markers and by electrophoretic "comet" measurements. Migration also causes multiple DNA repair proteins to segregate away from DNA, with cytoplasmic mis-localization sustained for many hours as is relevant to delayed repair. Partial knockdown of repair factors that also regulate chromosome copy numbers is seen to increase DNA breaks in U2OS osteosarcoma cells without affecting migration and with nucleoplasmic patterns of damage similar to constricted migration. Such depletion also causes aberrant levels of DNA. Migration-induced nuclear damage is nonetheless reversible for wild-type and sub-cloned U2OS cells, except for lasting genomic differences between stable clones as revealed by DNA arrays and sequencing. Gains and losses of hundreds of megabases in many chromosomes are typical of the changes and heterogeneity in bone cancer. Phenotypic differences that arise from constricted migration of U2OS clones are further illustrated by a clone with a highly elongated and stable MSC-like shape that depends on microtubule assembly downstream of the transcription factor GATA4. Such changes are consistent with reversion to a more stem-like state upstream of cancerous osteoblastic cells. Migration-induced genomic instability can thus associate with heritable changes.
Collapse
Affiliation(s)
- Jerome Irianto
- Physical Sciences Oncology Center at Penn (PSOC@Penn), 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA; Molecular and Cell Biophysics Lab, 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yuntao Xia
- Physical Sciences Oncology Center at Penn (PSOC@Penn), 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA; Molecular and Cell Biophysics Lab, 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Charlotte R Pfeifer
- Physical Sciences Oncology Center at Penn (PSOC@Penn), 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA; Molecular and Cell Biophysics Lab, 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Group, Department of Physics and Astronomy, 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Avathamsa Athirasala
- Molecular and Cell Biophysics Lab, 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jiazheng Ji
- Physical Sciences Oncology Center at Penn (PSOC@Penn), 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA; Molecular and Cell Biophysics Lab, 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cory Alvey
- Physical Sciences Oncology Center at Penn (PSOC@Penn), 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA; Molecular and Cell Biophysics Lab, 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Manu Tewari
- Physical Sciences Oncology Center at Penn (PSOC@Penn), 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA; Molecular and Cell Biophysics Lab, 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rachel R Bennett
- Physical Sciences Oncology Center at Penn (PSOC@Penn), 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Group, Department of Physics and Astronomy, 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shane M Harding
- Physical Sciences Oncology Center at Penn (PSOC@Penn), 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA; Cancer Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrea J Liu
- Physical Sciences Oncology Center at Penn (PSOC@Penn), 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Group, Department of Physics and Astronomy, 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Roger A Greenberg
- Physical Sciences Oncology Center at Penn (PSOC@Penn), 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA; Cancer Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dennis E Discher
- Physical Sciences Oncology Center at Penn (PSOC@Penn), 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA; Molecular and Cell Biophysics Lab, 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Group, Department of Physics and Astronomy, 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
29
|
Regulation of non-homologous end joining via post-translational modifications of components of the ligation step. Curr Genet 2016; 63:591-605. [PMID: 27915381 DOI: 10.1007/s00294-016-0670-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/25/2016] [Accepted: 11/26/2016] [Indexed: 12/29/2022]
Abstract
DNA double-strand breaks are the most serious type of DNA damage and non-homologous end joining (NHEJ) is an important pathway for their repair. In Saccharomyces cerevisiae, three complexes mediate the canonical NHEJ pathway, Ku (Ku70/Ku80), MRX (Mre11/Rad50/Xrs2) and DNA ligase IV (Dnl4/Lif1). Mammalian NHEJ is more complex, primarily as a consequence of the fact that more factors are involved in the process, and also because higher chromatin organization and more complex regulatory networks exist in mammals. In addition, a stronger interconnection between the NHEJ and DNA damage response (DDR) pathways seems to occur in mammals compared to yeast. DDR employs multiple post-translational modifications (PTMs) of the target proteins and mutual crosstalk among them to ensure highly efficient down-stream effects. Checkpoint-mediated phosphorylation is the best understood PTM that regulates DDR, although recently SUMOylation has also been shown to be involved. Both phosphorylation and SUMOylation affect components of NHEJ. In this review, we discuss a role of these two PTMs in regulation of NHEJ via targeting the components of the ligation step.
Collapse
|
30
|
Chinen J, Notarangelo LD, Shearer WT. Advances in clinical immunology in 2015. J Allergy Clin Immunol 2016; 138:1531-1540. [PMID: 27931534 PMCID: PMC5157931 DOI: 10.1016/j.jaci.2016.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/02/2016] [Accepted: 10/07/2016] [Indexed: 12/17/2022]
Abstract
Advances in clinical immunology in the past year included the report of practice parameters for the diagnosis and management of primary immunodeficiencies to guide the clinician in the approach to these relatively uncommon disorders. We have learned of new gene defects causing immunodeficiency and of new phenotypes expanding the spectrum of conditions caused by genetic mutations such as a specific regulator of telomere elongation (RTEL1) mutation causing isolated natural killer cell deficiency and mutations in ras-associated RAB (RAB27) resulting in immunodeficiency without albinism. Advances in diagnosis included the increasing use of whole-exome sequencing to identify gene defects and the measurement of serum free light chains to identify secondary hypogammaglobulinemias. For several primary immunodeficiencies, improved outcomes have been reported after definitive therapy with hematopoietic stem cell transplantation and gene therapy.
Collapse
Affiliation(s)
- Javier Chinen
- Immunology, Allergy and Rheumatology Section, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Tex.
| | - Luigi D Notarangelo
- Division of Immunology, Boston Children's Hospital, and Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - William T Shearer
- Immunology, Allergy and Rheumatology Section, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Tex
| |
Collapse
|
31
|
Altmann T, Gennery AR. DNA ligase IV syndrome; a review. Orphanet J Rare Dis 2016; 11:137. [PMID: 27717373 PMCID: PMC5055698 DOI: 10.1186/s13023-016-0520-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/27/2016] [Indexed: 12/22/2022] Open
Abstract
DNA ligase IV deficiency is a rare primary immunodeficiency, LIG4 syndrome, often associated with other systemic features. DNA ligase IV is part of the non-homologous end joining mechanism, required to repair DNA double stranded breaks. Ubiquitously expressed, it is required to prevent mutagenesis and apoptosis, which can result from DNA double strand breakage caused by intracellular events such as DNA replication and meiosis or extracellular events including damage by reactive oxygen species and ionising radiation. Within developing lymphocytes, DNA ligase IV is required to repair programmed DNA double stranded breaks induced during lymphocyte receptor development. Patients with hypomorphic mutations in LIG4 present with a range of phenotypes, from normal to severe combined immunodeficiency. All, however, manifest sensitivity to ionising radiation. Commonly associated features include primordial growth failure with severe microcephaly and a spectrum of learning difficulties, marrow hypoplasia and a predisposition to lymphoid malignancy. Diagnostic investigations include immunophenotyping, and testing for radiosensitivity. Some patients present with microcephaly as a predominant feature, but seemingly normal immunity. Treatment is mainly supportive, although haematopoietic stem cell transplantation has been used in a few cases.
Collapse
Affiliation(s)
- Thomas Altmann
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Andrew R Gennery
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK. .,Great North Children's Hospital, Newcastle upon Tyne, UK.
| |
Collapse
|
32
|
Koike M, Yutoku Y, Koike A. Cloning, localization and focus formation at DNA damage sites of canine XRCC4. J Vet Med Sci 2016; 78:1865-1871. [PMID: 27644316 PMCID: PMC5240766 DOI: 10.1292/jvms.16-0381] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Various chemotherapies and radiation therapies are useful for killing cancer cells mainly by inducing DNA double-strand breaks (DSBs). Uncovering the molecular mechanisms of DSB repair processes is crucial for developing next-generation radiotherapies and chemotherapeutics for human and animal cancers. XRCC4 plays a critical role in Ku-dependent nonhomologous DNA-end joining (NHEJ) in human cells, and is one of the core NHEJ factors. The localization of core NHEJ factors, such as human Ku70 and Ku80, might play a crucial role in regulating NHEJ activity. Recently, companion animals, such as canines, have been proposed to be a good model in many aspects of cancer research. However, the localization and regulation mechanisms of core NHEJ factors in canine cells have not been elucidated. Here, we show that the expression and subcellular localization of canine XRCC4 changes dynamically during the cell cycle. Furthermore, EYFP-canine XRCC4 accumulates quickly at laser-microirradiated DSB sites. The structure of a putative human XRCC4 nuclear localization signal (NLS) is highly conserved in canine, chimpanzee and mouse XRCC4. However, the amino acid residue corresponding to the human XRCC4 K210, thought to be important for nuclear localization, is not conserved in canine XRCC4. Our findings might be useful for the study of the molecular mechanisms of Ku-dependent NHEJ in canine cells and the development of new radiosensitizers that target XRCC4.
Collapse
Affiliation(s)
- Manabu Koike
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | | | | |
Collapse
|
33
|
Mutations in XRCC4 cause primordial dwarfism without causing immunodeficiency. J Hum Genet 2016; 61:679-85. [PMID: 27169690 DOI: 10.1038/jhg.2016.46] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/10/2016] [Accepted: 04/06/2016] [Indexed: 12/13/2022]
Abstract
In successive reports from 2014 to 2015, X-ray repair cross-complementing protein 4 (XRCC4) has been identified as a novel causative gene of primordial dwarfism. XRCC4 is indispensable for non-homologous end joining (NHEJ), the major pathway for repairing DNA double-strand breaks. As NHEJ is essential for V(D)J recombination during lymphocyte development, it is generally believed that abnormalities in XRCC4 cause severe combined immunodeficiency. Contrary to expectations, however, no overt immunodeficiency has been observed in patients with primordial dwarfism harboring XRCC4 mutations. Here, we describe the various XRCC4 mutations that lead to disease and discuss their impact on NHEJ and V(D)J recombination.
Collapse
|
34
|
Ligase-4 Deficiency Causes Distinctive Immune Abnormalities in Asymptomatic Individuals. J Clin Immunol 2016; 36:341-53. [PMID: 27063650 DOI: 10.1007/s10875-016-0266-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/07/2016] [Indexed: 01/01/2023]
Abstract
PURPOSE DNA Ligase 4 (LIG4) is a key factor in the non-homologous end-joining (NHEJ) DNA double-strand break repair pathway needed for V(D)J recombination and the generation of the T cell receptor and immunoglobulin molecules. Defects in LIG4 result in a variable syndrome of growth retardation, pancytopenia, combined immunodeficiency, cellular radiosensitivity, and developmental delay. METHODS We diagnosed a patient with LIG4 syndrome by radiosensitivity testing on peripheral blood cells, and established that two of her four healthy siblings carried the same compound heterozygous LIG4 mutations. An extensive analysis of the immune phenotype, cellular radiosensitivity, telomere length, and T and B cell antigen receptor repertoire was performed in all siblings. RESULTS In the three genotypically affected individuals, variable severities of radiosensitivity, alterations of T and B cell counts with an increased percentage of memory cells, and hypogammaglobulinemia, were noticed. Analysis of T and B cell antigen receptor repertoires demonstrated increased usage of alternative microhomology-mediated end-joining (MHMEJ) repair, leading to diminished N nucleotide addition and shorter CDR3 length. However, overall repertoire diversity was preserved. CONCLUSIONS We demonstrate that LIG4 syndrome presents with high clinical variability even within the same family, and that distinctive immunologic abnormalities may be observed also in yet asymptomatic individuals.
Collapse
|
35
|
The Evolving Landscape of Primary Immunodeficiencies. J Clin Immunol 2016; 36:339-40. [PMID: 27004690 DOI: 10.1007/s10875-016-0273-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 03/16/2016] [Indexed: 01/27/2023]
|
36
|
Human DNA repair disorders in dermatology: A historical perspective, current concepts and new insight. J Dermatol Sci 2016; 81:77-84. [DOI: 10.1016/j.jdermsci.2015.09.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 09/24/2015] [Indexed: 11/30/2022]
|
37
|
Prochazkova J, Loizou JI. Programmed DNA breaks in lymphoid cells: repair mechanisms and consequences in human disease. Immunology 2016; 147:11-20. [PMID: 26455503 PMCID: PMC4988471 DOI: 10.1111/imm.12547] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/05/2015] [Accepted: 10/06/2015] [Indexed: 01/08/2023] Open
Abstract
In recent years, several novel congenital human disorders have been described with defects in lymphoid B-cell and T-cell functions that arise due to mutations in known and/or novel components of DNA repair and damage response pathways. Examples include impaired DNA double-strand break repair, as well as compromised DNA damage-induced signal transduction, including phosphorylation and ubiquitination. These disorders reinforce the importance of genome stability pathways in the development of lymphoid cells in humans. Furthermore, these conditions inform our knowledge of the biology of the mechanisms of genome stability and in some cases may provide potential routes to help exploit these pathways therapeutically. Here we review the mechanisms that repair programmed DNA lesions that occur during B-cell and T-cell development, as well as human diseases that arise through defects in these pathways.
Collapse
Affiliation(s)
- Jana Prochazkova
- CeMM Research Centre for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Joanna I. Loizou
- CeMM Research Centre for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| |
Collapse
|