1
|
Phelan KJ, Khurana Hershey GK. Frequent exacerbator-a novel endotype of pediatric asthma. J Allergy Clin Immunol 2025:S0091-6749(25)00556-1. [PMID: 40409378 DOI: 10.1016/j.jaci.2025.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 04/22/2025] [Accepted: 05/16/2025] [Indexed: 05/25/2025]
Abstract
Asthma is a complex and chronic respiratory condition that affects both adult and pediatric populations. Several asthma endotypes have been described; they include endotypes characterized by TH2 cell inflammation, response to viral infection, and exposure to air pollution. Recent evidence has revealed a novel endotype of pediatric asthma, termed the frequent exacerbator (FE) endotype, which is characterized by recurrent exacerbations. In this review, we provide an overview of the FE endotype. We review its epidemiology, its definition, and its environmental and clinical associations. We also detail findings from recent molecular characterizations of a pediatric FE endotype, with a specific focus on airway gene expression studies. As asthma exacerbations drive mortality and economic burden associated with disease, understanding the factors leading to frequent exacerbations is an important step in development of novel therapeutics and treatment strategies.
Collapse
Affiliation(s)
- Kieran J Phelan
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Gurjit K Khurana Hershey
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| |
Collapse
|
2
|
Saito H, Tamari M, Motomura K, Ikutani M, Nakae S, Matsumoto K, Morita H. Omics in allergy and asthma. J Allergy Clin Immunol 2024; 154:1378-1390. [PMID: 39384073 DOI: 10.1016/j.jaci.2024.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/11/2024]
Abstract
This review explores the transformative impact of omics technologies on allergy and asthma research in recent years, focusing on advancements in high-throughput technologies related to genomics and transcriptomics. In particular, the rapid spread of single-cell RNA sequencing has markedly advanced our understanding of the molecular pathology of allergic diseases. Furthermore, high-throughput genome sequencing has accelerated the discovery of monogenic disorders that were previously overlooked as ordinary intractable allergic diseases. We also introduce microbiomics, proteomics, lipidomics, and metabolomics, which are quickly growing areas of research interest, although many of their current findings remain inconclusive as solid evidence. By integrating these omics data, we will gain deeper insights into disease mechanisms, leading to the development of precision medicine approaches that promise to enhance treatment outcomes.
Collapse
Affiliation(s)
- Hirohisa Saito
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan; Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Masato Tamari
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kenichiro Motomura
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Masashi Ikutani
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Susumu Nakae
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan; Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hideaki Morita
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan; Allergy Center, National Center for Child Health and Development, Tokyo, Japan.
| |
Collapse
|
3
|
Fitzpatrick AM, Mohammad AF, Desher K, Mutic AD, Stephenson ST, Dallalio GA, Grunwell JR. Clinical and inflammatory features of traffic-related diesel exposure in children with asthma. Ann Allergy Asthma Immunol 2024; 133:393-402.e4. [PMID: 39074656 PMCID: PMC11410514 DOI: 10.1016/j.anai.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024]
Abstract
BACKGROUND Epidemiologic studies have revealed associations between traffic-related pollutants such as diesel particulate matter (PM) and asthma outcomes in children, but the inflammatory features associated with diesel PM exposure in children with asthma are not understood. OBJECTIVE To evaluate symptoms, exacerbations, and lung function measures in children with uncontrolled asthma and their associations with residential proximity to major roadways and to determine associations between diesel PM exposure and systemic inflammatory cytokines, circulating markers of T-cell activation and exhaustion, and metabolomic features using biomarker studies. METHODS Children 5 to 17 years of age with physician-diagnosed, uncontrolled asthma despite treatment with an asthma controller medication completed a research visit involving questionnaires, lung function testing, and venipuncture for biomarker studies. Geocoding was performed to quantify residential proximity to major roadways and pollutant exposure. RESULTS A total of 447 children with uncontrolled asthma were enrolled. Children living closer to highly trafficked roadways were more disadvantaged and had more exposure to diesel PM, more exacerbations prompting an emergency department visit, and lower lung function measures. Children with the highest diesel PM exposure, compared with children with the lowest diesel PM exposure, also had blunted cytokine secretion and evidence of T-cell exhaustion, including disturbances in several metabolites associated with glutathione formation and oxidative stress. CONCLUSION Traffic-related diesel PM exposure in children with poorly controlled asthma is associated with poorer clinical outcomes and unique patterns of inflammation and oxidative stress. These findings argue for continued mitigation efforts to improve traffic-related air quality and health equity in children with asthma.
Collapse
Affiliation(s)
- Anne M Fitzpatrick
- Department of Pediatrics, Emory University, Atlanta, Georgia; Division of Pulmonary Medicine, Children's Healthcare of Atlanta, Atlanta, Georgia.
| | | | - Kaley Desher
- Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Abby D Mutic
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, Georgia
| | | | - Gail A Dallalio
- Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Jocelyn R Grunwell
- Department of Pediatrics, Emory University, Atlanta, Georgia; Division of Critical Care Medicine, Children's Healthcare of Atlanta, Atlanta, Georgia
| |
Collapse
|
4
|
Fitzpatrick AM, Grunwell JR, Gaur H, Kobara S, Kamaleswaran R. Plasma metabolomics identifies differing endotypes of recurrent wheezing in preschool children differentiated by symptoms and social disadvantage. Sci Rep 2024; 14:15813. [PMID: 38982241 PMCID: PMC11233605 DOI: 10.1038/s41598-024-66878-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/04/2024] [Indexed: 07/11/2024] Open
Abstract
Preschool children with recurrent wheezing are a heterogeneous population with many underlying biological pathways that contribute to clinical presentations. Although the morbidity of recurrent wheezing in preschool children is significant, biological studies in this population remain quite limited. To address this gap, this study performed untargeted plasma metabolomic analyses in 68 preschool children with recurrent wheezing to identify metabolomic endotypes of wheezing. K-means cluster analysis was performed on metabolomic dataset including a total of 1382 named and unnamed metabolites. We identified three metabolomic clusters which differed in symptom severity, exacerbation occurrence, and variables associated with social disadvantage. Metabolites that distinguished the clusters included those involved in fatty acid metabolism, fatty acids (long chain monounsaturated fatty acids, long chain polyunsaturated fatty acids, and long chain saturated fatty acids), lysophospholipids, phosphatidylcholines, and phosphatidylethanolamines. Pathway analyses identified pathways of interest in each cluster, including steroid metabolism, histidine metabolism, sphingomyelins, and sphingosines, among others. This study highlights the biologic complexity of recurrent wheezing in preschool children and offers novel metabolites and pathways that may be amenable to future study and intervention.
Collapse
Affiliation(s)
- Anne M Fitzpatrick
- Department of Pediatrics, Emory University School of Medicine, 2015 Uppergate Drive Office #340, 30322, Atlanta, Georgia.
- Division of Pulmonary Medicine, Children's Healthcare of Atlanta, Atlanta, Georgia.
| | - Jocelyn R Grunwell
- Department of Pediatrics, Emory University School of Medicine, 2015 Uppergate Drive Office #340, 30322, Atlanta, Georgia
- Division of Critical Care Medicine, Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Hina Gaur
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, Georgia
| | - Seibi Kobara
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, Georgia
| | | |
Collapse
|
5
|
Tóth G, Golubova A, Falk A, Lind SB, Nicholas M, Lanekoff I. Interleukin-13 Treatment of Living Lung Tissue Model Alters the Metabolome and Proteome-A Nano-DESI MS Metabolomics and Shotgun Proteomics Study. Int J Mol Sci 2024; 25:5034. [PMID: 38732251 PMCID: PMC11084154 DOI: 10.3390/ijms25095034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/04/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Asthma is a chronic respiratory disease with one of the largest numbers of cases in the world; thus, constant investigation and technical development are needed to unravel the underlying biochemical mechanisms. In this study, we aimed to develop a nano-DESI MS method for the in vivo characterization of the cellular metabolome. Using air-liquid interface (ALI) cell layers, we studied the role of Interleukin-13 (IL-13) on differentiated lung epithelial cells acting as a lung tissue model. We demonstrate the feasibility of nano-DESI MS for the in vivo monitoring of basal-apical molecular transport, and the subsequent endogenous metabolic response, for the first time. Conserving the integrity of the ALI lung-cell layer enabled us to perform temporally resolved metabolomic characterization followed by "bottom-up" proteomics on the same population of cells. Metabolic remodeling was observed upon histamine and corticosteroid treatment of the IL-13-exposed lung cell monolayers, in correlation with alterations in the proteomic profile. This proof of principle study demonstrates the utility of in vivo nano-DESI MS for characterizing ALI tissue layers, and the new markers identified in our study provide a good starting point for future, larger-scale studies.
Collapse
Affiliation(s)
- Gábor Tóth
- Department of Chemistry—BMC, Uppsala University, 75237 Uppsala, Sweden
| | | | - Alexander Falk
- Department of Chemistry—BMC, Uppsala University, 75237 Uppsala, Sweden
| | | | | | - Ingela Lanekoff
- Department of Chemistry—BMC, Uppsala University, 75237 Uppsala, Sweden
| |
Collapse
|
6
|
Georas SN, Khurana S. Update on asthma biology. J Allergy Clin Immunol 2024; 153:1215-1228. [PMID: 38341182 DOI: 10.1016/j.jaci.2024.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024]
Abstract
This is an exciting time to be conducting asthma research. The recent development of targeted asthma biologics has validated the power of basic research to discover new molecules amenable to therapeutic intervention. Advances in high-throughput sequencing are providing a wealth of "omics" data about genetic and epigenetic underpinnings of asthma, as well as about new cellular interacting networks and potential endotypes in asthma. Airway epithelial cells have emerged not only as key sensors of the outside environment but also as central drivers of dysregulated mucosal immune responses in asthma. Emerging data suggest that the airway epithelium in asthma remembers prior encounters with environmental exposures, resulting in potentially long-lasting changes in structure and metabolism that render asthmatic individuals susceptible to subsequent exposures. Here we summarize recent insights into asthma biology, focusing on studies using human cells or tissue that were published in the past 2 years. The studies are organized thematically into 6 content areas to draw connections and spur future research (on genetics and epigenetics, prenatal and early-life origins, microbiome, immune and inflammatory pathways, asthma endotypes and biomarkers, and lung structural alterations). We highlight recent studies of airway epithelial dysfunction and response to viral infections and conclude with a framework for considering how bidirectional interactions between alterations in airway structure and mucosal immunity can lead to sustained lung dysfunction in asthma.
Collapse
Affiliation(s)
- Steve N Georas
- Division of Pulmonary and Critical Care Medicine, University of Rochester Medical Center, Rochester, NY.
| | - Sandhya Khurana
- Division of Pulmonary and Critical Care Medicine, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
7
|
Lejeune S, Kaushik A, Parsons ES, Chinthrajah S, Snyder M, Desai M, Manohar M, Prunicki M, Contrepois K, Gosset P, Deschildre A, Nadeau K. Untargeted metabolomic profiling in children identifies novel pathways in asthma and atopy. J Allergy Clin Immunol 2024; 153:418-434. [PMID: 38344970 DOI: 10.1016/j.jaci.2023.09.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 02/15/2024]
Abstract
BACKGROUND Asthma and other atopic disorders can present with varying clinical phenotypes marked by differential metabolomic manifestations and enriched biological pathways. OBJECTIVE We sought to identify these unique metabolomic profiles in atopy and asthma. METHODS We analyzed baseline nonfasted plasma samples from a large multisite pediatric population of 470 children aged <13 years from 3 different sites in the United States and France. Atopy positivity (At+) was defined as skin prick test result of ≥3 mm and/or specific IgE ≥ 0.35 IU/mL and/or total IgE ≥ 173 IU/mL. Asthma positivity (As+) was based on physician diagnosis. The cohort was divided into 4 groups of varying combinations of asthma and atopy, and 6 pairwise analyses were conducted to best assess the differential metabolomic profiles between groups. RESULTS Two hundred ten children were classified as At-As-, 42 as At+As-, 74 as At-As+, and 144 as At+As+. Untargeted global metabolomic profiles were generated through ultra-high-performance liquid chromatography-tandem mass spectroscopy. We applied 2 independent machine learning classifiers and short-listed 362 metabolites as discriminant features. Our analysis showed the most diverse metabolomic profile in the At+As+/At-As- comparison, followed by the At-As+/At-As- comparison, indicating that asthma is the most discriminant condition associated with metabolomic changes. At+As+ metabolomic profiles were characterized by higher levels of bile acids, sphingolipids, and phospholipids, and lower levels of polyamine, tryptophan, and gamma-glutamyl amino acids. CONCLUSION The At+As+ phenotype displays a distinct metabolomic profile suggesting underlying mechanisms such as modulation of host-pathogen and gut microbiota interactions, epigenetic changes in T-cell differentiation, and lower antioxidant properties of the airway epithelium.
Collapse
Affiliation(s)
- Stéphanie Lejeune
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif; University of Lille, Pediatric Pulmonology and Allergy Department, Hôpital Jeanne de Flandre, CHU Lille, Lille, France; University of Lille, INSERM Unit 1019, CNRS UMR 9017, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France.
| | - Abhinav Kaushik
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif; Department of Environmental Health, T. H. Chan School of Public Health, Harvard University, Boston, Mass
| | - Ella S Parsons
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif
| | - Sharon Chinthrajah
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif
| | - Michael Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, Calif
| | - Manisha Desai
- Quantitative Science Unit, Department of Medicine, Stanford University School of Medicine, Stanford, Calif
| | - Monali Manohar
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif
| | - Mary Prunicki
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif; Department of Environmental Health, T. H. Chan School of Public Health, Harvard University, Boston, Mass
| | - Kévin Contrepois
- Department of Genetics, Stanford University School of Medicine, Stanford, Calif
| | - Philippe Gosset
- University of Lille, INSERM Unit 1019, CNRS UMR 9017, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France
| | - Antoine Deschildre
- University of Lille, Pediatric Pulmonology and Allergy Department, Hôpital Jeanne de Flandre, CHU Lille, Lille, France; University of Lille, INSERM Unit 1019, CNRS UMR 9017, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France
| | - Kari Nadeau
- Department of Environmental Health, T. H. Chan School of Public Health, Harvard University, Boston, Mass
| |
Collapse
|
8
|
Ling ZN, Jiang YF, Ru JN, Lu JH, Ding B, Wu J. Amino acid metabolism in health and disease. Signal Transduct Target Ther 2023; 8:345. [PMID: 37699892 PMCID: PMC10497558 DOI: 10.1038/s41392-023-01569-3] [Citation(s) in RCA: 162] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/12/2023] [Accepted: 07/13/2023] [Indexed: 09/14/2023] Open
Abstract
Amino acids are the building blocks of protein synthesis. They are structural elements and energy sources of cells necessary for normal cell growth, differentiation and function. Amino acid metabolism disorders have been linked with a number of pathological conditions, including metabolic diseases, cardiovascular diseases, immune diseases, and cancer. In the case of tumors, alterations in amino acid metabolism can be used not only as clinical indicators of cancer progression but also as therapeutic strategies. Since the growth and development of tumors depend on the intake of foreign amino acids, more and more studies have targeted the metabolism of tumor-related amino acids to selectively kill tumor cells. Furthermore, immune-related studies have confirmed that amino acid metabolism regulates the function of effector T cells and regulatory T cells, affecting the function of immune cells. Therefore, studying amino acid metabolism associated with disease and identifying targets in amino acid metabolic pathways may be helpful for disease treatment. This article mainly focuses on the research of amino acid metabolism in tumor-oriented diseases, and reviews the research and clinical research progress of metabolic diseases, cardiovascular diseases and immune-related diseases related to amino acid metabolism, in order to provide theoretical basis for targeted therapy of amino acid metabolism.
Collapse
Affiliation(s)
- Zhe-Nan Ling
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, P.R. China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, P.R. China
| | - Yi-Fan Jiang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, P.R. China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, P.R. China
| | - Jun-Nan Ru
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, P.R. China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, P.R. China
| | - Jia-Hua Lu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, P.R. China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, P.R. China
| | - Bo Ding
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, P.R. China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, P.R. China
| | - Jian Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, P.R. China.
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang Province, P.R. China.
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang Province, P.R. China.
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, P.R. China.
| |
Collapse
|
9
|
Ferraro VA, Zanconato S, Carraro S. Metabolomics Applied to Pediatric Asthma: What Have We Learnt in the Past 10 Years? CHILDREN (BASEL, SWITZERLAND) 2023; 10:1452. [PMID: 37761413 PMCID: PMC10529856 DOI: 10.3390/children10091452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023]
Abstract
Background: Asthma is the most common chronic condition in children. It is a complex non-communicable disease resulting from the interaction of genetic and environmental factors and characterized by heterogeneous underlying molecular mechanisms. Metabolomics, as with the other omic sciences, thanks to the joint use of high-throughput technologies and sophisticated multivariate statistical methods, provides an unbiased approach to study the biochemical-metabolic processes underlying asthma. The aim of this narrative review is the analysis of the metabolomic studies in pediatric asthma published in the past 10 years, focusing on the prediction of asthma development, endotype characterization and pharmaco-metabolomics. Methods: A total of 43 relevant published studies were identified searching the MEDLINE/Pubmed database, using the following terms: "asthma" AND "metabolomics". The following filters were applied: language (English), age of study subjects (0-18 years), and publication date (last 10 years). Results and Conclusions: Several studies were identified within the three areas of interest described in the aim, and some of them likely have the potential to influence our clinical approach in the future. Nonetheless, further studies are needed to validate the findings and to assess the role of the proposed biomarkers as possible diagnostic or prognostic tools to be used in clinical practice.
Collapse
Affiliation(s)
- Valentina Agnese Ferraro
- Unit of Pediatric Allergy and Respiratory Medicine, Women’s and Children’s Health Department, University of Padova, 35122 Padova, Italy
| | | | | |
Collapse
|
10
|
Xu T, Wu Z, Yuan Q, Zhang X, Liu Y, Wu C, Song M, Wu J, Jiang J, Wang Z, Chen Z, Zhang M, Huang M, Ji N. Proline is increased in allergic asthma and promotes airway remodeling. JCI Insight 2023; 8:e167395. [PMID: 37432745 PMCID: PMC10543727 DOI: 10.1172/jci.insight.167395] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 07/06/2023] [Indexed: 07/12/2023] Open
Abstract
Proline and its synthesis enzyme pyrroline-5-carboxylate reductase 1 (PYCR1) are implicated in epithelial-mesenchymal transition (EMT), yet how proline and PYCR1 function in allergic asthmatic airway remodeling via EMT has not yet been addressed to our knowledge. In the present study, increased levels of plasma proline and PYCR1 were observed in patients with asthma. Similarly, proline and PYCR1 in lung tissues were high in a murine allergic asthma model induced by house dust mites (HDMs). Pycr1 knockout decreased proline in lung tissues, with reduced airway remodeling and EMT. Mechanistically, loss of Pycr1 restrained HDM-induced EMT by modulating mitochondrial fission, metabolic reprogramming, and the AKT/mTORC1 and WNT3a/β-catenin signaling pathways in airway epithelial cells. Therapeutic inhibition of PYCR1 in wild-type mice disrupted HDM-induced airway inflammation and remodeling. Deprivation of exogenous proline relieved HDM-induced airway remodeling to some extent. Collectively, this study illuminates that proline and PYCR1 involved with airway remodeling in allergic asthma could be viable targets for asthma treatment.
Collapse
Affiliation(s)
- Tingting Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhenzhen Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qi Yuan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xijie Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanan Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Chaojie Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Meijuan Song
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jingjing Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jingxian Jiang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhengxia Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhongqi Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mingshun Zhang
- NHC Key Laboratory of Antibody Technique, Jiangsu Province Engineering Research Center of Antibody Drug, Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Mao Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ningfei Ji
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
11
|
Cottrill KA, Chandler JD, Kobara S, Stephenson ST, Mohammad AF, Tidwell M, Mason C, Van Dresser M, Patrignani J, Kamaleswaran R, Fitzpatrick AM, Grunwell JR. Metabolomics identifies disturbances in arginine, phenylalanine, and glycine metabolism as differentiating features of exacerbating atopic asthma in children. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2023; 2:100115. [PMID: 37609569 PMCID: PMC10443927 DOI: 10.1016/j.jacig.2023.100115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Background Asthma exacerbations are highly prevalent in children, but only a few studies have examined the biologic mechanisms underlying exacerbations in this population. Objective High-resolution metabolomics analyses were performed to understand the differences in metabolites in children with exacerbating asthma who were hospitalized in a pediatric intensive care unit for status asthmaticus. We hypothesized that compared with a similar population of stable outpatients with asthma, children with exacerbating asthma would have differing metabolite abundance patterns with distinct clustering profiles. Methods A total of 98 children aged 6 through 17 years with exacerbating asthma (n = 69) and stable asthma (n = 29) underwent clinical characterization procedures and submitted plasma samples for metabolomic analyses. High-confidence metabolites were retained and utilized for pathway enrichment analyses to identify the most relevant metabolic pathways that discriminated between groups. Results In all, 118 and 131 high-confidence metabolites were identified in positive and negative ionization mode, respectively. A total of 103 unique metabolites differed significantly between children with exacerbating asthma and children with stable asthma. In all, 8 significantly enriched pathways that were largely associated with alterations in arginine, phenylalanine, and glycine metabolism were identified. However, other metabolites and pathways of interest were also identified. Conclusion Metabolomic analyses identified multiple perturbed metabolites and pathways that discriminated children with exacerbating asthma who were hospitalized for status asthmaticus. These results highlight the complex biology of inflammation in children with exacerbating asthma and argue for additional studies of the metabolic determinants of asthma exacerbations in children because many of the identified metabolites of interest may be amenable to targeted interventions.
Collapse
Affiliation(s)
| | - Joshua D. Chandler
- Department of Pediatrics, Emory University, Atlanta
- Children’s Healthcare of Atlanta
| | - Seibi Kobara
- Department of Biomedical Informatics, Emory University, Atlanta
| | | | | | | | | | | | | | - Rishikesan Kamaleswaran
- Department of Pediatrics, Emory University, Atlanta
- Department of Biomedical Informatics, Emory University, Atlanta
| | - Anne M. Fitzpatrick
- Department of Pediatrics, Emory University, Atlanta
- Children’s Healthcare of Atlanta
| | - Jocelyn R. Grunwell
- Department of Pediatrics, Emory University, Atlanta
- Children’s Healthcare of Atlanta
| |
Collapse
|
12
|
Gao Y, Chen L, Li J, Wen Z. A prognosis prediction chromatin regulator signature for patients with severe asthma. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2023; 19:43. [PMID: 37245015 DOI: 10.1186/s13223-023-00796-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/16/2023] [Indexed: 05/29/2023]
Abstract
Severe asthma imposes a physical and economic burden on both patients and society. As chromatin regulators (CRs) influence the progression of multiple diseases through epigenetic mechanisms, we aimed to study the role of CRs in patients with severe asthma. Transcriptome data (GSE143303) from 47 patients with severe asthma and 13 healthy participants was downloaded from the Gene Expression Omnibus database. Enrichment analysis was performed to investigate the functions of differentially expressed CRs between the groups. We identified 80 differentially expressed CRs; they were mainly enriched in histone modification, chromatin organization, and lysine degradation. A protein-protein interaction network was then constructed. The analyzed immune scores were different between sick and healthy individuals. Thus, CRs with a high correlation in the immune analysis, SMARCC1, SETD2, KMT2B, and CHD8, were used to construct a nomogram model. Finally, using online prediction tools, we determined that lanatoside C, cefepime, and methapyrilene may be potentially effective drugs in the treatment of severe asthma. The nomogram constructed using the four CRs, SMARCC1, SETD2, KMT2B, and CHD8, may be a useful tool for predicting the prognosis of patients with severe asthma. This study provided new insights into the role of CRs in severe asthma.
Collapse
Affiliation(s)
- Yaning Gao
- Beijing Jingmei Group General Hospital, Beijing, China.
| | - Liang Chen
- Beijing Jingmei Group General Hospital, Beijing, China
| | - Jian Li
- Beijing Jingmei Group General Hospital, Beijing, China
| | - Zhengjun Wen
- Beijing Jingmei Group General Hospital, Beijing, China
| |
Collapse
|
13
|
Starikova EA, Rubinstein AA, Mammedova JT, Isakov DV, Kudryavtsev IV. Regulated Arginine Metabolism in Immunopathogenesis of a Wide Range of Diseases: Is There a Way to Pass between Scylla and Charybdis? Curr Issues Mol Biol 2023; 45:3525-3551. [PMID: 37185755 PMCID: PMC10137093 DOI: 10.3390/cimb45040231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
More than a century has passed since arginine was discovered, but the metabolism of the amino acid never ceases to amaze researchers. Being a conditionally essential amino acid, arginine performs many important homeostatic functions in the body; it is involved in the regulation of the cardiovascular system and regeneration processes. In recent years, more and more facts have been accumulating that demonstrate a close relationship between arginine metabolic pathways and immune responses. This opens new opportunities for the development of original ways to treat diseases associated with suppressed or increased activity of the immune system. In this review, we analyze the literature describing the role of arginine metabolism in the immunopathogenesis of a wide range of diseases, and discuss arginine-dependent processes as a possible target for therapeutic approaches.
Collapse
Affiliation(s)
- Eleonora A Starikova
- Laboratory of Cellular Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L'va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
| | - Artem A Rubinstein
- Laboratory of Cellular Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia
| | - Jennet T Mammedova
- Laboratory of General Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia
| | - Dmitry V Isakov
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L'va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
| | - Igor V Kudryavtsev
- Laboratory of Cellular Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia
- School of Biomedicine, Far Eastern Federal University, FEFU Campus, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia
| |
Collapse
|