1
|
Gui S, Liu Y, Pu J, Wang D, Zhong X, Chen W, Chen X, Chen Y, Chen X, Tao W, Xie P. Systematical Comparison Reveals Distinct Brain Transcriptomic Characteristics in Depression Models Induced by Gut Microbiota Dysbiosis and Chronic Stress. Mol Neurobiol 2025; 62:7957-7974. [PMID: 39960648 DOI: 10.1007/s12035-025-04766-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 02/08/2025] [Indexed: 05/15/2025]
Abstract
Major depressive disorder (MDD) is a devastating psychiatric illness with various etiologies. Both chronic stress and gut microbiome dysbiosis are implicated in the pathogenesis of MDD. However, limited research has been conducted to delineate the distinct effects of these two pathogenic factors on the brain transcriptome. We generated and compared transcriptomic features of the anterior cingulate cortex (ACC) from depressive-like mice induced by gut microbiome dysbiosis and canonical chronic stress paradigms, focusing on gene expression patterns and network characteristics. Data derived from MDD patients served as a reference standard to filter the molecular alterations associated with the disorder. Chronic stress induced a plethora of altered genes and biological functions associated with depression, prominently involving mitochondrial dysfunction. However, gut microbiota dysbiosis specifically regulated narrower range of genes and biological mechanisms, targeting aberrations in vesicular transport systems and perturbations of autophagy pathways. Network analysis revealed that hierarchical gene co-expression was specifically affected by gut microbiota dysbiosis rather than chronic stress. Further functional clustering analysis, along with the central distribution of inflammation-related differentially expressed genes, suggested an intricate interplay between disrupted autophagy processes, microglia-mediated inflammation, and synaptic dysfunctions in the network influenced by gut microbiota dysbiosis. Our findings reveal the distinctive transcriptomic alterations of brain shaped by gut microbiota and chronic stress in the development of MDD, contributing to a deeper understanding the heterogeneity of depression. Additionally, we provide a valuable data resource and bioinformatic analysis template for future studies.
Collapse
Affiliation(s)
- Siwen Gui
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 40016, China
| | - Yiyun Liu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 40016, China
| | - Juncai Pu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 40016, China
| | - Dongfang Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 40016, China
| | - Xiaogang Zhong
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 40016, China
| | - Weiyi Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 40016, China
| | - Xiaopeng Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 40016, China
| | - Yue Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 40016, China
| | - Xiang Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 40016, China
| | - Wei Tao
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 40016, China
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 40016, China.
- Jin Feng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
2
|
Goodman MO, Faquih T, Paz V, Nagarajan P, Lane JM, Spitzer B, Maher M, Chung J, Cade BE, Purcell SM, Zhu X, Noordam R, Phillips AJK, Kyle SD, Spiegelhalder K, Weedon MN, Lawlor DA, Rotter JI, Taylor KD, Isasi CR, Sofer T, Dashti HS, Rutter MK, Redline S, Saxena R, Wang H. Genome-wide association analysis of composite sleep health scores in 413,904 individuals. Commun Biol 2025; 8:115. [PMID: 39856408 PMCID: PMC11760956 DOI: 10.1038/s42003-025-07514-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Recent genome-wide association studies (GWASs) of several individual sleep traits have identified hundreds of genetic loci, suggesting diverse mechanisms. Moreover, sleep traits are moderately correlated, so together may provide a more complete picture of sleep health, while illuminating distinct domains. Here we construct novel sleep health scores (SHSs) incorporating five core self-report measures: sleep duration, insomnia symptoms, chronotype, snoring, and daytime sleepiness, using additive (SHS-ADD) and five principal components-based (SHS-PCs) approaches. GWASs of these six SHSs identify 28 significant novel loci adjusting for multiple testing on six traits (p < 8.3e-9), along with 341 previously reported loci (p < 5e-08). The heritability of the first three SHS-PCs equals or exceeds that of SHS-ADD (SNP-h2 = 0.094), while revealing sleep-domain-specific genetic discoveries. Significant loci enrich in multiple brain tissues and in metabolic and neuronal pathways. Post-GWAS analyses uncover novel genetic mechanisms underlying sleep health and reveal connections (including potential causal links) to behavioral, psychological, and cardiometabolic traits.
Collapse
Affiliation(s)
- Matthew O Goodman
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
- Department of Neurology and Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Tariq Faquih
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
- Department of Neurology and Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Valentina Paz
- Instituto de Psicología Clínica, Facultad de Psicología, Universidad de la República, Montevideo, Uruguay
- MRC Unit for Lifelong Health & Ageing, Institute of Cardiovascular Science, University College London, London, United Kingdom
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Pavithra Nagarajan
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
| | - Jacqueline M Lane
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
- Department of Neurology and Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Brian Spitzer
- Division of Cardiology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Matthew Maher
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Joon Chung
- Department of Informatics and Health Data Science, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Brian E Cade
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
- Department of Neurology and Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Shaun M Purcell
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
- Department of Neurology and Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
- Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
| | - Xiaofeng Zhu
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Andrew J K Phillips
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
| | - Simon D Kyle
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Kai Spiegelhalder
- Department of Psychiatry and Psychotherapy, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael N Weedon
- Genetics of Complex Traits, University of Exeter Medical School, Exeter, UK
| | - Deborah A Lawlor
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Carmen R Isasi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Tamar Sofer
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
- Department of Neurology and Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
- Division of Cardiology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Hassan S Dashti
- Broad Institute, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Martin K Rutter
- Division of Endocrinology, Diabetes & Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Diabetes, Endocrinology and Metabolism Centre, Manchester University NHS Foundation Trust, NIHR Manchester Biomedical Research Centre, Manchester Academic Health Science Centre, Manchester, UK
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
- Department of Neurology and Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Richa Saxena
- Broad Institute, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Heming Wang
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Neurology and Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
3
|
Özdemiral C, Yaz I, Esenboga S, Nabiyeva Cevik N, Bildik HN, Kilic M, Tezcan I, Cagdas D. Human FCHO1 deficiency: review of the literature and additional two cases. Clin Exp Immunol 2025; 219:uxae097. [PMID: 39498505 PMCID: PMC11773606 DOI: 10.1093/cei/uxae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/02/2024] [Accepted: 11/04/2024] [Indexed: 01/29/2025] Open
Abstract
F-BAR domain only protein 1 (FCHO1) contributes as a critical component to an essential cellular process, clathrin-mediated endocytosis. Clathrin-mediated endocytosis involves cellular membrane invagination followed by cargo protein recruitment and adaptor protein assembly to form endocytic vesicles and maintains several cellular functions, such as signaling, differentiation, nutrition, absorption, and secretion. We aimed to determine the clinical/immunological findings of FCHO1 deficiency to generate an appropriate medical approach. We present clinical/immunological/genetic findings of two FCHO1 deficiency patients together with recently reported 17 patients. We found two different variants in the patients, one previously defined and one novel homozygous mutation [c.306C > A (p.Tyr102Ter)]. Recurrent sinopulmonary infections occurred in all patients, with viral (63.1%) and fungal (52.6%) infections frequently reported. Lymphopenia and CD4 + T cell lymphopenia are present in 77.7% (14/18) and 100% of patients, respectively. CD8+ T cell number is low in half. Hypogammaglobulinemia and low IgM are present in 83.3% (15/18) and 61.1% (11/18) of patients, respectively. Neurological disorders (Guillian-Barre Syndrome, Moya-Moya disease, encephalitis, and cranial infarction) are common [n = 6 (31.5%)]. Malignancy is present in four (21%) patients, three suffered from diffuse large B cell lymphoma, and one developed Hodgkin lymphoma. Additional clinical and laboratory results from more patients helped to define the characteristics of FCHO1 deficiency. The early application of molecular genetic analysis in CID patients is crucial. Since all transplanted patients were alive, allogeneic hematopoietic stem cell transplantation emerged as a potential curative therapy.
Collapse
Affiliation(s)
- Cansu Özdemiral
- Division of Immunology, Department of Pediatrics, Hacettepe University Medical School, Ankara, Türkiye
- İhsan Doğramacı Children’s Hospital, Hacettepe University, Ankara, Türkiye
- Division of Immunology, Department of Pediatric Basic Sciences, Institute of Child Health, Hacettepe University, Ankara, Türkiye
| | - Ismail Yaz
- İhsan Doğramacı Children’s Hospital, Hacettepe University, Ankara, Türkiye
- Division of Immunology, Department of Pediatric Basic Sciences, Institute of Child Health, Hacettepe University, Ankara, Türkiye
| | - Saliha Esenboga
- Division of Immunology, Department of Pediatrics, Hacettepe University Medical School, Ankara, Türkiye
- İhsan Doğramacı Children’s Hospital, Hacettepe University, Ankara, Türkiye
- Division of Immunology, Department of Pediatric Basic Sciences, Institute of Child Health, Hacettepe University, Ankara, Türkiye
| | - Nadira Nabiyeva Cevik
- Division of Immunology, Department of Pediatrics, Hacettepe University Medical School, Ankara, Türkiye
- İhsan Doğramacı Children’s Hospital, Hacettepe University, Ankara, Türkiye
- Division of Immunology, Department of Pediatric Basic Sciences, Institute of Child Health, Hacettepe University, Ankara, Türkiye
| | - Hacer Neslihan Bildik
- Division of Immunology, Department of Pediatrics, Hacettepe University Medical School, Ankara, Türkiye
- Division of Immunology, Department of Pediatric Basic Sciences, Institute of Child Health, Hacettepe University, Ankara, Türkiye
| | - Mehmet Kilic
- Division of Allergy and Immunology, Department of Pediatrics, Fırat University Faculty of Medicine, Elazığ, Türkiye
| | - Ilhan Tezcan
- Division of Immunology, Department of Pediatrics, Hacettepe University Medical School, Ankara, Türkiye
- İhsan Doğramacı Children’s Hospital, Hacettepe University, Ankara, Türkiye
- Division of Immunology, Department of Pediatric Basic Sciences, Institute of Child Health, Hacettepe University, Ankara, Türkiye
| | - Deniz Cagdas
- Division of Immunology, Department of Pediatrics, Hacettepe University Medical School, Ankara, Türkiye
- İhsan Doğramacı Children’s Hospital, Hacettepe University, Ankara, Türkiye
- Division of Immunology, Department of Pediatric Basic Sciences, Institute of Child Health, Hacettepe University, Ankara, Türkiye
| |
Collapse
|
4
|
Alomari O, Ertan SN, Mokresh ME, Yazicilar E, Pourali M, Akyokus FE, Sager SG, Cag Y. Comprehensive exploration of FCHO1 mutations: Clinical manifestations and implications across disorders. Am J Med Genet A 2025; 197:e63855. [PMID: 39166479 DOI: 10.1002/ajmg.a.63855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024]
Abstract
FCH domain only 1 (FCHO1) is a key player in clathrin-mediated endocytosis, vital for various cellular processes, including immune regulation and cancer progression. However, the clinical implications of FCHO1 mutations, particularly in combined immunodeficiency, remain unclear. This systematic review aims to provide an objective analysis of the molecular genetics, clinical manifestations, and potential therapeutic targets associated with FCHO1 mutations. A systematic search following Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines was conducted across electronic databases up to March 25, 2024, to identify studies investigating the relationship between FCHO1 and different clinical manifestations. Eligibility criteria were applied to screen studies, and data extraction included study characteristics, reported symptoms, genetic variants, and primary outcomes. In silico analyses were performed to assess protein-protein interactions and gene expression patterns. Five studies were included, offering insights into the molecular genetics, T-cell deficiency mechanisms, clinical manifestations, and potential therapeutic targets associated with FCHO1 mutations. Molecular analyses identified specific mutations disrupting FCHO1 function, leading to impaired T-cell proliferation, cytokine production, and susceptibility to infections. Clinically, patients exhibited recurrent infections, lymphopenia, and malignancies, with allogeneic hematopoietic stem cell transplantation emerging as a therapeutic option. In silico analyses revealed potential interactions and co-expression between FCHO1 and genes involved in cancer progression and immune signaling pathways. This systematic review objectively elucidates the multifaceted role of FCHO1 in immune regulation and disease pathogenesis. Understanding the molecular mechanisms underlying FCHO1 mutations and their impact on disease manifestations is crucial for guiding clinical management and developing targeted therapeutic strategies.
Collapse
Affiliation(s)
- Omar Alomari
- Hamidiye International School of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Sinem Nur Ertan
- Hamidiye International School of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Muhammed Edib Mokresh
- Hamidiye International School of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Elif Yazicilar
- Hamidiye International School of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Maryam Pourali
- Hamidiye International School of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Fatma Esra Akyokus
- Hamidiye International School of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Safiye Gunes Sager
- Clinics of Pediatric Neurology, Kartal Dr. Lütfi Kırdar City Hospital, Istanbul, Turkey
| | - Yakup Cag
- Department of Pediatrics, University of Health Sciences Kartal Dr. Lutfi Kirdar City Hospital, Istanbul, Turkey
| |
Collapse
|
5
|
Goodman MO, Faquih T, Paz V, Nagarajan P, Lane JM, Spitzer B, Maher M, Chung J, Cade BE, Purcell SM, Zhu X, Noordam R, Phillips AJK, Kyle SD, Spiegelhalder K, Weedon MN, Lawlor DA, Rotter JI, Taylor KD, Isasi CR, Sofer T, Dashti HS, Rutter MK, Redline S, Saxena R, Wang H. Genome-wide association analysis of composite sleep health scores in 413,904 individuals. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.02.24302211. [PMID: 38352337 PMCID: PMC10863010 DOI: 10.1101/2024.02.02.24302211] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
Recent genome-wide association studies (GWASs) of several individual sleep traits have identified hundreds of genetic loci, suggesting diverse mechanisms. Moreover, sleep traits are moderately correlated, and together may provide a more complete picture of sleep health, while also illuminating distinct domains. Here we construct novel sleep health scores (SHSs) incorporating five core self-report measures: sleep duration, insomnia symptoms, chronotype, snoring, and daytime sleepiness, using additive (SHS-ADD) and five principal components-based (SHS-PCs) approaches. GWASs of these six SHSs identify 28 significant novel loci adjusting for multiple testing on six traits (p<8.3e-9), along with 341 previously reported loci (p<5e-08). The heritability of the first three SHS-PCs equals or exceeds that of SHS-ADD (SNP-h2=0.094), while revealing sleep-domain-specific genetic discoveries. Significant loci enrich in multiple brain tissues and in metabolic and neuronal pathways. Post GWAS analyses uncover novel genetic mechanisms underlying sleep health and reveal connections to behavioral, psychological, and cardiometabolic traits.
Collapse
Affiliation(s)
- Matthew O Goodman
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Neurology and Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Tariq Faquih
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Neurology and Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Valentina Paz
- Instituto de Psicología Clínica, Facultad de Psicología, Universidad de la República, Montevideo, Uruguay
- MRC Unit for Lifelong Health & Ageing, Institute of Cardiovascular Science, University College London, London, United Kingdom
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Pavithra Nagarajan
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, USA
| | - Jacqueline M Lane
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Neurology and Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Brian Spitzer
- Division of Cardiology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Matthew Maher
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Joon Chung
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Neurology and Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
| | - Brian E Cade
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Neurology and Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Shaun M Purcell
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Neurology and Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
- Department of Psychiatry, Brigham and Women’s Hospital, Boston, MA, USA
| | - Xiaofeng Zhu
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Andrew J. K. Phillips
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
| | - Simon D. Kyle
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Kai Spiegelhalder
- Department of Psychiatry and Psychotherapy, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael N Weedon
- Genetics of Complex Traits, University of Exeter Medical School, Exeter, UK
| | - Deborah A. Lawlor
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Carmen R Isasi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Tamar Sofer
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Neurology and Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Cardiology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Hassan S Dashti
- Broad Institute, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Martin K Rutter
- Division of Endocrinology, Diabetes & Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Diabetes, Endocrinology and Metabolism Centre, Manchester University NHS Foundation Trust, NIHR Manchester Biomedical Research Centre, Manchester Academic Health Science Centre, Manchester, UK
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Neurology and Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
| | - Richa Saxena
- Broad Institute, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Heming Wang
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Neurology and Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| |
Collapse
|
6
|
Yang S, Guo J, Kong Z, Deng M, Da J, Lin X, Peng S, Fu J, Luo T, Ma J, Yin H, Liu L, Liu J, Zha Y, Tan Y, Zhang J. Causal effects of gut microbiota on sepsis and sepsis-related death: insights from genome-wide Mendelian randomization, single-cell RNA, bulk RNA sequencing, and network pharmacology. J Transl Med 2024; 22:10. [PMID: 38167131 PMCID: PMC10763396 DOI: 10.1186/s12967-023-04835-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Gut microbiota alterations have been implicated in sepsis and related infectious diseases, but the causal relationship and underlying mechanisms remain unclear. METHODS We evaluated the association between gut microbiota composition and sepsis using two-sample Mendelian randomization (MR) analysis based on published genome-wide association study (GWAS) summary statistics. Sensitivity analyses were conducted to validate the robustness of the results. Reverse MR analysis and integration of GWAS and expression quantitative trait loci (eQTL) data were performed to identify potential genes and therapeutic targets. RESULTS Our analysis identified 11 causal bacterial taxa associated with sepsis, with increased abundance of six taxa showing positive causal relationships. Ten taxa had causal effects on the 28-day survival outcome of septic patients, with increased abundance of six taxa showing positive associations. Sensitivity analyses confirmed the robustness of these associations. Reverse MR analysis did not provide evidence of reverse causality. Integration of GWAS and eQTL data revealed 76 genes passing the summary data-based Mendelian randomization (SMR) test. Differential expression of these genes was observed between sepsis patients and healthy individuals. These genes represent potential therapeutic targets for sepsis. Molecular docking analysis predicted potential drug-target interactions, further supporting their therapeutic potential. CONCLUSION Our study provides insights for the development of personalized treatment strategies for sepsis and offers preliminary candidate targets and drugs for future drug development.
Collapse
Affiliation(s)
- Sha Yang
- Guizhou University Medical College, Guiyang, 550025, Guizhou, China
| | - Jing Guo
- Guizhou University Medical College, Guiyang, 550025, Guizhou, China
| | - Zhuo Kong
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Mei Deng
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Jingjing Da
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Xin Lin
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Shuo Peng
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Junwu Fu
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Tao Luo
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Jun Ma
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Hao Yin
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Lin Liu
- Department of Respiratory and Critical Care Medicine, Guizhou Provincial People's Hospital, Guiyang, China
| | - Jian Liu
- Guizhou University Medical College, Guiyang, 550025, Guizhou, China
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yan Zha
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, China.
| | - Ying Tan
- Department of Respiratory and Critical Care Medicine, Guizhou Provincial People's Hospital, Guiyang, China.
| | - Jiqin Zhang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, China.
| |
Collapse
|
7
|
Morreale A, Dotta L, Vairo D, Bazzana T, Lougaris V, Soresina A, Plebani A, Giliani SC, Porta F, Matteelli A, Redaelli De Zinis LO, Badolato R. When a Nontuberculous Mycobacterial Infection Reveals an Error of Immunity: A Single Center's Experience. Pediatr Infect Dis J 2022; 41:427-429. [PMID: 35086117 DOI: 10.1097/inf.0000000000003461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We present an algorithm that may be applied in case of a diagnosis of pediatric nontuberculous mycobacterial disease to identify the patients who may require an immunologic assessment to discover a possible underlying immune system defect predisposing to their nontuberculous mycobacterial infections.
Collapse
Affiliation(s)
- Alessia Morreale
- From the Department of Pediatrics, ASST Spedali Civili of Brescia, University of Brescia
| | - Laura Dotta
- Department of Pediatrics, Institute for Molecular Medicine A. Nocivelli, ASST Spedali Civili of Brescia
| | - Donatella Vairo
- Department of Molecular and Translational Medicine, Institute for Molecular Medicine A. Nocivelli, University of Brescia
| | - Tullia Bazzana
- Department of Pediatric Otorhinolaryngology, ASST Spedali Civili of Brescia
| | - Vassilios Lougaris
- Department of Pediatrics, Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia and ASST Spedali Civili of Brescia
| | | | - Alessandro Plebani
- Department of Pediatrics, Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia and ASST Spedali Civili of Brescia
| | - Silvia Clara Giliani
- Institute for Molecular Medicine A. Nocivelli, Department of Pathology, Laboratory of Genetic Disorders of Childhood, Department of Molecular and Translational Medicine, University of Brescia, ASST Spedali Civili of Brescia
| | - Fulvio Porta
- Department of Pediatric Onco-Hematology and BMT, ASST Spedali Civili of Brescia
| | - Alberto Matteelli
- Department of Infectious and Tropical Diseases, WHO Collaborating Centre for TB/human immunodeficiency virus and TB Elimination, University of Brescia and ASST Spedali Civili of Brescia
| | - Luca Oscar Redaelli De Zinis
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Section of Head and Neck Surgery, University of Brescia, Pediatric Otorhinolaryngology Head Neck Surgery Division, Children Hospital, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Raffaele Badolato
- Department of Pediatrics, Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia and ASST Spedali Civili of Brescia
| |
Collapse
|
8
|
Zaccai NR, Kadlecova Z, Dickson VK, Korobchevskaya K, Kamenicky J, Kovtun O, Umasankar PK, Wrobel AG, Kaufman JGG, Gray SR, Qu K, Evans PR, Fritzsche M, Sroubek F, Höning S, Briggs JAG, Kelly BT, Owen DJ, Traub LM. FCHO controls AP2's initiating role in endocytosis through a PtdIns(4,5)P 2-dependent switch. SCIENCE ADVANCES 2022; 8:eabn2018. [PMID: 35486718 PMCID: PMC9054013 DOI: 10.1126/sciadv.abn2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Clathrin-mediated endocytosis (CME) is the main mechanism by which mammalian cells control their cell surface proteome. Proper operation of the pivotal CME cargo adaptor AP2 requires membrane-localized Fer/Cip4 homology domain-only proteins (FCHO). Here, live-cell enhanced total internal reflection fluorescence-structured illumination microscopy shows that FCHO marks sites of clathrin-coated pit (CCP) initiation, which mature into uniform-sized CCPs comprising a central patch of AP2 and clathrin corralled by an FCHO/Epidermal growth factor potential receptor substrate number 15 (Eps15) ring. We dissect the network of interactions between the FCHO interdomain linker and AP2, which concentrates, orients, tethers, and partially destabilizes closed AP2 at the plasma membrane. AP2's subsequent membrane deposition drives its opening, which triggers FCHO displacement through steric competition with phosphatidylinositol 4,5-bisphosphate, clathrin, cargo, and CME accessory factors. FCHO can now relocate toward a CCP's outer edge to engage and activate further AP2s to drive CCP growth/maturation.
Collapse
Affiliation(s)
- Nathan R. Zaccai
- CIMR, University of Cambridge, Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Zuzana Kadlecova
- CIMR, University of Cambridge, Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | | | - Kseniya Korobchevskaya
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, UK
| | - Jan Kamenicky
- Czech Academy of Sciences, Institute of Information Theory and Automation, Pod Vodarenskou vezi 4, 182 08 Prague 8, Czech Republic
| | - Oleksiy Kovtun
- MRC LMB Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Perunthottathu K. Umasankar
- Intracellular Trafficking Laboratory, Transdisciplinary Biology Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Antoni G. Wrobel
- CIMR, University of Cambridge, Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | | | - Sally R. Gray
- CIMR, University of Cambridge, Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Kun Qu
- MRC LMB Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | | | - Marco Fritzsche
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, UK
- Rosalind Franklin Institute, Harwell Campus, Didcot, UK
| | - Filip Sroubek
- Czech Academy of Sciences, Institute of Information Theory and Automation, Pod Vodarenskou vezi 4, 182 08 Prague 8, Czech Republic
| | - Stefan Höning
- Institute for Biochemistry I, Medical Faculty, University of Cologne, Joseph-Stelzmann-Straße 52, 50931 Cologne, Germany
| | - John A. G. Briggs
- MRC LMB Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Bernard T. Kelly
- CIMR, University of Cambridge, Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - David J. Owen
- CIMR, University of Cambridge, Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Linton M. Traub
- Department of Cell Biology, University of Pittsburgh School of Medicine, 3500 Terrace Street, Pittsburgh, PA, USA
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Primary immunodeficiency diseases (PIDs), also called inborn errors of immunity (IEI), are genetic disorders classically characterized by an increased susceptibility to infection and/or disruption in the regulation of an immunologic pathway. This review summarizes and highlights the new IEI disorders in the IUIS 2019 report and 2020 interim report and discusses the directions for the future management of PIDs. RECENT FINDINGS Since 2017, the International Union of Immunologic Societies (IUIS) IEI committee has updated the IUIS classification of IEIs with 88 new gene defects and 75 new immune disorders. The increased utilization of genetic testing and advances in the strategic evaluation of genetic variants have identified, not only novel IEI disorders, but additional genetic causes for known IEI disorders. Investigation of potential immune susceptibilities during the ongoing COVID-19 pandemic suggests that defects in Type I interferon signalling may underlie more severe disease. SUMMARY The rapid discovery of new IEIs reflects the growing trend of applying genetic testing modalities as part of medical diagnosis and management.In turn, elucidating the pathophysiology of these novel IEIs have enhanced our understanding of how genetic mutations can modulate the immune system and their consequential effect on human health and disease.
Collapse
Affiliation(s)
- Yesim Demirdag
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Ramsay Fuleihan
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics
| | - Jordan S Orange
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics
- Division of Immunogenetics, Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | - Joyce E Yu
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics
| |
Collapse
|
10
|
Seth N, Tuano KS, Chinen J. Inborn errors of immunity: Recent progress. J Allergy Clin Immunol 2021; 148:1442-1450. [PMID: 34688776 DOI: 10.1016/j.jaci.2021.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 10/20/2022]
Abstract
Recent advances in the field of inborn errors of immunity (IEIs) have been wide in scope, including progress in mechanisms of disease, diagnosis, and management. New gene defects affecting the immune response continue to be reported, as many as 26 in the year 2020. It was noted that the presentation of IEIs might not include recurrent infections in 9% of cases, and that current diagnostic methods can identify molecular causes in 92% of patients with severe combined immunodeficiency. Progress in immunopathogenesis explained mechanisms leading to symptoms of autosomal-recessive hyper-IgE syndrome. There was an emphasis on research in primary antibody deficiencies. The benefit of antibiotic prophylaxis to reduce the frequency of infections was demonstrated in these patients. The regimen of rituximab and azathioprine or mycophenolate was proven effective for chronic granulocytic interstitial pneumonia. The efficacy and adverse events of hematopoietic stem cell transplant in different IEI conditions were reported, as well as different strategies to improve outcomes, supporting its use in immunodeficiency and immunodysregulatory syndromes. The recent pandemic of coronavirus disease 2019 affected patients with IEIs, in particular those with deficiency in the interferon-mediated activation of the immune response. Initial data suggest that coronavirus disease 2019 vaccines might elicit anti-coronavirus disease 2019-neutralizing antibody responses in some patients with IEI conditions.
Collapse
Affiliation(s)
- Neha Seth
- Division of Immunology, Allergy and Retrovirology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, The Woodlands, Tex
| | - Karen S Tuano
- Division of Immunology, Allergy and Retrovirology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, The Woodlands, Tex
| | - Javier Chinen
- Division of Immunology, Allergy and Retrovirology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, The Woodlands, Tex.
| |
Collapse
|
11
|
Delmonte OM, Bergerson JRE, Kawai T, Kuehn HS, McDermott DH, Cortese I, Zimmermann MT, Dobbs AK, Bosticardo M, Fink D, Majumdar S, Palterer B, Pala F, Dsouza NR, Pouzolles M, Taylor N, Calvo KR, Daley SR, Velez D, Agharahimi A, Myint-Hpu K, Dropulic LK, Lyons JJ, Holland SM, Freeman AF, Ghosh R, Similuk MB, Niemela JE, Stoddard J, Kuhns DB, Urrutia R, Rosenzweig SD, Walkiewicz MA, Murphy PM, Notarangelo LD. SASH3 variants cause a novel form of X-linked combined immunodeficiency with immune dysregulation. Blood 2021; 138:1019-1033. [PMID: 33876203 PMCID: PMC8462359 DOI: 10.1182/blood.2020008629] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sterile alpha motif (SAM) and Src homology-3 (SH3) domain-containing 3 (SASH3), also called SH3-containing lymphocyte protein (SLY1), is a putative adaptor protein that is postulated to play an important role in the organization of signaling complexes and propagation of signal transduction cascades in lymphocytes. The SASH3 gene is located on the X-chromosome. Here, we identified 3 novel SASH3 deleterious variants in 4 unrelated male patients with a history of combined immunodeficiency and immune dysregulation that manifested as recurrent sinopulmonary, cutaneous, and mucosal infections and refractory autoimmune cytopenias. Patients exhibited CD4+ T-cell lymphopenia, decreased T-cell proliferation, cell cycle progression, and increased T-cell apoptosis in response to mitogens. In vitro T-cell differentiation of CD34+ cells and molecular signatures of rearrangements at the T-cell receptor α (TRA) locus were indicative of impaired thymocyte survival. These patients also manifested neutropenia and B-cell and natural killer (NK)-cell lymphopenia. Lentivirus-mediated transfer of the SASH3 complementary DNA-corrected protein expression, in vitro proliferation, and signaling in SASH3-deficient Jurkat and patient-derived T cells. These findings define a new type of X-linked combined immunodeficiency in humans that recapitulates many of the abnormalities reported in mice with Sly1-/- and Sly1Δ/Δ mutations, highlighting an important role of SASH3 in human lymphocyte function and survival.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/immunology
- Child, Preschool
- Chromosomes, Human, X/genetics
- Chromosomes, Human, X/immunology
- Genetic Loci
- Humans
- Jurkat Cells
- Killer Cells, Natural/immunology
- Lymphopenia/genetics
- Lymphopenia/immunology
- Male
- Mice
- Mice, Knockout
- Mutation
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- X-Linked Combined Immunodeficiency Diseases/genetics
- X-Linked Combined Immunodeficiency Diseases/immunology
Collapse
Affiliation(s)
- Ottavia M Delmonte
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Jenna R E Bergerson
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Tomoki Kawai
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Hye Sun Kuehn
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - David H McDermott
- Molecular Signaling Section, Laboratory of Molecular Immunology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Irene Cortese
- Neuroimmunology Clinic, Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Michael T Zimmermann
- Division of Research, Genomics Sciences & Precision Medicine Center, Milwaukee, WI
- Clinical and Translational Sciences Institute, Medical College of Wisconsin, Milwaukee, WI
| | - A Kerry Dobbs
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Danielle Fink
- Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Shamik Majumdar
- Molecular Signaling Section, Laboratory of Molecular Immunology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Boaz Palterer
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Francesca Pala
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Nikita R Dsouza
- Division of Research, Genomics Sciences & Precision Medicine Center, Milwaukee, WI
| | - Marie Pouzolles
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Naomi Taylor
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Institut de Genetique Moleculaire de Montpellier, Centre National de la Recherche Scientifique Unité Mixte de Recherche (UMR) 5535, Universite de Montpellier, Montpellier, France
| | - Katherine R Calvo
- Hematology Section, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Stephen R Daley
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Daniel Velez
- Molecular Signaling Section, Laboratory of Molecular Immunology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Anahita Agharahimi
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Katherine Myint-Hpu
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | | | - Jonathan J Lyons
- Division of Intramural Research, Laboratory of Allergic Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD and
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Rajarshi Ghosh
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Morgan B Similuk
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Julie E Niemela
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Jennifer Stoddard
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Douglas B Kuhns
- Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Raul Urrutia
- Division of Research, Genomics Sciences & Precision Medicine Center, Milwaukee, WI
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI
| | - Sergio D Rosenzweig
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Magdalena A Walkiewicz
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Philip M Murphy
- Molecular Signaling Section, Laboratory of Molecular Immunology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
12
|
Charpentier JC, King PD. Mechanisms and functions of endocytosis in T cells. Cell Commun Signal 2021; 19:92. [PMID: 34503523 PMCID: PMC8427877 DOI: 10.1186/s12964-021-00766-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/17/2021] [Indexed: 11/11/2022] Open
Abstract
Once thought of primarily as a means to neutralize pathogens or to facilitate feeding, endocytosis is now known to regulate a wide range of eukaryotic cell processes. Among these are regulation of signal transduction, mitosis, lipid homeostasis, and directed migration, among others. Less well-appreciated are the roles various forms of endocytosis plays in regulating αβ and, especially, γδ T cell functions, such as T cell receptor signaling, antigen discovery by trogocytosis, and activated cell growth. Herein we examine the contribution of both clathrin-mediated and clathrin-independent mechanisms of endocytosis to T cell biology. Video Abstract
Collapse
Affiliation(s)
- John C Charpentier
- Department of Microbiology and Immunology, University of Michigan Medical School, 6606 Med Sci II, 1150 West Medical Center Drive, Ann Arbor, MI, 48109-5620, USA
| | - Philip D King
- Department of Microbiology and Immunology, University of Michigan Medical School, 6606 Med Sci II, 1150 West Medical Center Drive, Ann Arbor, MI, 48109-5620, USA.
| |
Collapse
|
13
|
Boisson-Dupuis S, Bustamante J. Mycobacterial diseases in patients with inborn errors of immunity. Curr Opin Immunol 2021; 72:262-271. [PMID: 34315005 DOI: 10.1016/j.coi.2021.07.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/03/2021] [Accepted: 07/01/2021] [Indexed: 12/17/2022]
Abstract
Clinical disease caused by the agent of tuberculosis, Mycobacterium tuberculosis, and by less virulent mycobacteria, such as bacillus Calmette-Guérin (BCG) vaccines and environmental mycobacteria, can result from inborn errors of immunity (IEIs). IEIs underlie more than 450 conditions, each associated with an impairment of the development and/or function of hematopoietic and/or non-hematopoietic cells involved in host defense. Only a minority of IEIs confer predisposition to mycobacterial disease. The IEIs underlying susceptibility to bona fide tuberculosis are less well delineated than those responsible for susceptibility to less virulent mycobacteria. However, all these IEIs share a defining feature: the impairment of immunity mediated by interferon gamma (IFN-γ). More profound IFN-γ deficiency is associated with a greater vulnerability to weakly virulent mycobacteria, whereas more selective IFN-γ deficiency is associated with a more selective predisposition to mycobacterial disease. We review here recent progress in the study of IEIs underlying mycobacterial diseases.
Collapse
Affiliation(s)
- Stéphanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, EU, France; University of Paris, Imagine Institute, Paris, EU, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, EU, France; University of Paris, Imagine Institute, Paris, EU, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, Paris, EU, France.
| |
Collapse
|
14
|
Kelaidi C, Tzotzola V, Polychronopoulou S. The paradigm of hematological malignant versus non-malignant manifestations, driven by primary immunodeficiencies: a complex interplay. Fam Cancer 2021; 20:363-380. [PMID: 34128135 DOI: 10.1007/s10689-021-00266-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 05/28/2021] [Indexed: 01/25/2023]
Abstract
Hematological malignancies (HM) developed on underlying primary immunodeficiencies (PID) are rare and of unusual features. Differentiating between malignant and non-malignant lymphoproliferation in cases of pediatric hematology and oncology and revealing their molecular predisposition demonstrate the complex interplay between PID and HM. We retrospectively studied a case series of seven pediatric patients, all with PID with manifestations raising suspicion for HM or hypereosinophilic syndrome (HES) or confirmed HM of lymphoid origin. Combined immunodeficiency (CID) without detection of a known mutated gene or with ataxia-telangiectasia (AT), STAT3 gain of function (GOF), DOCK8 deficiency, and CTLA4 deficiency were diagnosed in three, one, one, one, and one patient, respectively. Acute lymphoblastic leukemia and Hodgkin lymphoma followed by second primary Burkitt lymphoma were diagnosed in one patient with CID each, while lymphomatoid granulomatosis in one patient with AT. Lymphoproliferative disease occurred in STAT3 GOF, CTLA4 deficiency and CID, one patient each, and idiopathic HES in DOCK8 deficiency (median age at presentation of PID or any hematological manifestation: four years). Four patients underwent hematopoietic cell transplantation (HCT) for STAT3 GOF, DOCK8 deficiency and CID in one, one, and two cases, respectively (median age: 10 years). At the last follow-up, all transplanted patients were alive. Reporting on patients' phenotype, genotype and course of disease shed light on the prevalence, characteristics, and pathophysiology of HM complicating PID. Discriminating the non-yet malignant lymphoproliferation from its malignant equivalent on the same pathophysiology background proved of additional value. Outcomes of PID after HCT, herein reported, are favorable.
Collapse
Affiliation(s)
- C Kelaidi
- Department of Pediatric Hematology-Oncology, "Aghia Sophia" Children's Hospital, Thivon 1 & Papadiamantopoulou, 11527, Athens, Greece.
| | - V Tzotzola
- Department of Pediatric Hematology-Oncology, "Aghia Sophia" Children's Hospital, Thivon 1 & Papadiamantopoulou, 11527, Athens, Greece
| | - S Polychronopoulou
- Department of Pediatric Hematology-Oncology, "Aghia Sophia" Children's Hospital, Thivon 1 & Papadiamantopoulou, 11527, Athens, Greece
| |
Collapse
|
15
|
Calzoni E, Castagnoli R, Giliani SC. Human inborn errors of immunity caused by defects of receptor and proteins of cellular membrane. Minerva Pediatr 2020; 72:393-407. [PMID: 32960006 DOI: 10.23736/s0026-4946.20.06000-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Inborn errors of immunity are diseases of the immune system resulting from mutations that alter the expression of encoded proteins or molecules. Total updated number of these disorders is currently 406, with 430 different identified gene defects involved. Studies of the underlying mechanisms have contributed in better understanding the pathophysiology of the diseases, but also the complexity of the biology of innate and adaptive immune system and its interaction with microbes. In this review we present and briefly discuss Inborn Errors of Immunity caused by defects in genes encoding for receptors and protein of cellular membrane, including cytokine receptors, T cell antigen receptor (TCR) complex, cellular surface receptors or receptors signaling causing predominantly antibody deficiencies, co-stimulatory receptors and others. These alterations impact many biological processes of immune-system cells, including development, proliferation, activation and down-regulation of the immunological response, and result in a variety of diseases that present with distinct clinical features or with overlapping signs and symptoms.
Collapse
Affiliation(s)
- Enrica Calzoni
- Department of Molecular and Translational Medicine, A. Nocivelli Institute for Molecular Medicine, University of Brescia, Brescia, Italy -
| | - Riccardo Castagnoli
- Pediatric Clinic, IRCCS San Matteo Polyclinic Foundation, Pavia, Italy.,Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Silvia C Giliani
- Department of Molecular and Translational Medicine, A. Nocivelli Institute for Molecular Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
16
|
Zheng Q, Ma Y, Chen S, Che Q, Zhou Z, Chen D. Identification of genetic loci jointly influencing coronary artery disease risk and sleep traits of insomnia, sleep duration, and chronotype. Sleep Med 2020; 74:116-123. [PMID: 32846279 DOI: 10.1016/j.sleep.2020.06.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 05/17/2020] [Accepted: 06/21/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Accumulating evidence suggests a relationship between coronary artery disease (CAD) and sleep problems. Our study is aimed to investigate the shared genetic loci underlying this phenotypic association. METHODS Combining summary statistics from different genome-wide association studies, we investigated overlap in single-nucleotide polymorphisms (SNPs) associated with CAD and sleep traits (insomnia symptoms, sleep duration, and chronotype) using conditional/conjunctional false discovery rate (condFDR/conjFDR) approach. Relevant variants are further evaluated for differential expression analysis, expression quantitative trait locus (eQTL) functionality, and gene ontology (GO) enrichment analysis. RESULTS We observed substantial genetic enrichment in CAD condition on associations with sleep traits, which indicating polygenic overlap. Using conjFDR analysis, 26 loci jointly influencing CAD and sleep traits were identified. One locus was shared between CAD and sleep duration and represented the strongest shared signal detected (closest gene, MSL2; chromosome 3q22.3; conjFDR = 1.77 × 10-4). A consistent direction of allelic effect was observed between CAD and insomnia symptoms, while bi-directional effects were recognized between CAD, sleep duration, and chronotype. Replicable eQTL functionality was further identified for two loci: rs28398825 for FCHO1 in the frontal cortex and blood tissue, and rs8072451 for LRRC37A and its duplicate LRRC37A2 in several brain regions and blood tissue. GO analysis of the loci shared between CAD and sleep traits implicated cellular component related to synapse. CONCLUSIONS Our findings provide new insight into the relationship between CAD and sleep traits. The mechanisms underlying these associations warrant further investigation.
Collapse
Affiliation(s)
- Qiwen Zheng
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China.
| | - Yujia Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China.
| | - Si Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China.
| | - Qianzi Che
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China.
| | - Zechen Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China.
| | - Dafang Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China.
| |
Collapse
|
17
|
Łyszkiewicz M, Ziętara N, Frey L, Pannicke U, Stern M, Liu Y, Fan Y, Puchałka J, Hollizeck S, Somekh I, Rohlfs M, Yilmaz T, Ünal E, Karakukcu M, Patiroğlu T, Kellerer C, Karasu E, Sykora KW, Lev A, Simon A, Somech R, Roesler J, Hoenig M, Keppler OT, Schwarz K, Klein C. Human FCHO1 deficiency reveals role for clathrin-mediated endocytosis in development and function of T cells. Nat Commun 2020; 11:1031. [PMID: 32098969 PMCID: PMC7042371 DOI: 10.1038/s41467-020-14809-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 01/23/2020] [Indexed: 01/05/2023] Open
Abstract
Clathrin-mediated endocytosis (CME) is critical for internalisation of molecules across cell membranes. The FCH domain only 1 (FCHO1) protein is key molecule involved in the early stages of CME formation. The consequences of mutations in FCHO1 in humans were unknown. We identify ten unrelated patients with variable T and B cell lymphopenia, who are homozygous for six distinct mutations in FCHO1. We demonstrate that these mutations either lead to mislocalisation of the protein or prevent its interaction with binding partners. Live-cell imaging of cells expressing mutant variants of FCHO1 provide evidence of impaired formation of clathrin coated pits (CCP). Patient T cells are unresponsive to T cell receptor (TCR) triggering. Internalisation of the TCR receptor is severely perturbed in FCHO1-deficient Jurkat T cells but can be rescued by expression of wild-type FCHO1. Thus, we discovered a previously unrecognised critical role of FCHO1 and CME during T-cell development and function in humans.
Collapse
Affiliation(s)
- Marcin Łyszkiewicz
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU, Munich, Germany.
- Institute for Immunology, Biomedical Center Munich, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Munich, Germany.
| | - Natalia Ziętara
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU, Munich, Germany
- Institute for Immunology, Biomedical Center Munich, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Munich, Germany
| | - Laura Frey
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU, Munich, Germany
| | - Ulrich Pannicke
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Marcel Stern
- Max von Pettenkofer Institute, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany
| | - Yanshan Liu
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU, Munich, Germany
| | - Yanxin Fan
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU, Munich, Germany
| | - Jacek Puchałka
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU, Munich, Germany
| | - Sebastian Hollizeck
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU, Munich, Germany
| | - Ido Somekh
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU, Munich, Germany
| | - Meino Rohlfs
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU, Munich, Germany
| | - Tuğba Yilmaz
- Department of Pediatrics, Division of Pediatric Hematology & Oncology, Erciyes University, Kayseri, Turkey
| | - Ekrem Ünal
- Department of Pediatrics, Division of Pediatric Hematology & Oncology, Erciyes University, Kayseri, Turkey
| | - Musa Karakukcu
- Department of Pediatrics, Division of Pediatric Hematology & Oncology, Erciyes University, Kayseri, Turkey
| | - Türkan Patiroğlu
- Department of Pediatrics, Division of Pediatric Hematology & Oncology, Erciyes University, Kayseri, Turkey
- Department of Pediatrics, Division of Pediatric Immunology, Erciyes University, Kayseri, Turkey
| | | | - Ebru Karasu
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Karl-Walter Sykora
- Department of Pediatric Hematology/Oncology, Hannover Medical School, Hannover, Germany
| | - Atar Lev
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer and Sackler Faculty of Medicine Tel Aviv University, Tel Aviv, Israel
| | - Amos Simon
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer and Sackler Faculty of Medicine Tel Aviv University, Tel Aviv, Israel
| | - Raz Somech
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer and Sackler Faculty of Medicine Tel Aviv University, Tel Aviv, Israel
| | - Joachim Roesler
- Department of Pediatrics, Carl Gustav Carus Technical University Dresden, Dresden, Germany
| | - Manfred Hoenig
- Department of Pediatrics, University Medical Centre Ulm, Ulm, Germany
| | - Oliver T Keppler
- Max von Pettenkofer Institute, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Klaus Schwarz
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Wuerttemberg, Hessen, Germany
| | - Christoph Klein
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU, Munich, Germany.
| |
Collapse
|
18
|
Tangye SG, Al-Herz W, Bousfiha A, Chatila T, Cunningham-Rundles C, Etzioni A, Franco JL, Holland SM, Klein C, Morio T, Ochs HD, Oksenhendler E, Picard C, Puck J, Torgerson TR, Casanova JL, Sullivan KE. Human Inborn Errors of Immunity: 2019 Update on the Classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol 2020; 40:24-64. [PMID: 31953710 PMCID: PMC7082301 DOI: 10.1007/s10875-019-00737-x] [Citation(s) in RCA: 740] [Impact Index Per Article: 148.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/18/2019] [Indexed: 12/26/2022]
Abstract
We report the updated classification of Inborn Errors of Immunity/Primary Immunodeficiencies, compiled by the International Union of Immunological Societies Expert Committee. This report documents the key clinical and laboratory features of 430 inborn errors of immunity, including 64 gene defects that have either been discovered in the past 2 years since the previous update (published January 2018) or were characterized earlier but have since been confirmed or expanded upon in subsequent studies. The application of next-generation sequencing continues to expedite the rapid identification of novel gene defects, rare or common; broaden the immunological and clinical phenotypes of conditions arising from known gene defects and even known variants; and implement gene-specific therapies. These advances are contributing to greater understanding of the molecular, cellular, and immunological mechanisms of disease, thereby enhancing immunological knowledge while improving the management of patients and their families. This report serves as a valuable resource for the molecular diagnosis of individuals with heritable immunological disorders and also for the scientific dissection of cellular and molecular mechanisms underlying inborn errors of immunity and related human diseases.
Collapse
Affiliation(s)
- Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2010, Australia.
- Faculty of Medicine, St Vincent's Clinical School, UNSW, Sydney, NSW, Australia.
| | - Waleed Al-Herz
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Aziz Bousfiha
- King Hassan II University, Laboratoire d'Immunologie Clinique, d'Inflammation et d'Allergy LICIA at Faculty of Medicine and Pharmacy, Clinical Immunology Unit, Pediatric Infectiouse Disease Department, Children's Hospital, Ibn Rochd University Hospital, Casablanca, Morocco
| | - Talal Chatila
- Division of Immunology, Children's Hospital Boston, Boston, MA, USA
| | | | - Amos Etzioni
- Ruth's Children's Hospital-Technion, Haifa, Israel
| | - Jose Luis Franco
- Grupo de Inmunodeficiencias Primarias, Facultad de Medicina, Universidad de Antioquia UdeA, Medellin, Colombia
| | - Steven M Holland
- Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Christoph Klein
- Dr von Hauner Children's Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hans D Ochs
- Department of Pediatrics, University of Washington and Seattle Children's Research Institute, Seattle, WA, USA
| | - Eric Oksenhendler
- Department of Clinical Immunology, Hôpital Saint-Louis, APHP, University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Capucine Picard
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, APHP, Paris, France
- Paris University, Laboratory of Lymphocyte Activation and Susceptibility to EBV, INSERM UMR1163, Imagine Institute, Necker Hospital for Sick Children, Paris, France
| | - Jennifer Puck
- Department of Pediatrics, University of California San Francisco and UCSF Benioff Children's Hospital, San Francisco, CA, USA
| | - Troy R Torgerson
- Department of Pediatrics, University of Washington and Seattle Children's Research Institute, Seattle, WA, USA
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Imagine Institute, Necker Hospital for Sick Children, Paris University, Paris, France
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
| | - Kathleen E Sullivan
- Division of Allergy Immunology, Department of Pediatrics, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
19
|
Endocytic Adaptor Proteins in Health and Disease: Lessons from Model Organisms and Human Mutations. Cells 2019; 8:cells8111345. [PMID: 31671891 PMCID: PMC6912373 DOI: 10.3390/cells8111345] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/11/2022] Open
Abstract
Cells need to exchange material and information with their environment. This is largely achieved via cell-surface receptors which mediate processes ranging from nutrient uptake to signaling responses. Consequently, their surface levels have to be dynamically controlled. Endocytosis constitutes a powerful mechanism to regulate the surface proteome and to recycle vesicular transmembrane proteins that strand at the plasma membrane after exocytosis. For efficient internalization, the cargo proteins need to be linked to the endocytic machinery via adaptor proteins such as the heterotetrameric endocytic adaptor complex AP-2 and a variety of mostly monomeric endocytic adaptors. In line with the importance of endocytosis for nutrient uptake, cell signaling and neurotransmission, animal models and human mutations have revealed that defects in these adaptors are associated with several diseases ranging from metabolic disorders to encephalopathies. This review will discuss the physiological functions of the so far known adaptor proteins and will provide a comprehensive overview of their links to human diseases.
Collapse
|