1
|
Pahima HT, Dwyer DF. Update on mast cell biology. J Allergy Clin Immunol 2025; 155:1115-1123. [PMID: 39800266 DOI: 10.1016/j.jaci.2024.12.1092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/27/2024] [Accepted: 12/30/2024] [Indexed: 01/15/2025]
Abstract
Mast cells (MCs) are heterogeneous tissue-resident effector cells that are thought to play central roles in allergic inflammatory disease, yet the degree of heterogeneity and nature of these roles has remained elusive. In recent years, advances in tissue culture systems, preclinical mouse models, and the continued spread of single-cell RNA sequencing have greatly advanced our understanding of MC phenotypes in health and disease. These approaches have identified novel interactions of MC subsets with immune cells, neurons, and tissue structural cells, changing our understanding of how MCs both drive and help resolve tissue inflammation, reshape tissue microenvironments, and influence host behavior. This review addresses key studies from 2022 to 2024 that have advanced our understanding of MC biology in mice and humans.
Collapse
Affiliation(s)
- Hadas Tamar Pahima
- Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Harvard Medical School, Boston, Mass
| | - Daniel F Dwyer
- Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Harvard Medical School, Boston, Mass.
| |
Collapse
|
2
|
Alladina J, Medoff BD, Cho JL. Innate Immunity and Asthma Exacerbations: Insights From Human Models. Immunol Rev 2025; 330:e70016. [PMID: 40087882 PMCID: PMC11922041 DOI: 10.1111/imr.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/14/2025] [Accepted: 02/28/2025] [Indexed: 03/17/2025]
Abstract
Asthma is a common chronic respiratory disease characterized by the presence of airway inflammation, airway hyperresponsiveness, and mucus hypersecretion. Repeated asthma exacerbations can lead to progressive airway remodeling and irreversible airflow obstruction. Thus, understanding and preventing asthma exacerbations are of paramount importance. Although multiple endotypes exist, asthma is most often driven by type 2 airway inflammation. New therapies that target specific type 2 mediators have been shown to reduce the frequency of asthma exacerbations but are incompletely effective in a significant number of asthmatics. Furthermore, it remains unknown whether current treatments lead to sustained changes in the airway or if targeting additional pathways may be necessary to achieve asthma remission. Activation of innate immunity is the initial event in the inflammatory sequence that occurs during an asthma exacerbation. However, there continue to be critical gaps in our understanding of the innate immune response to asthma exacerbating factors. In this review, we summarize the current understanding of the role of innate immunity in asthma exacerbations and the methods used to study them. We also identify potential novel therapeutic targets for asthma and future areas for investigation.
Collapse
Affiliation(s)
- Jehan Alladina
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Benjamin D. Medoff
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Josalyn L. Cho
- Division of Pulmonary, Critical Care and Occupational Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|
3
|
Xiang Y, Liu J, Nie M, Nilsson G, Säfholm J, Adner M. Toll-like receptor activation induces airway obstruction and hyperresponsiveness in guinea pigs. Respir Res 2024; 25:421. [PMID: 39614276 DOI: 10.1186/s12931-024-03050-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Microbial infections, particularly those caused by rhinovirus (RV) and respiratory syncytial virus (RSV), are major triggers for asthma exacerbations. These viruses activate toll-like receptors (TLRs), initiating an innate immune response. To better understand microbial-induced asthma exacerbations, animal models that closely mimic human lung characteristics are essential. This study aimed to assess airway responses in guinea pigs exposed to TLR agonists, simulating microbial infections. METHODS The agonists poly(I: C) (TLR3), lipopolysaccharide (LPS; TLR4) and imiquimod (TLR7), or the combination of poly(I: C) and imiquimod (P/I) were administered intranasally once a day over four consecutive days. The latter group received daily intraperitoneal injections of dexamethasone starting one day before the TLR agonists challenge. Respiratory functions were measured by whole-body plethysmography and forced oscillatory technique. Bronchoalveolar lavage fluid (BALF) cells and lungs were collected for analysis. RESULTS The intranasal exposure of LPS and P/I caused an increase in enhanced pause (Penh) after challenge, whereas neither poly(I: C) nor imiquimod alone showed any effect. After the challenges of LPS, poly(I: C) or P/I, but not imiquimod alone, induced an increase of both Rrs (resistance of the respiratory system) and Ers (elastance of the respiratory system). LPS exposure caused an increase of neutrophils in BALF, whereas none of the other exposures affected the composition of cells in BALF. Exposure to LPS, poly (I: C), imiquimod, and P/I all caused a marked infiltration of inflammatory cells and an increase of mast cells around the small airways. For the expression of inflammatory mediators, LPS increased CXCL8, poly(I: C) and imiquimod decreased IL-4 and IL-5, and increased IFNγ. Imiquimod increased CXCL8 and IL-6, whereas P/I decreased IL-5, and increased IL-6 and IFNγ. The increases in Rrs, Ers, and airway inflammation, but not the altered expression of inflammatory cytokines, were attenuated by dexamethasone. CONCLUSIONS TLR agonists promote acute airway inflammation and induce airway obstruction and hyperresponsiveness in guinea pigs. The severity of these effects varies depending on the specific agonists used. Notably, dexamethasone reversed pulmonary functional changes and mitigated bronchial inflammation caused by the combined treatment of P/I. However, it had no impact on the expression of inflammatory mediators.
Collapse
Affiliation(s)
- Yujiao Xiang
- Experimental Asthma and Allergy Research Unit, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jielu Liu
- Experimental Asthma and Allergy Research Unit, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mu Nie
- Experimental Asthma and Allergy Research Unit, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gunnar Nilsson
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Jesper Säfholm
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Mikael Adner
- Experimental Asthma and Allergy Research Unit, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
- Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, Stockholm, SE-171 77, Sweden.
| |
Collapse
|
4
|
Liu T, Woodruff PG, Zhou X. Advances in non-type 2 severe asthma: from molecular insights to novel treatment strategies. Eur Respir J 2024; 64:2300826. [PMID: 38697650 PMCID: PMC11325267 DOI: 10.1183/13993003.00826-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 04/18/2024] [Indexed: 05/05/2024]
Abstract
Asthma is a prevalent pulmonary disease that affects more than 300 million people worldwide and imposes a substantial economic burden. While medication can effectively control symptoms in some patients, severe asthma attacks, driven by airway inflammation induced by environmental and infectious exposures, continue to be a major cause of asthma-related mortality. Heterogeneous phenotypes of asthma include type 2 (T2) and non-T2 asthma. Non-T2 asthma is often observed in patients with severe and/or steroid-resistant asthma. This review covers the molecular mechanisms, clinical phenotypes, causes and promising treatments of non-T2 severe asthma. Specifically, we discuss the signalling pathways for non-T2 asthma including the activation of inflammasomes, interferon responses and interleukin-17 pathways, and their contributions to the subtypes, progression and severity of non-T2 asthma. Understanding the molecular mechanisms and genetic determinants underlying non-T2 asthma could form the basis for precision medicine in severe asthma treatment.
Collapse
Affiliation(s)
- Tao Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine and Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, Nanjing, China
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Prescott G Woodruff
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine and Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Liu YB, Tan XH, Yang HH, Yang JT, Zhang CY, Jin L, Yang NSY, Guan CX, Zhou Y, Liu SK, Xiong JB. Wnt5a-mediated autophagy contributes to the epithelial-mesenchymal transition of human bronchial epithelial cells during asthma. Mol Med 2024; 30:93. [PMID: 38898476 PMCID: PMC11188189 DOI: 10.1186/s10020-024-00862-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND The epithelial-mesenchymal transition (EMT) of human bronchial epithelial cells (HBECs) is essential for airway remodeling during asthma. Wnt5a has been implicated in various lung diseases, while its role in the EMT of HBECs during asthma is yet to be determined. This study sought to define whether Wnt5a initiated EMT, leading to airway remodeling through the induction of autophagy in HBECs. METHODS Microarray analysis was used to investigate the expression change of WNT5A in asthma patients. In parallel, EMT models were induced using 16HBE cells by exposing them to house dust mites (HDM) or interleukin-4 (IL-4), and then the expression of Wnt5a was observed. Using in vitro gain- and loss-of-function approaches via Wnt5a mimic peptide FOXY5 and Wnt5a inhibitor BOX5, the alterations in the expression of the epithelial marker E-cadherin and the mesenchymal marker protein were observed. Mechanistically, the Ca2+/CaMKII signaling pathway and autophagy were evaluated. An autophagy inhibitor 3-MA was used to examine Wnt5a in the regulation of autophagy during EMT. Furthermore, we used a CaMKII inhibitor KN-93 to determine whether Wnt5a induced autophagy overactivation and EMT via the Ca2+/CaMKII signaling pathway. RESULTS Asthma patients exhibited a significant increase in the gene expression of WNT5A compared to the healthy control. Upon HDM and IL-4 treatments, we observed that Wnt5a gene and protein expression levels were significantly increased in 16HBE cells. Interestingly, Wnt5a mimic peptide FOXY5 significantly inhibited E-cadherin and upregulated α-SMA, Collagen I, and autophagy marker proteins (Beclin1 and LC3-II). Rhodamine-phalloidin staining showed that FOXY5 resulted in a rearrangement of the cytoskeleton and an increase in the quantity of stress fibers in 16HBE cells. Importantly, blocking Wnt5a with BOX5 significantly inhibited autophagy and EMT induced by IL-4 in 16HBE cells. Mechanistically, autophagy inhibitor 3-MA and CaMKII inhibitor KN-93 reduced the EMT of 16HBE cells caused by FOXY5, as well as the increase in stress fibers, cell adhesion, and autophagy. CONCLUSION This study illustrates a new link in the Wnt5a-Ca2+/CaMKII-autophagy axis to triggering airway remodeling. Our findings may provide novel strategies for the treatment of EMT-related diseases.
Collapse
Affiliation(s)
- Yu-Biao Liu
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, 410078, China
- Key Laboratory of General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, Hunan, 410078, China
| | - Xiao-Hua Tan
- Experimental Center of Medical Morphology, School of Basic Medicine Science, Central South University, Changsha, Hunan, 410078, China
| | - Hui-Hui Yang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, 410078, China
- Key Laboratory of General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, Hunan, 410078, China
| | - Jin-Tong Yang
- Key Laboratory of General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, Hunan, 410078, China
| | - Chen-Yu Zhang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, 410078, China
- Key Laboratory of General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, Hunan, 410078, China
| | - Ling Jin
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, 410078, China
- Key Laboratory of General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, Hunan, 410078, China
| | - Nan-Shi-Yu Yang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, 410078, China
- Key Laboratory of General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, Hunan, 410078, China
| | - Cha-Xiang Guan
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, 410078, China
- Key Laboratory of General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, Hunan, 410078, China
| | - Yong Zhou
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, 410078, China
- Key Laboratory of General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, Hunan, 410078, China
| | - Shao-Kun Liu
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, 410011, China.
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, Hunan, 410011, China.
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan, 410011, China.
| | - Jian-Bing Xiong
- Department of Emergency, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China.
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China.
| |
Collapse
|
6
|
Georas SN, Khurana S. Update on asthma biology. J Allergy Clin Immunol 2024; 153:1215-1228. [PMID: 38341182 DOI: 10.1016/j.jaci.2024.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024]
Abstract
This is an exciting time to be conducting asthma research. The recent development of targeted asthma biologics has validated the power of basic research to discover new molecules amenable to therapeutic intervention. Advances in high-throughput sequencing are providing a wealth of "omics" data about genetic and epigenetic underpinnings of asthma, as well as about new cellular interacting networks and potential endotypes in asthma. Airway epithelial cells have emerged not only as key sensors of the outside environment but also as central drivers of dysregulated mucosal immune responses in asthma. Emerging data suggest that the airway epithelium in asthma remembers prior encounters with environmental exposures, resulting in potentially long-lasting changes in structure and metabolism that render asthmatic individuals susceptible to subsequent exposures. Here we summarize recent insights into asthma biology, focusing on studies using human cells or tissue that were published in the past 2 years. The studies are organized thematically into 6 content areas to draw connections and spur future research (on genetics and epigenetics, prenatal and early-life origins, microbiome, immune and inflammatory pathways, asthma endotypes and biomarkers, and lung structural alterations). We highlight recent studies of airway epithelial dysfunction and response to viral infections and conclude with a framework for considering how bidirectional interactions between alterations in airway structure and mucosal immunity can lead to sustained lung dysfunction in asthma.
Collapse
Affiliation(s)
- Steve N Georas
- Division of Pulmonary and Critical Care Medicine, University of Rochester Medical Center, Rochester, NY.
| | - Sandhya Khurana
- Division of Pulmonary and Critical Care Medicine, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
7
|
Lutsch CT, Feng L, Gómez Hohn A, Brandt L, Tamm S, Janciauskiene S, Stanke F, Jonigk D, Dittrich AM, Braubach P. A Fast Scoring of Human Primary Respiratory Epithelia Grown at Air-Liquid Interface (ALI) to Assess Epithelial Morphology in Research and Personalized Medicine Settings. J Pers Med 2024; 14:109. [PMID: 38248810 PMCID: PMC10817428 DOI: 10.3390/jpm14010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/29/2023] [Accepted: 01/15/2024] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND In recent years, increasingly complex ALI protocols involving specialized, albeit laboratory-specific media have been established, while at the same time, many studies compile the data of only a few ALI donors in spite of site-, protocol- and donor-specific differentiation. METHODS We describe a simple morphology scoring protocol using histology material derived from epithelia grown on ALI inserts in parallel to other, more complex readouts. RESULTS Among more than 100 ALI inserts derived from different donors, significant differences in layer score (p = 0.001) and goblet cell score (p = 0.002) were observed when ALI epithelia derived from explanted lung material were compared to trachea-derived ALI cultures. Cortisol withdrawal for the final 2 days of ALI cultures influenced goblet cell density (p = 0.001). CONCLUSIONS While the histology score provides less resolution than FACS- or OMICs- based single cell analyses, the use of a subportion of the ALI epithelia grown on inserts makes it feasible to combine morphology assessment and other readouts of the same insert. This allows us to control for basic ALI morphology in research and personalized medicine settings in order to assess and, if desired, control for the impact of ALI culture protocols, site- and donor-specific influences on outcome of studies of ALI-derived epithelia.
Collapse
Affiliation(s)
- Christopher T. Lutsch
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany; (S.J.); (D.J.)
| | - Longhua Feng
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany; (S.J.); (D.J.)
| | - Ana Gómez Hohn
- Institute for Pathology, Hannover Medical School, 30625 Hannover, Germany
| | - Lennart Brandt
- Institute for Pathology, Hannover Medical School, 30625 Hannover, Germany
| | - Stephanie Tamm
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany; (S.J.); (D.J.)
| | - Sabina Janciauskiene
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany; (S.J.); (D.J.)
- Department of Respiratory Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Frauke Stanke
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany; (S.J.); (D.J.)
| | - Danny Jonigk
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany; (S.J.); (D.J.)
- Institute of Pathology, School of Medicine, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Anna-Maria Dittrich
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany; (S.J.); (D.J.)
| | - Peter Braubach
- Institute for Pathology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
8
|
Murphy RC, Lai Y, Liu M, Al-Shaikhly T, Altman MC, Altemeier WA, Frevert CW, Debley JS, Piliponsky AM, Ziegler SF, Gharib SA, Hallstrand TS. Distinct Epithelial-Innate Immune Cell Transcriptional Circuits Underlie Airway Hyperresponsiveness in Asthma. Am J Respir Crit Care Med 2023; 207:1565-1575. [PMID: 37212596 PMCID: PMC10273121 DOI: 10.1164/rccm.202209-1707oc] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 03/02/2023] [Indexed: 05/23/2023] Open
Abstract
Rationale: Indirect airway hyperresponsiveness (AHR) is a highly specific feature of asthma, but the underlying mechanisms responsible for driving indirect AHR remain incompletely understood. Objectives: To identify differences in gene expression in epithelial brushings obtained from individuals with asthma who were characterized for indirect AHR in the form of exercise-induced bronchoconstriction (EIB). Methods: RNA-sequencing analysis was performed on epithelial brushings obtained from individuals with asthma with EIB (n = 11) and without EIB (n = 9). Differentially expressed genes (DEGs) between the groups were correlated with measures of airway physiology, sputum inflammatory markers, and airway wall immunopathology. On the basis of these relationships, we examined the effects of primary airway epithelial cells (AECs) and specific epithelial cell-derived cytokines on both mast cells (MCs) and eosinophils (EOS). Measurements and Main Results: We identified 120 DEGs in individuals with and without EIB. Network analyses suggested critical roles for IL-33-, IL-18-, and IFN-γ-related signaling among these DEGs. IL1RL1 expression was positively correlated with the density of MCs in the epithelial compartment, and IL1RL1, IL18R1, and IFNG were positively correlated with the density of intraepithelial EOS. Subsequent ex vivo modeling demonstrated that AECs promote sustained type 2 (T2) inflammation in MCs and enhance IL-33-induced T2 gene expression. Furthermore, EOS increase the expression of IFNG and IL13 in response to both IL-18 and IL-33 as well as exposure to AECs. Conclusions: Circuits involving epithelial interactions with MCs and EOS are closely associated with indirect AHR. Ex vivo modeling indicates that epithelial-dependent regulation of these innate cells may be critical in indirect AHR and modulating T2 and non-T2 inflammation in asthma.
Collapse
Affiliation(s)
- Ryan C. Murphy
- Division of Pulmonary, Critical Care and Sleep
- Center for Lung Biology
| | - Ying Lai
- Division of Pulmonary, Critical Care and Sleep
- Center for Lung Biology
| | - Matthew Liu
- Division of Pulmonary, Critical Care and Sleep
- Center for Lung Biology
| | - Taha Al-Shaikhly
- Division of Allergy and Infectious Diseases, Department of Medicine
- Center for Lung Biology
| | - Matthew C. Altman
- Division of Allergy and Infectious Diseases, Department of Medicine
- Immunology Program, Benaroya Research Institute, Seattle, Washington
| | | | | | - Jason S. Debley
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Seattle Children’s Hospital, University of Washington, Seattle, Washington
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington
| | - Adrian M. Piliponsky
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington
| | - Steven F. Ziegler
- Immunology Program, Benaroya Research Institute, Seattle, Washington
| | - Sina A. Gharib
- Division of Pulmonary, Critical Care and Sleep
- Center for Lung Biology
| | | |
Collapse
|