1
|
Sun Q, Horimoto ARVR, Chen B, Ockerman F, Mohlke KL, Blue E, Raffield LM, Li Y. Opportunities and challenges of local ancestry in genetic association analyses. Am J Hum Genet 2025; 112:727-740. [PMID: 40185073 DOI: 10.1016/j.ajhg.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 03/05/2025] [Accepted: 03/05/2025] [Indexed: 04/07/2025] Open
Abstract
Recently, admixed populations make up an increasing percentage of the US and global populations, and the admixture is not uniform over space or time or across genomes. Therefore, it becomes indispensable to evaluate local ancestry in addition to global ancestry to improve genetic epidemiological studies. Recent advances in representing human genome diversity, coupled with large-scale whole-genome sequencing initiatives and improved tools for local ancestry inference, have enabled studies to demonstrate that incorporating local ancestry information enhances both genetic association analyses and polygenic risk predictions. Along with the opportunities that local ancestry provides, there exist challenges preventing its full usage in genetic analyses. In this review, we first summarize methods for local ancestry inference and illustrate how local ancestry can be utilized in various analyses, including admixture mapping, association testing, and polygenic risk score construction. In addition, we discuss current challenges in research involving local ancestry, both in terms of the inference itself and its role in genetic association studies. We further pinpoint some future study directions and methodology development opportunities to help more effectively incorporate local ancestry in genetic analyses. It is worth the effort to pursue those future directions and address these analytical challenges because the appropriate use of local ancestry estimates could help mitigate inequality in genomic medicine and improve our understanding of health and disease outcomes.
Collapse
Affiliation(s)
- Quan Sun
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Center for Computational and Genomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Andrea R V R Horimoto
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Brian Chen
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Frank Ockerman
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Elizabeth Blue
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA; Brotman Baty Institute, Seattle, WA 98195, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yun Li
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
2
|
Rida J, Bouchriti Y, Ait Haddou M, Achbani A, Sine H, Serhane H. Meteorological factors and climate change impact on asthma: a systematic review of epidemiological evidence. J Asthma 2024; 61:1601-1610. [PMID: 38953539 DOI: 10.1080/02770903.2024.2375272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/19/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
OBJECTIVE This systematic review aimed to investigate the epidemiological data about meteorological factors and climate change (CC) impact on asthma. DATA SOURCES A search was performed using three databases (Web of Science, Science Direct, and MEDLINE) for all relevant studies published from January 1, 2018, to December 31, 2022. STUDY SELECTIONS This systematic review complied with the PRISMA document's requirements, including studies related to meteorological factors and CC impact on asthma. The search included studies published in English or French language, and was based on title, abstract, and complete text. Documents not meeting inclusion requirements were excluded. RESULTS We identified 18 studies published in the last five years that were eligible for inclusion in this review. We found that these studies concerned European, Asian, American, and Oceanic cities. Extreme variations in temperature, humidity, wind speed, exceptional incidents like hurricanes, cold and heat waves, and seasonal shifts were strongly correlated with the worsening of asthmatic symptoms, particularly in childhood. In addition, excessive concentrations of air pollutants and aeroallergens were linked to pediatric asthma emergency hospital admissions. CONCLUSIONS A significant association between the consequences of CC and asthma in adults particularly in children has been demonstrated. Future research should quantify the impact of global change in climate regarding the aeroallergens' distribution in terms of geography and time. It is also necessary to research the impact of air pollution on asthmatic health, like sulfur dioxide (SO2), nitrogen dioxide (NO2), ozone (O3), and particles having an aerodynamic diameter lower than 2.5 µm (PM2.5).
Collapse
Affiliation(s)
- Jamila Rida
- Research Laboratory of Innovation in Health Sciences, Faculty of Medicine and Pharmacy, Ibn Zohr University, Agadir, Morocco
- High Institute of Nursing Professions and Health Techniques, Health Sciences and Environment Laboratory, Health Sciences, Epidemiology and Human Pathologies Research Team, Agadir, Morocco
| | - Youssef Bouchriti
- High Institute of Nursing Professions and Health Techniques, Health Sciences and Environment Laboratory, Health Sciences, Epidemiology and Human Pathologies Research Team, Agadir, Morocco
- Geosciences, Environment and Geomatic Laboratory, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Mohamed Ait Haddou
- Geosciences, Environment and Geomatic Laboratory, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
- Department of Geography, Faculty of Humanities and Social Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Abderrahmane Achbani
- Laboratory of Cell Biology and Molecular Genetics, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
- High Institute of Nursing Professions and Health Techniques, Marrakesh, Morocco
| | - Hasnaa Sine
- Laboratory of Cell Biology and Molecular Genetics, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
- High Institute of Nursing Professions and Health Techniques, Marrakesh, Morocco
| | - Hind Serhane
- Research Laboratory of Innovation in Health Sciences, Faculty of Medicine and Pharmacy, Ibn Zohr University, Agadir, Morocco
| |
Collapse
|
3
|
Puga M, Serrano JG, García EL, González Carracedo MA, Jiménez-Canino R, Pino-Yanes M, Karlsson R, Sullivan PF, Fregel R. El Hierro Genome Study: A Genomic and Health Study in an Isolated Canary Island Population. J Pers Med 2024; 14:626. [PMID: 38929847 PMCID: PMC11204744 DOI: 10.3390/jpm14060626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
El Hierro is the smallest and westernmost island of the Canary Islands, whose population derives from an admixture of different ancestral components and that has been subjected to genetic isolation. We established the "El Hierro Genome Study" to characterize the health status and the genetic composition of ~10% of the current population of the island, accounting for a total of 1054 participants. Detailed demographic and clinical data and a blood sample for DNA extraction were obtained from each participant. Genomic genotyping was performed with the Global Screening Array (Illumina). The genetic composition of El Hierro was analyzed in a subset of 416 unrelated individuals by characterizing the mitochondrial DNA (mtDNA) and Y-chromosome haplogroups and performing principal component analyses (PCAs). In order to explore signatures of isolation, runs of homozygosity (ROHs) were also estimated. Among the participants, high blood pressure, hypercholesterolemia, and diabetes were the most prevalent conditions. The most common mtDNA haplogroups observed were of North African indigenous origin, while the Y-chromosome ones were mainly European. The PCA showed that the El Hierro population clusters near 1000 Genomes' European population but with a shift toward African populations. Moreover, the ROH analysis revealed some individuals with an important portion of their genomes with ROHs exceeding 400 Mb. Overall, these results confirmed that the "El Hierro Genome" cohort offers an opportunity to study the genetic basis of several diseases in an unexplored isolated population.
Collapse
Affiliation(s)
- Marta Puga
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (M.P.); (E.L.G.); (M.A.G.C.); (M.P.-Y.)
| | - Javier G. Serrano
- Evolution, Paleogenomics and Population Genetics Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), 38200 La Laguna, Spain;
| | - Elsa L. García
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (M.P.); (E.L.G.); (M.A.G.C.); (M.P.-Y.)
| | - Mario A. González Carracedo
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (M.P.); (E.L.G.); (M.A.G.C.); (M.P.-Y.)
- Genetics Laboratory, Institute of Tropical Diseases and Public Health of the Canary Islands (IUETSPC), Universidad de La Laguna (ULL), 38200 La Laguna, Spain
| | - Rubén Jiménez-Canino
- Genomics Service, Servicio General de Apoyo a la Investigación, Universidad de La Laguna (ULL), 38200 La Laguna, Spain;
| | - María Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (M.P.); (E.L.G.); (M.A.G.C.); (M.P.-Y.)
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna (ULL), 38200 La Laguna, Spain
| | - Robert Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77 Stockholm, Sweden; (R.K.); (P.F.S.)
| | - Patrick F. Sullivan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77 Stockholm, Sweden; (R.K.); (P.F.S.)
- Departments of Genetics and Psychiatry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Rosa Fregel
- Evolution, Paleogenomics and Population Genetics Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), 38200 La Laguna, Spain;
| |
Collapse
|
4
|
Walker MT, Bloodworth JC, Kountz TS, McCarty SL, Green JE, Ferrie RP, Campbell JA, Averill SH, Beckman KB, Grammer LC, Eng C, Avila PC, Farber HJ, Rodriguez-Cintron W, Rodriguez-Santana JR, Serebrisky D, Thyne SM, Seibold MA, Burchard EG, Kumar R, Cook-Mills JM. 5-HTP inhibits eosinophilia via intracellular endothelial 5-HTRs; SNPs in 5-HTRs associate with asthmatic lung function. FRONTIERS IN ALLERGY 2024; 5:1385168. [PMID: 38845678 PMCID: PMC11153829 DOI: 10.3389/falgy.2024.1385168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/08/2024] [Indexed: 06/09/2024] Open
Abstract
Background Previous research showed that 5-hydroxytryptophan (5HTP), a metabolic precursor of serotonin, reduces allergic lung inflammation by inhibiting eosinophil migration across endothelial monolayers. Objective It is unknown if serotonin receptors are involved in mediating this 5HTP function or if serotonin receptor (HTR) single nucleotide polymorphisms (SNPs) associate with lung function in humans. Methods Serotonin receptor subtypes were assessed by qPCR, western blot, confocal microscopy, pharmacological inhibitors and siRNA knockdown. HTR SNPs were assessed in two cohorts. Results Pharmacological inhibition or siRNA knockdown of the serotonin receptors HTR1A or HTR1B in endothelial cells abrogated the inhibitory effects of 5HTP on eosinophil transendothelial migration. In contrast, eosinophil transendothelial migration was not inhibited by siRNA knockdown of HTR1A or HTR1B in eosinophils. Surprisingly, these HTRs were intracellular in endothelial cells and an extracellular supplementation with serotonin did not inhibit eosinophil transendothelial migration. This is consistent with the inability of serotonin to cross membranes, the lack of selective serotonin reuptake receptors on endothelial cells, and the studies showing minimal impact of selective serotonin reuptake inhibitors on asthma. To extend our HTR studies to humans with asthma, we examined the CHIRAH and GALA cohorts for HTR SNPs that affect HTR function or are associated with behavior disorders. A polygenic index of SNPs in HTRs was associated with lower lung function in asthmatics. Conclusions Serotonin receptors mediate 5HTP inhibition of transendothelial migration and HTR SNPs associate with lower lung function. These results may serve to aid in design of novel interventions for allergic inflammation.
Collapse
Affiliation(s)
- Matthew T. Walker
- Allergy-Immunology Division, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Jeffrey C. Bloodworth
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Timothy S. Kountz
- Allergy-Immunology Division, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Samantha L. McCarty
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jeremy E. Green
- Allergy-Immunology Division, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Ryan P. Ferrie
- Allergy-Immunology Division, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Jackson A. Campbell
- Allergy-Immunology Division, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Samantha H. Averill
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | | | - Leslie C. Grammer
- Allergy-Immunology Division, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Celeste Eng
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Pedro C. Avila
- Allergy-Immunology Division, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Harold J. Farber
- Department of Pediatrics, Section of Pulmonology, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX, United States
| | | | | | - Denise Serebrisky
- Pediatric Pulmonary Division, Jacobi Medical Center, Bronx, NY, United States
| | - Shannon M. Thyne
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| | - Max A. Seibold
- Center for Genes, Environment, and Health and the Department of Pediatrics, National Jewish Health, Denver, CO, United States
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Denver, CO, United States
| | - Esteban G. Burchard
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Rajesh Kumar
- Allergy-Immunology Division, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Division of Allergy and Clinical Immunology, Ann and Robert H Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| | - Joan M. Cook-Mills
- Allergy-Immunology Division, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
5
|
Kachuri L, Chatterjee N, Hirbo J, Schaid DJ, Martin I, Kullo IJ, Kenny EE, Pasaniuc B, Witte JS, Ge T. Principles and methods for transferring polygenic risk scores across global populations. Nat Rev Genet 2024; 25:8-25. [PMID: 37620596 PMCID: PMC10961971 DOI: 10.1038/s41576-023-00637-2] [Citation(s) in RCA: 103] [Impact Index Per Article: 103.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2023] [Indexed: 08/26/2023]
Abstract
Polygenic risk scores (PRSs) summarize the genetic predisposition of a complex human trait or disease and may become a valuable tool for advancing precision medicine. However, PRSs that are developed in populations of predominantly European genetic ancestries can increase health disparities due to poor predictive performance in individuals of diverse and complex genetic ancestries. We describe genetic and modifiable risk factors that limit the transferability of PRSs across populations and review the strengths and weaknesses of existing PRS construction methods for diverse ancestries. Developing PRSs that benefit global populations in research and clinical settings provides an opportunity for innovation and is essential for health equity.
Collapse
Affiliation(s)
- Linda Kachuri
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Nilanjan Chatterjee
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jibril Hirbo
- Department of Medicine Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Daniel J Schaid
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Iman Martin
- Division of Genomic Medicine, National Human Genome Research Institute, Bethesda, MD, USA
| | - Iftikhar J Kullo
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Eimear E Kenny
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bogdan Pasaniuc
- Department of Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - John S Witte
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA.
- Department of Genetics, Stanford University, Stanford, CA, USA.
| | - Tian Ge
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
6
|
Abstract
Admixed populations constitute a large portion of global human genetic diversity, yet they are often left out of genomics analyses. This exclusion is problematic, as it leads to disparities in the understanding of the genetic structure and history of diverse cohorts and the performance of genomic medicine across populations. Admixed populations have particular statistical challenges, as they inherit genomic segments from multiple source populations-the primary reason they have historically been excluded from genetic studies. In recent years, however, an increasing number of statistical methods and software tools have been developed to account for and leverage admixture in the context of genomics analyses. Here, we provide a survey of such computational strategies for the informed consideration of admixture to allow for the well-calibrated inclusion of mixed ancestry populations in large-scale genomics studies, and we detail persisting gaps in existing tools.
Collapse
Affiliation(s)
- Taotao Tan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA;
| | - Elizabeth G Atkinson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA;
| |
Collapse
|
7
|
Pham J, Bui DS, Lodge CJ, Abramson MJ, Lowe AJ, Li S, Win AK, Hew M, Dharmage SC. Genetic ancestry is associated with asthma, and this could be modified by environmental factors. A systematic review. Clin Exp Allergy 2023; 53:668-671. [PMID: 37051940 PMCID: PMC10947234 DOI: 10.1111/cea.14308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/03/2023] [Accepted: 03/11/2023] [Indexed: 04/14/2023]
Affiliation(s)
- Jonathan Pham
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, School of Population & Global HealthThe University of MelbourneMelbourneVictoriaAustralia
- Asthma, Allergy and Clinical Immunology Service, Department of Respiratory MedicineAlfred HospitalMelbourneVictoriaAustralia
| | - Dinh S. Bui
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, School of Population & Global HealthThe University of MelbourneMelbourneVictoriaAustralia
| | - Caroline J. Lodge
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, School of Population & Global HealthThe University of MelbourneMelbourneVictoriaAustralia
| | - Michael J. Abramson
- School of Public Health & Preventive MedicineMonash UniversityMelbourneVictoriaAustralia
| | - Adrian J. Lowe
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, School of Population & Global HealthThe University of MelbourneMelbourneVictoriaAustralia
| | - Shuai Li
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global HealthThe University of MelbourneParkvilleVictoriaAustralia
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary CareUniversity of CambridgeCambridgeUK
- Precision Medicine, School of Clinical Sciences at Monash HealthMonash UniversityClaytonVictoriaAustralia
| | - Aung K. Win
- Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, School of Population HealthThe University of MelbourneMelbourneVictoriaAustralia
| | - Mark Hew
- Asthma, Allergy and Clinical Immunology Service, Department of Respiratory MedicineAlfred HospitalMelbourneVictoriaAustralia
| | - Shyamali C. Dharmage
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, School of Population & Global HealthThe University of MelbourneMelbourneVictoriaAustralia
| |
Collapse
|
8
|
Souquette A, Allen EK, Oshansky CM, Tang L, Wong SS, Jeevan T, Shi L, Pounds S, Elias G, Kuan G, Balmaseda A, Zapata R, Shaw-Saliba K, Damme PV, Tendeloo VV, Dib JC, Ogunjimi B, Webby R, Schultz-Cherry S, Pekosz A, Rothman R, Gordon A, Thomas PG. Integrated Drivers of Basal and Acute Immunity in Diverse Human Populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.25.534227. [PMID: 36993205 PMCID: PMC10055315 DOI: 10.1101/2023.03.25.534227] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Prior studies have identified genetic, infectious, and biological associations with immune competence and disease severity; however, there have been few integrative analyses of these factors and study populations are often limited in demographic diversity. Utilizing samples from 1,705 individuals in 5 countries, we examined putative determinants of immunity, including: single nucleotide polymorphisms, ancestry informative markers, herpesvirus status, age, and sex. In healthy subjects, we found significant differences in cytokine levels, leukocyte phenotypes, and gene expression. Transcriptional responses also varied by cohort, and the most significant determinant was ancestry. In influenza infected subjects, we found two disease severity immunophenotypes, largely driven by age. Additionally, cytokine regression models show each determinant differentially contributes to acute immune variation, with unique and interactive, location-specific herpesvirus effects. These results provide novel insight into the scope of immune heterogeneity across diverse populations, the integrative effects of factors which drive it, and the consequences for illness outcomes.
Collapse
|
9
|
Cooper PJ, Figueiredo CA, Rodriguez A, dos Santos LM, Ribeiro‐Silva RC, Carneiro VL, Costa G, Magalhães T, dos Santos de Jesus T, Rios R, da Silva HBF, Costa R, Chico ME, Vaca M, Alcantara‐Neves N, Rodrigues LC, Cruz AA, Barreto ML. Understanding and controlling asthma in Latin America: A review of recent research informed by the SCAALA programme. Clin Transl Allergy 2023; 13:e12232. [PMID: 36973960 PMCID: PMC10041090 DOI: 10.1002/clt2.12232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 02/01/2023] [Accepted: 02/15/2023] [Indexed: 03/29/2023] Open
Abstract
Asthma is an important health concern in Latin America (LA) where it is associated with variable prevalence and disease burden between countries. High prevalence and morbidity have been observed in some regions, particularly marginalized urban populations. Research over the past 10 years from LA has shown that childhood disease is primarily non-atopic. The attenuation of atopy may be explained by enhanced immune regulation induced by intense exposures to environmental factors such as childhood infections and poor environmental conditions of the urban poor. Non-atopic symptoms are associated with environmental and lifestyle factors including poor living conditions, respiratory infections, psychosocial stress, obesity, and a diet of highly processed foods. Ancestry (particularly African) and genetic factors increase asthma risk, and some of these factors may be specific to LA settings. Asthma in LA tends to be poorly controlled and depends on access to health care and medications. There is a need to improve management and access to medication through primary health care. Future research should consider the heterogeneity of asthma to identify relevant endotypes and underlying causes. The outcome of such research will need to focus on implementable strategies relevant to populations living in resource-poor settings where the disease burden is greatest.
Collapse
Affiliation(s)
- Philip J. Cooper
- Escuela de MedicinaUniversidad Internacional del EcuadorQuitoEcuador
- Institute of Infection and ImmunitySt George's University of LondonLondonUK
| | | | | | | | | | | | - Gustavo Costa
- Center for Data Knowledge and Integration for Health (CIDACS)Fundação Oswaldo CruzBahiaSalvadorBrazil
- Universidade Salvador (UNIFACS)SalvadorBahiaBrazil
| | - Thiago Magalhães
- Instituto de Saúde ColetivaUniversidade Federal da BahiaSalvadorBrazil
| | | | - Raimon Rios
- Instituto de Ciências da SaúdeUniversidade Federal da BahiaSalvadorBrazil
| | | | - Ryan Costa
- Instituto de Ciências da SaúdeUniversidade Federal da BahiaSalvadorBrazil
| | - Martha E. Chico
- Fundacion Ecuatoriana para la Investigacion en Salud (FEPIS)EsmeraldasEcuador
| | - Maritza Vaca
- Instituto de Saúde ColetivaUniversidade Federal da BahiaSalvadorBrazil
- Fundacion Ecuatoriana para la Investigacion en Salud (FEPIS)EsmeraldasEcuador
| | | | - Laura C Rodrigues
- Faculty of Epidemiology and Population HealthLondon School of Hygiene and Tropical MedicineLondonUK
| | - Alvaro A. Cruz
- Universidade Federal da Bahia and Fundação ProARSalvadorBrazil
| | - Mauricio L. Barreto
- Center for Data Knowledge and Integration for Health (CIDACS)Fundação Oswaldo CruzBahiaSalvadorBrazil
- Instituto de Saúde ColetivaUniversidade Federal da BahiaSalvadorBrazil
| |
Collapse
|
10
|
Herrera-Luis E, Mak ACY, Perez-Garcia J, Martin-Gonzalez E, Eng C, Beckman KB, Huntsman S, Hu D, González-Pérez R, Hernández-Pérez JM, Mederos-Luis E, Sio YY, Poza-Guedes P, Sardón O, Corcuera P, Sánchez-Machín I, Korta-Murua J, Martínez-Rivera C, Mullol J, Muñoz X, Valero A, Sastre J, Garcia-Aymerich J, Llop S, Torrent M, Casas M, Rodríguez-Santana JR, Villar J, del Pozo V, Lorenzo-Diaz F, Williams LK, Melén E, Chew FT, Borrell LN, Burchard EG, Pino-Yanes M. Admixture mapping of severe asthma exacerbations in Hispanic/Latino children and youth. Thorax 2023; 78:233-241. [PMID: 36180068 PMCID: PMC9957797 DOI: 10.1136/thorax-2022-218755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 08/04/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND In the USA, genetically admixed populations have the highest asthma prevalence and severe asthma exacerbations rates. This could be explained not only by environmental factors but also by genetic variants that exert ethnic-specific effects. However, no admixture mapping has been performed for severe asthma exacerbations. OBJECTIVE We sought to identify genetic variants associated with severe asthma exacerbations in Hispanic/Latino subgroups by means of admixture mapping analyses and fine mapping, and to assess their transferability to other populations and potential functional roles. METHODS We performed an admixture mapping in 1124 Puerto Rican and 625 Mexican American children with asthma. Fine-mapping of the significant peaks was performed via allelic testing of common and rare variants. We performed replication across Hispanic/Latino subgroups, and the transferability to non-Hispanic/Latino populations was assessed in 1001 African Americans, 1250 Singaporeans and 941 Europeans with asthma. The effects of the variants on gene expression and DNA methylation from whole blood were also evaluated in participants with asthma and in silico with data obtained through public databases. RESULTS Genomewide significant associations of Indigenous American ancestry with severe asthma exacerbations were found at 5q32 in Mexican Americans as well as at 13q13-q13.2 and 3p13 in Puerto Ricans. The single nucleotide polymorphism (SNP) rs1144986 (C5orf46) showed consistent effects for severe asthma exacerbations across Hispanic/Latino subgroups, but it was not validated in non-Hispanics/Latinos. This SNP was associated with DPYSL3 DNA methylation and SCGB3A2 gene expression levels. CONCLUSIONS Admixture mapping study of asthma exacerbations revealed a novel locus that exhibited Hispanic/Latino-specific effects and regulated DPYSL3 and SCGB3A2.
Collapse
Affiliation(s)
- Esther Herrera-Luis
- Genomics and Health Group, Department of Biochemistry,
Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna,
Tenerife, Spain
| | - Angel C. Y. Mak
- Department of Medicine, University of California San
Francisco, San Francisco, California, U.S.A
| | - Javier Perez-Garcia
- Genomics and Health Group, Department of Biochemistry,
Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna,
Tenerife, Spain
| | - Elena Martin-Gonzalez
- Genomics and Health Group, Department of Biochemistry,
Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna,
Tenerife, Spain
| | - Celeste Eng
- Department of Medicine, University of California San
Francisco, San Francisco, California, U.S.A
| | | | - Scott Huntsman
- Department of Medicine, University of California San
Francisco, San Francisco, California, U.S.A
| | - Donglei Hu
- Department of Medicine, University of California San
Francisco, San Francisco, California, U.S.A
| | - Ruperto González-Pérez
- Allergy Department, Hospital Universitario de Canarias,
Santa Cruz de Tenerife, Tenerife, Spain,Asthma Unit, Hospital Universitario de Canarias, La Laguna,
Tenerife, Spain
| | - José M. Hernández-Pérez
- Pulmonary Medicine, Hospital Universitario de N.S de
Candelaria, Santa Cruz de Tenerife, Spain,Pulmonary Medicine, Hospital General de La Palma, La Palma,
Santa Cruz de Tenerife, Spain
| | - Elena Mederos-Luis
- Allergy Department, Hospital Universitario de Canarias,
Santa Cruz de Tenerife, Tenerife, Spain
| | - Yang Yie Sio
- Department of Biological Sciences, National University of
Singapore, Singapore
| | - Paloma Poza-Guedes
- Allergy Department, Hospital Universitario de Canarias,
Santa Cruz de Tenerife, Tenerife, Spain,Asthma Unit, Hospital Universitario de Canarias, La Laguna,
Tenerife, Spain
| | - Olaia Sardón
- Division of Pediatric Respiratory Medicine, Hospital
Universitario Donostia, San Sebastián, Spain,Department of Pediatrics, University of the Basque
Country (UPV/EHU), San Sebastián, Spain
| | - Paula Corcuera
- Division of Pediatric Respiratory Medicine, Hospital
Universitario Donostia, San Sebastián, Spain
| | | | - Javier Korta-Murua
- Division of Pediatric Respiratory Medicine, Hospital
Universitario Donostia, San Sebastián, Spain,Department of Pediatrics, University of the Basque
Country (UPV/EHU), San Sebastián, Spain
| | - Carlos Martínez-Rivera
- CIBER de Enfermedades Respiratorias, Instituto de Salud
Carlos III, Madrid, Spain,Servicio de Neumología, Hospital Universitario
Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona,
Spain
| | - Joaquim Mullol
- CIBER de Enfermedades Respiratorias, Instituto de Salud
Carlos III, Madrid, Spain,Rhinology Unit & Smell Clinic, ENT Department;
Clinical & Experimental Respiratory Immunoallergy (IDIBAPS), Universitat de
Barcelona, Barcelona, Spain
| | - Xavier Muñoz
- CIBER de Enfermedades Respiratorias, Instituto de Salud
Carlos III, Madrid, Spain,Servicio de Neumología, Hospital Vall
d’Hebron, Barcelona, Spain
| | - Antonio Valero
- CIBER de Enfermedades Respiratorias, Instituto de Salud
Carlos III, Madrid, Spain,Allergy Unit & Severe Asthma Unit, Pneumonology and
Allergy Department, Hospital Clínic; IDIBAPS; Universitat de
Barcelona.Barcelona, Spain
| | - Joaquín Sastre
- CIBER de Enfermedades Respiratorias, Instituto de Salud
Carlos III, Madrid, Spain,Allergy Department, Hospital Universitario
Fundación Jiménez Díaz, Madrid, Spain
| | - Judith Garcia-Aymerich
- Spanish Consortium for Research on Epidemiology and
Public Health (CIBERESP), Madrid, Spain,ISGlobal, Barcelona, Spain,Universitat Pompeu Fabra, Barcelona, Spain
| | - Sabrina Llop
- Spanish Consortium for Research on Epidemiology and
Public Health (CIBERESP), Madrid, Spain,Epidemiology and Environmental Health Joint Research
Unit, FISABIO–Universitat Jaume I–Universitat de València,
Valencia, Spain
| | | | - Maribel Casas
- ISGlobal, Barcelona, Spain,Universitat Pompeu Fabra, Barcelona, Spain
| | | | - Jesús Villar
- CIBER de Enfermedades Respiratorias, Instituto de Salud
Carlos III, Madrid, Spain,Multidisciplinary Organ Dysfunction Evaluation Research
Network, Research Unit, Hospital Universitario Dr. Negrín, Las Palmas de Gran
Canaria, Spain
| | - Victoria del Pozo
- CIBER de Enfermedades Respiratorias, Instituto de Salud
Carlos III, Madrid, Spain,Immunology Department, Instituto de Investigación
Sanitaria Hospital Universitario Fundación Jiménez Díaz,
Madrid, Spain
| | - Fabian Lorenzo-Diaz
- Genomics and Health Group, Department of Biochemistry,
Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna,
Tenerife, Spain,Instituto Universitario de Enfermedades Tropicales y
Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), La
Laguna, Tenerife, Spain
| | - L. Keoki Williams
- Center for Individualized and Genomic Medicine Research,
Department of Internal Medicine, Henry Ford Health System, Detroit, MI, U.S.A
| | - Erik Melén
- Department of Clinical Sciences and Education,
Södersjukhuset, Karolinska Institutet, Stockholm, Sweden,Sachs’ Children’s Hospital, South General
Hospital, Stockholm, Sweden
| | - Fook Tim Chew
- Department of Biological Sciences, National University of
Singapore, Singapore
| | - Luisa N. Borrell
- Department of Epidemiology & Biostatistics, Graduate
School of Public Health & Health Policy, City University of New York, New York,
NY, U.S.A
| | - Esteban G. Burchard
- UMN Genomics Center, Minneapolis, Minnesota, U.S.A.,Department of Bioengineering and Therapeutic Sciences,
University of California San Francisco, San Francisco, California, U.S.A
| | - Maria Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology, and Genetics, Universidad de La Laguna (ULL), La Laguna, Spain .,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna (ULL), La Laguna, Spain
| |
Collapse
|
11
|
Gautam Y, Mersha TB. Leveraging genetic ancestry to study severe asthma exacerbations in an admixed population. Thorax 2023; 78:220-221. [PMID: 36400457 PMCID: PMC9957837 DOI: 10.1136/thorax-2022-219459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2022] [Indexed: 11/19/2022]
Affiliation(s)
- Yadu Gautam
- Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Tesfaye B Mersha
- Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
12
|
Forno E, Brandenburg DD, Castro-Rodriguez JA, Celis-Preciado CA, Holguin F, Licskai C, Lovinsky-Desir S, Pizzichini M, Teper A, Yang C, Celedón JC. Asthma in the Americas: An Update: A Joint Perspective from the Brazilian Thoracic Society, Canadian Thoracic Society, Latin American Thoracic Society, and American Thoracic Society. Ann Am Thorac Soc 2022; 19:525-535. [PMID: 35030062 PMCID: PMC8996271 DOI: 10.1513/annalsats.202109-1068cme] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/14/2022] [Indexed: 11/20/2022] Open
Abstract
Asthma affects a large number of people living in the Americas, a vast and diverse geographic region comprising 35 nations in the Caribbean and North, Central, and South America. The marked variability in the prevalence, morbidity, and mortality from asthma across and within nations in the Americas offers a unique opportunity to improve our understanding of the risk factors and management of asthma phenotypes and endotypes in children and adults. Moreover, a better assessment of the causes and treatment of asthma in less economically developed regions in the Americas would help diagnose and treat individuals migrating from those areas to Canada and the United States. In this focused review, we first assess the epidemiology of asthma, review known and potential risk factors, and examine commonalities and differences in asthma management across the Americas. We then discuss future directions in research and health policies to improve the prevention, diagnosis, and management of pediatric and adult asthma in the Americas, including standardized and periodic assessment of asthma burden across the region; large-scale longitudinal studies including omics and comprehensive environmental data on racially and ethnically diverse populations; and dissemination and implementation of guidelines for asthma management across the spectrum of disease severity. New initiatives should recognize differences in socioeconomic development and health care systems across the region while paying particular attention to novel or more impactful risk factors for asthma in the Americas, including indoor pollutants such as biomass fuel, tobacco use, infectious agents and the microbiome, and psychosocial stressor and chronic stress.
Collapse
Affiliation(s)
- Erick Forno
- Division of Pediatric Pulmonary Medicine, University of Pittsburgh School of Medicine and Pediatric Asthma Center, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Diego D. Brandenburg
- Department of Pediatrics, Pediatric Pulmonology Unit, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jose A. Castro-Rodriguez
- Department of Pediatric Pulmonology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos A. Celis-Preciado
- Pulmonary Unit, Internal Medicine Department, Hospital Universitario San Ignacio and Faculty of Medicine, Pontificia Universidad Javeriana, Bogota, Colombia
| | - Fernando Holguin
- Division of Pulmonary Sciences and Critical Care, University of Colorado Denver, Denver, Colorado
| | - Christopher Licskai
- Department of Medicine, Western University Canada, Schulich School of Medicine and Dentistry, London Health Sciences Centre, London, Ontario, Canada
| | - Stephanie Lovinsky-Desir
- Division of Pediatric Pulmonary Medicine, Columbia University Irving Medical Center, New York, New York
| | - Marcia Pizzichini
- Post-Graduate Program of Medical Sciences, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Alejandro Teper
- Respiratory Center, Hospital de Niños Dr. Ricardo Gutiérrez, Ciudad Autónoma de Buenos Aires, Argentina; and
| | - Connie Yang
- Division of Respiratory Medicine, University of British Columbia, British Columbia Children’s Hospital, Vancouver, British Columbia, Canada
| | - Juan C. Celedón
- Division of Pediatric Pulmonary Medicine, University of Pittsburgh School of Medicine and Pediatric Asthma Center, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
13
|
Gautam Y, Johansson E, Mersha TB. Multi-Omics Profiling Approach to Asthma: An Evolving Paradigm. J Pers Med 2022; 12:jpm12010066. [PMID: 35055381 PMCID: PMC8778153 DOI: 10.3390/jpm12010066] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 02/04/2023] Open
Abstract
Asthma is a complex multifactorial and heterogeneous respiratory disease. Although genetics is a strong risk factor of asthma, external and internal exposures and their interactions with genetic factors also play important roles in the pathophysiology of asthma. Over the past decades, the application of high-throughput omics approaches has emerged and been applied to the field of asthma research for screening biomarkers such as genes, transcript, proteins, and metabolites in an unbiased fashion. Leveraging large-scale studies representative of diverse population-based omics data and integrating with clinical data has led to better profiling of asthma risk. Yet, to date, no omic-driven endotypes have been translated into clinical practice and management of asthma. In this article, we provide an overview of the current status of omics studies of asthma, namely, genomics, transcriptomics, epigenomics, proteomics, exposomics, and metabolomics. The current development of the multi-omics integrations of asthma is also briefly discussed. Biomarker discovery following multi-omics profiling could be challenging but useful for better disease phenotyping and endotyping that can translate into advances in asthma management and clinical care, ultimately leading to successful precision medicine approaches.
Collapse
|
14
|
Suarez-Pajes E, Díaz-García C, Rodríguez-Pérez H, Lorenzo-Salazar JM, Marcelino-Rodríguez I, Corrales A, Zheng X, Callero A, Perez-Rodriguez E, Garcia-Robaina JC, González-Montelongo R, Flores C, Guillen-Guio B. Targeted analysis of genomic regions enriched in African ancestry reveals novel classical HLA alleles associated with asthma in Southwestern Europeans. Sci Rep 2021; 11:23686. [PMID: 34880287 PMCID: PMC8654850 DOI: 10.1038/s41598-021-02893-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/24/2021] [Indexed: 12/30/2022] Open
Abstract
Despite asthma has a considerable genetic component, an important proportion of genetic risks remain unknown, especially for non-European populations. Canary Islanders have the largest African genetic ancestry observed among Southwestern Europeans and the highest asthma prevalence in Spain. Here we examined broad chromosomal regions previously associated with an excess of African genetic ancestry in Canary Islanders, with the aim of identifying novel risk variants associated with asthma susceptibility. In a two-stage cases-control study, we revealed a variant within HLA-DQB1 significantly associated with asthma risk (rs1049213, meta-analysis p = 1.30 × 10-7, OR [95% CI] = 1.74 [1.41-2.13]) previously associated with asthma and broad allergic phenotype. Subsequent fine-mapping analyses of classical HLA alleles revealed a novel allele significantly associated with asthma protection (HLA-DQA1*01:02, meta-analysis p = 3.98 × 10-4, OR [95% CI] = 0.64 [0.50-0.82]) that had been linked to infectious and autoimmune diseases, and peanut allergy. HLA haplotype analyses revealed a novel haplotype DQA1*01:02-DQB1*06:04 conferring asthma protection (meta-analysis p = 4.71 × 10-4, OR [95% CI] = 0.47 [0.29- 0.73]).
Collapse
Affiliation(s)
- Eva Suarez-Pajes
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Claudio Díaz-García
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Héctor Rodríguez-Pérez
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Jose M Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico Y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | - Itahisa Marcelino-Rodríguez
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Almudena Corrales
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Xiuwen Zheng
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Ariel Callero
- Allergy Unit, Hospital Universitario N.S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - Eva Perez-Rodriguez
- Allergy Unit, Hospital Universitario N.S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - Jose C Garcia-Robaina
- Allergy Unit, Hospital Universitario N.S. de Candelaria, Santa Cruz de Tenerife, Spain
| | | | - Carlos Flores
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.
- Genomics Division, Instituto Tecnológico Y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain.
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.
| | - Beatriz Guillen-Guio
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.
- Department of Health Sciences, University of Leicester, Leicester, UK.
| |
Collapse
|
15
|
Casares-Marfil D, Guillen-Guio B, Lorenzo-Salazar JM, Rodríguez-Pérez H, Kerick M, Jaimes-Campos MA, Díaz ML, Estupiñán E, Echeverría LE, González CI, Martin J, Flores C, Acosta-Herrera M. Admixture mapping analysis reveals differential genetic ancestry associated with Chagas disease susceptibility in the Colombian population. Hum Mol Genet 2021; 30:2503-2512. [PMID: 34302177 PMCID: PMC8643504 DOI: 10.1093/hmg/ddab213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 01/02/2023] Open
Abstract
Chagas disease is an infection caused by the parasite Trypanosoma cruzi, endemic in Latino America. Leveraging the three-way admixture between Native American (AMR), European (EUR) and African (AFR) populations in Latin Americans, we aimed to better understand the genetic basis of Chagas disease by performing an admixture mapping study in a Colombian population. A two-stage study was conducted, and subjects were classified as seropositive and seronegative for T. cruzi. In stage 1, global and local ancestries were estimated using reference data from the 1000 Genomes Project (1KGP) and local ancestry associations were performed by logistic regression models. The AMR ancestry showed a protective association with Chagas disease within the Major Histocompatibility Complex region (OR = 0.74, 95%CI = 0.66-0.83, lowest p-value = 4.53x10-8). The fine mapping assessment on imputed genotypes combining data from stage 1 and 2 from an independent Colombian cohort, revealed nominally associated variants in high linkage disequilibrium with the top signal (rs2032134, OR = 0.93, 95%CI = 0.90-0.97, p-value = 3.54x10-4) in the previously associated locus. To assess ancestry-specific adaptive signals, a selective sweep scan in an AMR reference population from 1KGP together with an in silico functional analysis highlighted the Tripartite Motif family and the Human Leukocyte Antigen (HLA) genes, with crucial role in the immune response against pathogens. Furthermore, these analyses emphasized the macrophages, neutrophils, and eosinophils, as key players in the defense against T. cruzi. This first admixture mapping study in Chagas disease provided novel insights underlying the host immune response in the pathogenesis of this neglected disease.
Collapse
Affiliation(s)
| | - Beatriz Guillen-Guio
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Jose M Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | - Héctor Rodríguez-Pérez
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Martin Kerick
- Institute of Parasitology and Biomedicine López-Neyra, CSIC, Granada, Spain
| | - Mayra A Jaimes-Campos
- Grupo de Inmunología y Epidemiología Molecular, Escuela de Microbiología, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Martha L Díaz
- Grupo de Inmunología y Epidemiología Molecular, Escuela de Microbiología, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Elkyn Estupiñán
- Institute of Parasitology and Biomedicine López-Neyra, CSIC, Granada, Spain.,Grupo de Inmunología y Epidemiología Molecular, Escuela de Microbiología, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Luis E Echeverría
- Heart Failure and Heart Transplant Clinic, Fundación Cardiovascular de Colombia, Floridablanca, Colombia
| | - Clara I González
- Grupo de Inmunología y Epidemiología Molecular, Escuela de Microbiología, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Javier Martin
- Institute of Parasitology and Biomedicine López-Neyra, CSIC, Granada, Spain
| | - Carlos Flores
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.,Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain.,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | | |
Collapse
|
16
|
Loesch DP, Horimoto ARVR, Heilbron K, Sarihan EI, Inca-Martinez M, Mason E, Cornejo-Olivas M, Torres L, Mazzetti P, Cosentino C, Sarapura-Castro E, Rivera-Valdivia A, Medina AC, Dieguez E, Raggio V, Lescano A, Tumas V, Borges V, Ferraz HB, Rieder CR, Schumacher-Schuh A, Santos-Lobato BL, Velez-Pardo C, Jimenez-Del-Rio M, Lopera F, Moreno S, Chana-Cuevas P, Fernandez W, Arboleda G, Arboleda H, Arboleda-Bustos CE, Yearout D, Zabetian CP, Cannon P, Thornton TA, O'Connor TD, Mata IF. Characterizing the Genetic Architecture of Parkinson's Disease in Latinos. Ann Neurol 2021; 90:353-365. [PMID: 34227697 DOI: 10.1002/ana.26153] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/03/2021] [Accepted: 06/27/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE This work was undertaken in order to identify Parkinson's disease (PD) risk variants in a Latino cohort, to describe the overlap in the genetic architecture of PD in Latinos compared to European-ancestry subjects, and to increase the diversity in PD genome-wide association (GWAS) data. METHODS We genotyped and imputed 1,497 PD cases and controls recruited from nine clinical sites across South America. We performed a GWAS using logistic mixed models; variants with a p-value <1 × 10-5 were tested in a replication cohort of 1,234 self-reported Latino PD cases and 439,522 Latino controls from 23andMe, Inc. We also performed an admixture mapping analysis where local ancestry blocks were tested for association with PD status. RESULTS One locus, SNCA, achieved genome-wide significance (p-value <5 × 10-8 ); rs356182 achieved genome-wide significance in both the discovery and the replication cohorts (discovery, G allele: 1.58 OR, 95% CI 1.35-1.86, p-value 2.48 × 10-8 ; 23andMe, G allele: 1.26 OR, 95% CI 1.16-1.37, p-value 4.55 × 10-8 ). In our admixture mapping analysis, a locus on chromosome 14, containing the gene STXBP6, achieved significance in a joint test of ancestries and in the Native American single-ancestry test (p-value <5 × 10-5 ). A second locus on chromosome 6, containing the gene RPS6KA2, achieved significance in the African single-ancestry test (p-value <5 × 10-5 ). INTERPRETATION This study demonstrated the importance of the SNCA locus for the etiology of PD in Latinos. By leveraging the demographic history of our cohort via admixture mapping, we identified two potential PD risk loci that merit further study. ANN NEUROL 2021.
Collapse
Affiliation(s)
- Douglas P Loesch
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD.,Program in Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | | | | | - Elif I Sarihan
- Lerner Research Institute, Genomic Medicine, Cleveland Clinic, Cleveland, OH
| | | | - Emily Mason
- Lerner Research Institute, Genomic Medicine, Cleveland Clinic, Cleveland, OH
| | - Mario Cornejo-Olivas
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurologicas, Lima, Peru.,Center for Global Health, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Luis Torres
- Movement Disorders Unit, Instituto Nacional de Ciencias Neurologicas, Lima, Peru.,School of Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Pilar Mazzetti
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurologicas, Lima, Peru.,School of Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Carlos Cosentino
- Movement Disorders Unit, Instituto Nacional de Ciencias Neurologicas, Lima, Peru.,School of Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | | | | | | | - Elena Dieguez
- Neurology Institute, Universidad de la República, Montevideo, Uruguay
| | - Victor Raggio
- Department of Genetics, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Andres Lescano
- Neurology Institute, Universidad de la República, Montevideo, Uruguay
| | - Vitor Tumas
- Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Vanderci Borges
- Movement Disorders Unit, Department of Neurology and Neurosurgery, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Henrique B Ferraz
- Movement Disorders Unit, Department of Neurology and Neurosurgery, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Carlos R Rieder
- Departamento de Neurologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Artur Schumacher-Schuh
- Serviço de Neurologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Departamento de Farmacologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Carlos Velez-Pardo
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, Universidad de Antioquia (UdeA), Medellín, Colombia
| | - Marlene Jimenez-Del-Rio
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, Universidad de Antioquia (UdeA), Medellín, Colombia
| | - Francisco Lopera
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, Universidad de Antioquia (UdeA), Medellín, Colombia
| | - Sonia Moreno
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, Universidad de Antioquia (UdeA), Medellín, Colombia
| | - Pedro Chana-Cuevas
- CETRAM, Facultad de ciencias Medicas, Universidad de Santiago de Chile, Santiago, Chile
| | - William Fernandez
- Neuroscience and Cell Death Research Groups, Medical School and Genetic Institute, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Gonzalo Arboleda
- Neuroscience and Cell Death Research Groups, Medical School and Genetic Institute, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Humberto Arboleda
- Neuroscience and Cell Death Research Groups, Medical School and Genetic Institute, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Carlos E Arboleda-Bustos
- Neuroscience and Cell Death Research Groups, Medical School and Genetic Institute, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Dora Yearout
- Veterans Affairs Puget Sound Health Care System, Seattle, WA.,Department of Neurology, University of Washington, Seattle, WA
| | - Cyrus P Zabetian
- Veterans Affairs Puget Sound Health Care System, Seattle, WA.,Department of Neurology, University of Washington, Seattle, WA
| | | | | | | | - Timothy D O'Connor
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD.,Program in Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Ignacio F Mata
- Lerner Research Institute, Genomic Medicine, Cleveland Clinic, Cleveland, OH.,Veterans Affairs Puget Sound Health Care System, Seattle, WA.,Department of Neurology, University of Washington, Seattle, WA
| | | |
Collapse
|
17
|
Genetic Ancestry Inference and Its Application for the Genetic Mapping of Human Diseases. Int J Mol Sci 2021; 22:ijms22136962. [PMID: 34203440 PMCID: PMC8269095 DOI: 10.3390/ijms22136962] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/21/2022] Open
Abstract
Admixed populations arise when two or more ancestral populations interbreed. As a result of this admixture, the genome of admixed populations is defined by tracts of variable size inherited from these parental groups and has particular genetic features that provide valuable information about their demographic history. Diverse methods can be used to derive the ancestry apportionment of admixed individuals, and such inferences can be leveraged for the discovery of genetic loci associated with diseases and traits, therefore having important biomedical implications. In this review article, we summarize the most common methods of global and local genetic ancestry estimation and discuss the use of admixture mapping studies in human diseases.
Collapse
|
18
|
Gene Expression Profiling and Biofunction Analysis of HepG2 Cells Targeted by Crocetin. Mediators Inflamm 2021; 2021:5512166. [PMID: 33867857 PMCID: PMC8035019 DOI: 10.1155/2021/5512166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/03/2021] [Accepted: 03/17/2021] [Indexed: 11/17/2022] Open
Abstract
Crocetin is a carotenoid extracted from Gardenia jasminoides, one of the most popular traditional Chinese medicines, which has been used in the prevention and treatment of various diseases. The present study is aimed at clarifying the effect of crocetin on gene expression profiling of HepG2 cells by RNA-sequence assay and further investigating the molecular mechanism underlying the multiple biofunctions of crocetin based on bioinformatics analysis and molecular evidence. Among a total 23K differential genes identified, crocetin treatment upregulated the signals of 491 genes (2.14% of total gene probes) and downregulated the signals of 283 genes (1.24% of total gene probes) by ≥2-fold. The Gene Ontology analysis enriched these genes mainly on cell proliferation and apoptosis (BRD4 and DAXX); lipid formation (EHMT2); cell response to growth factor stimulation (CYP24A1 and GCNT2); and growth factor binding (ABCB1 and ABCG1), metabolism, and signal transduction processes. The KEGG pathway analysis revealed that crocetin has the potential to regulate transcriptional misregulation, ABC transporters, bile secretion, alcoholism, systemic lupus erythematosus (SLE), and other pathways, of which SLE was the most significantly disturbed pathway. The PPI network was constructed by using the STRING online protein interaction database and Cytoscape software, and 21 core proteins were obtained. RT-qPCR datasets serve as the solid evidence that verified the accuracy of transcriptome sequencing results with the same change trend. This study provides first-hand data for comprehensively understanding crocetin targeting on hepatic metabolism and its multiple biofunctions.
Collapse
|
19
|
Atkinson EG, Maihofer AX, Kanai M, Martin AR, Karczewski KJ, Santoro ML, Ulirsch JC, Kamatani Y, Okada Y, Finucane HK, Koenen KC, Nievergelt CM, Daly MJ, Neale BM. Tractor uses local ancestry to enable the inclusion of admixed individuals in GWAS and to boost power. Nat Genet 2021; 53:195-204. [PMID: 33462486 PMCID: PMC7867648 DOI: 10.1038/s41588-020-00766-y] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 12/15/2020] [Indexed: 12/26/2022]
Abstract
Admixed populations are routinely excluded from genomic studies due to concerns over population structure. Here, we present a statistical framework and software package, Tractor, to facilitate the inclusion of admixed individuals in association studies by leveraging local ancestry. We test Tractor with simulated and empirical two-way admixed African-European cohorts. Tractor generates accurate ancestry-specific effect-size estimates and P values, can boost genome-wide association study (GWAS) power and improves the resolution of association signals. Using a local ancestry-aware regression model, we replicate known hits for blood lipids, discover novel hits missed by standard GWAS and localize signals closer to putative causal variants.
Collapse
Affiliation(s)
- Elizabeth G Atkinson
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Adam X Maihofer
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Masahiro Kanai
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Bioinformatics and Integrative Genomics, Harvard Medical School, Boston, MA, USA
- Department of Statistical Genetics, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Alicia R Martin
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Konrad J Karczewski
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Marcos L Santoro
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, Brazil
- Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Jacob C Ulirsch
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, USA
| | - Yoichiro Kamatani
- Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Graduate School of Medicine, Osaka University, Suita, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| | - Hilary K Finucane
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Karestan C Koenen
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Mark J Daly
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Benjamin M Neale
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
20
|
Asthma genomics and pharmacogenomics. Curr Opin Immunol 2020; 66:136-142. [PMID: 33171417 DOI: 10.1016/j.coi.2020.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/04/2020] [Indexed: 12/16/2022]
Abstract
In this review, we summarize recent published work interrogating the relationship between genetic variation or gene expression regulation across the genome and asthma or asthma treatment outcomes. This includes 11 genome-wide association studies of asthma phenotypes that collectively identified 64 novel loci; transcriptome-wide asthma association studies which identified genes involved in virus recognition, bacterial infection, lung tissue remodeling, eosinophilic and neutrophilic inflammation and genes in the chromosome 17q12 asthma susceptibility locus; and three epigenome-wide studies of asthma that had robust sample sizes and replicated findings. We also highlight pharmacogenomic studies of corticosteroids, bronchodilator response to albuterol and zileuton, although finding from these studies may still be preliminary due to their relatively small sample sizes and limited availability of replication cohorts.
Collapse
|
21
|
Jones TK, Christie JD. Discovery through Diversity: Insights into the Genetics of Lung Function in Latino Youth. Am J Respir Crit Care Med 2020; 202:913-914. [PMID: 32692576 PMCID: PMC7528776 DOI: 10.1164/rccm.202006-2404ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Tiffanie K Jones
- Division of Pulmonary, Allergy, and Critical Care Medicine and Center for Translational Lung Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Jason D Christie
- Division of Pulmonary, Allergy, and Critical Care Medicine and Center for Translational Lung Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
22
|
Lee EY, Mak ACY, Hu D, Sajuthi S, White MJ, Keys KL, Eckalbar W, Bonser L, Huntsman S, Urbanek C, Eng C, Jain D, Abecasis G, Kang HM, Germer S, Zody MC, Nickerson DA, Erle D, Ziv E, Rodriguez-Santana J, Seibold MA, Burchard EG. Whole-Genome Sequencing Identifies Novel Functional Loci Associated with Lung Function in Puerto Rican Youth. Am J Respir Crit Care Med 2020; 202:962-972. [PMID: 32459537 PMCID: PMC7528787 DOI: 10.1164/rccm.202002-0351oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/27/2020] [Indexed: 12/22/2022] Open
Abstract
Rationale: Puerto Ricans have the highest childhood asthma prevalence in the United States (23.6%); however, the etiology is uncertain.Objectives: In this study, we sought to uncover the genetic architecture of lung function in Puerto Rican youth with and without asthma who were recruited from the island (n = 836).Methods: We used admixture-mapping and whole-genome sequencing data to discover genomic regions associated with lung function. Functional roles of the prioritized candidate SNPs were examined with chromatin immunoprecipitation sequencing, RNA sequencing, and expression quantitative trait loci data.Measurements and Main Results: We discovered a genomic region at 1q32 that was significantly associated with a 0.12-L decrease in the lung volume of exhaled air (95% confidence interval, -0.17 to -0.07; P = 6.62 × 10-8) with each allele of African ancestry. Within this region, two SNPs were expression quantitative trait loci of TMEM9 in nasal airway epithelial cells and MROH3P in esophagus mucosa. The minor alleles of these SNPs were associated with significantly decreased lung function and decreased TMEM9 gene expression. Another admixture-mapping peak was observed on chromosome 5q35.1, indicating that each Native American ancestry allele was associated with a 0.15-L increase in lung function (95% confidence interval, 0.08-0.21; P = 5.03 × 10-6). The region-based association tests identified four suggestive windows that harbored candidate rare variants associated with lung function.Conclusions: We identified common and rare genetic variants that may play a critical role in lung function among Puerto Rican youth. We independently validated an inflammatory pathway that could potentially be used to develop more targeted treatments and interventions for patients with asthma.
Collapse
Affiliation(s)
- Eunice Y. Lee
- Department of Bioengineering and Therapeutic Sciences and
- Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Angel C. Y. Mak
- Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Donglei Hu
- Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Satria Sajuthi
- Department of Pediatrics, Center for Genes, Environment, and Health, and
| | - Marquitta J. White
- Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Kevin L. Keys
- Department of Medicine, University of California, San Francisco, San Francisco, California
| | | | - Luke Bonser
- Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Scott Huntsman
- Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Cydney Urbanek
- Department of Pediatrics, Center for Genes, Environment, and Health, and
| | - Celeste Eng
- Department of Medicine, University of California, San Francisco, San Francisco, California
| | | | - Gonçalo Abecasis
- Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan
- Regeneron Pharmaceuticals, Tarrytown, New York
| | - Hyun M. Kang
- Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan
| | | | | | - Deborah A. Nickerson
- Department of Genome Sciences, University of Washington, Seattle, Washington
- Northwest Genomics Center, Seattle, Washington
- Brotman Baty Institute, Seattle, Washington
| | - David Erle
- Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Elad Ziv
- Department of Medicine, University of California, San Francisco, San Francisco, California
| | | | - Max A. Seibold
- Department of Pediatrics, Center for Genes, Environment, and Health, and
- Department of Pediatrics, National Jewish Health, Denver, Colorado
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado–Anschutz Medical Campus, Aurora, Colorado
| | - Esteban G. Burchard
- Department of Bioengineering and Therapeutic Sciences and
- Department of Medicine, University of California, San Francisco, San Francisco, California
| |
Collapse
|
23
|
Swart Y, van Eeden G, Sparks A, Uren C, Möller M. Prospective avenues for human population genomics and disease mapping in southern Africa. Mol Genet Genomics 2020; 295:1079-1089. [PMID: 32440765 PMCID: PMC7240165 DOI: 10.1007/s00438-020-01684-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 05/06/2020] [Indexed: 12/22/2022]
Abstract
Population substructure within human populations is globally evident and a well-known confounding factor in many genetic studies. In contrast, admixture mapping exploits population stratification to detect genotype-phenotype correlations in admixed populations. Southern Africa has untapped potential for disease mapping of ancestry-specific disease risk alleles due to the distinct genetic diversity in its populations compared to other populations worldwide. This diversity contributes to a number of phenotypes, including ancestry-specific disease risk and response to pathogens. Although the 1000 Genomes Project significantly improved our understanding of genetic variation globally, southern African populations are still severely underrepresented in biomedical and human genetic studies due to insufficient large-scale publicly available data. In addition to a lack of genetic data in public repositories, existing software, algorithms and resources used for imputation and phasing of genotypic data (amongst others) are largely ineffective for populations with a complex genetic architecture such as that seen in southern Africa. This review article, therefore, aims to summarise the current limitations of conducting genetic studies on populations with a complex genetic architecture to identify potential areas for further research and development.
Collapse
Affiliation(s)
- Yolandi Swart
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Gerald van Eeden
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Anel Sparks
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Caitlin Uren
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Marlo Möller
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW Precision medicine could help to improve diagnosis and treatment of asthma; however, in the tropics there are special conditions to be considered for applying this strategy. In this review, we analyze recent advances of precision allergology in tropical regions, highlighting its limitations and needs in high-admixed populations living under environments with high exposure to house dust mites and helminth infections. RECENT FINDINGS Advances have been made regarding the genetic characterization of the great diversity of populations living in the tropics. Genes involved in shared biological pathways between immune responses to nematodes and the allergic responses suggested new mechanisms of predisposition. Genome wide association studies of asthma are progressively focusing on some highly replicated genes such as those in chromosome 17q31-13, which have been also replicated in African ancestry populations. Some diagnostic difficulties, because of the endemicity of helminth infections, are now more evident in the context of phenotype definition. SUMMARY The clinical impact of the advances in precision medicine for asthma in the tropics is still limited and mainly related to component resolved diagnosis. More basic and clinical research is needed to identify genetic, epigenetic, or other biologic markers that allow and accurate definition of phenotypes and endotypes of this heterogeneous disease. This will substantially improve the selection of personalized treatments.
Collapse
|
25
|
Zhang H, De T, Zhong Y, Perera MA. The Advantages and Challenges of Diversity in Pharmacogenomics: Can Minority Populations Bring Us Closer to Implementation? Clin Pharmacol Ther 2020; 106:338-349. [PMID: 31038731 DOI: 10.1002/cpt.1491] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 04/18/2019] [Indexed: 01/01/2023]
Abstract
Health disparities exist among minorities in the United States, with differences seen in disease prevalence, mortality, and responses to medications. These differences are multifactorial with genetic variation explaining a portion of this variability. Pharmacogenomics aims to find the effect of genetic variations on drug response, with the goal of optimizing drug therapy and development. Although genome-wide association studies have been useful in unbiasedly surveying the genome for genetic drivers of clinically relevant phenotypes, most of these studies have been conducted in mainly participants of European and Asian descent, contributing to a growing health disparity in precision medicine. Diversity is important to pharmacogenomic studies, and there may be real advantages to the use of these complex genomes in pharmacogenomics. In this review we will outline some of the advantages and confounders of pharmacogenomics in minorities, describe the role of genetic variation in pharmacologic pathways, and highlight a number of population-specific findings.
Collapse
Affiliation(s)
- Honghong Zhang
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Tanima De
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Yizhen Zhong
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Minoli A Perera
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
26
|
Schoettler N, Rodríguez E, Weidinger S, Ober C. Advances in asthma and allergic disease genetics: Is bigger always better? J Allergy Clin Immunol 2019; 144:1495-1506. [PMID: 31677964 PMCID: PMC6900451 DOI: 10.1016/j.jaci.2019.10.023] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022]
Abstract
This review focuses on genome-wide association studies (GWASs) of asthma and allergic diseases published between January 1, 2018, and June 30, 2019. During this time period, there were 38 GWASs reported in 19 articles, including the largest performed to date for many of these conditions. Overall, we learned that childhood-onset asthma is associated with the most independent loci compared with other defined groups of asthma and allergic disease cases; adult-onset asthma and moderate-to-severe asthma are associated with fewer genes, which are largely a subset of those associated with childhood-onset asthma. There is significant genetic overlap between asthma and allergic diseases, particularly with respect to childhood-onset asthma, which involves genes that reflect the importance of barrier function biology, and to HLA region genes, which are the most frequently associated genes overall in both groups of diseases. Although the largest GWASs in African American and Latino/Hispanic populations were reported during this period, they are still significantly underpowered compared with studies reported in populations of European ancestry, highlighting the need for larger studies, particularly in patients with childhood-onset asthma and allergic diseases, in these important populations that carry the greatest burden of disease.
Collapse
Affiliation(s)
- Nathan Schoettler
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Ill; Department of Human Genetics, University of Chicago, Chicago, Ill.
| | - Elke Rodríguez
- Department of Dermatology, Allergology and Venereology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Stephan Weidinger
- Department of Dermatology, Allergology and Venereology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, Ill
| |
Collapse
|
27
|
Pan R, Gao J, Wang X, Bai L, Wei Q, Yi W, Xu Z, Duan J, Cheng Q, Zhang Y, Su H. Impacts of exposure to humidex on the risk of childhood asthma hospitalizations in Hefei, China: Effect modification by gender and age. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 691:296-305. [PMID: 31323575 DOI: 10.1016/j.scitotenv.2019.07.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 06/08/2019] [Accepted: 07/02/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND With global climate change, there is growing concern about the effects of temperature changes on childhood asthma. However, current research only focuses on the effects of temperature, while ignoring the adverse effects of humidity on children. OBJECTIVES Our study aimed to quantify the impact of humidex on childhood asthma hospitalizations, which combined temperature and humidity, and further to assess how the effect is modified by individual-factors, such as age and gender. METHODS Poisson generalized linear models combined with distributed lag nonlinear models were used to estimate the association between daily childhood asthma hospitalizations and humidex from 2013 to 2016. Air pollutions (CO, O3, and NO2) and wind velocity were modelled simultaneously using DLNM, as well as day of week, seasonality and long-term trend. RESULTS Low humidex was associated with an increased risk of admissions for asthma in children. The adverse effect appeared on the 4th day, with the RR of 1.045 (95%CI: 1.007-1.084) and lasted until the 7th day (RR: 1.045, 95%CI: 1.006-1.085). Compared with the male, there was an immediate effect on female exposed to low humidex. And the female seems to be more sensitive to low humidex. Besides, the significant effects of humidex on children asthma were detected in the children with preschool and school-age, whereas not for the subgroup of infants. And the school-age children are most sensitive to low humidex. CONCLUSIONS Low humidex was associated with the increased risk of admissions for childhood asthma in Hefei. Children suffering from asthma should avoid exposure to the low humidex environment, especially in female and school-age children. In addition, the index of humidex was more significant for disease prevention and public health than the average temperature. These findings may provide epidemiology evidence for formulating precaution guidelines to reduce the risk of childhood asthma hospitalizations.
Collapse
Affiliation(s)
- Rubing Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Major Autoimmune Disease, China
| | - Jiaojiao Gao
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Major Autoimmune Disease, China
| | - Xu Wang
- Anhui province Children's hospital, China
| | - Lijun Bai
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Major Autoimmune Disease, China
| | - Qiannan Wei
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Major Autoimmune Disease, China
| | - Weizhuo Yi
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Major Autoimmune Disease, China
| | - Zihan Xu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Major Autoimmune Disease, China
| | - Jun Duan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Major Autoimmune Disease, China
| | - Qiang Cheng
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Major Autoimmune Disease, China
| | - Yanwu Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Major Autoimmune Disease, China
| | - Hong Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Major Autoimmune Disease, China.
| |
Collapse
|
28
|
Feliciano-Astacio BE, Celis K, Ramos J, Rajabli F, Adams LD, Rodriguez A, Rodriguez V, Bussies PL, Sierra C, Manrique P, Mena PR, Grana A, Prough M, Hamilton-Nelson KL, Feliciano N, Chinea A, Acosta H, McCauley JL, Vance JM, Beecham GW, Pericak-Vance MA, Cuccaro ML. The Puerto Rico Alzheimer Disease Initiative (PRADI): A Multisource Ascertainment Approach. Front Genet 2019; 10:538. [PMID: 31275353 PMCID: PMC6593074 DOI: 10.3389/fgene.2019.00538] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 05/17/2019] [Indexed: 11/28/2022] Open
Abstract
Introduction Puerto Ricans, the second largest Latino group in the continental US, are underrepresented in genomic studies of Alzheimer disease (AD). To increase representation of this group in genomic studies of AD, we developed a multisource ascertainment approach to enroll AD patients, and their family members living in Puerto Rico (PR) as part of the Alzheimer’s Disease Sequencing Project (ADSP), an international effort to advance broader personalized/precision medicine initiatives for AD across all populations. Methods The Puerto Rico Alzheimer Disease Initiative (PRADI) multisource ascertainment approach was developed to recruit and enroll Puerto Rican adults aged 50 years and older for a genetic research study of AD, including individuals with cognitive decline (AD, mild cognitive impairment), their similarly, aged family members, and cognitively healthy unrelated individuals age 50 and up. Emphasizing identification and relationship building with key stakeholders, we conducted ascertainment across the island. In addition to reporting on PRADI ascertainment, we detail admixture analysis for our cohort by region, group differences in age of onset, cognitive level by region, and ascertainment source. Results We report on 674 individuals who met standard eligibility criteria [282 AD-affected participants (42% of the sample), 115 individuals with mild cognitive impairment (MCI) (17% of the sample), and 277 cognitively healthy individuals (41% of the sample)]. There are 43 possible multiplex families (10 families with 4 or more AD-affected members and 3 families with 3 AD-affected members). Most individuals in our cohort were ascertained from the Metro, Bayamón, and Caguas health regions. Across health regions, we found differences in ancestral backgrounds, and select clinical traits. Discussion The multisource ascertainment approach used in the PRADI study highlights the importance of enlisting a broad range of community resources and providers. Preliminary results provide important information about our cohort that will be useful as we move forward with ascertainment. We expect that results from the PRADI study will lead to a better understanding of genetic risk for AD among this population.
Collapse
Affiliation(s)
| | - Katrina Celis
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Jairo Ramos
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Farid Rajabli
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Larry Deon Adams
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Alejandra Rodriguez
- Department of Internal Medicine, Universidad Central Del Caribe, Bayamón, PR, United States
| | - Vanessa Rodriguez
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Parker L Bussies
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Carolina Sierra
- Department of Internal Medicine, Universidad Central Del Caribe, Bayamón, PR, United States
| | - Patricia Manrique
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Pedro R Mena
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Antonella Grana
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Michael Prough
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Kara L Hamilton-Nelson
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, United States
| | | | - Angel Chinea
- Department of Internal Medicine, Universidad Central Del Caribe, Bayamón, PR, United States
| | | | - Jacob L McCauley
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Jeffery M Vance
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Gary W Beecham
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Margaret A Pericak-Vance
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Michael L Cuccaro
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
29
|
Bien SA, Wojcik GL, Hodonsky CJ, Gignoux CR, Cheng I, Matise TC, Peters U, Kenny EE, North KE. The Future of Genomic Studies Must Be Globally Representative: Perspectives from PAGE. Annu Rev Genomics Hum Genet 2019; 20:181-200. [PMID: 30978304 DOI: 10.1146/annurev-genom-091416-035517] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The past decade has seen a technological revolution in human genetics that has empowered population-level investigations into genetic associations with phenotypes. Although these discoveries rely on genetic variation across individuals, association studies have overwhelmingly been performed in populations of European descent. In this review, we describe limitations faced by single-population studies and provide an overview of strategies to improve global representation in existing data sets and future human genomics research via diversity-focused, multiethnic studies. We highlight the successes of individual studies and meta-analysis consortia that have provided unique knowledge. Additionally, we outline the approach taken by the Population Architecture Using Genomics and Epidemiology (PAGE) study to develop best practices for performing genetic epidemiology in multiethnic contexts. Finally, we discuss how limiting investigations to single populations impairs findings in the clinical domain for both rare-variant identification and genetic risk prediction.
Collapse
Affiliation(s)
- Stephanie A Bien
- Department of Public Health Science, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA; ,
| | - Genevieve L Wojcik
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, California 94305, USA;
| | - Chani J Hodonsky
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA; ,
| | - Christopher R Gignoux
- Colorado Center for Personalized Medicine, Anschutz Medical Campus, University of Colorado, Aurora, Colorado 80045, USA;
| | - Iona Cheng
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California 94158, USA;
| | - Tara C Matise
- Department of Genetics, Rutgers University, New Brunswick, New Jersey 08554, USA;
| | - Ulrike Peters
- Department of Public Health Science, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA; ,
| | - Eimear E Kenny
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Kari E North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA; ,
| |
Collapse
|
30
|
Grinde KE, Brown LA, Reiner AP, Thornton TA, Browning SR. Genome-wide Significance Thresholds for Admixture Mapping Studies. Am J Hum Genet 2019; 104:454-465. [PMID: 30773276 PMCID: PMC6407497 DOI: 10.1016/j.ajhg.2019.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/17/2019] [Indexed: 01/25/2023] Open
Abstract
Admixture mapping studies have become more common in recent years, due in part to technological advances and growing international efforts to increase the diversity of genetic studies. However, many open questions remain about appropriate implementation of admixture mapping studies, including how best to control for multiple testing, particularly in the presence of population structure. In this study, we develop a theoretical framework to characterize the correlation of local ancestry and admixture mapping test statistics in admixed populations with contributions from any number of ancestral populations and arbitrary population structure. Based on this framework, we develop an analytical approach for obtaining genome-wide significance thresholds for admixture mapping studies. We validate our approach via analysis of simulated traits with real genotype data for 8,064 unrelated African American and 3,425 Hispanic/Latina women from the Women's Health Initiative SNP Health Association Resource (WHI SHARe). In an application to these WHI SHARe data, our approach yields genome-wide significant p value thresholds of 2.1 × 10-5 and 4.5 × 10-6 for admixture mapping studies in the African American and Hispanic/Latina cohorts, respectively. Compared to other commonly used multiple testing correction procedures, our method is fast, easy to implement (using our publicly available R package), and controls the family-wise error rate even in structured populations. Importantly, we note that the appropriate admixture mapping significance threshold depends on the number of ancestral populations, generations since admixture, and population structure of the sample; as a result, significance thresholds are not, in general, transferable across studies.
Collapse
Affiliation(s)
- Kelsey E Grinde
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA.
| | - Lisa A Brown
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA; Seattle Genetics, Bothell, WA 98021, USA
| | - Alexander P Reiner
- Department of Epidemiology, University of Washington, Seattle, WA 98195, USA; Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Timothy A Thornton
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Sharon R Browning
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
31
|
Hernandez-Pacheco N, Pino-Yanes M, Flores C. Genomic Predictors of Asthma Phenotypes and Treatment Response. Front Pediatr 2019; 7:6. [PMID: 30805318 PMCID: PMC6370703 DOI: 10.3389/fped.2019.00006] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/10/2019] [Indexed: 12/11/2022] Open
Abstract
Asthma is a complex respiratory disease considered as the most common chronic condition in children. A large genetic contribution to asthma susceptibility is predicted by the clustering of asthma and allergy symptoms among relatives and the large disease heritability estimated from twin studies, ranging from 55 to 90%. Genetic basis of asthma has been extensively investigated in the past 40 years using linkage analysis and candidate-gene association studies. However, the development of dense arrays for polymorphism genotyping has enabled the transition toward genome-wide association studies (GWAS), which have led the discovery of several unanticipated asthma genes in the last 11 years. Despite this, currently known risk variants identified using many thousand samples from distinct ethnicities only explain a small proportion of asthma heritability. This review examines the main findings of the last 2 years in genomic studies of asthma using GWAS and admixture mapping studies, as well as the direction of studies fostering integrative perspectives involving omics data. Additionally, we discuss the need for assessing the whole spectrum of genetic variation in association studies of asthma susceptibility, severity, and treatment response in order to further improve our knowledge of asthma genes and predictive biomarkers. Leveraging the individual's genetic information will allow a better understanding of asthma pathogenesis and will facilitate the transition toward a more precise diagnosis and treatment.
Collapse
Affiliation(s)
- Natalia Hernandez-Pacheco
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Maria Pino-Yanes
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Flores
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
| |
Collapse
|