1
|
Lisiecka MZ. Efficacy of Subcutaneous, Sublingual and Oral Immunotherapy for Allergens: A Comparative Study. Immunology 2025; 174:423-433. [PMID: 39800671 DOI: 10.1111/imm.13898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/27/2024] [Accepted: 12/29/2024] [Indexed: 03/08/2025] Open
Abstract
The purpose of this study was to compare the efficacy and safety of subcutaneous, sublingual, oral specific immunotherapy in patients who suffer from allergic conditions to pollen from trees, grasses and weeds, house dust mites and Alternaria alternata spores. A literature search was performed separately for each type of allergen and each administration route of the drug. As a result, it was found that all administration routes were quite effective. However, each type of immunotherapy was most effective for certain allergens. Subcutaneous and sublingual immunotherapy have proven effective for aeroallergens such as pollen from grass, trees, weeds and house dust mites. Despite this, subcutaneous immunotherapy had a number of disadvantages in the form of the duration of treatment and a greater prevalence of side effects. Some authors suggest that for allergies to house dust mites, the most effective method of immunotherapy was the subcutaneous method of administration, compared with sublingual and nasal. Sublingual therapy was safe enough for all types of allergens under study, however, to achieve the same effect as the subcutaneous method of administration. In addition, oral immunotherapy has been shown to be effective for food allergies with obvious symptoms of gastrointestinal disorders. In addition, oral immunotherapy is the only approved treatment for allergies in the elderly, due to the low risk of side effects. The time-accelerated and dosage-enhanced immunotherapy was also effective and safe. These data prove the effectiveness and safety of each administration route of specific allergens for specific immunotherapy in patients suffering from allergic rhinitis, bronchial asthma and even atopic dermatitis.
Collapse
Affiliation(s)
- Maria Zofia Lisiecka
- Department of Allergology, National Medical Institute of the Ministry of the Interior and Administration, Warsaw, Poland
| |
Collapse
|
2
|
Tabar AI, Cabrera HL, Rivas-Juesas C, Candela FJC, Folqué MDM, Tortajada-Girbés M, Martínez-Cañavate A, Moreno JML, Mesa-Del-Castillo M. A Delphi consensus on diagnosis, management, and treatment with allergen immunotherapy of polysensitized children in Spain: CAPP study, Part 2. Allergol Immunopathol (Madr) 2025; 53:141-159. [PMID: 40088032 DOI: 10.15586/aei.v53i2.1221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/18/2024] [Indexed: 03/17/2025]
Abstract
BACKGROUND The study aimed to evaluate the level of agreement between specialists in pediatric allergology regarding the diagnosis and indications for allergen immunotherapy (AIT) for dust mites, molds, animal dander, and Hymenoptera venom allergen, as well as mixtures of several allergen sources in polysensitized children in Spain. MATERIALS AND METHODS A Delphi study was performed using an online survey designed by a committee of pediatric AIT experts: 46 and 44 panelists participated in Rounds 1 and 2, respectively. In Round 1, 204 statements on 8 dimensions were evaluated (Diagnosis, Therapeutic management, and Pollens - Part I; Mites, molds, animals, hymenoptera venom, and mixtures - Part II). A total of 148 statements were finally accepted after Round 2. Panel members rated their level of agreement with assessments on a 9-point Likert scale based on acceptance by ≥ 66.7 of them. RESULTS Panel experts recommended molecular diagnosis for dust mite allergy diagnosis in polysensitized pediatrics and mixtures of nonhomologous mites (Dermatophagoides and Lepidoglyphus) for optimal AIT management. Subcutaneous AIT with mold extracts is recommended, but no agreement was reached on mixing different mold types. Panel experts agreed that Fel d 1 and Can f 1 sIgE are better predictors for animal dander allergy , but no agreement exists on the acceptance of AIT with dander mixtures. Panelists accepted that Api m 2 (hyaluronidase) sIgE indicates Vespid and Apis mellifera cross-reactivity in children; and Api m 4 (melittin) sIgE is a marker of risk for systemic reaction with AIT in Apis mellifera allergy. According to the consensus, SCIT is more suitable for allergen mixtures than SLIT. and agreement was reached for pollen allergens and Alternaria alternata mixtures if stability, safety, and efficacy have been demonstrated. CONCLUSIONS This Delphi study provides, where evidence is lacking, current expert-based opinions on clinical decision-making for managing polysensitized children.
Collapse
Affiliation(s)
- Ana I Tabar
- Servicio Alergología, Hospital Universitario de Navarra (HUN), Pamplona, Spain
| | | | - Cristina Rivas-Juesas
- Unidad de Neumología y Alergología Pediátrica, Servicio de Pediatría, Hospital de Sagunto, Valencia, Spain
| | | | - Maria Del Mar Folqué
- Servicio de Alergología Pediátrica e Inmunología Clínica, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Miguel Tortajada-Girbés
- Sección de Neumología y Alergología Pediátrica, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Ana Martínez-Cañavate
- Unidad de Alergia Infantil, Hospital Materno Infantil Virgen de las Nieves de Granada, Spain
| | - José Manuel Lucas Moreno
- Sección Alergia Pediátrica, Servicio de Pediatría, Hospital Clínico Universitario Virgen Arrixaca, Murcia, Spain
| | - María Mesa-Del-Castillo
- Unidad de Neumología y Alergología Pediátrica, Servicio de Pediatría, Hospital Universitario de Móstoles, Madrid, Spain;
| |
Collapse
|
3
|
Miyabe Y, Abe T, Yamada T, Endo T, Kawasaki Y, Suzuki S, Arima M, Ueki S, Yamada T. Tissue levels of Alternaria allergen Alt a 1 reflect recurrence of refractory airway diseases. Allergy 2025; 80:587-589. [PMID: 39244710 PMCID: PMC11804301 DOI: 10.1111/all.16294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/11/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024]
Affiliation(s)
- Yui Miyabe
- Department of Otorhinolaryngology, Head and Neck SurgeryGraduate School of Medicine, Akita UniversityAkitaJapan
| | - Tomoe Abe
- Department of Otorhinolaryngology, Head and Neck SurgeryGraduate School of Medicine, Akita UniversityAkitaJapan
| | - Toshiki Yamada
- Department of Otorhinolaryngology, Head and Neck SurgeryGraduate School of Medicine, Akita UniversityAkitaJapan
| | - Tentaro Endo
- Department of Otorhinolaryngology, Head and Neck SurgeryGraduate School of Medicine, Akita UniversityAkitaJapan
| | - Yohei Kawasaki
- Department of Otorhinolaryngology, Head and Neck SurgeryGraduate School of Medicine, Akita UniversityAkitaJapan
| | - Shinsuke Suzuki
- Department of Otorhinolaryngology, Head and Neck SurgeryGraduate School of Medicine, Akita UniversityAkitaJapan
| | - Misaki Arima
- Department of General Internal Medicine and Clinical Laboratory MedicineGraduate School of Medicine, Akita UniversityAkitaJapan
| | - Shigeharu Ueki
- Department of General Internal Medicine and Clinical Laboratory MedicineGraduate School of Medicine, Akita UniversityAkitaJapan
| | - Takechiyo Yamada
- Department of Otorhinolaryngology, Head and Neck SurgeryGraduate School of Medicine, Akita UniversityAkitaJapan
| |
Collapse
|
4
|
Gazi U, Bahceciler NN. Immunotherapy against environmental fungi causing respiratory allergy. J Mycol Med 2024; 34:101517. [PMID: 39500232 DOI: 10.1016/j.mycmed.2024.101517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/22/2024] [Accepted: 10/28/2024] [Indexed: 12/08/2024]
Abstract
Allergic respiratory diseases (ARDs) have been one of the major global health problems of the 21st century with an increasing prevalence. A significant proportion of aerobiological particles in the environment is constituted by fungal structures, including those from Alternaria, Cladosporium, Penicillium, and Aspergillus species which are regarded as the four most common fungal genera associated with allergic fungal airway diseases (AFADs). Allergen specific immunotherapy (AIT) has capacity to promote protection as well as long-term tolerance to the allergen, however there have not been adequate number of studies evaluating the efficacy of against AFADs, up till today. Our review would like to draw more attention to the field by summarizing the current literature regarding the clinical use of the immunotherapy, with special focus on Alternaria, and Cladosporium AITs. The area is considered to be vital to public health due to the potential increase in global AFAD cases because of ongoing air pollution and climate impacts. The review also aims to sum up immunological findings associated with mould-AIT which would help further studies to be performed in order to develop an objective method to identify non-responders early in the course of therapy.
Collapse
Affiliation(s)
- Umut Gazi
- Department of Medical Microbiology and Clinical Microbiology, Faculty of Medicine, Near East University, Nicosia, Cyprus.
| | - Nerin Nadir Bahceciler
- Department of Child Health and Disease, Division of Allergy and Immunology, Faculty of Medicine, Near East University, Nicosia, Cyprus
| |
Collapse
|
5
|
Özdemiral C, Gurel DI, Sahiner U. Allergen-specific immunotherapy at the extremes of age: below 5 years and elderly: evidence beyond indications? Curr Opin Allergy Clin Immunol 2024; 24:510-519. [PMID: 39329170 DOI: 10.1097/aci.0000000000001030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
PURPOSE OF REVIEW Allergen-specific immunotherapy (AIT) has been used in clinical practice to treat allergic diseases for over 100 years. The effectiveness and safety of AIT have been substantiated in numerous studies; however, children before 5 years of age and elderly are not encompassed generally. This review aims to present the current understanding of AIT in the extremes of age. RECENT FINDINGS Early allergen immunotherapy during infancy or early childhood may prevent the development of allergic sensitization to common allergens, thereby reducing the risk of developing allergic diseases later in life. In the elderly, improved symptoms and quality of life and reduced dependence on medication are indicated the importance on the implementation of AIT. Both clinical and immunological parameters demonstrated that the treatment was effective at the time of cessation and trend to sustained tolerance. SUMMARY There is no specific lower or upper age limit for initiating immunotherapy; however, it is important to thoroughly evaluate the severity of disease and the risks and benefits in each case.
Collapse
Affiliation(s)
- Cansu Özdemiral
- Department of Pediatric Allergy, Hacettepe University School of Medicine, Ankara, Turkey
| | | | | |
Collapse
|
6
|
Hurraß J, Heinzow B, Walser-Reichenbach S, Aurbach U, Becker S, Bellmann R, Bergmann KC, Cornely OA, Engelhart S, Fischer G, Gabrio T, Herr CEW, Joest M, Karagiannidis C, Klimek L, Köberle M, Kolk A, Lichtnecker H, Lob-Corzilius T, Mülleneisen N, Nowak D, Rabe U, Raulf M, Steinmann J, Steiß JO, Stemler J, Umpfenbach U, Valtanen K, Werchan B, Willinger B, Wiesmüller GA. [Medical clinical diagnostics for indoor mould exposure - Update 2023 (AWMF Register No. 161/001)]. Pneumologie 2024; 78:693-784. [PMID: 39424320 DOI: 10.1055/a-2194-6914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
This article is an abridged version of the updated AWMF mould guideline "Medical clinical diagnostics in case of indoor mould exposure - Update 2023", presented in July 2023 by the German Society of Hygiene, Environmental Medicine and Preventive Medicine (Gesellschaft für Hygiene, Umweltmedizin und Präventivmedizin, GHUP), in collaboration with German and Austrian scientific medical societies, and experts. Indoor mould growth is a potential health risk, even if a quantitative and/or causal relationship between the occurrence of individual mould species and health problems has yet to be established. There is no evidence for a causal relationship between moisture/mould damage and human diseases, mainly because of the ubiquitous presence of fungi and hitherto inadequate diagnostic methods. Sufficient evidence for an association between moisture/mould damage and the following health effects has been established for: allergic respiratory diseases, allergic rhinitis, allergic rhino-conjunctivitis, allergic bronchopulmonary aspergillosis (ABPA), other allergic bronchopulmonary mycosis (ABPM), aspergilloma, Aspergillus bronchitis, asthma (manifestation, progression, exacerbation), bronchitis (acute, chronic), community-acquired Aspergillus pneumonia, hypersensitivity pneumonitis (HP; extrinsic allergic alveolitis (EEA)), invasive Aspergillosis, mycoses, organic dust toxic syndrome (ODTS) [workplace exposure], promotion of respiratory infections, pulmonary aspergillosis (subacute, chronic), and rhinosinusitis (acute, chronically invasive, or granulomatous, allergic). In this context the sensitizing potential of moulds is obviously low compared to other environmental allergens. Recent studies show a comparatively low sensitization prevalence of 3-22,5 % in the general population across Europe. Limited or suspected evidence for an association exist with respect to atopic eczema (atopic dermatitis, neurodermatitis; manifestation), chronic obstructive pulmonary disease (COPD), mood disorders, mucous membrane irritation (MMI), odor effects, and sarcoidosis. (iv) Inadequate or insufficient evidence for an association exist for acute idiopathic pulmonary hemorrhage in infants, airborne transmitted mycotoxicosis, arthritis, autoimmune diseases, cancer, chronic fatigue syndrome (CFS), endocrinopathies, gastrointestinal effects, multiple chemical sensitivity (MCS), multiple sclerosis, neuropsychological effects, neurotoxic effects, renal effects, reproductive disorders, rheumatism, sick building syndrome (SBS), sudden infant death syndrome, teratogenicity, thyroid diseases, and urticaria.The risk of infection posed by moulds regularly occurring indoors is low for healthy persons; most species are in risk group 1 and a few in risk group 2 (Aspergillus fumigatus, A. flavus) of the German Biological Agents Act (Biostoffverordnung). Only moulds that are potentially able to form toxins can be triggers of toxic reactions. Whether or not toxin formation occurs in individual cases is determined by environmental and growth conditions, water activity, temperature and above all the growth substrates.In case of indoor moisture/mould damage, everyone can be affected by odor effects and/or mood disorders.However, this is not an acute health hazard. Predisposing factors for odor effects can include genetic and hormonal influences, imprinting, context and adaptation effects. Predisposing factors for mood disorders may include environmental concerns, anxiety, condition, and attribution, as well as various diseases. Risk groups to be protected particularly regarding infection risk are immunocompromised persons according to the classification of the German Commission for Hospital Hygiene and Infection Prevention (Kommission für Krankenhaushygiene und Infektionsprävention, KRINKO) at the Robert Koch-Institute (RKI), persons suffering from severe influenza, persons suffering from severe COVID-19, and persons with cystic fibrosis (mucoviscidosis); with regard to allergic risk, persons with cystic fibrosis (mucoviscidosis) and patients with bronchial asthma must be protected. The rational diagnostics include the medical history, physical examination, and conventional allergy diagnostics including provocation tests if necessary; sometimes cellular test systems are indicated. In the case of mould infections, the reader is referred to the specific guidelines. Regarding mycotoxins, there are currently no useful and validated test procedures for clinical diagnostics. From a preventive medical point of view, it is important that indoor mould infestation in relevant magnitudes cannot be tolerated for precautionary reasons.For evaluation of mould damage in the indoor environment and appropriate remedial procedures, the reader is referred to the mould guideline issued by the German Federal Environment Agency (Umweltbundesamt, UBA).
Collapse
Affiliation(s)
- Julia Hurraß
- Sachgebiet Hygiene in Gesundheitseinrichtungen, Abteilung Infektions- und Umwelthygiene, Gesundheitsamt der Stadt Köln
| | - Birger Heinzow
- Ehemals: Landesamt für soziale Dienste (LAsD) Schleswig-Holstein, Kiel
| | | | - Ute Aurbach
- Labor Dr. Wisplinghoff
- ZfMK - Zentrum für Umwelt, Hygiene und Mykologie, Köln
| | - Sven Becker
- Universitätsklinik für Hals-, Nasen- und Ohrenheilkunde, Universitätsklinikum Tübingen
| | - Romuald Bellmann
- Universitätsklinik für Innere Medizin I, Medizinische Universität Innsbruck
| | | | - Oliver A Cornely
- Translational Research, CECAD Cluster of Excellence, Universität zu Köln
| | | | - Guido Fischer
- Landesgesundheitsamt Baden-Württemberg im Regierungspräsidium Stuttgart
| | - Thomas Gabrio
- Ehemals: Landesgesundheitsamt Baden-Württemberg im Regierungspräsidium Stuttgart
| | - Caroline E W Herr
- Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit München
- Ludwig-Maximilians-Universität München, apl. Prof. "Hygiene und Umweltmedizin"
| | - Marcus Joest
- Allergologisch-immunologisches Labor, Helios Lungen- und Allergiezentrum Bonn
| | - Christian Karagiannidis
- Fakultät für Gesundheit, Professur für Extrakorporale Lungenersatzverfahren, Universität Witten/Herdecke
- Lungenklinik Köln Merheim, Kliniken der Stadt Köln
| | | | - Martin Köberle
- Klinik und Poliklinik für Dermatologie und Allergologie am Biederstein, Technische Universität München
| | - Annette Kolk
- Institut für Arbeitsschutz der DGUV (IFA), Bereich Biostoffe, Sankt Augustin
| | | | | | | | - Dennis Nowak
- Institut und Poliklinik für Arbeits-, Sozial- und Umweltmedizin, Mitglied Deutsches Zentrum für Lungenforschung, Klinikum der Universität München
| | - Uta Rabe
- Zentrum für Allergologie und Asthma, Johanniter-Krankenhaus Treuenbrietzen
| | - Monika Raulf
- Institut für Prävention und Arbeitsmedizin der Deutschen Gesetzlichen Unfallversicherung, Institut der Ruhr-Universität Bochum (IPA)
| | - Jörg Steinmann
- Institut für Klinikhygiene, Medizinische Mikrobiologie und Klinische Infektiologie, Paracelsus Medizinische Privatuniversität Klinikum Nürnberg
| | - Jens-Oliver Steiß
- Zentrum für Kinderheilkunde und Jugendmedizin, Universitätsklinikum Gießen und Marburg GmbH, Gießen
- Schwerpunktpraxis Allergologie und Kinder-Pneumologie Fulda
| | - Jannik Stemler
- Translational Research, CECAD Cluster of Excellence, Universität zu Köln
| | - Ulli Umpfenbach
- Arzt für Kinderheilkunde und Jugendmedizin, Kinderpneumologie, Umweltmedizin, klassische Homöopathie, Asthmatrainer, Neurodermitistrainer, Viersen
| | | | | | - Birgit Willinger
- Klinisches Institut für Labormedizin, Klinische Abteilung für Klinische Mikrobiologie - MedUni Wien
| | - Gerhard A Wiesmüller
- Labor Dr. Wisplinghoff
- ZfMK - Zentrum für Umwelt, Hygiene und Mykologie, Köln
- Institut für Arbeits-, Sozial- und Umweltmedizin, Uniklinik RWTH Aachen
| |
Collapse
|
7
|
Liu J, Yin J. A retrospective analysis of the clinical efficacy in patients treated with Alternaria alternata and Dermatophagoides farinae immunotherapy. FRONTIERS IN ALLERGY 2024; 5:1453446. [PMID: 39239620 PMCID: PMC11374762 DOI: 10.3389/falgy.2024.1453446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/07/2024] [Indexed: 09/07/2024] Open
Abstract
Background The clinical efficacy of allergen-specific immunotherapy (AIT) for Alternaria alternata (A. alt) and Dermatophagoides farinae (Der f) extracts remains largely unknown in China. We sought to retrospectively evaluate the efficacy caused by AIT agents manufactured in China of patients who are sensitized to A. alt and Der f. Methods Patients aged 5-27 years with asthma and perennial allergic rhinitis (AR), and AIT with A. alt and Der f were recruited, and then classified into two groups: A. alt-AIT (n = 31) and A. alt + Der f-AIT group (n = 39). All data were gathered retrospectively, including biological parameters, pulmonary function, and symptom and medication scores. Results 70 patients who underwent A. alt and Der f AIT were enrolled. A significant improvement was observed in the values of FEV1% (P < 0.0001) and MEF 25 (P = 0.023) of lung function. Both the rhinitis symptoms and combined symptoms and medication scores for asthma decreased after AIT (by 45.3% and 80.3%, respectively, P < 0.0001 for each). Nearly 67% improvement rate (P < 0.0001) occurred in rhinoconjunctivitis quality of life, and a great increase existed in Asthma Control Test (ACT) score (P < 0.0001) after at least 1 year AIT, although there were no significant changes between these two groups. Besides, no significance was displayed in specific IgE to different allergens. Conclusion AIT with A. alt and Der f extracts had clinical efficacy for many patients in China, with a reduction of symptom and medication scores, and great improvement in spirometry function.
Collapse
Affiliation(s)
- Juan Liu
- Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment of Allergic Diseases, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Disease (NCRC-DID), Beijing, China
| | - Jia Yin
- Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment of Allergic Diseases, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Disease (NCRC-DID), Beijing, China
| |
Collapse
|
8
|
Strader MB, Saha AL, Fernandes C, Sharma K, Hadiwinarta C, Calheiros D, Conde-de-Oliveira G, Gonçalves T, Slater JE. Distinct proteomes and allergen profiles appear across the life-cycle stages of Alternaria alternata. J Allergy Clin Immunol 2024; 154:424-434. [PMID: 38663817 DOI: 10.1016/j.jaci.2024.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/01/2024] [Accepted: 03/20/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Alternaria alternata is associated with allergic respiratory diseases, which can be managed with allergen extract-based diagnostics and immunotherapy. It is not known how spores and hyphae contribute to allergen content. Commercial allergen extracts are manufactured by extracting proteins without separating the different forms of the fungus. OBJECTIVE We sought to determine differences between spore and hyphae proteomes and how allergens are distributed in Aalternata. METHODS Data-independent acquisition mass spectrometry was used to quantitatively compare the proteomes of asexual spores (nongerminating and germinating) with vegetative hyphae. RESULTS We identified 4515 proteins in nongerminating spores, germinating spores, and hyphae; most known allergens are more abundant in nongerminating spores. On comparing significant protein fold-change differences between nongerminating spores and hyphae, we found that 174 proteins were upregulated in nongerminating spores and 80 proteins in hyphae. Among the spore proteins are ones functionally involved in cell wall synthesis, responding to cellular stress, and maintaining redox balance and homeostasis. On comparing nongerminating and germinating spores, 25 proteins were found to be upregulated in nongerminating spores and 54 in germinating spores. Among the proteins specific to germinating spores were proteases known to be virulence factors. One of the most abundant proteins in the spore proteome is sialidase, which has not been identified as an allergen but may be important in the pathogenicity of this fungus. Major allergen Alt a 1 is present at low levels in spores and hyphae and appears to be largely secreted into growth media. CONCLUSIONS Spores and hyphae express overlapping but distinct proteomes. Most known allergens are found more abundantly in nongerminating spores.
Collapse
Affiliation(s)
- Michael Brad Strader
- Laboratory of Immunobiochemistry, Division of Bacterial, Parasitic and Allergenic Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Md.
| | - Aishwarya L Saha
- Laboratory of Immunobiochemistry, Division of Bacterial, Parasitic and Allergenic Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Md
| | - Chantal Fernandes
- University of Coimbra, CNC-UC - Center for Neuroscience and Cell Biology, FMUC - Faculty of Medicine of the University of Coimbra, Coimbra, Portugal
| | - Kavita Sharma
- Laboratory of Immunobiochemistry, Division of Bacterial, Parasitic and Allergenic Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Md
| | - Christian Hadiwinarta
- Laboratory of Immunobiochemistry, Division of Bacterial, Parasitic and Allergenic Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Md
| | - Daniela Calheiros
- University of Coimbra, CNC-UC - Center for Neuroscience and Cell Biology, FMUC - Faculty of Medicine of the University of Coimbra, Coimbra, Portugal
| | - Gonçalo Conde-de-Oliveira
- University of Coimbra, CNC-UC - Center for Neuroscience and Cell Biology, FMUC - Faculty of Medicine of the University of Coimbra, Coimbra, Portugal
| | - Teresa Gonçalves
- University of Coimbra, CNC-UC - Center for Neuroscience and Cell Biology, FMUC - Faculty of Medicine of the University of Coimbra, Coimbra, Portugal
| | - Jay E Slater
- Laboratory of Immunobiochemistry, Division of Bacterial, Parasitic and Allergenic Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Md
| |
Collapse
|
9
|
Chen H, Zhu R. Alternaria Allergy and Immunotherapy. Int Arch Allergy Immunol 2024; 185:964-974. [PMID: 38865977 DOI: 10.1159/000539237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/03/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Allergen immunotherapy (AIT) is the only known causative treatment for Alternaria allergy, but the difficulty in standardizing Alternaria extracts hampers its effectiveness and safety. SUMMARY Alternaria, a potent airborne allergen, has a high sensitization rate and is known to trigger the onset and exacerbation of respiratory allergies, even inducing fungal food allergy syndrome in some cases. It can trigger a type 2 inflammatory response, leading to an increase in the secretion of type 2 inflammatory cytokines and eosinophils, which are the culprits behind allergic symptoms. Diagnosing Alternaria allergy is a multistep process, involving a careful examination of clinical symptoms, medical history, skin prick tests, serum-specific IgE detection, or provocation tests. Alt a1, the major component of Alternaria, is a vital player in diagnosing Alternaria allergy through component-resolved diagnosis. Interestingly, Alternaria can reduce the protein activity of other allergens like pollen and cat dander when mixed with them. In order to solve the problems of standardization, efficacy and safety of traditional Alternaria AIT, novel AIT methods targeting Alt a1 and innovative vaccines such as epitope, DNA, and mRNA vaccines seem promising in bypassing the standardization issue of Alternaria extracts. But these studies are in early stages, and most researches are still focused on animal models, calling for more evidence to validate their use in humans. KEY MESSAGES This review delves into the various aspects of Alternaria allergy, including characteristics, epidemiology, immune mechanisms, diagnosis, clinical manifestations, and the application and limitations of Alternaria AIT, aiming to provide a foundation for the management of patients with Alternaria allergy.
Collapse
Affiliation(s)
- Hao Chen
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,
| | - Rongfei Zhu
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Turner MC, Radzikowska U, Ferastraoaru DE, Pascal M, Wesseling P, McCraw A, Backes C, Bax HJ, Bergmann C, Bianchini R, Cari L, de Las Vecillas L, Izquierdo E, Lind-Holm Mogensen F, Michelucci A, Nazarov PV, Niclou SP, Nocentini G, Ollert M, Preusser M, Rohr-Udilova N, Scafidi A, Toth R, Van Hemelrijck M, Weller M, Jappe U, Escribese MM, Jensen-Jarolim E, Karagiannis SN, Poli A. AllergoOncology: Biomarkers and refined classification for research in the allergy and glioma nexus-A joint EAACI-EANO position paper. Allergy 2024; 79:1419-1439. [PMID: 38263898 DOI: 10.1111/all.15994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/06/2023] [Accepted: 12/14/2023] [Indexed: 01/25/2024]
Abstract
Epidemiological studies have explored the relationship between allergic diseases and cancer risk or prognosis in AllergoOncology. Some studies suggest an inverse association, but uncertainties remain, including in IgE-mediated diseases and glioma. Allergic disease stems from a Th2-biased immune response to allergens in predisposed atopic individuals. Allergic disorders vary in phenotype, genotype and endotype, affecting their pathophysiology. Beyond clinical manifestation and commonly used clinical markers, there is ongoing research to identify novel biomarkers for allergy diagnosis, monitoring, severity assessment and treatment. Gliomas, the most common and diverse brain tumours, have in parallel undergone changes in classification over time, with specific molecular biomarkers defining glioma subtypes. Gliomas exhibit a complex tumour-immune interphase and distinct immune microenvironment features. Immunotherapy and targeted therapy hold promise for primary brain tumour treatment, but require more specific and effective approaches. Animal studies indicate allergic airway inflammation may delay glioma progression. This collaborative European Academy of Allergy and Clinical Immunology (EAACI) and European Association of Neuro-Oncology (EANO) Position Paper summarizes recent advances and emerging biomarkers for refined allergy and adult-type diffuse glioma classification to inform future epidemiological and clinical studies. Future research is needed to enhance our understanding of immune-glioma interactions to ultimately improve patient prognosis and survival.
Collapse
Affiliation(s)
- Michelle C Turner
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Urszula Radzikowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Christine Kühne - Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Denisa E Ferastraoaru
- Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Mariona Pascal
- Immunology Department, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
- Department of Medicine, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Pieter Wesseling
- Department of Pathology, Amsterdam University Medical Centers/VUmc, Amsterdam, The Netherlands
- Laboratory for Childhood Cancer Pathology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Alexandra McCraw
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Claudine Backes
- National Cancer Registry (Registre National du Cancer (RNC)), Luxembourg Institute of Health (LIH), Strassen, Luxembourg
- Public Health Expertise Unit, Department of Precision Health, Cancer Epidemiology and Prevention (EPI CAN), Luxembourg Institute of Health, Strassen, Luxembourg
| | - Heather J Bax
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Christoph Bergmann
- Department of Otorhinolaryngology, RKM740 Interdisciplinary Clinics, Düsseldorf, Germany
| | - Rodolfo Bianchini
- Center of Pathophysiology, Infectiology and Immunology, Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
- The Interuniversity Messerli Research Institute Vienna, University of Veterinary Medecine Vienna, Medical University Vienna, University Vienna, Vienna, Austria
| | - Luigi Cari
- Section of Pharmacology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Elena Izquierdo
- Institute of Applied Molecular Medicine Instituto de Medicina Molecular Aplicada Nemesio Díez (IMMA), Department of Basic Medical Sciences, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Frida Lind-Holm Mogensen
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
- Faculty of Sciences, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Alessandro Michelucci
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Petr V Nazarov
- Multiomics Data Science, Department of Cancer Research, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Simone P Niclou
- Faculty of Sciences, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- NORLUX Neuro-Oncology laboratory, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Giuseppe Nocentini
- Section of Pharmacology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-Sur-Alzette, Luxembourg
- Department of Dermatology and Allergy Centre, Odense University Hospital, Odense, Denmark
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Nataliya Rohr-Udilova
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
- Liver Cancer (HCC) Study Group Vienna, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Andrea Scafidi
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
- Faculty of Sciences, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Reka Toth
- Multiomics Data Science, Department of Cancer Research, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Mieke Van Hemelrijck
- Translational Oncology and Urology Research (TOUR), School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Uta Jappe
- Division of Clinical and Molecular Allergology, Priority Research Area Chronic Lung Diseases, Research Center Borstel, Leibniz Lung Center, German Center for Lung Research (DZL), Airway Research Center North (ARCN), Borstel, Germany
- Department of Pneumology, Interdisciplinary Allergy Outpatient Clinic, University of Luebeck, Luebeck, Germany
| | - Maria M Escribese
- Institute of Applied Molecular Medicine Instituto de Medicina Molecular Aplicada Nemesio Díez (IMMA), Department of Basic Medical Sciences, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Erika Jensen-Jarolim
- Center of Pathophysiology, Infectiology and Immunology, Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
- The Interuniversity Messerli Research Institute Vienna, University of Veterinary Medecine Vienna, Medical University Vienna, University Vienna, Vienna, Austria
| | - Sophia N Karagiannis
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Innovation Hub, Guy's Cancer Centre, London, UK
| | - Aurélie Poli
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| |
Collapse
|
11
|
Fakhimahmadi A, Roth-Walter F, Hofstetter G, Wiederstein M, Jensen SA, Berger M, Szepannek N, Bianchini R, Pali-Schöll I, Jensen-Jarolim E, Hufnagl K. Mould allergen Alt a 1 spiked with the micronutrient retinoic acid reduces Th2 response and ameliorates Alternaria allergy in BALB/c mice. Allergy 2024. [PMID: 38818808 DOI: 10.1111/all.16181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/29/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND We investigated the biological function of the mould allergen Alt a 1 as a carrier of micronutrients, such as the vitamin A metabolite retinoic acid (RA) and the influence of RA binding on its allergenicity in vitro and in vivo. METHODS Alt a 1-RA complex formation was analyzed in silico and in vitro. PBMCs from Alternaria-allergic donors were stimulated with Alt a 1 complexed with RA (holo-Alt a 1) or empty apo-Alt a 1 and analyzed for cytokine production and CD marker expression. Serum IgE-binding and crosslinking assays to apo- and holo-protein were correlated to B-cell epitope analysis. Female BALB/c mice already sensitized to Alt a 1 were intranasally treated with apo-Alt a 1, holo-Alt a 1 or RA alone before measuring anaphylactic response, serum antibody levels, splenic cytokines and CD marker expression. RESULTS In silico docking calculations and in vitro assays showed that the extent of RA binding depended on the higher quaternary state of Alt a 1. Holo-Alt a 1 loaded with RA reduced IL-13 released from PBMCs and CD3+CD4+CRTh2 cells. Complexing Alt a 1 to RA masked its IgE B-cell epitopes and reduced its IgE-binding capacity. In a therapeutic mouse model of Alternaria allergy nasal application of holo-Alt a 1, but not of apo-Alt a 1, significantly impeded the anaphylactic response, impaired splenic antigen-presenting cells and induced IL-10 production. CONCLUSION Holo-Alt a 1 binding to RA was able to alleviate Th2 immunity in vitro, modulate an ongoing Th2 response and prevent anaphylactic symptoms in vivo, presenting a novel option for improving allergen-specific immunotherapy in Alternaria allergy.
Collapse
Affiliation(s)
- Aila Fakhimahmadi
- Messerli Research Institute, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Franziska Roth-Walter
- Messerli Research Institute, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Gerlinde Hofstetter
- Messerli Research Institute, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Markus Wiederstein
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | - Sebastian A Jensen
- Messerli Research Institute, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
- AllergyCare Allergy Diagnosis Center, Private Clinic Döbling, Vienna, Austria
| | - Markus Berger
- Messerli Research Institute, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Nathalie Szepannek
- Messerli Research Institute, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Rodolfo Bianchini
- Messerli Research Institute, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Isabella Pali-Schöll
- Messerli Research Institute, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Erika Jensen-Jarolim
- Messerli Research Institute, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- AllergyCare Allergy Diagnosis Center, Private Clinic Döbling, Vienna, Austria
- Biomedical International R+D GmbH, Vienna, Austria
| | - Karin Hufnagl
- Messerli Research Institute, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- AllergyCare Allergy Diagnosis Center, Private Clinic Döbling, Vienna, Austria
| |
Collapse
|
12
|
Nelson HS. Allergy immunotherapy for allergic fungal respiratory diseases. Allergy Asthma Proc 2023; 44:395-401. [PMID: 37919848 DOI: 10.2500/aap.2023.44.230058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Background: Allergy immunotherapy (AIT) with fungal extracts is not as straight forward as that with other inhalants. The complexities relate to the number of airborne fungal spores, the limited data on the exposure to the spores of individual species of fungi and their clinical importance, the poor quality of the fungal allergen extracts that are available for the diagnosis and treatment, and the lack of controlled studies establishing dosing and efficacy of AIT with fungal extracts except for Alternaria. Objective: The objective was to review what is known with regard to the role of fungi in causing allergic respiratory diseases as well as the evidence that exists for the role of AIT as a treatment for these conditions. Methods: A search was conducted of PubMed, textbooks, known articles on immunotherapy with fungal extracts, and references derived from these primary sources. Results: Nine immunotherapy studies that used Alternaria or its major allergen Alt a 1 and two studies that used Cladosporium herbarum were identified. When a good quality extract was administered in adequate doses, immunotherapy with Alternaria was as effective as that with other inhalant allergens. There was a suggestion of efficacy with a specially prepared Cladosporium extract, but systemic reactions were common and limited the tolerated dose. The use of immunotherapy as an adjunct treatment for allergic fungal sinusitis is briefly reviewed, but controlled trials are lacking. Conclusion: Fungal immunotherapy should largely be limited to Alternaria alternata and perhaps C. herbarum. Under conditions of demonstrated exposure to a particular species of fungus and with symptoms that correlate with that exposure as well as availability of an apparently potent extract of that fungus to which the patient is sensitive that fungus may be considered for immunotherapy. Fungal (mold) mixes should not be used for diagnosis or therapy.
Collapse
|
13
|
Liu J, Li J, Yin J. Changes of allergic inflammation and immunological parameters after Alt a 1 and A. alternata immunotherapy in mice. World Allergy Organ J 2023; 16:100807. [PMID: 37638361 PMCID: PMC10457585 DOI: 10.1016/j.waojou.2023.100807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Background The efficacy of allergen-specific subcutaneousimmunotherapy (SCIT) with Alt a 1 of the fungus A. alternata is still unknown. Yet, few studies compare the therapeutic effects and immunological mechanisms of Alt a 1 and A. alternata extracts. We aim to explore and compare the changes in allergic inflammation and immunological mechanisms of Alt a 1 and A. alternata in mice. Methods Female BALB/c mice administrated recombinant Alt a 1 (rAlt a 1), native Alt a 1 (nAlt a 1), and A. alternata. Lung histology, airway hyper-reactivity (AHR), bronchoalveolar lavage fluid (BALF) cytokine levels, serum immunoglobulin responses, the expression of Bcl-6, the percentages of T follicular helper cells (Tfh), cytokine-related Tfh subtypes, regulatory B cells (Breg), and IL-10+ Breg cells were detected. Results High-purity nAlt 1 protein was obtained. SCIT with Alt a 1 and Alternaria decreased airway and lung inflammation, including improvement of lung pathology, lower levels of AHR, reduction of total cell numbers, and IL-4 and IL-13 levels in BALF. Furthermore, Alt a 1-SCIT effectively suppressed the IgE responses, elevated IgG titers, and was superior in decreasing the expression of Bcl-6. Additionally, Alternaria-SCIT significantly decreased the expression of Tfh cells, L-4+ Tfh, and IL-5+ Tfh cells in the spleen, whereas Alt a 1 showed superior therapeutic effects in the lymph node. IL-13+ Tfh cells in these two treatment groups not being significant. IL-17A+ Tfh cells were alleviated most effectively after A. alternata-SCIT in both the spleen and lymph node. Intriguingly, IL-10+ Breg cells decreased remarkably in response to SCIT with rAlt a 1. Conclusions Treatments with Alt a 1 and A. alternata extracts had beneficial effects on allergic inflammation. Alt a 1-SCIT resulted in prominent improvement in the immunoglobulin responses, Bcl-6, and IL-10+ Breg cells. Alternaria-SCIT was more likely to suppress the expression of Tfh and cytokine-related Tfh subtypes.
Collapse
Affiliation(s)
- Juan Liu
- Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment on Allergic Diseases, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Disease (NCRC-DID), Beijing, China
| | - Junda Li
- Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment on Allergic Diseases, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Disease (NCRC-DID), Beijing, China
| | - Jia Yin
- Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment on Allergic Diseases, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Disease (NCRC-DID), Beijing, China
| |
Collapse
|
14
|
Brindisi G, Gori A, Anania C, Martinelli I, Capponi M, De Castro G, Zicari AM. Subcutaneous Immunotherapy (SCIT) with the New Polymerized Molecular Allergoid Alt a1: A Pilot Study in Children with Allergic Rhinitis Sensitized to Alternaria Alternata. J Clin Med 2023; 12:4327. [PMID: 37445362 DOI: 10.3390/jcm12134327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/22/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND We followed the effects of a new SCIT with a chemically polymerized allergen Alt a1, evaluating the trend of clinical and functional parameters in an observational-prospective study. METHODS 42 children with AR and intermittent asthma sensitized to A.A.: 17 patients started SCIT (Modigoid®), and 25 continued symptomatic therapy. At the initial visit (T0), all patients performed total IgE (tIgE) and specific IgE (sIgE) for Alt a1, nasal nitric oxide (nFeNo), nasal cytology, anterior active rhinomanometry (AAR) and spirometry. After 24 months (T1), they repeated the same procedures as in T0. RESULTS Patients treated with Modigoid presented a statistically significant (p < 0.001) reduction of nFeNO (T0:1651.06 ± 149.18; T1: 1394.12 ± 108.98), tIgE (T0: 311.48 ± 144.18; T1: 164.73 ± 50.69), sIgE for Alt a1 (T0: 28.59 ± 12.69; T1: 19.54 ± 7.37), an improvement of nasal airflow (T0: 71.62 ± 8.66; T1: 95.12 ± 5.91), nasal eosinophils (T0: 20.59 ± 2.35; T1: 14.88 ± 1.65) and FEV1 (T0: 95.58 ± 7.91; T1: 116.64 ± 5.94). CONCLUSIONS The new SCIT for Alt a1 significantly improves AR symptoms from a subjective, objective point of view and laboratory and functional parameters.
Collapse
Affiliation(s)
- Giulia Brindisi
- Department of Mother-Child, Urological Science, Sapienza University of Rome, 00161 Rome, Italy
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Alessandra Gori
- Department of Mother-Child, Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Caterina Anania
- Department of Mother-Child, Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Ivana Martinelli
- Department of Mother-Child, Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Martina Capponi
- Department of Mother-Child, Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Giovanna De Castro
- Department of Mother-Child, Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Anna Maria Zicari
- Department of Mother-Child, Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| |
Collapse
|
15
|
Abel-Fernández E, Martínez MJ, Galán T, Pineda F. Going over Fungal Allergy: Alternaria alternata and Its Allergens. J Fungi (Basel) 2023; 9:jof9050582. [PMID: 37233293 DOI: 10.3390/jof9050582] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
Fungal allergy is the third most frequent cause of respiratory pathologies and the most related to a poor prognosis of asthma. The genera Alternaria and Cladosporium are the most frequently associated with allergic respiratory diseases, with Alternaria being the one with the highest prevalence of sensitization. Alternaria alternata is an outdoor fungus whose spores disseminate in warm and dry air, reaching peak levels in temperate summers. Alternaria can also be found in damp and insufficiently ventilated houses, causing what is known as sick building syndrome. Thus, exposure to fungal allergens can occur outdoors and indoors. However, not only spores but also fungal fragments contain detectable amounts of allergens and may function as aeroallergenic sources. Allergenic extracts of Alternaria hyphae and spores are still in use for the diagnosis and treatment of allergic diseases but are variable and insufficiently standardised, as they are often a random mixture of allergenic ingredients and casual impurities. Thus, diagnosis of fungal allergy has been difficult, and knowledge about new fungal allergens is stuck. The number of allergens described in Fungi remains almost constant while new allergens are being found in the Plantae and Animalia kingdoms. Given Alt a 1 is not the unique Alternaria allergen eliciting allergy symptoms, component-resolved diagnosis strategies should be applied to diagnose fungal allergy. To date, twelve A. alternata allergens are accepted in the WHO/IUIS Allergen Nomenclature Subcommittee, many of them are enzymes: Alt a 4 (disulfide isomerase), Alt a 6 (enolase), Alt a 8 (mannitol de-hydrogenase), Alt a 10 (aldehyde dehydrogenase), Alt a 13 (glutathione-S-transferase) and Alt a MnSOD (Mn superoxide dismutase), and others have structural and regulatory functions such as Alt a 5 and Alt a 12, Alt a 3, Alt a 7. The function of Alt a 1 and Alt a 9 remains unknown. Other four allergens are included in other medical databases (e.g., Allergome): Alt a NTF2, Alt a TCTP, and Alt a 70 kDa. Despite Alt a 1 being the A. alternata major allergen, other allergens, such as enolase, Alt a 6 or MnSOD, Alt a 14 have been suggested to be included in the diagnosis panel of fungal allergy.
Collapse
Affiliation(s)
- Eva Abel-Fernández
- Applied Science, Inmunotek S.L., Parque Científico Tecnológico Alcalá de Henares, 28805 Madrid, Spain
| | - María José Martínez
- Applied Science, Inmunotek S.L., Parque Científico Tecnológico Alcalá de Henares, 28805 Madrid, Spain
| | - Tania Galán
- Applied Science, Inmunotek S.L., Parque Científico Tecnológico Alcalá de Henares, 28805 Madrid, Spain
| | - Fernando Pineda
- Applied Science, Inmunotek S.L., Parque Científico Tecnológico Alcalá de Henares, 28805 Madrid, Spain
| |
Collapse
|
16
|
Dramburg S, Hilger C, Santos AF, de Las Vecillas L, Aalberse RC, Acevedo N, Aglas L, Altmann F, Arruda KL, Asero R, Ballmer-Weber B, Barber D, Beyer K, Biedermann T, Bilo MB, Blank S, Bosshard PP, Breiteneder H, Brough HA, Bublin M, Campbell D, Caraballo L, Caubet JC, Celi G, Chapman MD, Chruszcz M, Custovic A, Czolk R, Davies J, Douladiris N, Eberlein B, Ebisawa M, Ehlers A, Eigenmann P, Gadermaier G, Giovannini M, Gomez F, Grohman R, Guillet C, Hafner C, Hamilton RG, Hauser M, Hawranek T, Hoffmann HJ, Holzhauser T, Iizuka T, Jacquet A, Jakob T, Janssen-Weets B, Jappe U, Jutel M, Kalic T, Kamath S, Kespohl S, Kleine-Tebbe J, Knol E, Knulst A, Konradsen JR, Korošec P, Kuehn A, Lack G, Le TM, Lopata A, Luengo O, Mäkelä M, Marra AM, Mills C, Morisset M, Muraro A, Nowak-Wegrzyn A, Nugraha R, Ollert M, Palosuo K, Pastorello EA, Patil SU, Platts-Mills T, Pomés A, Poncet P, Potapova E, Poulsen LK, Radauer C, Radulovic S, Raulf M, Rougé P, Sastre J, Sato S, Scala E, Schmid JM, Schmid-Grendelmeier P, Schrama D, Sénéchal H, Traidl-Hoffmann C, Valverde-Monge M, van Hage M, van Ree R, Verhoeckx K, Vieths S, Wickman M, Zakzuk J, Matricardi PM, et alDramburg S, Hilger C, Santos AF, de Las Vecillas L, Aalberse RC, Acevedo N, Aglas L, Altmann F, Arruda KL, Asero R, Ballmer-Weber B, Barber D, Beyer K, Biedermann T, Bilo MB, Blank S, Bosshard PP, Breiteneder H, Brough HA, Bublin M, Campbell D, Caraballo L, Caubet JC, Celi G, Chapman MD, Chruszcz M, Custovic A, Czolk R, Davies J, Douladiris N, Eberlein B, Ebisawa M, Ehlers A, Eigenmann P, Gadermaier G, Giovannini M, Gomez F, Grohman R, Guillet C, Hafner C, Hamilton RG, Hauser M, Hawranek T, Hoffmann HJ, Holzhauser T, Iizuka T, Jacquet A, Jakob T, Janssen-Weets B, Jappe U, Jutel M, Kalic T, Kamath S, Kespohl S, Kleine-Tebbe J, Knol E, Knulst A, Konradsen JR, Korošec P, Kuehn A, Lack G, Le TM, Lopata A, Luengo O, Mäkelä M, Marra AM, Mills C, Morisset M, Muraro A, Nowak-Wegrzyn A, Nugraha R, Ollert M, Palosuo K, Pastorello EA, Patil SU, Platts-Mills T, Pomés A, Poncet P, Potapova E, Poulsen LK, Radauer C, Radulovic S, Raulf M, Rougé P, Sastre J, Sato S, Scala E, Schmid JM, Schmid-Grendelmeier P, Schrama D, Sénéchal H, Traidl-Hoffmann C, Valverde-Monge M, van Hage M, van Ree R, Verhoeckx K, Vieths S, Wickman M, Zakzuk J, Matricardi PM, Hoffmann-Sommergruber K. EAACI Molecular Allergology User's Guide 2.0. Pediatr Allergy Immunol 2023; 34 Suppl 28:e13854. [PMID: 37186333 DOI: 10.1111/pai.13854] [Show More Authors] [Citation(s) in RCA: 96] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 05/17/2023]
Abstract
Since the discovery of immunoglobulin E (IgE) as a mediator of allergic diseases in 1967, our knowledge about the immunological mechanisms of IgE-mediated allergies has remarkably increased. In addition to understanding the immune response and clinical symptoms, allergy diagnosis and management depend strongly on the precise identification of the elicitors of the IgE-mediated allergic reaction. In the past four decades, innovations in bioscience and technology have facilitated the identification and production of well-defined, highly pure molecules for component-resolved diagnosis (CRD), allowing a personalized diagnosis and management of the allergic disease for individual patients. The first edition of the "EAACI Molecular Allergology User's Guide" (MAUG) in 2016 rapidly became a key reference for clinicians, scientists, and interested readers with a background in allergology, immunology, biology, and medicine. Nevertheless, the field of molecular allergology is moving fast, and after 6 years, a new EAACI Taskforce was established to provide an updated document. The Molecular Allergology User's Guide 2.0 summarizes state-of-the-art information on allergen molecules, their clinical relevance, and their application in diagnostic algorithms for clinical practice. It is designed for both, clinicians and scientists, guiding health care professionals through the overwhelming list of different allergen molecules available for testing. Further, it provides diagnostic algorithms on the clinical relevance of allergenic molecules and gives an overview of their biology, the basic mechanisms of test formats, and the application of tests to measure allergen exposure.
Collapse
Affiliation(s)
- Stephanie Dramburg
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Christiane Hilger
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Alexandra F Santos
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | | | - Rob C Aalberse
- Sanquin Research, Dept Immunopathology, University of Amsterdam, Amsterdam, The Netherlands
- Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Nathalie Acevedo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Lorenz Aglas
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Karla L Arruda
- Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Sao Paulo, Brasil, Brazil
| | - Riccardo Asero
- Ambulatorio di Allergologia, Clinica San Carlo, Paderno Dugnano, Italy
| | - Barbara Ballmer-Weber
- Klinik für Dermatologie und Allergologie, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Domingo Barber
- Institute of Applied Molecular Medicine Nemesio Diez (IMMAND), Department of Basic Medical Sciences, Facultad de Medicina, Universidad San Pablo CEU, CEU Universities, Madrid, Spain
- RETIC ARADyAL and RICORS Enfermedades Inflamatorias (REI), Madrid, Spain
| | - Kirsten Beyer
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University Munich, Munich, Germany
| | - Maria Beatrice Bilo
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
- Allergy Unit Department of Internal Medicine, University Hospital Ospedali Riuniti di Ancona, Torrette, Italy
| | - Simon Blank
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany
| | - Philipp P Bosshard
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Heimo Breiteneder
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Helen A Brough
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Merima Bublin
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Dianne Campbell
- Department of Allergy and Immunology, Children's Hospital at Westmead, Sydney Children's Hospitals Network, Sydney, New South Wales, Australia
- Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Jean Christoph Caubet
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Giorgio Celi
- Centro DH Allergologia e Immunologia Clinica ASST- MANTOVA (MN), Mantova, Italy
| | | | - Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Adnan Custovic
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Rebecca Czolk
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Janet Davies
- Queensland University of Technology, Centre for Immunology and Infection Control, School of Biomedical Sciences, Herston, Queensland, Australia
- Metro North Hospital and Health Service, Emergency Operations Centre, Herston, Queensland, Australia
| | - Nikolaos Douladiris
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Bernadette Eberlein
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University Munich, Munich, Germany
| | - Motohiro Ebisawa
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization, Sagamihara National Hospital, Kanagawa, Japan
| | - Anna Ehlers
- Chemical Biology and Drug Discovery, Utrecht University, Utrecht, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Philippe Eigenmann
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Gabriele Gadermaier
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Mattia Giovannini
- Allergy Unit, Department of Pediatrics, Meyer Children's University Hospital, Florence, Italy
| | - Francisca Gomez
- Allergy Unit IBIMA-Hospital Regional Universitario de Malaga, Malaga, Spain
- Spanish Network for Allergy research RETIC ARADyAL, Malaga, Spain
| | - Rebecca Grohman
- NYU Langone Health, Department of Internal Medicine, New York, New York, USA
| | - Carole Guillet
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Christine Hafner
- Department of Dermatology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Robert G Hamilton
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael Hauser
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Thomas Hawranek
- Department of Dermatology and Allergology, Paracelsus Private Medical University, Salzburg, Austria
| | - Hans Jürgen Hoffmann
- Institute for Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | | | - Tomona Iizuka
- Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Alain Jacquet
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thilo Jakob
- Department of Dermatology and Allergology, University Medical Center, Justus Liebig University Gießen, Gießen, Germany
| | - Bente Janssen-Weets
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Uta Jappe
- Division of Clinical and Molecular Allergology, Priority Research Area Asthma and Allergy, Research Center Borstel, Borstel, Germany
- Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research, Germany
- Interdisciplinary Allergy Outpatient Clinic, Dept. of Pneumology, University of Lübeck, Lübeck, Germany
| | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
| | - Tanja Kalic
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
- Department of Dermatology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Sandip Kamath
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Sabine Kespohl
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr- Universität Bochum, Bochum, Germany
| | - Jörg Kleine-Tebbe
- Allergy & Asthma Center Westend, Outpatient Clinic and Clinical Research Center, Berlin, Germany
| | - Edward Knol
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - André Knulst
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jon R Konradsen
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Korošec
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Annette Kuehn
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Gideon Lack
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Thuy-My Le
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Andreas Lopata
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Olga Luengo
- RETIC ARADyAL and RICORS Enfermedades Inflamatorias (REI), Madrid, Spain
- Allergy Section, Internal Medicine Department, Vall d'Hebron University Hospital, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mika Mäkelä
- Division of Allergy, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Pediatric Department, Skin and Allergy Hospital, Helsinki University Central Hospital, Helsinki, Finland
| | | | - Clare Mills
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | | | - Antonella Muraro
- Food Allergy Referral Centre, Department of Woman and Child Health, Padua University Hospital, Padua, Italy
| | - Anna Nowak-Wegrzyn
- Division of Pediatric Allergy and Immunology, NYU Grossman School of Medicine, Hassenfeld Children's Hospital, New York, New York, USA
- Department of Pediatrics, Gastroenterology and Nutrition, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Roni Nugraha
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Department of Aquatic Product Technology, Faculty of Fisheries and Marine Science, IPB University, Bogor, Indonesia
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Kati Palosuo
- Department of Allergology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | | | - Sarita Ulhas Patil
- Division of Rheumatology, Allergy and Immunology, Departments of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Allergy and Immunology, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Thomas Platts-Mills
- Division of Allergy and Clinical Immunology, University of Virginia, Charlottesville, Virginia, USA
| | | | - Pascal Poncet
- Institut Pasteur, Immunology Department, Paris, France
- Allergy & Environment Research Team Armand Trousseau Children Hospital, APHP, Paris, France
| | - Ekaterina Potapova
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Lars K Poulsen
- Allergy Clinic, Department of Dermatology and Allergy, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark
| | - Christian Radauer
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Suzana Radulovic
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Monika Raulf
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr- Universität Bochum, Bochum, Germany
| | - Pierre Rougé
- UMR 152 PharmaDev, IRD, Université Paul Sabatier, Faculté de Pharmacie, Toulouse, France
| | - Joaquin Sastre
- Allergy Service, Fundación Jiménez Díaz; CIBER de Enfermedades Respiratorias (CIBERES); Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Sakura Sato
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Enrico Scala
- Clinical and Laboratory Molecular Allergy Unit - IDI- IRCCS, Fondazione L M Monti Rome, Rome, Italy
| | - Johannes M Schmid
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Schmid-Grendelmeier
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
| | - Denise Schrama
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
| | - Hélène Sénéchal
- Allergy & Environment Research Team Armand Trousseau Children Hospital, APHP, Paris, France
| | - Claudia Traidl-Hoffmann
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Marcela Valverde-Monge
- Allergy Service, Fundación Jiménez Díaz; CIBER de Enfermedades Respiratorias (CIBERES); Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Marianne van Hage
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Ronald van Ree
- Department of Experimental Immunology and Department of Otorhinolaryngology, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Kitty Verhoeckx
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Stefan Vieths
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Magnus Wickman
- Department of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Josefina Zakzuk
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Paolo M Matricardi
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
17
|
Sánchez P, Vélez-del-Burgo A, Suñén E, Martínez J, Postigo I. Fungal Allergen and Mold Allergy Diagnosis: Role and Relevance of Alternaria alternata Alt a 1 Protein Family. J Fungi (Basel) 2022; 8:277. [PMID: 35330279 PMCID: PMC8954643 DOI: 10.3390/jof8030277] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 02/04/2023] Open
Abstract
Alternaria is a genus of worldwide fungi found in different habitats such as soil, the atmosphere, plants or indoor environments. Alternaria species are saprobic-largely involved in the decomposition of organic material-but they can also act as animal pathogens, causing disease in humans and animals, developing infections, toxicosis and allergic diseases. A. alternata is considered one of the most important sources of fungal allergens worldwide and it is associated with severe asthma and respiratory status. Among the A. alternata allergens, Alt a 1 is the main sensitizing allergen and its usefulness in diagnosis and immunotherapy has been demonstrated. Alt a 1 seems to define a protein family that can be used to identify related pathogenic fungi in plants and fruits, and to establish taxonomic relationships between the different fungal divisions.
Collapse
Affiliation(s)
| | | | | | | | - Idoia Postigo
- Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy and Laboratory of Parasitology and Immunoallergy, Lascaray Research Centre, University of the Basque Country, 01006 Vitoria-Gasteiz, Spain; (P.S.); (A.V.-d.-B.); (E.S.); (J.M.)
| |
Collapse
|
18
|
Allergen Immunotherapy: Current and Future Trends. Cells 2022; 11:cells11020212. [PMID: 35053328 PMCID: PMC8774202 DOI: 10.3390/cells11020212] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 02/06/2023] Open
Abstract
Allergen immunotherapy (AIT) is the sole disease-modifying treatment for allergic rhinitis; it prevents rhinitis from progressing to asthma and lowers medication use. AIT against mites, insect venom, and certain kinds of pollen is effective. The mechanism of action of AIT is based on inducing immunological tolerance characterized by increased IL-10, TGF-β, and IgG4 levels and Treg cell counts. However, AIT requires prolonged schemes of administration and is sometimes associated with adverse reactions. Over the last decade, novel forms of AIT have been developed, focused on better allergen identification, structural modifications to preserve epitopes for B or T cells, post-traductional alteration through chemical processes, and the addition of adjuvants. These modified allergens induce clinical-immunological effects similar to those mentioned above, increasing the tolerance to other related allergens but with fewer side effects. Clinical studies have shown that molecular AIT is efficient in treating grass and birch allergies. This article reviews the possibility of a new AIT to improve the treatment of allergic illness.
Collapse
|
19
|
Medicina de precisión en enfermedades alérgicas. REVISTA MÉDICA CLÍNICA LAS CONDES 2022. [DOI: 10.1016/j.rmclc.2021.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
20
|
Shamji MH, Sharif H, Layhadi JA, Zhu R, Kishore U, Renz H. Diverse Immune Mechanisms of Allergen Immunotherapy for allergic rhinitis with and without asthma. J Allergy Clin Immunol 2022; 149:791-801. [DOI: 10.1016/j.jaci.2022.01.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 10/19/2022]
|
21
|
Liu J, Yin J. Immunotherapy With Recombinant Alt a 1 Suppresses Allergic Asthma and Influences T Follicular Cells and Regulatory B Cells in Mice. Front Immunol 2021; 12:747730. [PMID: 34804031 PMCID: PMC8602824 DOI: 10.3389/fimmu.2021.747730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/18/2021] [Indexed: 01/07/2023] Open
Abstract
Background Alternaria is a major source of asthma-inducing allergens. Allergen-specific immunotherapy improves the progression of allergic asthma. The current treatment is based on crude Alternaria extracts. Alt a 1 is the predominant allergen in Alternaria. However, the treatment efficacy of recombinant Alt a 1 (rAlt a 1) in an asthmatic animal model and its influence on Tfh and Breg cells are unknown. Objective To explore the therapeutic treatment effects of rAlt a 1 on the progress of an asthmatic mouse model and its effect on Tfh and Breg cells. Methods We synthesized and purified rAlt a 1. Alternaria-sensitized and challenged mice received subcutaneous immunotherapy (SCIT) with four different rAlt a 1 dosages (5, 50, 100, and 150 µg) or PBS only. Finally, lung and airway inflammation, mouse mast cell protease 1 (MMCP-1), serum immunoglobulin responses, Tfh and Breg cell levels, and the correlation between asthmatic features (inflammation grades and IL-4 and IL-10 levels) and these two cell types were measured after Alternaria rechallenge. Results High purity and allergenic potency of rAlt a 1 protein were obtained. Following treatment with four different rAlt a 1 dosages, both lung and airway inflammation ameliorated, including lung pathology, serum MMCP-1 levels, inflammatory cell numbers, and cytokine levels in bronchoalveolar lavage fluid (BALF). Additionally, rAlt a 1-SCIT increased the expression of Alternaria-sIgG1, rAlt a 1-sIgG1, rAlt a 1-sIgG2a, and rAlt a 1-sIgG2b in serum. Moreover, the number and percentage of CXCR5+PD-1+Tfh cells were increased in the PC control, while they decreased in the rAlt a 1-SCIT groups. Meanwhile, the absolute numbers and proportions of Breg cells were evaluated after administration of rAlt a 1. A positive correlation was observed between CXCR5+PD-1+Tfh cells and inflammation grades (r = 0.50, p = 0.01), as well as a slightly strong positive relationship with IL-4 (r = 0.55, p = 0.005) and IL-10 (r = 0.58, p = 0.003) levels; Breg cells showed an opposite correlation with the grades of inflammation (r = -0.68, p = 0.0003), along with a negative correlation to IL-4 (r = -0.61, p = 0.001) and IL-10 (r = -0.53, p = 0.008) levels. Conclusions We verified that treatment with rAlt a 1 can alleviate asthma progression and further have a regulatory effect on Tfh and Breg cells in an Alternaria-induced asthmatic mouse model.
Collapse
Affiliation(s)
- Juan Liu
- Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,Department of Allergy, Peking Union Medical College Hospital, Beijing Key Laboratory of Precision Medicine For Diagnosis and Treatment on Allergic Diseases, Beijing, China.,Department of Allergy, Peking Union Medical College Hospital, National Clinical Research Center for Dermatologic and Immunologic Disease, Beijing, China
| | - Jia Yin
- Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,Department of Allergy, Peking Union Medical College Hospital, Beijing Key Laboratory of Precision Medicine For Diagnosis and Treatment on Allergic Diseases, Beijing, China.,Department of Allergy, Peking Union Medical College Hospital, National Clinical Research Center for Dermatologic and Immunologic Disease, Beijing, China
| |
Collapse
|
22
|
Changes in the Sensitization Pattern to Alternaria alternata Allergens in Patients Treated with Alt a 1 Immunotherapy. J Fungi (Basel) 2021; 7:jof7110974. [PMID: 34829261 PMCID: PMC8618185 DOI: 10.3390/jof7110974] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 12/15/2022] Open
Abstract
Alternaria alternata is the most important allergenic fungus, with up to 20% of allergic patients affected. The sensitization profile of patients sensitized to A. alternata and how it changes when treated with immunotherapy is not known. Our objective is to determine the allergen recognition pattern of allergic patients to A. alternata and to study its association to the parameters studied in a clinical trial recently published. Sera of 64 patients from the clinical trial of immunotherapy with native major allergen Alt a 1 were analyzed by immunoblotting; 98. 4% of the patients recognized Alt a 1. The percentage of recognition for Alt a 3, Alt a 4, and/or Alt a 6, Alt a 7, Alt a 8, Alt a 10 and/or Alt a 15 was 1.6%, 21.9%, 12.5%, 12.5%, and 12.5% respectively. Of the 64 patients, 45 (70.3%) only recognized Alt a 1 among the allergens present in the A. alternata extract. Immunotherapy with Alt a 1 desensitizes treated patients, reducing their symptoms and medication consumption through the elimination of Alt a 1 sensitization, which is no longer present in the immunoblotting of some patients. There may be gender differences in the pattern of sensitization to A. alternata allergens, among others.
Collapse
|
23
|
Clinical relevance of Alternaria alternata sensitization in patients within type 2-high and type 2-low asthma. Int Immunopharmacol 2021; 101:108333. [PMID: 34773759 DOI: 10.1016/j.intimp.2021.108333] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/17/2021] [Accepted: 10/29/2021] [Indexed: 11/21/2022]
Abstract
Alternaria sensitization is correlated with persistent asthma. Type 2 (T2)-asthma endotypes are characterized by the release of eosinophils. However, the prevalence and sensitization patterns in patients with Alternaria asthma between T2-high and T2-low endotypes are unknown. We retrospectively reviewed 582 patients with Alternaria asthma and divided them into T2-high (n = 376) and T2-low (n = 206) groups with a threshold of 300 cells/µL in blood eosinophil counts. Data for basic information, skin test or IgE detection results, and blood eosinophil counts were collected. The age of patients in the T2-high group (13.66 ± 13.23) was lower than that of the T2-low group (18.02 ± 15.03). Patients with T2-high asthma had relatively higher rates of taking inhaled corticosteroids (ICS) and positive family history than the T2-low group. Pet keepers and allergen immunotherapy (AIT) patients were comparable between these groups, In the T2-high group, patients had higher levels of total serum IgE (T-IgE) and showed a significant positive correlation with eosinophil counts (r = 0.166, P = 0.001), followed by higher Alternaria-specific IgE (sIgE) levels (median, 13.7; range, 4.86-25.3). Compared to the T2-low group, the frequency of poly-sensitized patients and the rate of each allergen among the nine common allergens were all higher in the T2-high group; the statistical differences mainly focused on pollens such as birch (P = 0.005), firmiana (P = 0.004), and mugwort (P = 0.005). Young, male patients had a high prevalence of T2-high Alternaria asthma, along with higher rates of T-IgE, sIgE levels, and poly-sensitized patterns.
Collapse
|
24
|
Hernandez-Ramirez G, Barber D, Tome-Amat J, Garrido-Arandia M, Diaz-Perales A. Alternaria as an Inducer of Allergic Sensitization. J Fungi (Basel) 2021; 7:jof7100838. [PMID: 34682259 PMCID: PMC8539034 DOI: 10.3390/jof7100838] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 01/02/2023] Open
Abstract
Alternaria alternata is a saprophytic mold whose spores are disseminated in warm dry air, the typical weather of the Mediterranean climate region (from 30° to 45°), with a peak during the late summer and early autumn. Alternaria spores are known to be biological contaminants and a potent source of aeroallergens. One consequence of human exposure to Alternaria is an increased risk of developing asthma, with Alt a 1 as its main elicitor and a marker of primary sensitization. Although the action mechanism needs further investigation, a key role of the epithelium in cytokine production, TLR-activated alveolar macrophages and innate lymphoid cells in the adaptive response was demonstrated. Furthermore, sensitization to A. alternata seems to be a trigger for the development of co-sensitization to other allergen sources and may act as an exacerbator of symptoms and an elicitor of food allergies. The prevalence of A. alternata allergy is increasing and has led to expanding research on the role of this fungal species in the induction of IgE-mediated respiratory diseases. Indeed, recent research has allowed new perspectives to be considered in the assessment of exposure and diagnosis of fungi-induced allergies, although more studies are needed for the standardization of immunotherapy formulations.
Collapse
Affiliation(s)
- Guadalupe Hernandez-Ramirez
- Centro de Biotecnología Y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28223 Madrid, Spain; (G.H.-R.); (J.T.-A.); (M.G.-A.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| | - Domingo Barber
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo CEU, CEU Universities, 28925 Madrid, Spain;
| | - Jaime Tome-Amat
- Centro de Biotecnología Y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28223 Madrid, Spain; (G.H.-R.); (J.T.-A.); (M.G.-A.)
| | - Maria Garrido-Arandia
- Centro de Biotecnología Y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28223 Madrid, Spain; (G.H.-R.); (J.T.-A.); (M.G.-A.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| | - Araceli Diaz-Perales
- Centro de Biotecnología Y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28223 Madrid, Spain; (G.H.-R.); (J.T.-A.); (M.G.-A.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
- Correspondence:
| |
Collapse
|
25
|
Pascal M, Moreno C, Dávila I, Tabar AI, Bartra J, Labrador M, Luengo O. Integration of in vitro allergy test results and ratio analysis for the diagnosis and treatment of allergic patients (INTEGRA). Clin Transl Allergy 2021; 11:e12052. [PMID: 34582103 PMCID: PMC9082998 DOI: 10.1002/clt2.12052] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/05/2021] [Accepted: 07/30/2021] [Indexed: 01/09/2023] Open
Abstract
The introduction of molecular diagnosis into routine clinical practice has substantially improved the diagnosis and management of allergic patients by allowing clinicians to precisely identify the allergenic molecule responsible for immunoglobulin E (IgE)-mediated allergies. However, it can be challenging to accurately interpret the results of molecular assays, partly due to the limited evidence base. In this context, a panel of experts with extensive experience in interpreting in vitro measures of total and serum specific IgE reviewed the available scientific evidence. After this review, the panel selected a series of representative case studies to demonstrate how determination of specific and total IgE values and the relationship between them (ratio analysis) can add value to the diagnostic process by more precisely defining the patient's sensitization profile. Finally, the experts developed a series of recommendations on the clinical application of ratio analysis to optimize and complement the classical approach to allergy diagnosis.
Collapse
Affiliation(s)
- Mariona Pascal
- Immunology DepartmentCentre de Diagnòstic BiomèdicHospital Clínic de BarcelonaInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Universitat de BarcelonaBarcelonaSpain
- ARADyAL NetworkHealth Institute Carlos IIIMadridSpain
| | - Carmen Moreno
- ARADyAL NetworkHealth Institute Carlos IIIMadridSpain
- Allergy ServiceHospital Universitario Reina SofíaMaimonides Biomedical Research Institute of Córdoba (IMIBIC)CórdobaSpain
| | - Ignacio Dávila
- ARADyAL NetworkHealth Institute Carlos IIIMadridSpain
- Allergy ServiceDepartment of Biomedical and Diagnostic Sciences and Institute for Biomedical Research of Salamanca (IBSAL)University Hospital of SalamancaSalamancaSpain
| | - Ana I. Tabar
- ARADyAL NetworkHealth Institute Carlos IIIMadridSpain
- Allergy ServiceHospital Complex of NavarraPamplonaSpain
- Navarra Institute for Health Research (IdiSNA)Cooperative Health Research Thematic Networks (RETICs) for AsthmaMadridSpain
| | - Joan Bartra
- ARADyAL NetworkHealth Institute Carlos IIIMadridSpain
- Allergy Section, Pneumology DepartmentHospital Clínic de BarcelonaInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Universitat de BarcelonaBarcelonaSpain
| | - Moisés Labrador
- ARADyAL NetworkHealth Institute Carlos IIIMadridSpain
- Allergy SectionInternal Medicine DepartmentHospital Universitari Vall d´HebronInstitut de Recerca Vall d'Hebron (VHIR)Universitat Autònoma de Barcelona. BarcelonaSpain
| | - Olga Luengo
- ARADyAL NetworkHealth Institute Carlos IIIMadridSpain
- Allergy SectionInternal Medicine DepartmentHospital Universitari Vall d´HebronInstitut de Recerca Vall d'Hebron (VHIR)Universitat Autònoma de Barcelona. BarcelonaSpain
| |
Collapse
|
26
|
Forkel S, Beutner C, Schröder SS, Bader O, Gupta S, Fuchs T, Schön MP, Geier J, Buhl T. Sensitization against Fungi in Patients with Airway Allergies over 20 Years in Germany. Int Arch Allergy Immunol 2021; 182:515-523. [PMID: 33780961 DOI: 10.1159/000512230] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/04/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Fungal spores are ubiquitous allergens. Severe forms of asthma are particularly highly associated with fungal sensitization. National and international asthma guidelines recommend the implementation of allergen immunotherapy if indicated. Thus, detection and treatment of relevant allergies are key components of primary care of these patients. OBJECTIVES The aims of the study were (i) to investigate trends in the prevalence of sensitization to twelve fungi in central Germany over the last 20 years and (ii) to dissect specific sensitization patterns among the 3 most important fungi: Aspergillus, Alternaria, and Cladosporium. METHODS This single-center study evaluated skin prick test (SPT) results of 3,358 patients with suspected airway allergies over a period of 20 years (1998-2017). RESULTS While 19.2% of all study patients had positive test results to at least 1 of the 3 fungi (Alternaria, Aspergillus, or Cladosporium) in the first study decade, this rate increased to 22.5% in the second decade. Slight increases in sensitization rates to almost all fungi were observed over the 20-year period. In the last decade, polysensitization to Alternaria, Aspergillus, and Cladosporium increased significantly. Sensitization to fungi is age-dependent and peaks in the age-group of 21-40 years during the second decade. CONCLUSION Fungi are relevant allergens for perennial and seasonal allergy symptoms. We currently recommend including Aspergillus, Alternaria, and Cladosporium in the standard series of SPTs for airway allergies.
Collapse
Affiliation(s)
- Susann Forkel
- Department of Dermatology, Venereology, and Allergology, University Medical Center Göttingen, Göttingen, Germany
| | - Caroline Beutner
- Department of Dermatology, Venereology, and Allergology, University Medical Center Göttingen, Göttingen, Germany
| | - Silke S Schröder
- Department of Dermatology, Venereology, and Allergology, University Medical Center Göttingen, Göttingen, Germany
| | - Oliver Bader
- Department of Medical Microbiology, University Medical Center Göttingen, Göttingen, Germany
| | - Sidhi Gupta
- Department of Dermatology, Venereology, and Allergology, University Medical Center Göttingen, Göttingen, Germany
| | - Thomas Fuchs
- Department of Dermatology, Venereology, and Allergology, University Medical Center Göttingen, Göttingen, Germany
| | - Michael P Schön
- Department of Dermatology, Venereology, and Allergology, University Medical Center Göttingen, Göttingen, Germany.,Lower Saxony Institute of Occupational Dermatology, University Medical Center Göttingen, Göttingen, Germany
| | - Johannes Geier
- Lower Saxony Institute of Occupational Dermatology, University Medical Center Göttingen, Göttingen, Germany.,Information Network of Department of Dermatology (IVDK), University Medical Center Göttingen, Göttingen, Germany
| | - Timo Buhl
- Department of Dermatology, Venereology, and Allergology, University Medical Center Göttingen, Göttingen, Germany.,Lower Saxony Institute of Occupational Dermatology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
27
|
Jiang Z, Xiao H, Liu S, Meng J. Changes in Immunologic Indicators During Allergen-Specific Immunotherapy for Allergic Rhinitis and Determinants of Variability: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Am J Rhinol Allergy 2021; 35:910-922. [PMID: 33631946 DOI: 10.1177/1945892421999649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND To date, there are no generally recognized biomarkers for allergen immunotherapy (AIT) and even the changes in immunological indicators during AIT are inconsistent in different publications. OBJECTIVE This study was conducted to quantify the immunological changes that occur during AIT and identify the determinants of heterogeneity. METHODS Randomized controlled trials of AIT published in the past 10 years were searched in Medline, Embase and Cochrane CENTRAL. Data on immunological indicators were extracted, and the characteristics of the included studies were collected. Meta-analysis and meta-regression were conducted for each indicator. The study was registered on the PROSPERO website (CRD42020176127). RESULTS We reviewed 1898 studies. Forty-six studies met the inclusion criteria, and 31 studies were included in the quantitative analyses. Subset analyses by time demonstrated that serum allergen-specific IgE (sIgE) of AIT patients increased in the first 12 months, then decreased and became slightly lower than that of control patients. Allergen-specific IgG4 (sIgG4) was elevated in the AIT group during and after treatment. IgE-blocking factor (IgE-BF) was increased and IgE-facilitated allergen binding (IgE-FAB) was reduced in AIT patients. Both of them of the 2 factors were associated with clinical efficacy in the multivariate regression analysis. sIgE/sIgG4 decreased in AIT patients, while there was no change in total IgE. CONCLUSION The levels of serum sIgE and sIgG4 during AIT showed a time-dependent pattern. IgE-BF and IgE-FAB should be further investigated as biomarkers for predicting and monitoring AIT efficacy.
Collapse
Affiliation(s)
- Zihan Jiang
- Department of Otorhinolaryngology, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Xiao
- Department of Otorhinolaryngology, West China Hospital, Sichuan University, Chengdu, China
| | - Shixi Liu
- Department of Otorhinolaryngology, West China Hospital, Sichuan University, Chengdu, China
| | - Juan Meng
- Department of Otorhinolaryngology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
28
|
Akinfenwa O, Rodríguez-Domínguez A, Vrtala S, Valenta R, Campana R. Novel vaccines for allergen-specific immunotherapy. Curr Opin Allergy Clin Immunol 2021; 21:86-99. [PMID: 33369572 PMCID: PMC7810419 DOI: 10.1097/aci.0000000000000706] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE OF REVIEW Allergen-specific immunotherapy (AIT) is a highly economic, effective and disease-modifying form of allergy treatment but requires accurate prescription and monitoring. New molecular approaches are currently under development to improve AIT by reducing treatment-related side effects, cumbersome protocols and patients' compliance. We review the current advances regarding refined diagnosis for prescription and monitoring of AIT and the development of novel molecular vaccines for AIT. Finally, we discuss prophylactic application of AIT. RECENT FINDINGS There is evidence that molecular allergy diagnosis not only assists in the prescription and monitoring of AIT but also allows a refined selection of patients to increase the likelihood of treatment success. New data regarding the effects of AIT treatment with traditional allergen extracts by alternative routes have become available. Experimental approaches for AIT, such as virus-like particles and cell-based treatments have been described. New results from clinical trials performed with recombinant hypoallergens and passive immunization with allergen-specific antibodies highlight the importance of allergen-specific IgG antibodies for the effect of AIT and indicate opportunities for preventive allergen-specific vaccination. SUMMARY Molecular allergy diagnosis is useful for the prescription and monitoring of AIT and may improve the success of AIT. Results with molecular allergy vaccines and by passive immunization with allergen-specific IgG antibodies indicate the importance of allergen-specific IgG capable of blocking allergen recognition by IgE and IgE-mediated allergic inflammation as important mechanism for the success of AIT. New molecular vaccines may pave the road towards prophylactic allergen-specific vaccination.
Collapse
Affiliation(s)
- Oluwatoyin Akinfenwa
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Azahara Rodríguez-Domínguez
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Susanne Vrtala
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- NRC Institute of Immunology FMBA of Russia
- Laboratory for Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, Moscow, Russia
- Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Raffaela Campana
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
29
|
Dorofeeva Y, Shilovskiy I, Tulaeva I, Focke‐Tejkl M, Flicker S, Kudlay D, Khaitov M, Karsonova A, Riabova K, Karaulov A, Khanferyan R, Pickl WF, Wekerle T, Valenta R. Past, present, and future of allergen immunotherapy vaccines. Allergy 2021; 76:131-149. [PMID: 32249442 PMCID: PMC7818275 DOI: 10.1111/all.14300] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/25/2020] [Accepted: 03/15/2020] [Indexed: 12/21/2022]
Abstract
Allergen-specific immunotherapy (AIT) is an allergen-specific form of treatment for patients suffering from immunoglobulin E (IgE)-associated allergy; the most common and important immunologically mediated hypersensitivity disease. AIT is based on the administration of the disease-causing allergen with the goal to induce a protective immunity consisting of allergen-specific blocking IgG antibodies and alterations of the cellular immune response so that the patient can tolerate allergen contact. Major advantages of AIT over all other existing treatments for allergy are that AIT induces a long-lasting protection and prevents the progression of disease to severe manifestations. AIT is cost effective because it uses the patient´s own immune system for protection and potentially can be used as a preventive treatment. However, broad application of AIT is limited by mainly technical issues such as the quality of allergen preparations and the risk of inducing side effects which results in extremely cumbersome treatment schedules reducing patient´s compliance. In this article we review progress in AIT made from its beginning and provide an overview of the state of the art, the needs for further development, and possible technical solutions available through molecular allergology. Finally, we consider visions for AIT development towards prophylactic application.
Collapse
Affiliation(s)
- Yulia Dorofeeva
- Division of ImmunopathologyDepartment of Pathophysiology and Allergy ResearchCenter for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Igor Shilovskiy
- National Research Center, Institute of immunology, FMBA of RussiaMoscowRussian Federation
| | - Inna Tulaeva
- Division of ImmunopathologyDepartment of Pathophysiology and Allergy ResearchCenter for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
- Department of Clinical Immunology and AllergyLaboratory of ImmunopathologySechenov First Moscow State Medical UniversityMoscowRussian Federation
| | - Margarete Focke‐Tejkl
- Division of ImmunopathologyDepartment of Pathophysiology and Allergy ResearchCenter for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Sabine Flicker
- Division of ImmunopathologyDepartment of Pathophysiology and Allergy ResearchCenter for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Dmitriy Kudlay
- National Research Center, Institute of immunology, FMBA of RussiaMoscowRussian Federation
| | - Musa Khaitov
- National Research Center, Institute of immunology, FMBA of RussiaMoscowRussian Federation
| | - Antonina Karsonova
- Department of Clinical Immunology and AllergyLaboratory of ImmunopathologySechenov First Moscow State Medical UniversityMoscowRussian Federation
| | - Ksenja Riabova
- Department of Clinical Immunology and AllergyLaboratory of ImmunopathologySechenov First Moscow State Medical UniversityMoscowRussian Federation
| | - Alexander Karaulov
- Department of Clinical Immunology and AllergyLaboratory of ImmunopathologySechenov First Moscow State Medical UniversityMoscowRussian Federation
| | - Roman Khanferyan
- Department of Immunology and AllergyRussian People’s Friendship UniversityMoscowRussian Federation
| | - Winfried F. Pickl
- Institute of ImmunologyCenter for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Thomas Wekerle
- Section of Transplantation ImmunologyDepartment of SurgeryMedical University of ViennaViennaAustria
| | - Rudolf Valenta
- Division of ImmunopathologyDepartment of Pathophysiology and Allergy ResearchCenter for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
- National Research Center, Institute of immunology, FMBA of RussiaMoscowRussian Federation
- Department of Clinical Immunology and AllergyLaboratory of ImmunopathologySechenov First Moscow State Medical UniversityMoscowRussian Federation
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW Although allergen immunotherapy (AIT) for fungi has been performed for many years, evidence clearly demonstrating its clinical benefit are still lacking. Here, we reviewed the available studies assessing efficacy and safety of AIT for molds. RECENT FINDINGS Studies on AIT for fungi were performed only for the two predominating mold species in the external environment, namely Cladosporium and Alternaria. There is no evidence for other mold species. Recent finding in the literature are lacking; the 2 most recent studies on AIT for molds were published in 2011. Overall, 13 studies were identified (the first was published in 1986), but only nine of these compared AIT to placebo. The studies are small (median study sample size, 27 patients) and of low quality, owing to several defects leading to moderate-to-high risk of bias. Symptoms improvement and medication use reduction, which are the main outcome measures of the studies, were inconsistently demonstrated. There are some concerns about safety with Cladosporium extracts, whereas vaccines with Alternaria extracts seem to be safe and well tolerated. SUMMARY Low strength evidence suggests that mold AIT is efficacious for the treatment of respiratory allergies. High-quality studies with an adequate sample size are needed.
Collapse
|
31
|
Alvaro-Lozano M, Akdis CA, Akdis M, Alviani C, Angier E, Arasi S, Arzt-Gradwohl L, Barber D, Bazire R, Cavkaytar O, Comberiati P, Dramburg S, Durham SR, Eifan AO, Forchert L, Halken S, Kirtland M, Kucuksezer UC, Layhadi JA, Matricardi PM, Muraro A, Ozdemir C, Pajno GB, Pfaar O, Potapova E, Riggioni C, Roberts G, Rodríguez Del Río P, Shamji MH, Sturm GJ, Vazquez-Ortiz M. EAACI Allergen Immunotherapy User's Guide. Pediatr Allergy Immunol 2020; 31 Suppl 25:1-101. [PMID: 32436290 PMCID: PMC7317851 DOI: 10.1111/pai.13189] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Allergen immunotherapy is a cornerstone in the treatment of allergic children. The clinical efficiency relies on a well-defined immunologic mechanism promoting regulatory T cells and downplaying the immune response induced by allergens. Clinical indications have been well documented for respiratory allergy in the presence of rhinitis and/or allergic asthma, to pollens and dust mites. Patients who have had an anaphylactic reaction to hymenoptera venom are also good candidates for allergen immunotherapy. Administration of allergen is currently mostly either by subcutaneous injections or by sublingual administration. Both methods have been extensively studied and have pros and cons. Specifically in children, the choice of the method of administration according to the patient's profile is important. Although allergen immunotherapy is widely used, there is a need for improvement. More particularly, biomarkers for prediction of the success of the treatments are needed. The strength and efficiency of the immune response may also be boosted by the use of better adjuvants. Finally, novel formulations might be more efficient and might improve the patient's adherence to the treatment. This user's guide reviews current knowledge and aims to provide clinical guidance to healthcare professionals taking care of children undergoing allergen immunotherapy.
Collapse
Affiliation(s)
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.,Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
| | - Mubeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Cherry Alviani
- The David Hide Asthma and Allergy Research Centre, St Mary's Hospital, Newport, Isle of Wight, UK.,Clinical and Experimental Sciences and Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Elisabeth Angier
- Primary Care and Population Sciences, University of Southampton, Southampton, UK
| | - Stefania Arasi
- Pediatric Allergology Unit, Department of Pediatric Medicine, Bambino Gesù Children's research Hospital (IRCCS), Rome, Italy
| | - Lisa Arzt-Gradwohl
- Department of Dermatology and Venerology, Medical University of Graz, Graz, Austria
| | - Domingo Barber
- School of Medicine, Institute for Applied Molecular Medicine (IMMA), Universidad CEU San Pablo, Madrid, Spain.,RETIC ARADYAL RD16/0006/0015, Instituto de Salud Carlos III, Madrid, Spain
| | - Raphaëlle Bazire
- Allergy Department, Hospital Infantil Niño Jesús, ARADyAL RD16/0006/0026, Madrid, Spain
| | - Ozlem Cavkaytar
- Department of Paediatric Allergy and Immunology, Faculty of Medicine, Goztepe Training and Research Hospital, Istanbul Medeniyet University, Istanbul, Turkey
| | - Pasquale Comberiati
- Department of Clinical Immunology and Allergology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.,Department of Clinical and Experimental Medicine, Section of Paediatrics, University of Pisa, Pisa, Italy
| | - Stephanie Dramburg
- Department of Pediatric Pneumology, Immunology and Intensive Care Medicine, Charité Medical University, Berlin, Germany
| | - Stephen R Durham
- Immunomodulation and Tolerance Group; Allergy and Clinical Immunology, Section of Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, UK.,the MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Aarif O Eifan
- Allergy and Clinical Immunology, National Heart and Lung Institute, Imperial College London and Royal Brompton Hospitals NHS Foundation Trust, London, UK
| | - Leandra Forchert
- Department of Pediatric Pneumology, Immunology and Intensive Care Medicine, Charité Medical University, Berlin, Germany
| | - Susanne Halken
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark
| | - Max Kirtland
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Inflammation, Repair and Development, National Heart and Lung Institute, Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, UK
| | - Umut C Kucuksezer
- Aziz Sancar Institute of Experimental Medicine, Department of Immunology, Istanbul University, Istanbul, Turkey
| | - Janice A Layhadi
- Immunomodulation and Tolerance Group; Allergy and Clinical Immunology, Section of Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, UK.,the MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK.,Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Inflammation, Repair and Development, National Heart and Lung Institute, Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, UK
| | - Paolo Maria Matricardi
- Department of Pediatric Pneumology, Immunology and Intensive Care Medicine, Charité Medical University, Berlin, Germany
| | - Antonella Muraro
- The Referral Centre for Food Allergy Diagnosis and Treatment Veneto Region, Department of Women and Child Health, University of Padua, Padua, Italy
| | - Cevdet Ozdemir
- Institute of Child Health, Department of Pediatric Basic Sciences, Istanbul University, Istanbul, Turkey.,Faculty of Medicine, Department of Pediatrics, Division of Pediatric Allergy and Immunology, Istanbul University, Istanbul, Turkey
| | | | - Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Rhinology and Allergy, University Hospital Marburg, Philipps-Universität Marburg, Marburg, Germany
| | - Ekaterina Potapova
- Department of Pediatric Pneumology, Immunology and Intensive Care Medicine, Charité Medical University, Berlin, Germany
| | - Carmen Riggioni
- Pediatric Allergy and Clinical Immunology Service, Institut de Reserca Sant Joan de Deú, Barcelona, Spain
| | - Graham Roberts
- The David Hide Asthma and Allergy Research Centre, St Mary's Hospital, Newport, Isle of Wight, UK.,NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,Paediatric Allergy and Respiratory Medicine (MP803), Clinical & Experimental Sciences & Human Development in Health Academic Units University of Southampton Faculty of Medicine & University Hospital Southampton, Southampton, UK
| | | | - Mohamed H Shamji
- Immunomodulation and Tolerance Group; Allergy and Clinical Immunology, Section of Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, UK.,the MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Gunter J Sturm
- Department of Dermatology and Venerology, Medical University of Graz, Graz, Austria
| | | |
Collapse
|
32
|
Caraballo L, Valenta R, Puerta L, Pomés A, Zakzuk J, Fernandez-Caldas E, Acevedo N, Sanchez-Borges M, Ansotegui I, Zhang L, van Hage M, Abel-Fernández E, Karla Arruda L, Vrtala S, Curin M, Gronlund H, Karsonova A, Kilimajer J, Riabova K, Trifonova D, Karaulov A. The allergenic activity and clinical impact of individual IgE-antibody binding molecules from indoor allergen sources. World Allergy Organ J 2020; 13:100118. [PMID: 32373267 PMCID: PMC7195550 DOI: 10.1016/j.waojou.2020.100118] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023] Open
Abstract
A large number of allergens have been discovered but we know little about their potential to induce inflammation (allergenic activity) and symptoms. Nowadays, the clinical importance of allergens is determined by the frequency and intensity of their IgE antibody binding (allergenicity). This is a rather limited parameter considering the development of experimental allergology in the last 20 years and the criteria that support personalized medicine. Now it is known that some allergens, in addition to their IgE antibody binding properties, can induce inflammation through non IgE mediated pathways, which can increase their allergenic activity. There are several ways to evaluate the allergenic activity, among them the provocation tests, the demonstration of non-IgE mediated pathways of inflammation, case control studies of IgE-binding frequencies, and animal models of respiratory allergy. In this review we have explored the current status of basic and clinical research on allergenic activity of indoor allergens and confirm that, for most of them, this important property has not been investigated. However, during recent years important advances have been made in the field, and we conclude that for at least the following, allergenic activity has been demonstrated: Der p 1, Der p 2, Der p 5 and Blo t 5 from HDMs; Per a 10 from P. americana; Asp f 1, Asp f 2, Asp f 3, Asp f 4 and Asp f 6 from A. fumigatus; Mala s 8 and Mala s 13 from M. sympodialis; Alt a 1 from A. alternata; Pen c 13 from P. chrysogenum; Fel d 1 from cats; Can f 1, Can f 2, Can f 3, Can f 4 and Can f 5 from dogs; Mus m 1 from mice and Bos d 2 from cows. Defining the allergenic activity of other indoor IgE antibody binding molecules is necessary for a precision-medicine-oriented management of allergic diseases.
Collapse
Affiliation(s)
- Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
- Corresponding author. Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia.
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- NRC Institute of Immunology FMBA of Russia, Moscow, Russian Federation
- Department of Clinical Immunology and Allergy, Laboratory of Immunopathology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Leonardo Puerta
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Anna Pomés
- Indoor Biotechnologies, Inc. Charlottesville, VA, USA
| | - Josefina Zakzuk
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | | | - Nathalie Acevedo
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Mario Sanchez-Borges
- Allergy and Clinical Immunology Department, Centro Médico Docente La Trinidad, Caracas, Venezuela
| | - Ignacio Ansotegui
- Department of Allergy & Immunology Hospital Quironsalud Bizkaia, Bilbao, Spain
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Marianne van Hage
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Eva Abel-Fernández
- Inmunotek, Madrid, Spain and University of South Florida College of Medicine, Tampa, USA
| | - L. Karla Arruda
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Susanne Vrtala
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Mirela Curin
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Hans Gronlund
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Antonina Karsonova
- Department of Clinical Immunology and Allergy, Laboratory of Immunopathology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Jonathan Kilimajer
- Inmunotek, Madrid, Spain and University of South Florida College of Medicine, Tampa, USA
| | - Ksenja Riabova
- Department of Clinical Immunology and Allergy, Laboratory of Immunopathology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Daria Trifonova
- Department of Clinical Immunology and Allergy, Laboratory of Immunopathology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Alexander Karaulov
- Department of Clinical Immunology and Allergy, Laboratory of Immunopathology, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
33
|
Pechsrichuang P, Jacquet A. Molecular approaches to allergen-specific immunotherapy: Are we so far from clinical implementation? Clin Exp Allergy 2020; 50:543-557. [PMID: 32078207 DOI: 10.1111/cea.13588] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/06/2020] [Accepted: 02/15/2020] [Indexed: 12/28/2022]
Abstract
Conventional allergen-specific immunotherapy (AIT), based on administrations of allergen extracts, represents up to now the unique protocol for the desensitization of allergic patients. Whereas the effectiveness of AIT was evidenced for the treatment of allergic rhinitis and allergic asthma, such strategy remains experimental for food allergies up to now. However, important issues are commonly associated with AIT as the quality of natural allergen extracts, the long duration and adverse side-effects which negatively affect successful desensitization together with the patient compliance. The rapid progression of molecular allergology made possible the quest of safer, shorter and more effective immunotherapeutic approaches. The aim of this review was to provide an update on these different innovative recombinant derivatives including their efficacy but also their limitations. Despite promising preclinical and early clinical studies, the absence of convincing data in large phase III trials precludes so far the translation of these immunotherapeutic candidates into the clinic.
Collapse
Affiliation(s)
- Phornsiri Pechsrichuang
- Faculty of Medicine, Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Bangkok, Thailand
| | - Alain Jacquet
- Faculty of Medicine, Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
34
|
Manufacturing and quality assessment of allergenic extracts for immunotherapy: state of the art. Curr Opin Allergy Clin Immunol 2019; 19:640-645. [DOI: 10.1097/aci.0000000000000579] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
35
|
|
36
|
Alt-a-1-Immuntherapie sicher und wirksam. ALLERGO JOURNAL 2019. [DOI: 10.1007/s15007-019-1945-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|