1
|
Paller AS, Ramien M, Cork MJ, Simpson EL, Wine Lee L, Eichenfield LF, Khokhar FA, Coleman A, Gherardi G, Chen Z, Zhang A, Cyr SL. Low Infection Rates With Long-Term Dupilumab Treatment in Patients Aged 6 Months to 5 Years: An Open-Label Extension Study. Pediatr Dermatol 2025; 42:251-258. [PMID: 39529307 PMCID: PMC11950805 DOI: 10.1111/pde.15781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/23/2024] [Accepted: 09/29/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE To evaluate long-term infection rates in children aged 6 months to 5 years with moderate-to-severe atopic dermatitis (AD) treated with dupilumab. METHODS This was a post hoc analysis of an ongoing open-label extension (OLE) study of dupilumab. Pediatric patients aged 6 months to 5 years with moderate-to-severe AD who had previously taken part in the LIBERTY AD PRESCHOOL phase 2 and 3 clinical trials received weight-based subcutaneous dupilumab every 2 or 4 weeks. Exposure-adjusted infection rates after a median dupilumab exposure of 52 weeks are compared with data from the earlier randomized, placebo-controlled, 16-week LIBERTY AD PRESCHOOL phase 3 trial. RESULTS Infection rates were overall lower in the OLE study compared with the dupilumab and placebo groups in the earlier 16-week trial, including total infections (101.0 patients/100 patient-years [PY]), nonherpetic skin infections (22.7 patients/100PY), herpetic infections (7.3 patients/100PY), and nonskin infections (92.9 patients/100PY). The frequency of severe and serious infections was low (3.1 patients/100PY), compared with 17.1 placebo-treated patients/100PY and 0 dupilumab-treated patients in the earlier 16-week trial, and no infections leading to treatment discontinuation were observed. Systemic anti-infective medication use (58.9 patients/100PY) was lower in the OLE study compared with both the dupilumab and placebo groups in the 16-week trial. CONCLUSION Overall, reduced infection rates are observed in infants and young children with moderate-to-severe AD treated with dupilumab long-term, supporting the known safety profile of dupilumab.
Collapse
Affiliation(s)
- Amy S. Paller
- Department of DermatologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Ann and Robert H. Lurie Children's HospitalChicagoIllinoisUSA
| | - Michele Ramien
- Division of Dermatology, Department of MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Section of Community Pediatrics, Department of PediatricsAlberta Children's HospitalCalgaryAlbertaCanada
| | - Michael J. Cork
- Sheffield Dermatology ResearchUniversity of SheffieldSheffieldUK
- Sheffield Children's HospitalSheffieldUK
| | - Eric L. Simpson
- Department of DermatologyOregon Health & Science UniversityPortlandOregonUSA
| | - Lara Wine Lee
- Dermatology and Dermatologic SurgeryMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Lawrence F. Eichenfield
- Department of Dermatology and PediatricsUniversity of California San DiegoLa JollaCaliforniaUSA
- Division of Pediatric and Adolescent DermatologyRady Children's HospitalSan DiegoCaliforniaUSA
| | | | | | | | - Zhen Chen
- Regeneron Pharmaceuticals Inc.TarrytownNew YorkUSA
| | | | - Sonya L. Cyr
- Regeneron Pharmaceuticals Inc.TarrytownNew YorkUSA
| |
Collapse
|
2
|
Jo H, Kim M, Jeoung J, Kim W, Park YH, Jung HS, Lee W, Jeoung D. Rocaglamide Suppresses Allergic Reactions by Regulating IL-4 Receptor Signaling. Molecules 2025; 30:840. [PMID: 40005151 PMCID: PMC11858170 DOI: 10.3390/molecules30040840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Rocaglamide (Roc-A), a natural phytochemical isolated from Aglaia species, is known to exert anticancer effects. Allergic inflammation can enhance the tumorigenic potential of cancer cells. We hypothesized that Roc-A could regulate allergic inflammation. Roc-A prevented an antigen from increasing the hallmarks of allergic reactions in vitro. Roc-A suppressed passive cutaneous anaphylaxis (PCA) and passive systemic anaphylaxis (PSA). RNA sequencing analysis showed that Roc-A prevented the antigen from increasing the expression of IL-4 in RBL2H3 cells. Roc-A also prevented the antigen from increasing the expression of interleukin-4 receptor (IL-4R). Roc-A was found to form a hydrogen-bonding network with residues N92 and L64 of IL-4R in a molecular docking simulation. Roc-A prevented the antigen from inducing the binding of IL-4R to JAK1. Chromatin immunoprecipitation (ChIP) assays showed that C-Jun could bind to promoter sequences of IL-4 and IL-4R. Mouse recombinant IL-4 protein increased β-hexosaminidase activity, IL-4R expression, and the hallmarks of allergic inflammation in the antigen-independent manner. Mouse recombinant IL-4 protein increased the expressions of CD163 and arghinase-1 and markers of M2 macrophages, but decreased the expression of iNOS, a marker of M1 macrophages in lung macrophages. Roc-A regulated the effects of a culture medium of antigen-stimulated RBL2H3 cells on the expressions of iNOS and arginase-1 in RAW264.7 macrophages. The blocking of IL-4 or downregulation of IL-4R exerted negative effects on the hallmarks of allergic reactions in vitro. The blocking of IL-4 or downregulation of IL-4R also exerted negative effects on PCA, and the downregulation of IL-4R exerted negative effects on PSA. An miR-34a mimic exerted negative effects on allergic reactions in vitro. The downregulation of IL-4R prevented the antigen from decreasing the expression of miR-34a in RBL2H3 cells. We identified chemicals that could bind to IL-4R via molecular docking analysis. The IL-4R docking chemical 1536801 prevented the antigen from increasing β-hexosaminidase activity and the hallmarks of allergic reactions. The IL-4R docking chemical 1536801 also exerted a negative effect on PCA. TargetScan analysis predicted miR-34a as a negative regulator of IL-4R. We found that the anti-allergic effect of Roc-A and its mechanisms were associated with miR-34a. Taken together, our results show that understanding IL-4R-mediated allergic reactions can provide clues for the development of anti-allergy therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Dooil Jeoung
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, Republic of Korea; (H.J.); (M.K.); (J.J.); (W.K.); (H.S.J.); (W.L.)
| |
Collapse
|
3
|
Huang C, Zhuo F, Guo Y, Wang S, Zhang K, Li X, Dai W, Dou X, Yu B. Skin microbiota: pathogenic roles and implications in atopic dermatitis. Front Cell Infect Microbiol 2025; 14:1518811. [PMID: 39877655 PMCID: PMC11772334 DOI: 10.3389/fcimb.2024.1518811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/27/2024] [Indexed: 01/31/2025] Open
Abstract
Atopic dermatitis (AD) is a chronic and inflammatory skin disorder characterized by impaired barrier function and imbalanced immunity. Recent advances have revealed that dysbiosis of skin microbiota plays important roles in the pathogenesis and development of AD. Meanwhile, endogenous and external factors contribute to the dysbiosis of skin microbiota in AD. Additionally, various treatments, including topical treatments, phototherapy, and systemic biologics, have demonstrated positive impacts on the clinical outcomes, alongside with the modulations of cutaneous microbiota in AD patients. Importantly, therapeutics or products regulating skin microbiota homeostasis have demonstrated potential for AD treatment in early clinical studies. In this review, we underline changes of the skin microbiota correlated with AD. Meanwhile, we provide an overview of the skin microbiota regarding its roles in the pathogenesis and development of AD. Finally, we summarize therapeutic strategies restoring the skin microbial homeostasis in AD management.
Collapse
Affiliation(s)
- Cong Huang
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen, China
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen Peking University - the Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Fan Zhuo
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen, China
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen Peking University - the Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Yang Guo
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen, China
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen Peking University - the Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Department of Epidemiology and Statistics, School of Public Health, Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Siyu Wang
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen, China
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen Peking University - the Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, China
- Department of Dermatology, Peking University Shenzhen Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Kaoyuan Zhang
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen, China
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen Peking University - the Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Xiahong Li
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen, China
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen Peking University - the Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Wenkui Dai
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xia Dou
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen, China
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen Peking University - the Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Bo Yu
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen, China
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen Peking University - the Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| |
Collapse
|
4
|
Yang Y, Sun J, You H, Sun Y, Song Y, Shen Z, Liu T, Guan D, Zhou Y, Cheng S, Wang C, Yu G, Zhu C, Tang Z. Aloe-emodin relieves allergic contact dermatitis pruritus by inhibiting mast cell degranulation. Immunol Lett 2024; 270:106902. [PMID: 39181335 DOI: 10.1016/j.imlet.2024.106902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/23/2024] [Accepted: 07/25/2024] [Indexed: 08/27/2024]
Abstract
Urushiol-induced allergic contact dermatitis (ACD) is a chronic inflammatory skin disease in which skin barrier dysfunction leads to pruritus and eczematous lesions. ACD is triggered by immune imbalance. Aloe emodin is an anthraquinone derivative extracted from rhubarb, aloe and other traditional Chinese medicines. It has a wide range of pharmacological effects, including anti-inflammatory, anti-tumor, and anti-allergic effects. The purpose of our study was to demonstrate the effectiveness of aloe-emodin on urushiol-induced acute pruritus and allergic contact dermatitis. The results showed that urushiol could stimulate keratinocytes to release chemokines CXCL1, CXCL2, CCL2, TSLP, and TNF-α, which recruit or activate mast cells. Aloe-emodin treatment inhibited inflammatory-response-induced mast cell degranulation in skin lesions and suppressed the expression of inflammatory cytokines, such as interleukin-4, and interleukin-6. Therefore, the results indicate that aloe-emodin can improve urushiol-induced acute pruritus and allergic contact dermatitis in mice by inhibiting mast cell degranulation.
Collapse
Affiliation(s)
- Yan Yang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, JS, China
| | - Jianmei Sun
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, JS, China
| | - Huan You
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, JS, China
| | - Yuling Sun
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, JS, China; Department of Pharmacy, General Hospital of Eastern Theater Command, Nanjing, 210002, China
| | - Yizhi Song
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, JS, China
| | - Zhouyang Shen
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, JS, China
| | - Tongtong Liu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, JS, China
| | - Donglang Guan
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, JS, China
| | - Yuan Zhou
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, JS, China
| | - Shuo Cheng
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, JS, China
| | - Changming Wang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, JS, China
| | - Guang Yu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, JS, China
| | - Chan Zhu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, JS, China.
| | - Zongxiang Tang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, JS, China.
| |
Collapse
|
5
|
Vercelli D. IL-4 and dendritic cells in atopic dermatitis: Old dogs learn new tricks. J Allergy Clin Immunol 2024; 154:1419-1421. [PMID: 39389124 DOI: 10.1016/j.jaci.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Affiliation(s)
- Donata Vercelli
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Ariz; Asthma and Airway Disease Research Center, University of Arizona, Tucson, Ariz; BIO5 Institute, University of Arizona, Tucson, Ariz; Arizona Center for the Biology of Complex Diseases, University of Arizona, Tucson, Ariz.
| |
Collapse
|
6
|
Yadavalli CS, Upparahalli Venkateshaiah S, Verma AK, Kathera C, Duncan PS, Vaezi M, Paul RJ, Mishra A. Vasoactive Intestinal Peptide Receptor, CRTH2, Antagonist Treatment Improves Eosinophil and Mast Cell-Mediated Esophageal Remodeling and Motility Dysfunction in Eosinophilic Esophagitis. Cells 2024; 13:295. [PMID: 38391908 PMCID: PMC10886969 DOI: 10.3390/cells13040295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND AND AIMS Ultrasonography has shown that eosinophils accumulate in each segment of the esophageal mucosa in human EoE, ultimately promoting esophageal motility dysfunction; however, no mechanistic evidence explains how or why this accumulation occurs. METHODS Quantitative PCR, ELISA, flow cytometry, immunostaining, and immunofluorescence analyses were performed using antibodies specific to the related antigens and receptors. RESULTS In deep esophageal biopsies of EoE patients, eosinophils and mast cells accumulate adjacent to nerve cell-derived VIP in each esophageal segment. qRT-PCR analysis revealed five- to sixfold increases in expression levels of VIP, CRTH2, and VAPC2 receptors and proteins in human blood- and tissue-accumulated eosinophils and mast cells. We also observed a significant correlation between mRNA CRTH2 levels and eosinophil- and nerve cell-derived VIPs in human EoE (p < 0.05). We provide evidence that eosinophil and mast cell deficiency following CRTH2 antagonist treatment improves motility dysfunction in a chronic DOX-inducible CC10-IL-13 murine model of experimental EoE. CONCLUSIONS CRTH2 antagonist treatment is a novel therapeutic strategy for inflammatory cell-induced esophageal motility dysfunction in IL-13-induced chronic experimental EoE.
Collapse
Affiliation(s)
- Chandra Sekhar Yadavalli
- Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorder Center, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (C.S.Y.); (S.U.V.); (C.K.)
| | - Sathisha Upparahalli Venkateshaiah
- Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorder Center, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (C.S.Y.); (S.U.V.); (C.K.)
| | - Alok K. Verma
- Division of Gastroenterology, Cincinnati Childrens Medical Center, Cincinnati, OH 45229, USA;
| | - Chandrasekhar Kathera
- Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorder Center, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (C.S.Y.); (S.U.V.); (C.K.)
| | - Pearce S. Duncan
- Division of Gastroenterology, School of Medicine, Tulane University, New Orleans, LA 70118, USA;
| | - Michael Vaezi
- Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Richard J. Paul
- Division of Physiology, Cincinnati University, Cincinnati, OH 45220, USA;
| | - Anil Mishra
- Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorder Center, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (C.S.Y.); (S.U.V.); (C.K.)
| |
Collapse
|
7
|
Simpson EL, Schlievert PM, Yoshida T, Lussier S, Boguniewicz M, Hata T, Fuxench Z, De Benedetto A, Ong PY, Ko J, Calatroni A, Rudman Spergel AK, Plaut M, Quataert SA, Kilgore SH, Peterson L, Gill AL, David G, Mosmann T, Gill SR, Leung DYM, Beck LA. Rapid reduction in Staphylococcus aureus in atopic dermatitis subjects following dupilumab treatment. J Allergy Clin Immunol 2023; 152:1179-1195. [PMID: 37315812 PMCID: PMC10716365 DOI: 10.1016/j.jaci.2023.05.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND Atopic dermatitis (AD) is an inflammatory disorder characterized by dominant type 2 inflammation leading to chronic pruritic skin lesions, allergic comorbidities, and Staphylococcus aureus skin colonization and infections. S aureus is thought to play a role in AD severity. OBJECTIVES This study characterized the changes in the host-microbial interface in subjects with AD following type 2 blockade with dupilumab. METHODS Participants (n = 71) with moderate-severe AD were enrolled in a randomized (dupilumab vs placebo; 2:1), double-blind study at Atopic Dermatitis Research Network centers. Bioassays were performed at multiple time points: S aureus and virulence factor quantification, 16s ribosomal RNA microbiome, serum biomarkers, skin transcriptomic analyses, and peripheral blood T-cell phenotyping. RESULTS At baseline, 100% of participants were S aureus colonized on the skin surface. Dupilumab treatment resulted in significant reductions in S aureus after only 3 days (compared to placebo), which was 11 days before clinical improvement. Participants with the greatest S aureus reductions had the best clinical outcomes, and these reductions correlated with reductions in serum CCL17 and disease severity. Reductions (10-fold) in S aureus cytotoxins (day 7), perturbations in TH17-cell subsets (day 14), and increased expression of genes relevant for IL-17, neutrophil, and complement pathways (day 7) were also observed. CONCLUSIONS Blockade of IL-4 and IL-13 signaling, very rapidly (day 3) reduces S aureus abundance in subjects with AD, and this reduction correlates with reductions in the type 2 biomarker, CCL17, and measures of AD severity (excluding itch). Immunoprofiling and/or transcriptomics suggest a role for TH17 cells, neutrophils, and complement activation as potential mechanisms to explain these findings.
Collapse
Affiliation(s)
- Eric L Simpson
- Department of Dermatology, Oregon Health and Science University, Portland, Ore
| | | | - Takeshi Yoshida
- Department of Dermatology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | | | - Mark Boguniewicz
- Division of Allergy-Immunology, Department of Pediatrics, National Jewish Health and University of Colorado School of Medicine, Denver, Colo
| | - Tissa Hata
- Department of Dermatology, University of California, San Diego, Calif
| | - Zelma Fuxench
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pa
| | - Anna De Benedetto
- Department of Dermatology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Peck Y Ong
- Department of Pediatrics, University Southern California, Los Angeles, Calif
| | - Justin Ko
- Department of Dermatology, Stanford University, Stanford, Calif
| | | | - Amanda K Rudman Spergel
- Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Marshall Plaut
- Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Sally A Quataert
- Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY
| | - Samuel H Kilgore
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa
| | - Liam Peterson
- Department of Dermatology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Ann L Gill
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY
| | | | - Tim Mosmann
- Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY
| | - Steven R Gill
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY
| | - Donald Y M Leung
- Division of Allergy-Immunology, Department of Pediatrics, National Jewish Health and University of Colorado School of Medicine, Denver, Colo.
| | - Lisa A Beck
- Department of Dermatology, University of Rochester School of Medicine and Dentistry, Rochester, NY.
| |
Collapse
|