1
|
Ciraci V, Santoni L, Tongiorgi E. Selective Noradrenergic Activation of BDNF Translation by Mirtazapine. Mol Neurobiol 2025; 62:5452-5465. [PMID: 39557799 DOI: 10.1007/s12035-024-04619-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 11/07/2024] [Indexed: 11/20/2024]
Abstract
Antidepressants are known for their neurotrophic effects, particularly through the regulation of brain-derived neurotrophic factor (BDNF) expression. Mirtazapine, a tetracyclic noradrenergic and specific serotonergic antidepressant (NaSSA) has been observed to upregulate BDNF, though its underlying mechanism remains unclear. In this study, we used the human neuroblastoma SH-SY5Y cell line to investigate whether mirtazapine could enhance BDNF translation by modulating serotonin and/or norepinephrine and their receptors. A 1-h stimulation with 1 or 10 µM mirtazapine led to downregulation of serotonergic receptors 5HT1A, while increasing ADRA2A and ADRB2 receptors. Mirtazapine at 10 µM upregulated endogenous BDNF after 3h, but not 1h stimulation. To investigate the translation of major BDNF transcripts, we used chimeric BDNF-luciferase constructs with the untranslated 5'UTR exons I, IIc, IV, or VI, and the long version of the 3'UTR. Luciferase assays and Western blotting revealed that mirtazapine selectively enhanced exon-IIc-BDNF-long3'UTR-Luciferase translation. This increase was associated with norepinephrine release and was inhibited by blocking ADRA2A or ADRB2 adrenoceptors for the exon-IIc-BDNF-long3'UTR-Luciferase, and ADR2B for endogenous BDNF. These findings provide a new perspective on the critical role of the noradrenergic system in mediating mirtazapine's effects on BDNF translation. We propose a novel mechanism of action in which mirtazapine promotes norepinephrine release and noradrenergic responses by upregulating ADRA2A and ADRB2 while downregulating serotonergic receptors.
Collapse
Affiliation(s)
- Viviana Ciraci
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri, 5 (Q Building), 34127, Trieste, Italy.
| | - Letizia Santoni
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri, 5 (Q Building), 34127, Trieste, Italy
| | - Enrico Tongiorgi
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri, 5 (Q Building), 34127, Trieste, Italy
| |
Collapse
|
2
|
Liu L, Hao M, Yu H, Tian Y, Yang C, Fan H, Zhao X, Geng F, Mo D, Xia L, Liu H. The associations of brain-derived neurotrophic factor (BDNF) levels with psychopathology and lipid metabolism parameters in adolescents with major depressive disorder. Eur Arch Psychiatry Clin Neurosci 2025:10.1007/s00406-025-01984-3. [PMID: 39998568 DOI: 10.1007/s00406-025-01984-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 02/12/2025] [Indexed: 02/27/2025]
Abstract
Brain-derived neurotrophic factor (BDNF) is crucial for the growth, differentiation and maintenance of neuronal systems, which is closely associated with major depressive disorder (MDD). The objective of this study was to investigate the BDNF levels and their associations with psychopathology and lipid metabolism parameters in adolescents with MDD. From January to December 2021, the study included 141 adolescents with MDD and 90 healthy controls (HCs). The Center for Epidemiological Studies Depression Scale (CES-D), the Insomnia Severity Index Scale (ISI), the Epworth Sleepiness Scale (ESS) and the Positive and Negative Suicidal Ideation Scale (PANSI) were used to assess depressive symptoms, insomnia, excessive daytime sleepiness, and suicidal ideation, respectively. BDNF levels and lipid metabolism parameters were also measured. Compared to HCs, adolescents with MDD had significantly lower BDNF levels (p < 0.001). In patients, BDNF levels were positively correlated with age, BMI, total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C); and negatively correlated with the scores of CES-D and ISI (all p < 0.05). The results of the multivariate linear regression analyses indicated that BDNF levels were positively associated with age (β = 0.198, t = 2.447, p = 0.016), first-episode MDD (β = 0.176, t = 2.234, p = 0.027) and TC level (β = 0.240, t = 3.048, p = 0.003), and negatively associated with the scores of ESS (β = -0.171, t = -2.203, p = 0.029) and ISI (β = -0.231, t = -2.996, p = 0.003). Of note, the associations between BDNF and psychopathology were observed only in female and first-episode patients. BDNF levels were decreased in adolescents with MDD. Patients with low BDNF levels were in a more severe psychiatric state and had changes in lipid metabolism parameters. This study provided preliminary evidence that BDNF may play a role in the onset and progression of MDD.
Collapse
Affiliation(s)
- Lewei Liu
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, 64 Chaohu North Road, Hefei, 238000, Anhui Province, China
- Anhui Psychiatric Center, Anhui Medical University, Hefei, Anhui Province, China
| | - Mingru Hao
- Department of Psychiatry, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui Province, China
| | - Haiyun Yu
- Department of Psychiatry, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui Province, China
| | - Yinghan Tian
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, 64 Chaohu North Road, Hefei, 238000, Anhui Province, China
- Anhui Psychiatric Center, Anhui Medical University, Hefei, Anhui Province, China
| | - Cheng Yang
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, 64 Chaohu North Road, Hefei, 238000, Anhui Province, China
- Anhui Psychiatric Center, Anhui Medical University, Hefei, Anhui Province, China
| | - Haojie Fan
- Department of Psychiatry, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui Province, China
| | - Xin Zhao
- Department of Psychiatry, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui Province, China
| | - Feng Geng
- Department of Psychology and Sleep Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Daming Mo
- Department of Psychiatry, Hefei Fourth People's Hospital, Hefei, Anhui Province, China
| | - Lei Xia
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, 64 Chaohu North Road, Hefei, 238000, Anhui Province, China.
- Department of Psychiatry, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui Province, China.
- Anhui Psychiatric Center, Anhui Medical University, Hefei, Anhui Province, China.
| | - Huanzhong Liu
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, 64 Chaohu North Road, Hefei, 238000, Anhui Province, China.
- Department of Psychiatry, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui Province, China.
- Anhui Psychiatric Center, Anhui Medical University, Hefei, Anhui Province, China.
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, Anhui Province, China.
| |
Collapse
|
3
|
Carrillo JÁ, Arcusa R, Xandri-Martínez R, Cerdá B, Zafrilla P, Marhuenda J. Impact of Polyphenol-Rich Nutraceuticals on Cognitive Function and Neuroprotective Biomarkers: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Nutrients 2025; 17:601. [PMID: 40004930 PMCID: PMC11858811 DOI: 10.3390/nu17040601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Recent studies have highlighted the neuroprotective effects of polyphenols, particularly their role in enhancing brain-derived neurotrophic factor (BDNF) and cAMP response element-binding protein (CREB) activity. This study aimed to evaluate the relationship between BDNF and CREB levels and cognitive performance in individuals undergoing a polyphenol-rich dietary intervention. METHODS A randomized, crossover, double-blind, placebo-controlled clinical trial was conducted with 92 participants. The intervention involved the daily intake of an encapsulated concentrate of fruit, vegetable, and berry juice powders (Juice Plus+ Premium®) over two 16-week periods, separated by a 4-week washout phase. Cognitive function was assessed using the Stroop Test, Trail Making Test, and Reynolds Intellectual Screening Test (RIST). The plasma levels of CREB and BDNF were measured using ELISA. RESULTS The polyphenol-rich product significantly improved cognitive performance, as evidenced by higher scores in the Stroop Test and RIST, compared to the placebo. Additionally, the plasma levels of CREB and BDNF were notably elevated in the product condition, indicating enhanced neuroprotective activity. CONCLUSIONS The findings suggest that polyphenol-rich nutraceuticals can modulate neurobiological mechanisms underlying cognitive improvements, primarily through the reduction of oxidative stress and the regulation of signaling pathways associated with synaptic plasticity. These results support the potential of dietary polyphenols in promoting cognitive health and preventing neurodegenerative diseases.
Collapse
Affiliation(s)
- Juan Ángel Carrillo
- Faculty of Pharmacy and Nutrition, Universidad Católica San Antonio, 30107 Murcia, Spain; (J.Á.C.); (R.A.); (B.C.)
| | - Raúl Arcusa
- Faculty of Pharmacy and Nutrition, Universidad Católica San Antonio, 30107 Murcia, Spain; (J.Á.C.); (R.A.); (B.C.)
| | | | - Begoña Cerdá
- Faculty of Pharmacy and Nutrition, Universidad Católica San Antonio, 30107 Murcia, Spain; (J.Á.C.); (R.A.); (B.C.)
| | - Pilar Zafrilla
- Faculty of Pharmacy and Nutrition, Universidad Católica San Antonio, 30107 Murcia, Spain; (J.Á.C.); (R.A.); (B.C.)
| | - Javier Marhuenda
- Faculty of Pharmacy and Nutrition, Universidad Católica San Antonio, 30107 Murcia, Spain; (J.Á.C.); (R.A.); (B.C.)
| |
Collapse
|
4
|
Liu S, Lei T, Wang L, Chen F, Hu X, Song G, Tang X, Wu G, Chen H, Sun X, Sun W. Taurine Reverses Arsenic-Induced Inhibition of Hippocampal Neurogenesis and Depression-Like Behavior in Mice. J Biochem Mol Toxicol 2024; 38:e70037. [PMID: 39470144 DOI: 10.1002/jbt.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/11/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024]
Abstract
Arsenic exposure results in damage to the neurological system. We previously demonstrated the arsenic-induced inhibition of hippocampal neurogenesis and its reversibility after exposure is terminated. The present study aimed to reveal whether arsenic-induced inhibition of hippocampal neurogenesis was ameliorated when taurine was co-administered, and we also investigated depression-like behavioral changes using the forced swim test. Mice were randomly divided into four groups. The first group received distilled water only for 4 months (control group), the second group received 4.0 mg/L As2O3 via drinking water for 4 months (arsenic group), the third group received 4.0 mg/L As2O3 and taurine (150 mg/kg body weight, by gavage, twice a week) for 4 months (arsenic + taurine group), and the fourth group received taurine only by gavage for 4 months (taurine group). The percentage of new mature neurons decreased in the arsenic group compared with the control group (64% ± 0.90% vs. 76% ± 1.9%, p < 0.01); however, this percentage was reversed to control levels in the arsenic + taurine group (76% ± 1.4%, p > 0.05). In the forced swim test, the immobility time during the last 4 min was significantly increased in the arsenic group, but restored to control levels in the arsenic + taurine group. The possible mechanisms of this taurine amelioration of hippocampal damage were further investigated, and included a reduction in oxidative stress as indicated by carbonyl content, inflammation, and aquaporin1, 4, and 8 expressions, as well as an increase in Wnt3a and brain-derived neurotrophic factor expression in western blot analyses.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Pathogen Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Tengteng Lei
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Longjuan Wang
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Feng Chen
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Xin Hu
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Guirong Song
- Department of Health Statistics, School of Public Health, Dalian Medical University, Dalian, Liaoning, China
| | - Xiao Tang
- Department of Health Statistics, School of Public Health, Dalian Medical University, Dalian, Liaoning, China
| | - Guokai Wu
- Central Laboratory, First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
| | - Haibo Chen
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Xiance Sun
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, Dalian, Liaoning, China
| | - Wenchang Sun
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
5
|
Wang Z, Wang X, Mou X, Wang C, Sun Y, Wang J. Rehmannia glutinosa DC.-Lilium lancifolium Thunb. in the treatment of depression: a comprehensive review and perspectives. Front Pharmacol 2024; 15:1471307. [PMID: 39539631 PMCID: PMC11557470 DOI: 10.3389/fphar.2024.1471307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
Background In recent years, the incidence of depression, recognized as a serious psychological disorder, has escalated rapidly. Rehmannia glutinosa DC. (Scrophulariaceae; Rehmanniae Radix, Crude drug) and Lilium lancifolium Thunb. (Liliaceae; Lilii bulbus, Crude drug) constitute a classic anti-depressant combination, exhibiting pharmacological effects that include anti-depressive, anti-anxiety, and anti-inflammatory properties. Current clinical studies have demonstrated that Baihe Dihuang Decoction, a traditional Chinese herbal compound, is effective in treating depression. However, the majority of scholars have predominantly examined Rehmannia glutinosa and Lilium in isolation, and a comprehensive elucidation of their principal active metabolites and pharmacological mechanisms remains lacking. Methods A comprehensive literature search was conducted as of 29 September 2024, utilizing databases such as PubMed, CNKI, Wanfang Data, Baidu Scholar, and Google Scholar. Additionally, classical texts on Chinese herbal medicine, the Chinese Pharmacopoeia, as well as doctoral and master's theses, were included in the collected materials. The search employed specific terms including "R. glutinosa," "Lilium," "Baihe Dihuang decoction," "application of Baihe Dihuang decoction," "pathogenesis of depression," and "pharmacological action and mechanism of depression. Results This paper reviewed the traditional applications and dosages of the R. glutinosa-Lilium as documented in Chinese medical classics, thereby establishing a foundation for the contemporary development and clinical application of the classical formula Baihe Dihuang Decoction. Additionally, recent years have seen a comprehensive review of the pharmacological effects and mechanisms of R. glutinosa-Lilium and its principal metabolites in the context of depression. Conclusion This paper has reviewed the active metabolites of R. glutinosa-Lilium and demonstrated its efficacy in the treatment of depression, as well as its role in modulating the underlying mechanisms of the disorder. The findings aim to serve as a reference for further research into the mechanisms of depression, its clinical applications, and the development of novel therapeutic agents.
Collapse
Affiliation(s)
- ZongHao Wang
- The College of Pharmacy Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xiaoyu Wang
- The College of Pharmacy Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xiangyu Mou
- The College of Chinese Medicine is Part of the Shandong University of Traditional Chinese Medicine in Jinan, Jinan, Shandong, China
| | - ChangLin Wang
- The College of Chinese Medicine is Part of the Shandong University of Traditional Chinese Medicine in Jinan, Jinan, Shandong, China
| | - Ya Sun
- Research Institute for Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - JieQiong Wang
- The College of Pharmacy Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
6
|
Gellé T, Vinais T, Lacroix A, Plansont B, Nubukpo P, Girard M. Serum BDNF and pro-BDNF levels in alcohol use disorders according to depression status: An exploratory study of their evolution two months after withdrawal. Heliyon 2024; 10:e38940. [PMID: 39430530 PMCID: PMC11490827 DOI: 10.1016/j.heliyon.2024.e38940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/22/2024] Open
Abstract
Background Alcohol use disorders (AUDs) are complex pathologies with a myriad of molecular actors involved in both disease progression and remission. Brain-derived neurotrophic factor (BDNF) is suspected to be one such actor due to its neurotrophic effects. The BDNF precursor, pro-BDNF, has different effects, as it mainly promotes neuronal apoptosis. Both forms also play a role in depression and depressive episodes (DE). The aim of this exploratory study was to compare serum BDNF and pro-BDNF levels in patients with AUDs after withdrawal and according to DE status with those of controls without AUDs or DE. Materials and methods Ninety-nine AUD patients and 40 controls were included. Questionnaires were used to assess both alcohol and psychiatric domains: the severity of hazardous alcohol consumption was assessed using Alcohol Use Disorders Identification Test (AUDIT), craving was assessed using Obsessive and Compulsive Drinking Scale (OCDS), anxiety was assessed with Hamilton Anxiety Rating Scale (HAM-A) and depression with Montgomery-Åsberg Depression Rating Scale (MADRS). Blood samples were collected during two visits: at the time of alcohol withdrawal (M0) and two months later (M2). ELISAs to measure serum BDNF and pro-BDNF levels were performed. AUD patients were categorized according to depression status at M2. Forty-five patients remained abstinent whereas 54 relapsed. BDNF serum levels rose after alcohol withdrawal, but pro-BDNF levels did not vary between M0 and M2. Results AUD subjects without DE at M2 had higher BDNF levels at both M0 and M2 than AUD subjects with DE at M2. AUD subjects showed lower MADRS and OCD scores at M2 than at M0. AUD subjects without DE had lower BDNF levels at M0 than controls but not at M2, regardless of abstinence maintenance. Conclusion BDNF serum levels were reduced in AUD patients compared to controls and were further reduced in patients with both AUDs and DE. Alcohol withdrawal treatment was sufficient to induce an increase in serum BDNF levels after 2 months, regardless of whether abstinence was maintained during this time period.
Collapse
Affiliation(s)
- Thibaut Gellé
- Inserm U1094, IRD UMR270, Univ. Limoges, CHU Limoges, EpiMaCT - Epidemiology of chronic diseases in tropical zone, Institute of Epidemiology and Tropical Neurology, OmegaHealth, Limoges, France
| | - Théodore Vinais
- Inserm U1094, IRD UMR270, Univ. Limoges, CHU Limoges, EpiMaCT - Epidemiology of chronic diseases in tropical zone, Institute of Epidemiology and Tropical Neurology, OmegaHealth, Limoges, France
- Research and Innovation Unit, Esquirol Hospital, 87025, Limoges, France
| | - Aurélie Lacroix
- Inserm U1094, IRD UMR270, Univ. Limoges, CHU Limoges, EpiMaCT - Epidemiology of chronic diseases in tropical zone, Institute of Epidemiology and Tropical Neurology, OmegaHealth, Limoges, France
- Research and Innovation Unit, Esquirol Hospital, 87025, Limoges, France
| | - Brigitte Plansont
- Research and Innovation Unit, Esquirol Hospital, 87025, Limoges, France
| | - Philippe Nubukpo
- Inserm U1094, IRD UMR270, Univ. Limoges, CHU Limoges, EpiMaCT - Epidemiology of chronic diseases in tropical zone, Institute of Epidemiology and Tropical Neurology, OmegaHealth, Limoges, France
- Research and Innovation Unit, Esquirol Hospital, 87025, Limoges, France
| | - Murielle Girard
- Research and Innovation Unit, Esquirol Hospital, 87025, Limoges, France
| |
Collapse
|
7
|
Flores-Ramos M, Vega-Rosas A, Palomera-Garfias N, Saracco-Alvarez R, Ramírez-Rodríguez GB. Are BDNF and Stress Levels Related to Antidepressant Response? Int J Mol Sci 2024; 25:10373. [PMID: 39408702 PMCID: PMC11476652 DOI: 10.3390/ijms251910373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 10/19/2024] Open
Abstract
Antidepressant response is a multifactorial process related to biological and environmental factors, where brain-derived neurotrophic factor (BDNF) may play an important role in modulating depressive and anxious symptoms. We aimed to analyze how BDNF impacts antidepressant response, considering the levels of anxiety. METHODS A total of 40 depressed adults were included. We evaluated initial serum BDNF, anxiety through the State-Trait Anxiety Inventory (STAI), and the severity of depressive symptoms by the Hamilton Depression Rating Scale (HDRS). Participants received antidepressant treatment for 8 weeks, and response to treatment was evaluated according to the final HDRS scores. RESULTS Basal BDNF was higher in responders compared to non-responder depressed patients, in addition to being inversely associated with the severity of anxiety and depression. CONCLUSIONS Baseline BDNF serum is an adequate predictive factor for response to antidepressant treatment with SSRI, with lower pre-treatment levels of BDNF associated with higher anxiety symptoms after treatment. Stress levels could influence the response to treatment, but its association was not conclusive.
Collapse
Affiliation(s)
- Mónica Flores-Ramos
- Laboratorio de Epidemiología Clínica, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México Xochimilco #101, Col. San Lorenzo Huipulco, Tlalpan, Mexico City C.P. 14370, Mexico
| | - Andrés Vega-Rosas
- Laboratorio de Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco #101, Col. San Lorenzo Huipulco, Tlalpan, Mexico City C.P. 14370, Mexico; (A.V.-R.); (G.B.R.-R.)
| | - Nadia Palomera-Garfias
- Servicio Social, Escuela Superior de Medicina, Instituto Politécnico Nacional, Salvador Díaz Mirón esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Mexico City C.P. 11340, Mexico;
| | - Ricardo Saracco-Alvarez
- Subdirección de Investigación Clínica, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco #101, Col. San Lorenzo Huipulco, Tlalpan, Mexico City, C.P. 14370, Mexico;
| | - Gerardo Bernabé Ramírez-Rodríguez
- Laboratorio de Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco #101, Col. San Lorenzo Huipulco, Tlalpan, Mexico City C.P. 14370, Mexico; (A.V.-R.); (G.B.R.-R.)
| |
Collapse
|
8
|
Zarza-Rebollo JA, López-Isac E, Rivera M, Gómez-Hernández L, Pérez-Gutiérrez AM, Molina E. The relationship between BDNF and physical activity on depression. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111033. [PMID: 38788892 DOI: 10.1016/j.pnpbp.2024.111033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND/OBJECTIVE Major depressive disorder (MDD) is one of the leading causes of disease burden and disability worldwide. Brain-derived neurotrophic factor (BDNF) seems to have an important role in the molecular mechanisms underlying MDD aetiology, given its implication in regulating neuronal plasticity. There is evidence that physical activity (PA) improves depressive symptoms, with a key role of BDNF in this effect. We aim to perform a systematic review examining the relationship between the BDNF Val66Met polymorphism and the BDNF protein, PA and MDD. METHODS Both observational and experimental design original articles or systematic reviews were selected, according to the PRISMA statement. RESULTS Six studies evaluated the Val66Met polymorphism, suggesting a greater impact of physical activity on depression depending on the Val66Met genotype. More discordant findings were observed among the 13 studies assessing BDNF levels with acute or chronic exercise interventions, mainly due to the high heterogeneity found among intervention designs, limited sample size, and potential bias. CONCLUSIONS Overall, there is cumulative evidence supporting the potential role of BDNF in the interaction between PA and MDD. However, this review highlights the need for further research with more homogeneous and standardised criteria, and pinpoints important confounding factors that must be considered in future studies to provide robust conclusions.
Collapse
Affiliation(s)
- Juan Antonio Zarza-Rebollo
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; Institute of Neurosciences, Biomedical Research Centre, University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria (ibs.GRANADA), 18071 Granada, Spain
| | - Elena López-Isac
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; Institute of Neurosciences, Biomedical Research Centre, University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria (ibs.GRANADA), 18071 Granada, Spain
| | - Margarita Rivera
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; Institute of Neurosciences, Biomedical Research Centre, University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria (ibs.GRANADA), 18071 Granada, Spain.
| | - Laura Gómez-Hernández
- Institute of Neurosciences, Biomedical Research Centre, University of Granada, 18016 Granada, Spain
| | - Ana M Pérez-Gutiérrez
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; Institute of Neurosciences, Biomedical Research Centre, University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria (ibs.GRANADA), 18071 Granada, Spain
| | - Esther Molina
- Institute of Neurosciences, Biomedical Research Centre, University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria (ibs.GRANADA), 18071 Granada, Spain; Department of Nursing, Faculty of Health Sciences, University of Granada, 18071 Granada, Spain
| |
Collapse
|
9
|
Woodruff JL, Bykalo MK, Loyo-Rosado FZ, Maissy ES, Sadek AT, Hersey M, Erichsen JM, Maxwell ND, Wilson MA, Wood SK, Hashemi P, Grillo CA, Reagan LP. Differential effects of high-fat diet on endocrine, metabolic and depressive-like behaviors in male and female rats. Appetite 2024; 199:107389. [PMID: 38697221 PMCID: PMC11139556 DOI: 10.1016/j.appet.2024.107389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/04/2024]
Abstract
The complications of obesity extend beyond the periphery to the central nervous system (CNS) and include an increased risk of developing neuropsychiatric co-morbidities like depressive illness. Preclinical studies support this concept, including studies that have examined the effects of a high-fat diet (HFD) on depressive-like behaviors. Although women are approximately two-fold more likely to develop depressive illness compared to men, most preclinical studies have focused on the effects of HFD in male rodents. Accordingly, the goal of this study was to examine depressive-like behaviors in male and female rats provided access to a HFD. In agreement with prior studies, male and female rats provided a HFD segregate into an obesity phenotype (i.e., diet-induced obesity; DIO) or a diet resistant (DR) phenotype. Upon confirmation of the DR and DIO phenotypes, behavioral assays were performed in control chow, DR, and DIO rats. In the sucrose preference test, male DIO rats exhibited significant decreases in sucrose consumption (i.e., anhedonia) compared to male DR and male control rats. In the forced swim test (FST), male DIO rats exhibited increases in immobility and decreases in climbing behaviors in the pre-test sessions. Interestingly, male DR rats exhibited these same changes in both the pre-test and test sessions of the FST, suggesting that consumption of a HFD, even in the absence of the development of an obesity phenotype, has behavioral consequences. Female rats did not exhibit differences in sucrose preference, but female DIO rats exhibited increases in immobility exclusively in the test session of the FST, behavioral changes that were not affected by the stage of the estrous cycle. Collectively, these studies demonstrate that access to a HFD elicits different behavioral outcomes in male and female rats.
Collapse
Affiliation(s)
- J L Woodruff
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, USA; Columbia VA Health Care System, Columbia, SC, USA
| | - M K Bykalo
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, USA
| | - F Z Loyo-Rosado
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, USA
| | - E S Maissy
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, USA
| | - A T Sadek
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, USA
| | - M Hersey
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, USA
| | - J M Erichsen
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, USA
| | - N D Maxwell
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, USA
| | - M A Wilson
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, USA; Columbia VA Health Care System, Columbia, SC, USA
| | - S K Wood
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, USA; Columbia VA Health Care System, Columbia, SC, USA
| | - P Hashemi
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA; Department of Bioengineering, Imperial College, London, SW7 2AZ, UK
| | - C A Grillo
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, USA; Columbia VA Health Care System, Columbia, SC, USA
| | - L P Reagan
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, USA; Columbia VA Health Care System, Columbia, SC, USA.
| |
Collapse
|
10
|
Moazzam S, Noorjahan N, Jin Y, Nagy JI, Kardami E, Cattini PA. Effect of high fat diet on maternal behavior, brain-derived neurotrophic factor and neural stem cell proliferation in mice expressing human placental lactogen during pregnancy. J Neuroendocrinol 2024; 36:e13258. [PMID: 36989439 DOI: 10.1111/jne.13258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 03/14/2023]
Abstract
Maternal obesity is a serious health concern because it increases risks of neurological disorders, including anxiety and peripartum depression. In mice, a high fat diet (HFD) in pregnancy can negatively affect placental structure and function as well as maternal behavior reflected by impaired nest building and pup-retrieval. In humans, maternal obesity in pregnancy is associated with reduced placental lactogen (PL) gene expression, which has been linked to a higher risk of depression. PL acting predominantly through the prolactin receptor maintains energy homeostasis and is a marker of placenta villous trophoblast differentiation during pregnancy. Impaired neurogenesis and low serum levels of brain-derived neurotrophic factor (BDNF) have also been implicated in depression. Augmented neurogenesis in brain during pregnancy was reported in the subventricular zone (SVZ) of mice at gestation day 7 and linked to increased prolactin receptor signaling. Here, we used transgenic CD-1 mice that express human (h) PL during pregnancy to investigate whether the negative effects of diet on maternal behavior are mitigated in these (CD-1[hGH/PL]) mice. Specifically, we examined the effect of a HFD on nest building prepartum and pup retrieval postpartum, as well as on brain BDNF levels and neurogenesis. In contrast to wild-type CD-1[WT]mice, CD-1[hGH/PL] mice displayed significantly less anxiety-like behavior, and showed no impairment in prepartum nest building or postpartum pup-retrieval when fed a HFD. Furthermore, the HFD decreased prepartum and increased postpartum BDNF levels in CD-1[WT] but not CD-1[hGH/PL] mice. Finally, neurogenesis in the SVZ as well as phosphorylated mitogen-activated protein kinase, indicative of lactogenic signaling, appeared unaffected by pregnancy and diet at gestation day 7 in CD-1[hGH/PL] mice. These observations indicate that CD-1[hGH/PL] mice are resistant to the negative effects of HFD reported for CD-1[WT] mice, including effects on maternal behaviors and BDNF levels, and potentially, neurogenesis. This difference probably reflects a direct or indirect effect of the products of the hGH/PL transgene.
Collapse
Affiliation(s)
- Showall Moazzam
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
| | - Noshin Noorjahan
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
| | - Yan Jin
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
| | - James I Nagy
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
| | - Elissavet Kardami
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Canada
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| | - Peter A Cattini
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
11
|
Dell’Oste V, Palego L, Betti L, Fantasia S, Gravina D, Bordacchini A, Pedrinelli V, Giannaccini G, Carmassi C. Plasma and Platelet Brain-Derived Neurotrophic Factor (BDNF) Levels in Bipolar Disorder Patients with Post-Traumatic Stress Disorder (PTSD) or in a Major Depressive Episode Compared to Healthy Controls. Int J Mol Sci 2024; 25:3529. [PMID: 38542503 PMCID: PMC10970837 DOI: 10.3390/ijms25063529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Post-traumatic stress disorder (PTSD) is a highly disabling mental disorder arising after traumatism exposure, often revealing critical and complex courses when comorbidity with bipolar disorder (BD) occurs. To search for PTSD or depression biomarkers that would help clinicians define BD presentations, this study aimed at preliminarily evaluating circulating brain-derived-neurotrophic factor (BDNF) levels in BD subjects with PTSD or experiencing a major depressive episode versus controls. Two bloodstream BDNF components were specifically investigated, the storage (intraplatelet) and the released (plasma) ones, both as adaptogenic/repair signals during neuroendocrine stress response dynamics. Bipolar patients with PTSD (n = 20) or in a major depressive episode (n = 20) were rigorously recruited together with unrelated healthy controls (n = 24) and subsequently examined by psychiatric questionnaires and blood samplings. Platelet-poor plasma (PPP) and intraplatelet (PLT) BDNF were measured by ELISA assays. The results showed markedly higher intraplatelet vs. plasma BDNF, confirming platelets' role in neurotrophin transport/storage. No between-group PPP-BDNF difference was reported, whereas PLT-BDNF was significantly reduced in depressed BD patients. PLT-BDNF negatively correlated with mood scores but not with PTSD items like PPP-BDNF, which instead displayed opposite correlation trends with depression and manic severity. Present findings highlight PLT-BDNF as more reliable at detecting depression than PTSD in BD, encouraging further study into BDNF variability contextually with immune-inflammatory parameters in wider cohorts of differentially symptomatic bipolar patients.
Collapse
Affiliation(s)
- Valerio Dell’Oste
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (L.P.); (S.F.); (D.G.); (A.B.); (V.P.); (C.C.)
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
- UFCSMA Zona Valdinievole, Azienda USL Toscana Centro, 51016 Montecatini Terme, Italy
| | - Lionella Palego
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (L.P.); (S.F.); (D.G.); (A.B.); (V.P.); (C.C.)
- Department of Pharmacy, Section of Biochemistry, University of Pisa, 56126 Pisa, Italy; (L.B.); (G.G.)
| | - Laura Betti
- Department of Pharmacy, Section of Biochemistry, University of Pisa, 56126 Pisa, Italy; (L.B.); (G.G.)
| | - Sara Fantasia
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (L.P.); (S.F.); (D.G.); (A.B.); (V.P.); (C.C.)
| | - Davide Gravina
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (L.P.); (S.F.); (D.G.); (A.B.); (V.P.); (C.C.)
| | - Andrea Bordacchini
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (L.P.); (S.F.); (D.G.); (A.B.); (V.P.); (C.C.)
| | - Virginia Pedrinelli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (L.P.); (S.F.); (D.G.); (A.B.); (V.P.); (C.C.)
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
- UFSMA Zona Apuana, Azienda USL Toscana Nord Ovest, 54100 Massa, Italy
| | - Gino Giannaccini
- Department of Pharmacy, Section of Biochemistry, University of Pisa, 56126 Pisa, Italy; (L.B.); (G.G.)
| | - Claudia Carmassi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (L.P.); (S.F.); (D.G.); (A.B.); (V.P.); (C.C.)
| |
Collapse
|
12
|
Caffino L, Mottarlini F, Piva A, Rizzi B, Fumagalli F, Chiamulera C. Temporal dynamics of BDNF signaling recruitment in the rat prefrontal cortex and hippocampus following a single infusion of a translational dose of ketamine. Neuropharmacology 2024; 242:109767. [PMID: 37858883 DOI: 10.1016/j.neuropharm.2023.109767] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/25/2023] [Accepted: 10/15/2023] [Indexed: 10/21/2023]
Abstract
Despite several decades of investigations, the mechanisms underlying the rapid action of ketamine as antidepressant are still far from being completely understood. Several studies indicated Brain-Derived Neurotrophic Factor (BDNF) as critical for the fast antidepressant action of ketamine, due to its contribution in early and rapid synaptic adaptations. However, previous reports have been essentially based on ketamine dosing modes that differ from the clinical route of administration (slow intravenous infusion). In this report, we investigated the effects of a ketamine dosing mode in male Sprague-Dawley rats showed to be translational to the clinically effective mode in patients. We focused on the first 24 h after infusion to finely dissect potential differences in the contribution of BDNF signaling pathway in prefrontal cortex and hippocampus, two brain regions involved in the antidepressant effects of ketamine. Our data show that the slow ketamine infusion activates the BDNF-mTOR-S6 pathway in prefrontal cortex as early as 2 h and remains on until at least 6 h after the infusion. At the 12 h timepoint, this pathway is turned off in prefrontal cortex while it becomes activated in hippocampus. Interestingly, this pathway appears to be activated in both brain regions at 24 h through a BDNF-independent mechanism adding complexity to the early action of ketamine. We have captured previously unknown dynamics of the early effects of ketamine showing rapid activation/deactivation of BDNF and its downstream signaling in prefrontal cortex and hippocampus, following a precise temporal profile.
Collapse
Affiliation(s)
- Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Francesca Mottarlini
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Alessandro Piva
- Neuropsychopharmacology Lab, Section Pharmacology, Dept Diagnostic & Public Health, P.le Scuro 10, University of Verona, Verona, Italy
| | - Beatrice Rizzi
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Cristiano Chiamulera
- Neuropsychopharmacology Lab, Section Pharmacology, Dept Diagnostic & Public Health, P.le Scuro 10, University of Verona, Verona, Italy.
| |
Collapse
|
13
|
Bahmani M, Mehrtabar S, Jafarizadeh A, Zoghi S, Heravi FS, Abbasi A, Sanaie S, Rahnemayan S, Leylabadlo HE. The Gut Microbiota and Major Depressive Disorder: Current Understanding and Novel Therapeutic Strategies. Curr Pharm Biotechnol 2024; 25:2089-2107. [PMID: 38288791 DOI: 10.2174/0113892010281892240116081031] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 09/10/2024]
Abstract
Major depressive disorder (MDD) is a common neuropsychiatric challenge that primarily targets young females. MDD as a global disorder has a multifactorial etiology related to the environment and genetic background. A balanced gut microbiota is one of the most important environmental factors involved in human physiological health. The interaction of gut microbiota components and metabolic products with the hypothalamic-pituitary-adrenal system and immune mediators can reverse depression phenotypes in vulnerable individuals. Therefore, abnormalities in the quantitative and qualitative structure of the gut microbiota may lead to the progression of MDD. In this review, we have presented an overview of the bidirectional relationship between gut microbiota and MDD, and the effect of pre-treatments and microbiomebased approaches, such as probiotics, prebiotics, synbiotics, fecal microbiota transplantation, and a new generation of microbial alternatives, on the improvement of unstable clinical conditions caused by MDD.
Collapse
Affiliation(s)
- Mohaddeseh Bahmani
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Mehrtabar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Jafarizadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sevda Zoghi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Amin Abbasi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sarvin Sanaie
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sama Rahnemayan
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
14
|
Kim J, He MJ, Widmann AK, Lee FS. The role of neurotrophic factors in novel, rapid psychiatric treatments. Neuropsychopharmacology 2024; 49:227-245. [PMID: 37673965 PMCID: PMC10700398 DOI: 10.1038/s41386-023-01717-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/11/2023] [Accepted: 07/26/2023] [Indexed: 09/08/2023]
Abstract
Neurotrophic factors are a family of growth factors that modulate cellular growth, survival, and differentiation. For many decades, it has been generally believed that a lack of neurotrophic support led to the decreased neuronal synaptic plasticity, death, and loss of non-neuronal supportive cells seen in neuropsychiatric disorders. Traditional psychiatric medications that lead to immediate increases in neurotransmitter levels at the synapse have been shown also to elevate synaptic neurotrophic levels over weeks, correlating with the time course of the therapeutic effects of these drugs. Recent advances in psychiatric treatments, such as ketamine and psychedelics, have shown a much faster onset of therapeutic effects (within minutes to hours). They have also been shown to lead to a rapid release of neurotrophins into the synapse. This has spurred a significant shift in understanding the role of neurotrophins and how the receptor tyrosine kinases that bind neurotrophins may work in concert with other signaling systems. In this review, this renewed understanding of synaptic receptor signaling interactions and the clinical implications of this mechanistic insight will be discussed within the larger context of the well-established roles of neurotrophic factors in psychiatric disorders and treatments.
Collapse
Affiliation(s)
- Jihye Kim
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Michelle J He
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Alina K Widmann
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Francis S Lee
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, 10065, USA.
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
15
|
Ikenouchi A, Okamoto N, Hamada S, Chibaatar E, Fujii R, Konishi Y, Igata R, Tesen H, Yoshimura R. Association between salivary mature brain-derived neurotrophic factor and psychological distress in healthcare workers. Brain Behav 2023; 13:e3278. [PMID: 37822121 PMCID: PMC10726813 DOI: 10.1002/brb3.3278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/28/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023] Open
Abstract
INTRODUCTION Previous studies have suggested association between brain-derived neurotrophic factor (BDNF) and the stress level of workers. However, no studies have investigated the potential of salivary mature BDNF (mBDNF) level as a noninvasive biomarker for psychological distress. This study aimed to explore the reliability of salivary mBDNF as a biomarker for psychological distress in healthcare workers. Furthermore, we examined the relationship between salivary and plasma mBDNF levels and their correlation with age, sex, body mass index (BMI), and exercise habits. METHODS Fifty-one healthy healthcare workers (26 men) from the University of Occupational and Environmental Health, Japan, participated in this study. In this cross-sectional study, participants provided demographic information. Psychological distress was assessed using the Kessler 6 (K6). Saliva and blood samples were collected, and mBDNF was measured by ELISA. Spearman's rank correlation coefficient was performed to analyze the relationship between mBDNF (saliva and plasma) and K6. Statistical analyses were conducted using Stata 17.0, and a significance level of p < .05 was applied. RESULTS The median K6 score was 1 (interquartile range [IQR]: 0-3). The median (IQR) salivary mBDNF was 1.36 (1.12-1.96) pg/mL, whereas the mean (standard deviation) plasma mBDNF was 1261.11 (242.98) pg/mL. No correlation was observed between salivary and plasma mBDNF concentrations or with the K6 score. Additionally, there were no associations between salivary or plasma mBDNF concentrations and age, sex, or exercise habits. Finally, an association between plasma mBDNF concentration and BMI was found only in univariate analysis. CONCLUSION Our findings indicate that salivary mBDNF can be accurately measured noninvasively in healthcare workers. Within our study sample, salivary mBDNF did not demonstrate any correlation with K6 and plasma mBDNF. Future studies with a larger study sample and a diverse study population consisting of healthy participants and patients with psychiatric disorders are warranted.
Collapse
Affiliation(s)
- Atsuko Ikenouchi
- Department of PsychiatryUniversity of Occupational and Environmental Health, JapanKitakyushuJapan
- Medical Center for DementiaHospital of University of Occupational and Environmental Health, JapanKitakyushuJapan
| | - Naomichi Okamoto
- Department of PsychiatryUniversity of Occupational and Environmental Health, JapanKitakyushuJapan
| | - Shinsuke Hamada
- Department of PsychiatryUniversity of Occupational and Environmental Health, JapanKitakyushuJapan
- Medical Center for DementiaHospital of University of Occupational and Environmental Health, JapanKitakyushuJapan
| | - Enkhmurun Chibaatar
- Department of PsychiatryUniversity of Occupational and Environmental Health, JapanKitakyushuJapan
| | - Rintaro Fujii
- Department of PsychiatryUniversity of Occupational and Environmental Health, JapanKitakyushuJapan
| | - Yuki Konishi
- Department of PsychiatryUniversity of Occupational and Environmental Health, JapanKitakyushuJapan
| | - Ryohei Igata
- Department of PsychiatryUniversity of Occupational and Environmental Health, JapanKitakyushuJapan
| | - Hirofumi Tesen
- Department of PsychiatryUniversity of Occupational and Environmental Health, JapanKitakyushuJapan
| | - Reiji Yoshimura
- Department of PsychiatryUniversity of Occupational and Environmental Health, JapanKitakyushuJapan
| |
Collapse
|
16
|
Lei L, Wang YT, Hu D, Gai C, Zhang Y. Astroglial Connexin 43-Mediated Gap Junctions and Hemichannels: Potential Antidepressant Mechanisms and the Link to Neuroinflammation. Cell Mol Neurobiol 2023; 43:4023-4040. [PMID: 37875763 PMCID: PMC11407732 DOI: 10.1007/s10571-023-01426-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/14/2023] [Indexed: 10/26/2023]
Abstract
Major depression disorder (MDD) is a neuropsychiatric disorder associated with a high suicide rate and a higher disability rate than any other disease. Evidence suggests that the pathological mechanism of MDD is related to astrocyte dysfunction. Depression is mainly associated with the expression of connexin 43 (Cx43) and the function of Cx43-mediated gap junctions and hemichannels in astrocytes. Moreover, neuroinflammation has been a hotspot in research on the pathology of depression, and Cx43-mediated functions are thought to be involved in neuroinflammation-related depression. However, the specific mechanism of Cx43-mediated functions in neuroinflammation-related depression pathology remains unclear. Therefore, this review summarizes and discusses Cx43 expression, the role of gap junction intercellular communication, and its relationship with neuroinflammation in depression. This review also focuses on the effects of antidepressant drugs (e.g., monoamine antidepressants, psychotropic drugs, and N-methyl-D-aspartate receptor antagonists) on Cx43-mediated function and provides evidence for Cx43 as a novel target for the treatment of MDD. The pathogenesis of MDD is related to astrocyte dysfunction, with reduced Cx43 expression, GJ dysfunction, decreased GJIC and reduced BDNF expression in the depressed brain. The effect of Cx43 on neuroinflammation-related depression involving inflammatory cytokines, glutamate excitotoxicity, and HPA axis dysregulation. Antidepressant drugs targeting Cx43 can effectively relieve depressive symptoms.
Collapse
Affiliation(s)
- Lan Lei
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China
| | - Ya-Ting Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China
| | - Die Hu
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China
| | - Cong Gai
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China.
| |
Collapse
|
17
|
Wang Y, Huang Y, Zhao M, Yang L, Su K, Wu H, Wang Y, Chang Q, Liu W. Zuojin pill improves chronic unpredictable stress-induced depression-like behavior and gastrointestinal dysfunction in mice via the theTPH2/5-HT pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155067. [PMID: 37716030 DOI: 10.1016/j.phymed.2023.155067] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/01/2023] [Accepted: 09/01/2023] [Indexed: 09/18/2023]
Abstract
BACKGROUND The complex bidirectional communication between the gastrointestinal tract and the brain is associated with mental disorders such as depression; serotonin, as a crucial neurotransmitter in the communication system between the central nervous system and the gastrointestinal tract, has effects on regulating gastrointestinal motility and sensation and improving psychosomatic status. Zuojin pill is used as a traditional Chinese medicine formula for the treatment of gastrointestinal disorders. This study explored the effects of Zuojin pill on the improvement of depression and gastrointestinal function in CUMS mice via TPH2 and its mechanism. PURPOSE The aim of this study was to investigate whether Zuojin pill could improve depression and concomitant gastrointestinal dysfunction, and to reveal whether Zuojin pill could work through the regulation of the tryptophan hydroxylase 2 (TPH2) pathway. METHODS The CUMS model was established to observe the effects of Zuojin pill on depression-like behavior and gastrointestinal function in mice. Nissler staining and HE staining were used to observe the structure of hippocampal neurons and intestinal mucosa respectively. 5-HT levels in serum, hippocampus, and intestinal tissues were measured by ELISA, and TPH2 expression in hippocampus and intestinal nerves was observed by WB and immunofluorescence. In order to investigate the protective effect and mechanism of Zuojin pill on PC12 cells, CORT used an in vitro model to produce PC12 cell damage. RESULTS Our study showed that Zuojin pill ameliorated depression-like behavior and gastrointestinal dysfunction in CUMS mice, elevated BDNF, 5-HT, and TPH2 expression in the hippocampus, and restored the ratio of dopaminergic and GABAergic neurons between intestinal muscles. In vitro experiments showed that Zuojin pill exerted a protective effect on neurons by regulating TPH2 ubiquitination and thus inhibiting CORT-induced apoptosis of PC12 cells. CONCLUSION Zuojin pill improves chronic unpredictable stress-induced depression-like behavior and gastrointestinal dysfunction in mice via the TPH2/5-HT pathway. Therefore, TPH2 may be a potential therapeutic target for depression with gastrointestinal dysfunction.
Collapse
Affiliation(s)
- Yan Wang
- Nanjing University of Chinese Medicine, Nanjing 210023, China; Department of Gastroenterology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing 210014, China
| | - Yuzhen Huang
- Nanjing University of Chinese Medicine, Nanjing 210023, China; Department of Gastroenterology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing 210014, China
| | - Min Zhao
- Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lu Yang
- Nanjing University of Chinese Medicine, Nanjing 210023, China; Department of Gastroenterology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing 210014, China
| | - Kunhan Su
- Department of Gastroenterology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing 210014, China
| | - Hao Wu
- Department of Gastroenterology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing 210014, China
| | - Yuting Wang
- Nanjing University of Chinese Medicine, Nanjing 210023, China; Department of Gastroenterology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing 210014, China
| | - Qing Chang
- Nanjing University of Chinese Medicine, Nanjing 210023, China; Department of Gastroenterology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing 210014, China
| | - Wanli Liu
- Nanjing University of Chinese Medicine, Nanjing 210023, China; Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China.
| |
Collapse
|
18
|
Banushi B, Polito V. A Comprehensive Review of the Current Status of the Cellular Neurobiology of Psychedelics. BIOLOGY 2023; 12:1380. [PMID: 37997979 PMCID: PMC10669348 DOI: 10.3390/biology12111380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023]
Abstract
Psychedelic substances have gained significant attention in recent years for their potential therapeutic effects on various psychiatric disorders. This review delves into the intricate cellular neurobiology of psychedelics, emphasizing their potential therapeutic applications in addressing the global burden of mental illness. It focuses on contemporary research into the pharmacological and molecular mechanisms underlying these substances, particularly the role of 5-HT2A receptor signaling and the promotion of plasticity through the TrkB-BDNF pathway. The review also discusses how psychedelics affect various receptors and pathways and explores their potential as anti-inflammatory agents. Overall, this research represents a significant development in biomedical sciences with the potential to transform mental health treatments.
Collapse
Affiliation(s)
- Blerida Banushi
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Vince Polito
- School of Psychological Sciences, Macquarie University, Sydney, NSW 2109, Australia;
| |
Collapse
|
19
|
Syed OA, Tsang B, Gerlai R. The zebrafish for preclinical psilocybin research. Neurosci Biobehav Rev 2023; 153:105381. [PMID: 37689090 DOI: 10.1016/j.neubiorev.2023.105381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 09/11/2023]
Abstract
In this review, we discuss the possible utility of zebrafish in research on psilocybin, a psychedelic drug whose recreational use as well as possible clinical application are gaining increasing interest. First, we review behavioral tests with zebrafish, focussing on anxiety and social behavior, which have particular relevance in the context of psilocybin research. Next, we briefly consider methods of genetic manipulations with which psilocybin's phenotypical effects and underlying mechanisms may be investigated in zebrafish. We briefly review the known mechanisms of psilocybin, and also discuss what we know about its safety and toxicity profile. Last, we discuss examples of how psilocybin may be employed for testing treatment efficacy in preclinical research for affective disorders in zebrafish. We conclude that zebrafish has a promising future in preclinical research on psychedelic drugs.
Collapse
Affiliation(s)
- Omer A Syed
- Department of Biology, University of Toronto Mississauga, Canada.
| | - Benjamin Tsang
- Department of Cell & Systems Biology, University of Toronto, Canada.
| | - Robert Gerlai
- Department of Cell & Systems Biology, University of Toronto, Canada; Department of Psychology, University of Toronto Mississauga, Canada.
| |
Collapse
|
20
|
Kosanovic Rajacic B, Sagud M, Begic D, Nikolac Perkovic M, Dvojkovic A, Ganoci L, Pivac N. Plasma Brain-Derived Neurotrophic Factor Levels in First-Episode and Recurrent Major Depression and before and after Bright Light Therapy in Treatment-Resistant Depression. Biomolecules 2023; 13:1425. [PMID: 37759825 PMCID: PMC10526351 DOI: 10.3390/biom13091425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is implicated in the etiology and treatment response in major depressive disorder (MDD). However, peripheral BDNF concentrations have not been compared across different MDD stages. Bright light therapy (BLT) offers some potential in treatment-resistant depression (TRD), but its effects on BDNF levels are unknown. This study included a cross-sectional analysis of plasma BDNF concentration in females with TRD, unmedicated MDD patients, and healthy controls (HC), and measurements of longitudinal BLT effects on plasma BDNF levels in TRD patients. The present study included 55 drug-naïve, first-episode patients, 25 drug-free recurrent-episode MDD patients, 71 HC participants, and 54 TRD patients. Patients were rated by Hamilton Depression Rating Scale (HAMD)-17 and the Montgomery-Åsberg Depression Rating Scale (MADRS). Patients with TRD received BLT during 4 weeks. The total HAMD-17 and MADRS scores decreased following BLT. All patient groups had lower plasma BDNF than HC, but BDNF levels did not differ between first- and recurrent-episode BDNF patients and TRD patients before or after BLT. However, responders and remitters to BLT had higher post-treatment plasma BDNF concentrations than patients who did not achieve response or remission. The changes in plasma BDNF levels may be candidates for biomarkers of treatment response to BLT in TRD patients.
Collapse
Affiliation(s)
- Biljana Kosanovic Rajacic
- Department for Psychiatry and Psychological Medicine, University Hospital Centre Zagreb, 10000 Zagreb, Croatia; (B.K.R.); (M.S.); (D.B.)
| | - Marina Sagud
- Department for Psychiatry and Psychological Medicine, University Hospital Centre Zagreb, 10000 Zagreb, Croatia; (B.K.R.); (M.S.); (D.B.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Drazen Begic
- Department for Psychiatry and Psychological Medicine, University Hospital Centre Zagreb, 10000 Zagreb, Croatia; (B.K.R.); (M.S.); (D.B.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Matea Nikolac Perkovic
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia;
| | - Anja Dvojkovic
- University Psychiatric Hospital Vrapce, 10090 Zagreb, Croatia;
| | - Lana Ganoci
- Department of Laboratory Diagnostics, Division for Pharmacogenomics and Therapy Individualization, University Hospital Centre Zagreb, 10000 Zagreb, Croatia;
| | - Nela Pivac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia;
- University of Applied Sciences Hrvatsko Zagorje Krapina, 49000 Krapina, Croatia
| |
Collapse
|
21
|
Ancelin M, Jaussent I, Ritchie K, Besset A, Ryan J, Dauvilliers Y. Brain-derived neurotrophic factor (BDNF) variants and promoter I methylation are associated with prolonged nocturnal awakenings in older adults. J Sleep Res 2023; 32:e13838. [PMID: 36737401 PMCID: PMC10909562 DOI: 10.1111/jsr.13838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 02/05/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is important for sleep physiology. This study investigates whether BDNF variants and promoter I methylation may be implicated in sleep disturbances in older adults. Genotyping was performed for seven BDNF single nucleotide polymorphisms (SNPs) in 355 community-dwelling older adults (aged ≥65 years) and BDNF exon 1 promoter methylation was measured in blood samples at baseline (n = 153). Self-reported daytime sleepiness and insomnia, ambulatory polysomnography measures of sleep continuity and architecture, and psychotropic drug intake were assayed during follow-up. Logistic regression adjusted for age, sex, comorbidities, body mass index, and psychotropic drug intake. Associations were found specifically between wake time after sleep onset (WASO) and four SNPs in the participants not taking psychotropic drugs, whereas in those taking drugs, the associations were either not significant (rs6265 and rs7103411) or in the reverse direction (rs11030101 and rs28722151). Higher BDNF methylation levels were found at most CpG units in those with long WASO and this varied according to psychotropic drug use. The reference group with short WASO not taking drugs showed the lowest methylation levels and the group with long WASO taking treatment, the highest levels. Some SNPs also modified the associations, the participants carrying the low-risk genotype having the lower methylation levels. This genetic and epigenetic study demonstrated blood BDNF promoter methylation to be a potential biomarker of prolonged nocturnal awakenings in older people. Our results suggest the modifying effect of psychotropic drugs and BDNF genetic variants in the associations between methylation and WASO.
Collapse
Affiliation(s)
| | | | - Karen Ritchie
- INM, INSERMUniv MontpellierMontpellierFrance
- Institut du Cerveau TrocadéroParisFrance
| | | | - Joanne Ryan
- Department of Epidemiology and Preventive MedicineMonash UniversityMelbourneVictoriaAustralia
| | - Yves Dauvilliers
- INM, INSERMUniv MontpellierMontpellierFrance
- Sleep‐Wake Disorders UnitDepartment of Neurology, Gui‐de‐Chauliac HospitalCHU MontpellierFrance
| |
Collapse
|
22
|
Madjid N, Lidell V, Nordvall G, Lindskog M, Ögren SO, Forsell P, Sandin J. Antidepressant effects of novel positive allosteric modulators of Trk-receptor mediated signaling - a potential therapeutic concept? Psychopharmacology (Berl) 2023; 240:1789-1804. [PMID: 37394539 PMCID: PMC10349764 DOI: 10.1007/s00213-023-06410-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 06/20/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND Major depressive disorder (MDD) is defined as a complex mental disorder which is characterized by a pervasive low mood and aversion to activity. Several types of neurotransmitter systems e.g. serotonergic, glutamatergic and noradrenergic systems have been suggested to play an important role in the origination of depression, but neurotrophins such as brain derived neurotrophic factor (BDNF) have also been implicated in the disease process. OBJECTIVES The purpose of this study was to examine the effects of a newly developed class of molecules, characterized as positive allosteric modulators of neurotrophin/Trk receptor mediated signaling (Trk-PAM), on neurotransmitter release and depression-like behavior in vivo. METHODS The effect of and possible interaction of neurotrophin/Trk signaling pathways with serotonergic and glutamatergic systems in the modulation of depression-related responses was studied using newly developed Trk-PAM compounds (ACD855, ACD856 and AC26845), as well as ketamine and fluoxetine in the forced swim test (FST) in rodents. Moreover, in vivo microdialysis in freely moving rats was used to assess changes in neurotransmitter levels in the rat. RESULTS The results from the study show that several different compounds, which all potentiate Trk-receptor mediated signaling, display antidepressant-like activity in the FST. Moreover, the data also indicate that the effects of both fluoxetine and ketamine in the FST, both used in clinical practice, are mediated via BDNF/TrkB signaling, which could have implications for novel therapies in MDD. CONCLUSIONS Trk-PAMs could provide an interesting avenue for the development of novel therapeutics in this area.
Collapse
Affiliation(s)
- Nather Madjid
- AlzeCure Pharma AB, Hälsovägen 7, 141 57, Huddinge, Sweden
| | | | - Gunnar Nordvall
- AlzeCure Pharma AB, Hälsovägen 7, 141 57, Huddinge, Sweden
- Division of Neuroscience, Care and Society, Department of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Maria Lindskog
- Division of Neuroscience, Care and Society, Department of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Sven-Ove Ögren
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Pontus Forsell
- AlzeCure Pharma AB, Hälsovägen 7, 141 57, Huddinge, Sweden
- Division of Neuroscience, Care and Society, Department of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Johan Sandin
- AlzeCure Pharma AB, Hälsovägen 7, 141 57, Huddinge, Sweden.
- Division of Neuroscience, Care and Society, Department of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
23
|
Corrigan M, O'Rourke A, Moran B, Fletcher J, Harkin A. Inflammation in the pathogenesis of depression: a disorder of neuroimmune origin. Neuronal Signal 2023; 7:NS20220054. [PMID: 37457896 PMCID: PMC10345431 DOI: 10.1042/ns20220054] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023] Open
Abstract
There are several hypotheses concerning the underlying pathophysiological mechanisms of major depression, which centre largely around adaptive changes in neuronal transmission and plasticity, neurogenesis, and circuit and regional connectivity. The immune and endocrine systems are commonly implicated in driving these changes. An intricate interaction of stress hormones, innate immune cells and the actions of soluble mediators of immunity within the nervous system is described as being associated with the symptoms of depression. Bridging endocrine and immune processes to neurotransmission and signalling within key cortical and limbic brain circuits are critical to understanding depression as a disorder of neuroimmune origins. Emergent areas of research include a growing recognition of the adaptive immune system, advances in neuroimaging techniques and mechanistic insights gained from transgenic animals. Elucidation of glial-neuronal interactions is providing additional avenues into promising areas of research, the development of clinically relevant disease models and the discovery of novel therapies. This narrative review focuses on molecular and cellular mechanisms that are influenced by inflammation and stress. The aim of this review is to provide an overview of our current understanding of depression as a disorder of neuroimmune origin, focusing on neuroendocrine and neuroimmune dysregulation in depression pathophysiology. Advances in current understanding lie in pursuit of relevant biomarkers, as the potential of biomarker signatures to improve clinical outcomes is yet to be fully realised. Further investigations to expand biomarker panels including integration with neuroimaging, utilising individual symptoms to stratify patients into more homogenous subpopulations and targeting the immune system for new treatment approaches will help to address current unmet clinical need.
Collapse
Affiliation(s)
- Myles Corrigan
- Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences and Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
- Transpharmation Ireland, Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - Aoife M. O'Rourke
- School of Biochemistry and Immunology, Trinity Biosciences Institute, Trinity College, Dublin, Ireland
| | - Barry Moran
- School of Biochemistry and Immunology, Trinity Biosciences Institute, Trinity College, Dublin, Ireland
| | - Jean M. Fletcher
- School of Biochemistry and Immunology, Trinity Biosciences Institute, Trinity College, Dublin, Ireland
| | - Andrew Harkin
- Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences and Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| |
Collapse
|
24
|
Banasiak‐Cieślar H, Wiener D, Kuszczyk M, Dobrzyńska K, Polanowski A. Proline-rich polypeptides (Colostrinin ®/COLOCO ®) modulate BDNF concentration in blood affecting cognitive function in adults: A double-blind randomized placebo-controlled study. Food Sci Nutr 2023; 11:1477-1485. [PMID: 36911821 PMCID: PMC10002942 DOI: 10.1002/fsn3.3187] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/18/2022] [Accepted: 12/06/2022] [Indexed: 01/13/2023] Open
Abstract
Proline-rich polypeptides (PRPs complex also known as COLOCO®, Colostrinin®) consist of low-molecular weight peptides ranging up to 10 kDa, isolated from the bovine colostrum obtained up to 48 h postpartum. PRPs have been shown to affect processes involved in inflammation, brain aging, and neurodegeneration. The aim of this study was to investigate the effect of Colostrinin® (COLOCO®) on the cognitive abilities of healthy volunteers in three different age groups using the CANTAB tool in a double-blind randomized placebo-controlled study. BDNF serum level was used as a physicochemical marker of improvement of the cognitive skills. Three hundred and sixty-one healthy volunteers were divided into three study groups aged 18-24, 25-54, and 55-75; each group was then divided into two subgroups which took either placebo or tested lozenge with 120 μg of PRPs for the period of 4 months. The CANTAB battery test was used to measure the efficacy of PRP in the context of cognitive functioning. After the treatment with COLOCO®, we observed differences within MoCA score in the oldest patients, improvement in DMS and drop in PAL scores within the youngest group, drop in RTI and improvement in RVP scores within the middle-aged group. It was observed that serum BDNF level increased in all study groups which confirms cognitive improvement. In conclusion, we have shown that Colostrinin® exhibits cognitive enhancing effects, probably through the modulation of BDNF concentrations.
Collapse
Affiliation(s)
| | - Dawid Wiener
- Department of Design (School of Form)SWPS University of Social Sciences and HumanitiesWarsawPoland
| | | | | | - Antoni Polanowski
- Department of Animal Products Technology and Quality ManagementUniversity of Environmental and Life SciencesWroclawPoland
| |
Collapse
|
25
|
Li Y, Chen H, Wang J, Wang J, Niu X, Wang C, Qin D, Li F, Wang Y, Xiong J, Liu S, Huang L, Zhang X, Gao F, Gao D, Fan M, Xiao X, Wang ZH. Inflammation-activated C/EBPβ mediates high-fat diet-induced depression-like behaviors in mice. Front Mol Neurosci 2022; 15:1068164. [PMID: 36578534 PMCID: PMC9790918 DOI: 10.3389/fnmol.2022.1068164] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
Depression, one of the most common causes of disability, has a high prevalence rate in patients with metabolic syndrome. Type 2 diabetes patients are at an increased risk for depression. However, the molecular mechanism coupling diabetes to depressive disorder remains largely unknown. Here we found that the neuroinflammation, associated with high-fat diet (HFD)-induced diabetes and obesity, activated the transcription factor CCAAT/enhancer binding protein β (C/EBPβ) in hippocampal neurons. This factor repressed brain-derived neurotrophic factor (BDNF) expression and caused depression-like behaviors in male mice. Besides, the loss of C/EBPβ expression in C/EBPβ heterozygous knockout male mice attenuated HFD-induced depression-like behaviors, whereas Thy1-C/EBPβ transgenic male mice (overexpressing C/EBPβ) showed depressive behaviors after a short-term HFD. Furthermore, HFD impaired synaptic plasticity and decreased surface expression of glutamate receptors in the hippocampus of wild-type (WT) mice, but not in C/EBPβ heterozygous knockout mice. Remarkably, the anti-inflammatory drug aspirin strongly alleviated HFD-elicited depression-like behaviors in neuronal C/EBPβ transgenic mice. Finally, the genetic delivery of BDNF or the pharmacological activation of the BDNF/TrkB signaling pathway by 7,8-dihydroxyflavone reversed anhedonia in a series of behavioral tests on HFD-fed C/EBPβ transgenic mice. Therefore, our findings aim to demonstrate that the inflammation-activated neuronal C/EBPβ promotes HFD-induced depression by diminishing BDNF expression.
Collapse
Affiliation(s)
- Yiyi Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hongyu Chen
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jianhao Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiabei Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xuan Niu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chao Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dongdong Qin
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fang Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yamei Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jing Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Songyan Liu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Liqin Huang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xi Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Feng Gao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dandan Gao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mingxia Fan
- Animal Experiment Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xuan Xiao
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhi-Hao Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
26
|
Aghi K, Goetz TG, Pfau DR, Sun SED, Roepke TA, Guthman EM. Centering the Needs of Transgender, Nonbinary, and Gender-Diverse Populations in Neuroendocrine Models of Gender-Affirming Hormone Therapy. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:1268-1279. [PMID: 35863692 PMCID: PMC10472479 DOI: 10.1016/j.bpsc.2022.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/20/2022] [Accepted: 07/06/2022] [Indexed: 02/07/2023]
Abstract
Most studies attempting to address the health care needs of the millions of transgender, nonbinary, and/or gender-diverse (TNG) individuals rely on human subjects, overlooking the benefits of translational research in animal models. Researchers have identified many ways in which gonadal steroid hormones regulate neuronal gene expression, connectivity, activity, and function across the brain to control behavior. However, these discoveries primarily benefit cisgender populations. Research into the effects of exogenous hormones such as estradiol, testosterone, and progesterone has a direct translational benefit for TNG individuals on gender-affirming hormone therapies (GAHTs). Despite this potential, endocrinological health care for TNG individuals remains largely unimproved. Here, we outline important areas of translational research that could address the unique health care needs of TNG individuals on GAHT. We highlight key biomedical questions regarding GAHT that can be investigated using animal models. We discuss how contemporary research fails to address the needs of GAHT users and identify equitable practices for cisgender scientists engaging with this work. We conclude that if necessary and important steps are taken to address these issues, translational research on GAHTs will greatly benefit the health care outcomes of TNG people.
Collapse
Affiliation(s)
- Krisha Aghi
- Helen Wills Neuroscience Institute, University of California, Berkeley, California
| | - Teddy G Goetz
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Daniel R Pfau
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan; Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Simón E D Sun
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York; Center for Applied Transgender Studies, Chicago, Illinois
| | - Troy A Roepke
- Department of Animal Sciences, School of Biological and Environmental Sciences, Rutgers University, New Brunswick
| | - Eartha Mae Guthman
- Center for Applied Transgender Studies, Chicago, Illinois; Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey.
| |
Collapse
|
27
|
Gumus C, Yazici IP, Yazici KU, Ustundag B. Increased Serum Brain-derived Neurotrophic Factor, Nerve Growth Factor, Glial-derived Neurotrophic Factor and Galanin Levels in Children with Attention Deficit Hyperactivity Disorder, and the Effect of 10 Weeks Methylphenidate Treatment. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2022; 20:635-648. [PMID: 36263639 PMCID: PMC9606423 DOI: 10.9758/cpn.2022.20.4.635] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/10/2021] [Accepted: 02/12/2022] [Indexed: 01/25/2023]
Abstract
OBJECTIVE This study aimed to investigate the levels of serum brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), glial cell-derived neurotrophic factor (GDNF) and galanin in children with attention deficit hyperactivity disorder (ADHD). METHODS The study included 58 cases with ADHD and 60 healthy controls. Schedule for Affective Disorders and Schizophrenia for School-Age Children-Present and Lifetime version (K-SADS-PL) together with Diagnostic and Statistical Manual of Mental Disorders 5th edition (DSM-5) criteria were used for diagnostic evaluation. Sociodemographic data form and Conners' Parent/Teacher Rating Scale-Revised:Long Form were applied to all cases. The serum levels of BDNF, NGF, GDNF, and galanin were evaluated in all subjects. Afterwards, methylphenidate was started in the ADHD group. ADHD cases were reevaluated in terms of the serum levels of BDNF, NGF, GDNF, galanin at the 10th week of treatment. RESULTS Before the treatment, the levels of BDNF, NGF, GDNF, galanin were significantly higher in the ADHD group compared to the control group. The levels of BDNF, NGF, GDNF, galanin were found to be significantly lower after treatment in ADHD group compared to pre-treatment. No correlation was between scale scores and the serum levels of BDNF, NGF, GDNF, galanin. CONCLUSION The levels of neurotrophic factors and galanin were thought to be parameters worth evaluating in ADHD. Further studies on the subject with longer-term treatments and larger sample groups are required.
Collapse
Affiliation(s)
- Cavithan Gumus
- Department of Child and Adolescent Psychiatry, Karaman Training and Research Hospital, Karaman, Turkey
| | - Ipek Percinel Yazici
- Department of Child and Adolescent Psychiatry, Firat University Faculty of Medicine, Elazig, Turkey,Address for correspondence: Ipek Percinel Yazici Department of Child and Adolescent Psychiatry, Firat University Faculty of Medicine, Elazig 230000, Turkey, E-mail: , ORCID: https://orcid.org/0000-0002-6807-655X
| | - Kemal Utku Yazici
- Department of Child and Adolescent Psychiatry, Firat University Faculty of Medicine, Elazig, Turkey
| | - Bilal Ustundag
- Department of Biochemistry, Firat University Faculty of Medicine, Elazig, Turkey
| |
Collapse
|
28
|
Gene- and Gender-Related Decrease in Serum BDNF Levels in Alzheimer's Disease. Int J Mol Sci 2022; 23:ijms232314599. [PMID: 36498925 PMCID: PMC9740390 DOI: 10.3390/ijms232314599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) has a protective role in Alzheimer's disease (AD). Oxidative stress and inflammatory cytokines are potentially implicated in AD risk. In this study, BDNF was detected in serum of AD and mild cognitive impairment (MCI) patients and investigated in association with gene polymorphisms of BDNF (Val66Met and C270T), of some oxidative stress-related genes (FOXO3A, SIRT3, GLO1, and SOD2), and of interleukin-1 family genes (IL-1α, IL-1β, and IL-38). The APOE status and mini-mental state examination (MMSE) score were also evaluated. Serum BDNF was significantly lower in AD (p = 0.029), especially when comparing the female subsets (p = 0.005). Patients with BDNFVal/Val homozygous also had significantly lower circulating BDNF compared with controls (p = 0.010). Moreover, lower BDNF was associated with the presence of the T mutant allele of IL-1α(rs1800587) in AD (p = 0.040). These results were even more significant in the female subsets (BDNFVal/Val, p = 0.001; IL-1α, p = 0.013; males: ns). In conclusion, reduced serum levels of BDNF were found in AD; polymorphisms of the IL-1α and BDNF genes appear to be involved in changes in serum BDNF, particularly in female patients, while no effects of other gene variants affecting oxidative stress have been found. These findings add another step in identifying gender-related susceptibility to AD.
Collapse
|
29
|
Cabral DF, Bigliassi M, Cattaneo G, Rundek T, Pascual-Leone A, Cahalin LP, Gomes-Osman J. Exploring the interplay between mechanisms of neuroplasticity and cardiovascular health in aging adults: A multiple linear regression analysis study. Auton Neurosci 2022; 242:103023. [PMID: 36087362 PMCID: PMC11012134 DOI: 10.1016/j.autneu.2022.103023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/13/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Neuroplasticity and cardiovascular health behavior are critically important factors for optimal brain health. OBJECTIVE To assess the association between the efficacy of the mechanisms of neuroplasticity and metrics of cardiovascular heath in sedentary aging adults. METHODS We included thirty sedentary individuals (age = 60.6 ± 3.8 y; 63 % female). All underwent assessments of neuroplasticity, measured by the change in amplitude of motor evoked potentials elicited by single-pulse Transcranial Magnetic Stimulation (TMS) at baseline and following intermittent Theta-Burst (iTBS) at regular intervals. Cardiovascular health measures were derived from the Incremental Shuttle Walking Test and included Heart Rate Recovery (HRR) at 1-min/2-min after test cessation. We also collected plasma levels of brain-derived neurotrophic factor (BDNF), vascular endothelial growth factor (VEGF), and c-reactive protein. RESULTS We revealed moderate but significant relationships between TMS-iTBS neuroplasticity, and the predictors of cardiovascular health (|r| = 0.38 to 0.53, p < .05). HRR1 was the best predictor of neuroplasticity (β = 0.019, p = .002). The best fit model (Likelihood ratio = 5.83, p = .016) of the association between neuroplasticity and HRR1 (β = 0.043, p = .002) was selected when controlling for demographics and health status. VEGF and BDNF plasma levels augmented the association between neuroplasticity and HRR1. CONCLUSIONS Our findings build on existing data demonstrating that TMS may provide insight into neuroplasticity and the role cardiovascular health have on its mechanisms. These implications serve as theoretical framework for future longitudinal and interventional studies aiming to improve cardiovascular and brain health. HRR1 is a potential prognostic measure of cardiovascular health and a surrogate marker of brain health in aging adults.
Collapse
Affiliation(s)
- Danylo F Cabral
- Department of Physical Therapy, University of Miami Miller School of Medicine, Coral Gables, FL, USA.
| | - Marcelo Bigliassi
- Department of Teaching and Learning, Florida International University, Miami, FL, USA
| | - Gabriele Cattaneo
- Institut Guttmann, Institut Universitari de Neurorehabilitació, Badalona, Spain; Department of Medicine, Universitat Autónoma de Barcelona, Bellaterra, Spain
| | - Tatjana Rundek
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA; Evelyn F. McKnight Brain Institute, University of Miami, Miami, FL, USA
| | - Alvaro Pascual-Leone
- Institut Guttmann, Institut Universitari de Neurorehabilitació, Badalona, Spain; Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Lawrence P Cahalin
- Department of Physical Therapy, University of Miami Miller School of Medicine, Coral Gables, FL, USA
| | - Joyce Gomes-Osman
- Department of Physical Therapy, University of Miami Miller School of Medicine, Coral Gables, FL, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
30
|
Li Y, Li F, Qin D, Chen H, Wang J, Wang J, Song S, Wang C, Wang Y, Liu S, Gao D, Wang ZH. The role of brain derived neurotrophic factor in central nervous system. Front Aging Neurosci 2022; 14:986443. [PMID: 36158555 PMCID: PMC9493475 DOI: 10.3389/fnagi.2022.986443] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/23/2022] [Indexed: 11/15/2022] Open
Abstract
Brain derived neurotrophic factor (BDNF) has multiple biological functions which are mediated by the activation of two receptors, tropomyosin receptor kinase B (TrkB) receptor and the p75 neurotrophin receptor, involving in physiological and pathological processes throughout life. The diverse presence and activity of BDNF indicate its potential role in the pathogenesis, progression and treatment of both neurological and psychiatric disorders. This review is to provide a comprehensive assessment of the current knowledge and future directions in BDNF-associated research in the central nervous system (CNS), with an emphasis on the physiological and pathological functions of BDNF as well as its potential treatment effects in CNS diseases, including depression, Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis, and cerebral ischemic stroke.
Collapse
Affiliation(s)
- Yiyi Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fang Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dongdong Qin
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hongyu Chen
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jianhao Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiabei Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shafei Song
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chao Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yamei Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Songyan Liu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dandan Gao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhi-Hao Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
31
|
Effects of melatonin supplementation on BDNF concentrations and depression: A systematic review and meta-analysis of randomized controlled trials. Behav Brain Res 2022; 436:114083. [DOI: 10.1016/j.bbr.2022.114083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 11/23/2022]
|
32
|
Bansal Y, Singh R, Sodhi RK, Khare P, Dhingra R, Dhingra N, Bishnoi M, Kondepudi KK, Kuhad A. Kynurenine monooxygenase inhibition and associated reduced quinolinic acid reverses depression-like behaviour by upregulating Nrf2/ARE pathway in mouse model of depression: In-vivo and In-silico studies. Neuropharmacology 2022; 215:109169. [PMID: 35753430 DOI: 10.1016/j.neuropharm.2022.109169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/28/2022] [Accepted: 06/18/2022] [Indexed: 10/17/2022]
Abstract
Kynurenine pathway, a neuroimmunological pathway plays a substantial role in depression. Consistently, increased levels of neurotoxic metabolite of kynurenine pathway; quinolinic acid (QA) found in the suicidal patients and remitted major depressive patients. QA, an endogenous modulator of N-methyl-d-aspartate receptor is produced by microglial cells, may serve as a potential candidate for a link between antioxidant defence system and immune changes in depression. Further, nuclear factor (erythroid-derived 2) like 2 (Nrf2), an endogenous antioxidant transcription factor plays a significant role in maintaining antioxidant homeostasis during basal and stress conditions. The present study was designed to explore the effects of KMO-inhibition (Kynurenine monooxygenase) and association of reduced QA on Keap1/Nrf2/ARE pathway activity in olfactory bulbectomized mice (OBX-mice). KMO catalysis the neurotoxic branch of kynurenine pathway directing the synthesis of QA. KMO inhibitionshowed significant reversal of depressive-like behaviour, restored Keap-1 and Nrf2 mRNA expression, and associated antioxidant levels in cortex and hippocampus of OBX-mice. KMO inhibition also increased PI3K/AKT mRNA expression in OBX-mice. KMO inhibition and associated reduced QA significantly decreased inflammatory markers, kynurenine and increased the 5-HT, 5-HIAA and tryptophan levels in OBX-mice. Furthermore, molecular docking studies has shown good binding affinity of QA towards ubiquitin proteasome complex and PI3K protein involved in Keap-1 dependent and independent proteasome degradation of Nrf2 respectively supporting our in-vivo findings. Hence, QA might act as pro-oxidant through downregulating Nrf2/ARE pathway along with modulating other pathways and KMO inhibition could be a potential therapeutic target for depression treatment.
Collapse
Affiliation(s)
- Yashika Bansal
- Pharmacology Research Lab, University Institute of Pharmaceutical Sciences UGC-Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Raghunath Singh
- Pharmacology Research Lab, University Institute of Pharmaceutical Sciences UGC-Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Rupinder Kaur Sodhi
- Pharmacology Research Lab, University Institute of Pharmaceutical Sciences UGC-Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Pragyanshu Khare
- Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar, Punjab, India
| | - Richa Dhingra
- Pharmachemistry Research Lab, University Institute of Pharmaceutical Sciences UGC-Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Neelima Dhingra
- Pharmachemistry Research Lab, University Institute of Pharmaceutical Sciences UGC-Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Mahendra Bishnoi
- Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar, Punjab, India
| | - Kanthi Kiran Kondepudi
- Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar, Punjab, India
| | - Anurag Kuhad
- Pharmacology Research Lab, University Institute of Pharmaceutical Sciences UGC-Centre of Advanced Study, Panjab University, Chandigarh, India.
| |
Collapse
|
33
|
Gonçalves de Andrade E, González Ibáñez F, Tremblay MÈ. Microglia as a Hub for Suicide Neuropathology: Future Investigation and Prevention Targets. Front Cell Neurosci 2022; 16:839396. [PMID: 35663424 PMCID: PMC9158339 DOI: 10.3389/fncel.2022.839396] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/22/2022] [Indexed: 12/27/2022] Open
Abstract
Suicide is a complex public health challenge associated worldwide with one death every 40 s. Research advances in the neuropathology of suicidal behaviors (SB) have defined discrete brain changes which may hold the key to suicide prevention. Physiological differences in microglia, the resident immune cells of the brain, are present in post-mortem tissue samples of individuals who died by suicide. Furthermore, microglia are mechanistically implicated in the outcomes of important risk factors for SB, including early-life adversity, stressful life events, and psychiatric disorders. SB risk factors result in inflammatory and oxidative stress activities which could converge to microglial synaptic remodeling affecting susceptibility or resistance to SB. To push further this perspective, in this Review we summarize current areas of opportunity that could untangle the functional participation of microglia in the context of suicide. Our discussion centers around microglial state diversity in respect to morphology, gene and protein expression, as well as function, depending on various factors, namely brain region, age, and sex.
Collapse
Affiliation(s)
- Elisa Gonçalves de Andrade
- Neuroscience Graduate Program, Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Fernando González Ibáñez
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
- *Correspondence: Marie-Ève Tremblay,
| |
Collapse
|
34
|
Vitamin D3 suppresses astrocyte activation and ameliorates coal dust-induced mood disorders in mice. J Affect Disord 2022; 303:138-147. [PMID: 35157949 DOI: 10.1016/j.jad.2022.02.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/22/2022]
Abstract
BACKGROUND Pneumoconiosis patients exhibit significantly more anxiety and depression than healthy individuals. However, the mechanism of coal dust-induced anxiety and depression remains unclear. METHODS A pneumoconiosis mouse model with anxiety- and depression-like behaviors were established after 28 days of exposure to coal dust. Vitamin D3 treatment (1200 IU/kg/week) was administered intraperitoneally for 3 months starting from the first coal exposure. Tail suspension test (TST), open field test (OFT), and elevated plus-maze (EPM) test were used to assess anxiety- and depression-like behaviors. Theserum concentration of 25(OH)D3 and fibrillary acid protein (GFAP) expression were determined. In addition, the morphology and distribution of GFAP and neurogenic differentiation factor1 expression (NeuroD1) in different cerebral hippocampus were observed. RESULTS In coal dust-exposed mice, immobility time decreased in OFT and increased in TST,and the frequency of entering the open arm decreased in the EPM compared with the control mice. Coal dust increased hippocampal GFAP expression and astrocyte activation and reduced neurogenic differentiation factor1 expression (NeuroD1). In addition, Vitamin D3 significantly alleviated anxiety- and depressive-like behaviors in TST and EPM test, decreased GFAP expression level, modified hippocampal astrocyte activation pattern, and advanced brain-derived neurotrophic factor (BDNF) distribution and expression in CA1 and CA3 of the hippocampus. CONCLUSIONS Taken together, our results suggest that, by inhibiting the over-activation of astrocytes and increasing BDNF and neuron protection, vitamin D treatment ameliorates coal-dust-induced depressive and anxiety-like behavior, which is the first evidence that vitamin D may be a new approach for treating mood disorders caused by particulate matter.
Collapse
|
35
|
Vasupanrajit A, Jirakran K, Tunvirachaisakul C, Solmi M, Maes M. Inflammation and nitro-oxidative stress in current suicidal attempts and current suicidal ideation: a systematic review and meta-analysis. Mol Psychiatry 2022; 27:1350-1361. [PMID: 34997194 DOI: 10.1038/s41380-021-01407-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022]
Abstract
A meta-analysis showed a significant association between activated immune-inflammatory and nitro-oxidative (IO&NS) pathways and suicide attempts (SA). There is no data on whether recent suicidal ideation (SI) is accompanied by activated IO&NS pathways and whether there are differences between recent SA and SI. The current study searched PubMed, Google Scholar, and Web of Science, for articles published from inception until May 10, 2021, and systematically reviewed and meta-analysed the association between recent SA/SI (<3 months) and IO&NS biomarkers. We included studies which compared psychiatric patients with and without SA and SI and controls (either healthy controls or patients without SA/SI) and used meta-analysis (random-effect model with restricted maximum-likelihood) to delineate effect sizes with 95% confidence intervals (CI). Our search included 59 studies comprising 4.034 SA/SI cases and 12.377 controls. Patients with SA/SI showed activated IO&NS pathways (SMD: 0.299; CI: 0.200; 0.397) when compared to controls. The immune profiles were more strongly associated with SA than with SI, particularly when compared to healthy controls, as evidenced by activated IO&NS (SMD: 0.796; CI: 0.503; 1.089), immune (SMD: 1.409; CI: 0.637; 1.462), inflammatory (SMD: 1.200; CI: 0.584; 1.816), and neurotoxic (SMD: 0.904; CI: 0.431; 1.378) pathways. The effects sizes of the IO&NS, immune and inflammatory profiles were significantly greater in SA than in SI. In conclusion: activated IO&NS pathways are associated with recent SA and SI, and inflammation, T helper-1 activation, nitro-oxidative stress, lowered neuroprotection, and increased neurotoxicity explain at least in part why psychiatric patients show increased suicidal behaviours, especially SA.
Collapse
Affiliation(s)
- Asara Vasupanrajit
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| | - Ketsupar Jirakran
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Maximizing Thai Children's Developmental Potential Research Unit, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chavit Tunvirachaisakul
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Cognitive Impairment and Dementia Research Unit, Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Marco Solmi
- University of Ottawa, Psychiatry Department, Ottawa, ON, Canada.,The Ottawa Hospital, University of Ottawa, Ottawa, ON, Canada.,Ottawa Hospital Research Institute (OHRI), Clinical Epidemiology Program, University of Ottawa, Ottawa, ON, Canada
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand. .,Cognitive Impairment and Dementia Research Unit, Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand. .,IMPACT Strategies Research Center, Deakin University, Geelong, VIC, Australia. .,Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria.
| |
Collapse
|
36
|
Joshi A, Akhtar A, Saroj P, Kuhad A, Sah SP. Antidepressant-like effect of sodium orthovanadate in a mouse model of chronic unpredictable mild stress. Eur J Pharmacol 2022; 919:174798. [DOI: 10.1016/j.ejphar.2022.174798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/17/2022] [Accepted: 02/01/2022] [Indexed: 02/06/2023]
|
37
|
Weaver KR, Mustapic M, Kapogiannis D, Henderson WA. Neuronal-enriched extracellular vesicles in individuals with IBS: A pilot study of COMT and BDNF. Neurogastroenterol Motil 2022; 34:e14257. [PMID: 34499398 PMCID: PMC9358931 DOI: 10.1111/nmo.14257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is characterized by abdominal pain, bowel habit alterations, and psychiatric comorbidities. Although pathophysiology remains incompletely understood, prior work demonstrates associations with brain-derived neurotrophic factor (BDNF) and catechol-O-methyltransferase (COMT). The purpose of this study was to quantify BDNF and COMT in plasma and in neuronal-enriched extracellular vesicles (nEVs), assess relationships with psychological symptoms, and gain insight on the brain-gut connection in IBS. METHODS Clinical data and biorepository samples from a parent investigation were used, including scores on the Perceived Stress Scale (PSS) and Center for Epidemiological Studies Depression Scale (CES-D). Distinct subpopulations of nEVs were isolated using neural cell adhesion molecule L1CAM; levels of COMT, mature BDNF, and pro-BDNF were quantified in plasma and in nEVs using ELISA. KEY RESULTS Data from 47 females (28.11 ± 6.85 years) included 18 IBS and 29 healthy control (HC) participants. IBS participants displayed reduced plasma levels of mature BDNF compared with HC (p = 0.024). Levels of COMT plasma and IBS grouping significantly predicted CES-D scores (p = 0.034). Exploratory analyses by IBS subtype and race revealed African American HC display lower levels of COMT EV than Caucasian HC (p = 0.022). CONCLUSIONS & INFERENCES Lower levels of mature BDNF in IBS participants, preliminary patterns detected in cargo content of nEVs, and relevance of COMT and IBS status to CES-D scores, offer insight on depressive symptomatology and brain-gut dysregulation in IBS. Lower COMT levels in nEVs of African Americans highlight the relevance of race when conducting such analyses across diverse populations.
Collapse
Affiliation(s)
| | - Maja Mustapic
- National Institute of Aging, National Institutes of Health, Baltimore, MD, USA
| | | | | |
Collapse
|
38
|
Klaus B, Müller P, van Wickeren N, Dordevic M, Schmicker M, Zdunczyk Y, Brigadski T, Leßmann V, Vielhaber S, Schreiber S, Müller NG. OUP accepted manuscript. Brain Commun 2022; 4:fcac018. [PMID: 35198977 PMCID: PMC8856136 DOI: 10.1093/braincomms/fcac018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/05/2021] [Accepted: 01/31/2022] [Indexed: 11/14/2022] Open
Abstract
Myasthenia gravis is an autoimmune disease affecting neuromuscular transmission and causing skeletal muscle weakness. Additionally, systemic inflammation, cognitive deficits and autonomic dysfunction have been described. However, little is known about myasthenia gravis-related reorganization of the brain. In this study, we thus investigated the structural and functional brain changes in myasthenia gravis patients. Eleven myasthenia gravis patients (age: 70.64 ± 9.27; 11 males) were compared to age-, sex- and education-matched healthy controls (age: 70.18 ± 8.98; 11 males). Most of the patients (n = 10, 0.91%) received cholinesterase inhibitors. Structural brain changes were determined by applying voxel-based morphometry using high-resolution T1-weighted sequences. Functional brain changes were assessed with a neuropsychological test battery (including attention, memory and executive functions), a spatial orientation task and brain-derived neurotrophic factor blood levels. Myasthenia gravis patients showed significant grey matter volume reductions in the cingulate gyrus, in the inferior parietal lobe and in the fusiform gyrus. Furthermore, myasthenia gravis patients showed significantly lower performance in executive functions, working memory (Spatial Span, P = 0.034, d = 1.466), verbal episodic memory (P = 0.003, d = 1.468) and somatosensory-related spatial orientation (Triangle Completion Test, P = 0.003, d = 1.200). Additionally, serum brain-derived neurotrophic factor levels were significantly higher in myasthenia gravis patients (P = 0.001, d = 2.040). Our results indicate that myasthenia gravis is associated with structural and functional brain alterations. Especially the grey matter volume changes in the cingulate gyrus and the inferior parietal lobe could be associated with cognitive deficits in memory and executive functions. Furthermore, deficits in somatosensory-related spatial orientation could be associated with the lower volumes in the inferior parietal lobe. Future research is needed to replicate these findings independently in a larger sample and to investigate the underlying mechanisms in more detail.
Collapse
Affiliation(s)
- Benita Klaus
- Correspondence to: Benita Klaus German Center for Neurodegenerative Diseases (DZNE) Leipziger Str 44 Haus 64, D-39120 Magdeburg, Germany E-mail:
| | - Patrick Müller
- German Centre for Neurodegenerative Diseases, 39120 Magdeburg, Germany
- Department of Neurology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Nora van Wickeren
- German Centre for Neurodegenerative Diseases, 39120 Magdeburg, Germany
- Department of Neurology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Milos Dordevic
- German Centre for Neurodegenerative Diseases, 39120 Magdeburg, Germany
- Department of Neurology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Marlen Schmicker
- German Centre for Neurodegenerative Diseases, 39120 Magdeburg, Germany
| | - Yael Zdunczyk
- Department of Neurology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Tanja Brigadski
- Institute of Physiology, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Department of Informatics and Microsystems Technology, University of Kaiserslautern, 67659 Zweibrücken, Germany
| | - Volkmar Leßmann
- Institute of Physiology, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), 39120 Magdeburg, Germany
| | - Stefan Vielhaber
- German Centre for Neurodegenerative Diseases, 39120 Magdeburg, Germany
- Department of Neurology, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), 39120 Magdeburg, Germany
| | - Stefanie Schreiber
- German Centre for Neurodegenerative Diseases, 39120 Magdeburg, Germany
- Department of Neurology, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), 39120 Magdeburg, Germany
| | - Notger G. Müller
- German Centre for Neurodegenerative Diseases, 39120 Magdeburg, Germany
- Department of Neurology, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Faculty of Health Sciences, University of Potsdam, 14476 Potsdam, Germany
| |
Collapse
|
39
|
Husain MI, Ledwos N, Fellows E, Baer J, Rosenblat JD, Blumberger DM, Mulsant BH, Castle DJ. Serotonergic psychedelics for depression: What do we know about neurobiological mechanisms of action? Front Psychiatry 2022; 13:1076459. [PMID: 36844032 PMCID: PMC9950579 DOI: 10.3389/fpsyt.2022.1076459] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/19/2022] [Indexed: 02/12/2023] Open
Abstract
INTRODUCTION Current treatment options for major depressive disorder (MDD) have limited efficacy and are associated with adverse effects. Recent studies investigating the antidepressant effect of serotonergic psychedelics-also known as classic psychedelics-have promising preliminary results with large effect sizes. In this context, we conducted a review of the putative neurobiological underpinnings of the mechanism of antidepressant action of these drugs. METHODS A narrative review was conducted using PubMed to identify published articles evaluating the antidepressant mechanism of action of serotonergic psychedelics. RESULTS Serotonergic psychedelics have serotonin (5HT)2A agonist or partial agonist effects. Their rapid antidepressant effects may be mediated-in part-by their potent 5HT2A agonism, leading to rapid receptor downregulation. In addition, these psychedelics impact brain derived neurotrophic factor and immunomodulatory responses, both of which may play a role in their antidepressant effect. Several neuroimaging and neurophysiology studies evaluating mechanistic change from a network perspective can help us to further understand their mechanism of action. Some, but not all, data suggest that psychedelics may exert their effects, in part, by disrupting the activity of the default mode network, which is involved in both introspection and self-referential thinking and is over-active in MDD. CONCLUSION The mechanisms of action underlying the antidepressant effect of serotonergic psychedelics remains an active area of research. Several competing theories are being evaluated and more research is needed to determine which ones are supported by the most robust evidence.
Collapse
Affiliation(s)
- Muhammad Ishrat Husain
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Nicole Ledwos
- Centre for Complex Interventions, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Elise Fellows
- Centre for Complex Interventions, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Jenna Baer
- Centre for Complex Interventions, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Joshua D Rosenblat
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Daniel M Blumberger
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Benoit H Mulsant
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - David J Castle
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Centre for Complex Interventions, Centre for Addiction and Mental Health, Toronto, ON, Canada
| |
Collapse
|
40
|
Li XL, Liu H, Liu SH, Cheng Y, Xie GJ. Intranasal Administration of Brain-Derived Neurotrophic Factor Rescues Depressive-Like Phenotypes in Chronic Unpredictable Mild Stress Mice. Neuropsychiatr Dis Treat 2022; 18:1885-1894. [PMID: 36062024 PMCID: PMC9438797 DOI: 10.2147/ndt.s369412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/17/2022] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Major depression disorder is the most common diagnosed mental illnesses, and it bring a high social and economic burden. However, the current treatment for depression has limitations with side effects. Hence, there is an urgent need to search more effective treatment for major depressive disorder. Brain-derived neurotrophic factor (BDNF) is a neurotrophin that is vital to the survival, growth, and maintenance of neurons. METHODS We administered BDNF into chronic unpredictable mild stress (CUMS)-induced depression mice and assessed the effects of intranasal delivery of BDNF in depression by the tail suspension test, forced swimming test, novelty suppressed feeding test, and open-field test. RESULTS We find that the intranasal administration of BDNF reversed the depressive-like behaviors in CUMS mice as measured Further analyses suggested that BDNF treatment reduced pro-inflammatory cytokine (IL-6, TNF-α, iNOS and IL-1β) expressions in the hippocampus of CUMS mice. In addition, our results showed that BDNF markedly reduced oxidative stress in the hippocampus and blood of CUMS mice. Moreover, our data suggested that BDNF treatment increased neurogenesis in the hippocampus of CUMS mice. DISCUSSION Taken together, our results for the first time demonstrated that intranasal delivery of BDNF protein exhibited anti-depressant-like effects in mice, and therefore may represent a new therapeutic strategy for major depressive disorder.
Collapse
Affiliation(s)
- Xiao-Ling Li
- The Third People's Hospital of Foshan, Foshan, People's Republic of China
| | - Hua Liu
- Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, People's Republic of China
| | - Shu-Han Liu
- Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, People's Republic of China
| | - Yong Cheng
- Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, People's Republic of China.,Institute of National Security, Minzu University of China, Beijing, People's Republic of China
| | - Guo-Jun Xie
- The Third People's Hospital of Foshan, Foshan, People's Republic of China
| |
Collapse
|
41
|
Kakutani N, Yokota T, Fukushima A, Obata Y, Ono T, Sota T, Kinugasa Y, Takahashi M, Matsuo H, Matsukawa R, Yoshida I, Kakinoki S, Yonezawa K, Himura Y, Yokota I, Yamamoto K, Tsuchihashi-Makaya M, Kinugawa S. Impact of citrus fruit intake on the mental health of patients with chronic heart failure. J Cardiol 2021; 79:719-726. [PMID: 34955372 DOI: 10.1016/j.jjcc.2021.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/20/2021] [Accepted: 11/25/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND The full impact of the intake of citrus fruits on the risk of depression in individuals with chronic heart failure (HF) is unknown. Here, we examined the associations between the estimated habitual intakes of citrus fruits and depressive symptoms in patients with chronic HF. METHODS We enrolled 150 stable outpatients with chronic HF who had a history of worsening HF. To assess the patients' daily dietary patterns, we used a brief self-administered diet-history questionnaire to calculate the daily consumption of foods and nutrients. To assess the patients' mental state, we used a nine-item Patient Health Questionnaire (PHQ-9). RESULTS Twelve patients (8%) were identified as having moderate-to-severe depression (PHQ-9 score ≥10). The patients with PHQ-9 ≥10 had lower daily intakes of citrus fruits compared to those with no or mild depressive symptoms (PHQ-9 <10). The daily intakes of various antioxidants, including vitamin C, β-carotene, and β-cryptoxanthin, all of which are abundant in citrus fruits, were reduced in the patients with PHQ-9 ≥10, accompanied by higher serum levels of 8-isoprostane (an oxidative stress marker). A multivariate logistic regression analysis using forward selection showed that a lowered daily intake of citrus fruits was an independent predictor of the comorbidity of moderate-to-severe depression in patients with chronic HF, after adjustment for age, gender, and the hemoglobin value. CONCLUSIONS A lower daily consumption of citrus fruits was associated with higher prevalence of depression in patients with chronic HF. Our findings support the hypothesis that a daily consumption of citrus fruits has a beneficial effect on the prevention and treatment of depression in chronic HF patients.
Collapse
Affiliation(s)
- Naoya Kakutani
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takashi Yokota
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan; Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Kita-14 Nishi-5, Kita-Ku, Sapporo 060-8648, Japan.
| | - Arata Fukushima
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshikuni Obata
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Taisuke Ono
- Department of Cardiology, Kitami Red Cross Hospital, Kitami, Japan
| | - Takeshi Sota
- Division of Rehabilitation, Tottori University Hospital, Tottori, Japan
| | - Yoshiharu Kinugasa
- Department of Cardiovascular Medicine and Endocrinology and Metabolism, Faculty of Medicine, Tottori University, Tottori, Japan
| | | | - Hisashi Matsuo
- Department of Cardiology, Keiwakai Ebetsu Hospital, Ebetsu, Japan
| | - Ryuichi Matsukawa
- Division of Cardiology, Cardiovascular and Aortic Center, Saiseikai Fukuoka General Hospital, Fukuoka, Japan
| | - Ichiro Yoshida
- Department of Cardiology, Obihiro Kyokai Hospital, Obihiro, Japan
| | - Shigeo Kakinoki
- Department of Cardiology, Otaru Kyokai Hospital, Otaru, Japan
| | - Kazuya Yonezawa
- Department of Clinical Research, National Hospital Organization Hakodate National Hospital, Hakodate, Japan
| | - Yoshihiro Himura
- Department of Cardiology, Hikone Municipal Hospital, Hikone, Japan
| | - Isao Yokota
- Department of Biostatistics, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kazuhiro Yamamoto
- Department of Cardiovascular Medicine and Endocrinology and Metabolism, Faculty of Medicine, Tottori University, Tottori, Japan
| | | | - Shintaro Kinugawa
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
42
|
Fusar-Poli L, Aguglia A, Amerio A, Orsolini L, Salvi V, Serafini G, Volpe U, Amore M, Aguglia E. Peripheral BDNF levels in psychiatric patients with and without a history of suicide attempt: A systematic review and meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110342. [PMID: 33961965 DOI: 10.1016/j.pnpbp.2021.110342] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/20/2021] [Accepted: 05/02/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Psychiatric patients are at increased risk of attempting suicide. Several potential biomarkers of suicide risk have been proposed with inconsistent findings. The present paper aimed to evaluate differences in peripheral BDNF levels between psychiatric patients with and without a history of suicide attempts. METHODS We conducted a systematic review and meta-analysis following the PRISMA guidelines. Relevant papers published up to January 5, 2021 were identified searching the electronic databases Web of KnowledgeSM and PsycINFO. A random-effect meta-analysis was conducted using Stata 16. RESULTS Thirteen studies met inclusion criteria. Overall, no significant differences in BDNF levels between the two groups were found (13 studies, n = 1340, Hedge's g = -0.21, 95% CI -0.44 to 0.02). Heterogeneity was substantial (I2 = 72.91%). Subgroup analyses revealed that BDNF levels were significantly reduced in plasma with medium effect size (5 studies, n = 363, Hedge's g = -0.44, 95% CI -0.86 to -0.02), but not in serum (8 studies, n = 977, Hedge's g = -0.09, 95% CI -0.33 to 0.15). No significant differences were found according to the type of diagnosis (major depressive disorder vs. other diagnoses) or the period of suicide attempt (lifetime vs. recent). CONCLUSION The utility of BDNF as a biomarker of suicide attempts in psychiatric patients appears limited to its plasma concentration. Although caution interpretation is needed, our findings may represent a starting point for the design of rigorous case-control studies exploring the association between neurotrophins and suicidal behaviors.
Collapse
Affiliation(s)
- Laura Fusar-Poli
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, Catania, Italy.
| | - Andrea Aguglia
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Andrea Amerio
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Psychiatry, Tufts University, Boston, MA, USA
| | - Laura Orsolini
- Unit of Clinical Psychiatry, Department of Clinical Neurosciences/DIMSC, School of Medicine, Polytechnic University of Marche, Ancona, Italy; Drug Misuse and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Virginio Salvi
- Unit of Clinical Psychiatry, Department of Clinical Neurosciences/DIMSC, School of Medicine, Polytechnic University of Marche, Ancona, Italy
| | - Gianluca Serafini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Umberto Volpe
- Unit of Clinical Psychiatry, Department of Clinical Neurosciences/DIMSC, School of Medicine, Polytechnic University of Marche, Ancona, Italy
| | - Mario Amore
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Eugenio Aguglia
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, Catania, Italy
| |
Collapse
|
43
|
Vasupanrajit A, Jirakran K, Tunvirachaisakul C, Maes M. Suicide attempts are associated with activated immune-inflammatory, nitro-oxidative, and neurotoxic pathways: A systematic review and meta-analysis. J Affect Disord 2021; 295:80-92. [PMID: 34416621 DOI: 10.1016/j.jad.2021.08.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Suicide attempts (SA) frequently occur in patients with mood disorders and schizophrenia, which are both accompanied by activated immune-inflammatory and nitro-oxidative (IO&NS) pathways. METHODS We searched PubMed, Google Scholar, and Web of Science, for articles published from inception until February 1, 2021. We included studies that compared blood biomarkers in psychiatric patients with (SA+) and without SA (SA-) and heathy controls and we combined different IO&NS biomarkers into immune, inflammatory, and neurotoxic profiles and used meta-analysis (random-effect model with restricted maximum-likelihood) to delineate effect sizes with 95% confidence interval (CI). FINDINGS Our search included 51 studies comprising 4.945 SA+ patients and 24.148 controls. We stratified the control group into healthy controls and SA- patients. SA+ patients showed significantly (p<0.001) increased immune activation (SMD: 1.044; CI: 0.599, 1.489), inflammation (SMD: 1.109; CI: 0.505, 1.714), neurotoxicity (SMD: 0.879; CI: 0.465, 1.293), and lowered neuroprotection (SMD: 0.648; CI: 0.354, 0.941) as compared with healthy controls. When compared with SA- patients, those with SA+ showed significant (p<0.001) immune activation (SMD: 0.290; CI: 0.183, 0.397), inflammation (SMD: 0.311; CI: 0.191, 0.432), and neurotoxicity (SMD: 0.315; CI: 0.198, 0.432), and lowered neuroprotection (SMD: 0.341; CI: 0.167, 0.515). Patients with current, but not lifetime, SA showed significant (p<0.001) levels of inflammation and neurotoxicity as compared with controls. CONCLUSIONS Patients with immune activation are at a higher risk of SA which may be explained by increased neurotoxicity due to inflammation and nitro-oxidative stress. This meta-analysis discovered new biomarkers of SA and therapeutic targets to treat individuals with SA.
Collapse
Affiliation(s)
- Asara Vasupanrajit
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Ketsupar Jirakran
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Maximizing Thai Children's Developmental Potential Research Unit, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chavit Tunvirachaisakul
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Cognitive Impairment and Dementia Research Unit, Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Cognitive Impairment and Dementia Research Unit, Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; IMPACT Strategic Research Center, Deakin University, Geelong, Australia; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria.
| |
Collapse
|
44
|
Yousef AM, El-Deen GMS, Ibrahim AS, Mohamed AE. Serum BDNF and suicidal ideation in drug-naïve and drug-treated MDD patients: a case–control study. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2021. [DOI: 10.1186/s41983-021-00337-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Disturbances in structural and synaptic plasticity have been linked to depression and suicidal ideation. One of the major neurotrophic factors, the brain-derived neurotrophic factor (BDNF), is involved in the maintenance and survival of neurons and synaptic plasticity. This case–control study assesses the serum BDNF and suicidal ideation among drug-naïve and drug-treated MDD patients attending university hospitals and comparing them to healthy control. A simple random sample of 57 MDD patients and 57 age- and sex-comparable controls were enrolled. The researchers conducted a semi-structured interview to collect the demographic characteristics and disease history. Structured Clinical Interview for DSM-5 (SCID-5), Hamilton Depression Rating Scale (HDRS), and Beck Scale for Suicidal Ideation (BSS) were applied to the participants. Blood samples were collected to measure plasma BDNF level.
Results
The MDD group had lower BDNF than the control group. Within the MDD group, drug-naïve patients had significantly lower BDNF than drug-treated patients. Female patients had lower BDNF than male patients. Positive family history of MDD was associated with low BDNF. Severe and moderate cases had lower BDNF than mild cases. High BSS (≥24) was associated with low BDNF. A statistically significant positive correlation was found between BDNF and age, disease duration, duration of the current episode, and the number of previous episodes.
On the other hand, a statistically significant negative correlation was found between BDNF and age of MDD onset, HDRS, and BSS. A regression model was highly statistically significant in the prediction of HDRS. BDNF and disease duration were negatively correlated with HDRS. On the other hand, depression treatment status was not significantly associated with the HDRS prediction model.
Conclusion
Our findings extend the neurotrophic concept of depression by identifying the decreased BDNF levels as a peripheral biomarker of MDD. Our assessment of depression and suicidal ideation (SI) and their relationship to decreased BDNF levels shed light on the etiopathology of MDD and its related suicidality. They should be more studied to understand better the mechanisms by which they develop. To further explore the effect of BDNF in suicide, larger study sizes and a range of psychiatric diagnoses associated with suicide attempts are required.
Collapse
|
45
|
Ponton E, Turecki G, Nagy C. Sex Differences in the Behavioral, Molecular, and Structural Effects of Ketamine Treatment in Depression. Int J Neuropsychopharmacol 2021; 25:75-84. [PMID: 34894233 PMCID: PMC8756094 DOI: 10.1093/ijnp/pyab082] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/08/2021] [Accepted: 11/15/2021] [Indexed: 12/14/2022] Open
Abstract
Major depressive disorder (MDD) is a common psychiatric illness that manifests in sex-influenced ways. Men and women may experience depression differently and also respond to various antidepressant treatments in sex-influenced ways. Ketamine, which is now being used as a rapid-acting antidepressant, is likely the same. To date, the majority of studies investigating treatment outcomes in MDD do not disaggregate the findings in males and females, and this is also true for ketamine. This review aims to highlight that gap by exploring pre-clinical data-at a behavioral, molecular, and structural level-and recent clinical trials. Sex hormones, particularly estrogen and progesterone, influence the response at all levels examined, and sex is therefore a critical factor to examine when looking at ketamine response. Taken together, the data show females are more sensitive to ketamine than males, and it might be possible to monitor the phase of the menstrual cycle to mitigate some risks associated with the use of ketamine for females with MDD. Based on the studies reviewed in this article, we suggest that ketamine should be administered adhering to sex-specific considerations.
Collapse
Affiliation(s)
- Ethan Ponton
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Montreal, Canada
- Department of Psychiatry, McGill University, Montreal, Canada
| | - Corina Nagy
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Montreal, Canada
- Department of Psychiatry, McGill University, Montreal, Canada
- Correspondence: Corina Nagy, PhD, 6875 LaSalle Blvd, Verdun, Québec, Canada H4H 1R3 ()
| |
Collapse
|
46
|
Trousselard M, Claverie D, Fromage D, Becker C, Houël JG, Benoliel JJ, Canini F. The Relationship between Allostasis and Mental Health Patterns in a Pre-Deployment French Military Cohort. Eur J Investig Health Psychol Educ 2021; 11:1239-1253. [PMID: 34698145 PMCID: PMC8544679 DOI: 10.3390/ejihpe11040090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 11/27/2022] Open
Abstract
(1) Background: While a number of studies among military personnel focus on specific pathologies such as post-traumatic stress disorder (PTSD), anxiety, and depression, they do not address the cumulative impact on mental health of stressors related to the profession. The present study aims to determine the relationship between allostatic load and mental health status in a cohort of fit-for-duty soldiers prior to their deployment to Afghanistan. The aim is to better-define the consequences of stressor adjustment. (2) Methods: A cohort of 290 soldiers was evaluated in a cross-sectional study with respect to psychopathology (PTSD, anxiety, depression), psychological functioning (stress reactivity, psychological suffering), and allostatic profile (urinary cortisol and 8-iso-PGF2α, blood cortisol and BDNF). A hierarchical cluster analysis was used to identify allostatic patterns. (3) Results: Around 10% of the cohort reported high scores for psychopathology, and biological alterations were identified. For the remainder, four allostatic profiles could be identified by their psychological functioning. (4) Conclusions: Both biological and psychological assessments are needed to characterize subthreshold symptomatology among military personnel. The psychological significance of allostatic load should be considered as a way to improve health outcomes.
Collapse
Affiliation(s)
- Marion Trousselard
- Département Neurosciences & Sciencs Cognitives, Institut de Recherche Biomédicale des Armées (IRBA), CEDEX, 91223 Brétigny-sur-Orge, France; (D.C.); (D.F.); (F.C.)
- Ecole du Val de Grâce, 1 place A. Laveran, 75005 Paris, France
- APEMAC EA 4360 UDL, 57000 Metz, France
- Correspondence: ; Tel.: +33-1-78651255
| | - Damien Claverie
- Département Neurosciences & Sciencs Cognitives, Institut de Recherche Biomédicale des Armées (IRBA), CEDEX, 91223 Brétigny-sur-Orge, France; (D.C.); (D.F.); (F.C.)
- Faculteé des Sciences Fondamentales et Biomeédicales, Universiteé de Paris, INSERM UMRS 1124, 45 Rue des Saints-Pères, 75006 Paris, France; (C.B.); (J.-J.B.)
| | - Dominique Fromage
- Département Neurosciences & Sciencs Cognitives, Institut de Recherche Biomédicale des Armées (IRBA), CEDEX, 91223 Brétigny-sur-Orge, France; (D.C.); (D.F.); (F.C.)
- Ecole du Val de Grâce, 1 place A. Laveran, 75005 Paris, France
| | - Christel Becker
- Faculteé des Sciences Fondamentales et Biomeédicales, Universiteé de Paris, INSERM UMRS 1124, 45 Rue des Saints-Pères, 75006 Paris, France; (C.B.); (J.-J.B.)
| | | | - Jean-Jacques Benoliel
- Faculteé des Sciences Fondamentales et Biomeédicales, Universiteé de Paris, INSERM UMRS 1124, 45 Rue des Saints-Pères, 75006 Paris, France; (C.B.); (J.-J.B.)
| | - Frédéric Canini
- Département Neurosciences & Sciencs Cognitives, Institut de Recherche Biomédicale des Armées (IRBA), CEDEX, 91223 Brétigny-sur-Orge, France; (D.C.); (D.F.); (F.C.)
- Ecole du Val de Grâce, 1 place A. Laveran, 75005 Paris, France
| |
Collapse
|
47
|
Teng Z, Wang L, Li S, Tan Y, Qiu Y, Wu C, Jin K, Chen J, Huang J, Tang H, Xiang H, Wang B, Yuan H, Wu H. Low BDNF levels in serum are associated with cognitive impairments in medication-naïve patients with current depressive episode in BD II and MDD. J Affect Disord 2021; 293:90-96. [PMID: 34175594 DOI: 10.1016/j.jad.2021.06.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/09/2021] [Accepted: 06/13/2021] [Indexed: 01/08/2023]
Abstract
OBJECTIVE This study aimed to investigate the role of Brain-derived neurotrophic factor (BDNF) in clinical and cognitive outcomes in medication-naïve patients with Bipolar type II disorder (BD II) and Major depressive disorder (MDD). METHODS 45 outpatients with BD II, 40 outpatients with MDD and 40 healthy controls (HCs) were recruited, and sociodemographic and clinical data were collected. Their BDNF serum levels were measured and analyzed with the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). RESULTS BDNF levels were significantly lower in BD II patients than in MDD patients and HCs (p = 0.001). BD II and MDD patients had similar cognitive performance deficits shown on Attention (p = 0.001), Delayed memory (p = 0.001), and RBANS total score (p = 0.001). BDNF levels were positively associated with Visuospatial / constructional and Stroop color-word in BD II group, and with language in MDD group. The area under the curve (AUC) of the ROC analysis in BD II vs. MDD was 0.664, therefore, BDNF levels could not distinguish BD II from MDD. CONCLUSION Our study showed the decreased serum BDNF in MDD and BD II patients, suggesting BDNF may be involved in the pathophysiology of MDD and BD II. BDNF and cognitive deficits are both of low efficiency in distinguishing BD II from MDD. Decrease of BDNF may potentially indicate cognitive dysfunction in BD II and MDD patients with a current depressive episode.
Collapse
Affiliation(s)
- Ziwei Teng
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Lu Wang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Sujuan Li
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yuxi Tan
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yan Qiu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Chujun Wu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Kun Jin
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jindong Chen
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jing Huang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Hui Tang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Hui Xiang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Bolun Wang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Hui Yuan
- Department of Ultrasound Dltrasound Diagnosis, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| | - Haishan Wu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
48
|
Lee BH, Park YM, Hwang JA, Kim YK. Variable alterations in plasma erythropoietin and brain-derived neurotrophic factor levels in patients with major depressive disorder with and without a history of suicide attempt. Prog Neuropsychopharmacol Biol Psychiatry 2021; 110:110324. [PMID: 33857523 DOI: 10.1016/j.pnpbp.2021.110324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/27/2021] [Accepted: 04/08/2021] [Indexed: 01/09/2023]
Abstract
It is hypothesized that major depression disorder (MDD) is associated with impaired neuronal plasticity, and that antidepressant treatments restore neuroplasticity. Brain-derived neurotrophic factor (BDNF) and erythropoietin (Epo) show neurotrophic and neuroprotective effects. We evaluated plasma Epo and BDNF levels in 50 MDD inpatients before treatment and in 50 healthy controls. The MDD inpatients consisted of 20 MDD patients without and 30 MDD patients with a recent suicide attempt. The plasma Epo level was significantly higher in nonsuicidal and suicidal MDD patients than in healthy controls (p ≤ 0.001), while the plasma BDNF level was significantly lower in suicidal MDD than in nonsuicidal MDD patients and healthy controls (p ≤ 0.001). When classifying study participants into low-Epo and high-Epo and low-BDNF and high-BDNF subgroups based on the cutoff of Epo or BDNF calculated using receiver operating characteristics (ROC) curve analysis, logistic regression analysis revealed that high-Epo and low-BDNF status correlated with a respective significant odds ratio of 7.367 (p = 0.015) and 33.123 (p ≤ 0.001) for suicidal MDD. In conclusion, plasma BDNF level was decreased in untreated MDD patients, which was presumed to be a dysfunctional effect of the onset of MDD. However, an increase in plasma Epo was observed in MDD in connection with a recent suicide attempt, indicating that this triggers hypoxic stress to induce a compensatory increase in Epo.
Collapse
Affiliation(s)
- Bun-Hee Lee
- Department of Psychiatry, Maum & Maum Psychiatric Clinic, Seoul 02566, Republic of Korea
| | - Young-Min Park
- Department of Psychiatry, Ilsan Paik Hospital, Inje University College of Medicine, Goyang 10380, Republic of Korea
| | - Jung-A Hwang
- Department of Psychiatry, Korea University Ansan Hospital, Korea University College of Medicine, Ansan 15355, Republic of Korea
| | - Yong-Ku Kim
- Department of Psychiatry, Korea University Ansan Hospital, Korea University College of Medicine, Ansan 15355, Republic of Korea.
| |
Collapse
|
49
|
Gholami M, Hozuri F, Abdolkarimi S, Mahmoudi M, Motaghinejad M, Safari S, Sadr S. Pharmacological and Molecular Evidence of Neuroprotective Curcumin Effects Against Biochemical and Behavioral Sequels Caused by Methamphetamine: Possible Function of CREB-BDNF Signaling Pathway. Basic Clin Neurosci 2021; 12:325-338. [PMID: 34917292 PMCID: PMC8666919 DOI: 10.32598/bcn.2021.1176.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/20/2019] [Accepted: 04/20/2020] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION The neuroprotective impact of curcumin and the role of CREB (Cyclic AMP Response Element Binding protein)-BDNF (Brain-Derived Neurotrophic Factor) signaling pathway was evaluated in Methamphetamine (METH)-induced neurodegeneration in rats. METHODS Sixty adult male rats were randomly divided into 6 groups. While normal saline and 10 mg/kg METH were administered intraperitoneally in groups 1 and 2, groups 3, 4, 5, and 6 received METH (10 mg/kg) and curcumin (10, 20, 40, and 80 mg/kg, respectively) simultaneously. Morris water maze test was administered, and oxidative hippocampal, antioxidant, inflammatory, apoptotic, and CREB and BDNF were assessed. RESULTS We found that METH disturbs learning and memory. Concurrent curcumin therapy (40 and 80 mg/kg) decreased cognitive disturbance caused by METH. Multiple parameters, such as lipid peroxidation, the oxidized form of glutathione, interleukin 1 beta, tumor necrosis factor-alpha, and Bax were increased by METH therapy, while the reduced type of glutathione, Bcl-2, P-CREB, and BDNF concentrations in the hippocampus were decreased. CONCLUSION Different doses of curcumin adversely attenuated METH-induced apoptosis, oxidative stress, and inflammation but enhanced the concentrations of P-CREB and BDNF. The neuroprotection caused by curcumin against METH-induced neurodegeneration is mediated through P-CREB-BDNF signaling pathway activation.
Collapse
Affiliation(s)
- Mina Gholami
- Department of Medicinal Chemistry, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Hozuri
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Setayesh Abdolkarimi
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Mahsa Mahmoudi
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Majid Motaghinejad
- Research Center for Addiction and Risky Behaviors (ReCARB), Iran Psychiatric Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sepideh Safari
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Sadr
- Department of Research and Development, Parsian-Exir-Aria Pharmaceutical Company, Tehran, Iran
| |
Collapse
|
50
|
Jodeiri Farshbaf M, Alviña K. Multiple Roles in Neuroprotection for the Exercise Derived Myokine Irisin. Front Aging Neurosci 2021; 13:649929. [PMID: 33935687 PMCID: PMC8086837 DOI: 10.3389/fnagi.2021.649929] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
Exercise has multiple beneficial effects on health including decreasing the risk of neurodegenerative diseases. Such effects are thought to be mediated (at least in part) by myokines, a collection of cytokines and other small proteins released from skeletal muscles. As an endocrine organ, skeletal muscle synthesizes and secretes a wide range of myokines which contribute to different functions in different organs, including the brain. One such myokine is the recently discovered protein Irisin, which is secreted into circulation from skeletal muscle during exercise from its membrane bound precursor Fibronectin type III domain-containing protein 5 (FNDC5). Irisin contributes to metabolic processes such as glucose homeostasis and browning of white adipose tissue. Irisin also crosses the blood brain barrier and initiates a neuroprotective genetic program in the hippocampus that culminates with increased expression of brain derived neurotrophic factor (BDNF). Furthermore, exercise and FNDC5/Irisin have been shown to have several neuroprotective effects against injuries in ischemia and neurodegenerative disease models, including Alzheimer's disease. In addition, Irisin has anxiolytic and antidepressant effects. In this review we present and summarize recent findings on the multiple effects of Irisin on neural function, including signaling pathways and mechanisms involved. We also discuss how exercise can positively influence brain function and mental health via the "skeletal muscle-brain axis." While there are still many unanswered questions, we put forward the idea that Irisin is a potentially essential mediator of the skeletal muscle-brain crosstalk.
Collapse
Affiliation(s)
| | - Karina Alviña
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States.,Department of Neuroscience, University of Florida, Gainesville, FL, United States
| |
Collapse
|