1
|
Breit S, Denier N, Mertse N, Walther S, Soravia LM, Federspiel A, Wiest R, Bracht T. The neurobiology of motivational anhedonia in patients with depression. Brain Imaging Behav 2025:10.1007/s11682-025-00999-7. [PMID: 40163222 DOI: 10.1007/s11682-025-00999-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2025] [Indexed: 04/02/2025]
Abstract
Anhedonia is a core feature of depression. It contains a consummatory and a motivational aspect. Whilst much neuroimaging research in patients with depression focused on the consummatory aspect of anhedonia, less is known about its motivational aspect. This study aimed to explore the neurobiology of networks related to motivational anhedonia. Thirty-eight patients with major depressive disorder (MDD) and 19 healthy controls underwent diffusion-weighted and resting state functional magnetic resonance imaging (rs-fMRI). For assessment of motivational anhedonia, we summed the values of the CORE non-interactiveness score, and the items 1 (hopelessness) and 7 (work and activities) of the Hamilton Depression Rating Scale. Whole-brain voxel-wise statistical analysis of fractional anisotropy (FA) data was performed using Tract-Based Spatial Statistics (TBSS). Additionally, we performed a whole-brain comparison of integrated local correlation of rs-fMRI signal (LCOR), to investigate regional functional differences between patients and healthy controls. Whole brain correlations between motivational anhedonia and measures of structural and functional connectivity (FA, and LCOR) were calculated. TBSS-analyses revealed reduced FA in the left superior longitudinal fasciculus (SLF) in patients with MDD. LCOR was reduced in patients with depression in an adjacent cluster localized in bilateral precunei. Within patients, there was a positive correlation between motivational anhedonia and LCOR in the precunei and a negative correlation in bilateral sensorimotor areas. FA-values did not show significant correlations. These findings suggest that motivational anhedonia in depression is linked to alterations of functional connectivity within bilateral precunei. Observed white matter microstructural alterations in the SLF do not show such an association.
Collapse
Affiliation(s)
- Sigrid Breit
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, University of Bern, Bern, Switzerland
| | - Niklaus Denier
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, University of Bern, Bern, Switzerland
| | - Nicolas Mertse
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, University of Bern, Bern, Switzerland
| | - Sebastian Walther
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, University of Bern, Bern, Switzerland
- Department of Psychiatry, Psychosomatics, and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Leila M Soravia
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, University of Bern, Bern, Switzerland
| | - Andrea Federspiel
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, University of Bern, Bern, Switzerland
| | - Roland Wiest
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, University of Bern, Bern, Switzerland
- Institute of Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
| | - Tobias Bracht
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, University of Bern, Bern, Switzerland.
| |
Collapse
|
2
|
Zhang Y, Wu G, De Witte S, Baeken C. Microstructural Alterations in Superficial White Matter Associated With Anhedonia and Suicidal Ideation in Major Depressive Disorder. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2025:S2451-9022(25)00067-9. [PMID: 40043799 DOI: 10.1016/j.bpsc.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 05/31/2025]
Abstract
BACKGROUND Major depressive disorder (MDD) is characterized by impaired emotional and cognitive functions. Previous studies have focused on the long-range white matter bundles within the deep white matter connecting distant cortices. Less is known about the superficial white matter (SWM), which consists of short bundles connecting adjacent and precise cortices. Therefore, we investigated the differences in SWM between patients with MDD and healthy control participants (HCs) and its relationship with core clinical depressive symptoms. METHODS Probabilistic tractography was used to generate the SWM bundles in 62 antidepressant-free patients with MDD and 77 HCs. Diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) were used to compare the microstructural differences of SWM between the 2 groups. Correlations were calculated between the diffusion metrics in the SWM showing significant between-group differences and core clinical depressive symptoms. RESULTS Compared with HCs, patients with MDD showed DTI metric changes in the SWM bundles connecting frontal-parietal-temporal-occipital cortices. For the NODDI metrics, patients with MDD showed a lower neurite density index in the SWM bundles connecting frontal-parietal-temporal cortices. Here, the neurite density index in the SWM bundles connecting prefrontal-insula regions was significantly negatively correlated with anhedonia and suicidal ideation. Patients with MDD displayed a higher orientation dispersion index in the SWM bundles connecting parietal, occipital, and posterior cingulate cortices. CONCLUSIONS SWM plays a crucial role in the neuropathology of MDD. The decreased neurite density in the SWM connecting prefrontal-insula regions may underlie anhedonia and suicidal ideation. Furthermore, NODDI metrics may offer more specific detection of SWM microstructural abnormalities than DTI metrics.
Collapse
Affiliation(s)
- Yichen Zhang
- Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent Experimental Psychiatry Lab, Ghent University, Ghent, Belgium.
| | - Guorong Wu
- Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent Experimental Psychiatry Lab, Ghent University, Ghent, Belgium; Key Laboratory of Cognition and Personality, Faculty of Psychology, Southwest University, Chongqing, China
| | - Sara De Witte
- Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent Experimental Psychiatry Lab, Ghent University, Ghent, Belgium; Neuroprotection and Neuromodulation Research Group, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium; Department of Neurology and Bru-BRAIN, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Chris Baeken
- Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent Experimental Psychiatry Lab, Ghent University, Ghent, Belgium; Neuroprotection and Neuromodulation Research Group, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium; Department of Psychiatry, Universitair Ziekenhuis Brussel, Brussels, Belgium; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| |
Collapse
|
3
|
Liu W, Heij J, Liu S, Liebrand L, Caan M, van der Zwaag W, Veltman DJ, Lu L, Aghajani M, van Wingen G. Structural connectivity of dopaminergic pathways in major depressive disorder: An ultra-high resolution 7-Tesla diffusion MRI study. Eur Neuropsychopharmacol 2024; 89:58-70. [PMID: 39341085 DOI: 10.1016/j.euroneuro.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/11/2024] [Accepted: 07/31/2024] [Indexed: 09/30/2024]
Abstract
Accumulating evidence points to imbalanced dopamine (DA) signaling and circulating levels in the pathophysiology of major depressive disorder (MDD). However, the use of conventional MRI scanners and acquisition techniques has prevented a thorough examination of DA neural pathways in MDD. We uniquely employed ultra-high field diffusion MRI at 7.0 Tesla to map the white matter architecture and integrity of several DA pathways in MDD patients. Fifty-three MDD patients and 12 healthy controls (HCs) were enrolled in the final analysis. Images were acquired using a 7.0 Tesla MRI scanner. FreeSurfer was used to segment components of DA pathways, and MRtrix was used to perform preprocessing and tractography of mesolimbic, mesocortical, nigrostriatal, and unconventional DA pathways. Bayesian analyses assessed the impact of MDD and clinical features on DA tracts. MDD was associated with perturbed white matter microstructural properties of the nigrostriatal pathway, while several MDD features (severity of depression/age of onset/insomnia) related to connectivity changes within mesocortical, nigrostriatal, and unconventional pathways. MDD is associated with microstructural differences in the nigrostriatal pathway. The findings provide insight into the structural architecture and integrity of several DA pathways in MDD, and implicate their involvement in the clinical manifestation of MDD.
Collapse
Affiliation(s)
- Weijian Liu
- Amsterdam UMC location University of Amsterdam, Department of Psychiatry, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands; Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China.
| | - Jurjen Heij
- Spinoza Centre for Neuroimaging, KNAW, Amsterdam, the Netherlands; Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Shu Liu
- Key Laboratory of Genetic Evolution & Animal Models, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Luka Liebrand
- Amsterdam Neuroscience, Amsterdam, the Netherlands; Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiation Oncology, Amsterdam, the Netherlands
| | - Matthan Caan
- Amsterdam Neuroscience, Amsterdam, the Netherlands; Amsterdam UMC location University of Amsterdam, Department of Biomedical Engineering & Physics, Amsterdam, the Netherlands
| | - Wietske van der Zwaag
- Spinoza Centre for Neuroimaging, KNAW, Amsterdam, the Netherlands; Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Dick J Veltman
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam, Netherlands
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China; Peking-Tsinghua Centre for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China; National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China.
| | - Moji Aghajani
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam, Netherlands; Institute of Education & Child Studies, Section Forensic Family & Youth Care, Leiden University, the Netherlands
| | - Guido van Wingen
- Amsterdam UMC location University of Amsterdam, Department of Psychiatry, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands.
| |
Collapse
|
4
|
Tang Y, Wang C, Li Q, Liu G, Song D, Quan Z, Yan Y, Qing H. Neural Network Excitation/Inhibition: A Key to Empathy and Empathy Impairment. Neuroscientist 2024; 30:644-665. [PMID: 38347700 DOI: 10.1177/10738584231223119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
Empathy is an ability to fully understand and feel the mental states of others. We emphasize that empathy is elicited by the transmission of pain, fear, and sensory information. In clinical studies, impaired empathy has been observed in most psychiatric conditions. However, the precise impairment mechanism of the network systems on the pathogenesis of empathy impairment in psychiatric disorders is still unclear. Multiple lines of evidence suggest that disturbances in the excitatory/inhibitory balance in neurologic disorders are key to empathetic impairment in psychiatric disorders. Therefore, we here describe the roles played by the anterior cingulate cortex- and medial prefrontal cortex-dependent neural circuits and their impairments in psychiatric disorders, including anxiety, depression, and autism. In addition, we review recent studies on the role of microglia in neural network excitation/inhibition imbalance, which contributes to a better understanding of the neural network excitation/inhibition imbalance and may open up innovative psychiatric therapies.
Collapse
Affiliation(s)
- Yuanhong Tang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Chunjian Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Qingquan Li
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Gang Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Da Song
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Zhenzhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yan Yan
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, China
| |
Collapse
|
5
|
Bracht T, Mertse N, Breit S, Federspiel A, Wiest R, Soravia LM, Walther S, Denier N. Alterations of perfusion and functional connectivity of the cingulate motor area are associated with psychomotor retardation in major depressive disorder. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01896-8. [PMID: 39297976 DOI: 10.1007/s00406-024-01896-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/31/2024] [Indexed: 09/21/2024]
Abstract
Psychomotor retardation, characterized by slowing of speech, thoughts, and a decrease of movements, is frequent in patients with major depressive disorder (MDD). However, its neurobiological correlates are still poorly understood. This study aimed to explore if cerebral blood flow (CBF) and resting state functional connectivity (rs-FC) of the motor network are altered in patients with MDD and if these changes are associated with psychomotor retardation. Thirty-six right-handed patients with depression and 19 right-handed healthy controls (HC) that did not differ regarding age and sex underwent arterial spin labelling (ASL) and resting-state functional MRI (rs-fMRI) scans. Psychomotor retardation was assessed with the motoric items of the core assessment of psychomotor change (CORE) questionnaire. Patients with MDD had more pronounced psychomotor retardation scores than HC. Patients with MDD had reduced CBF in bilateral cingulate motor area (CMA) and increased resting-state functional connectivity (rs-FC) between the cluster in the CMA and a cluster localized in bilateral supplementary motor areas (SMA). Furthermore, increased rs-FC between the CMA and the left SMA was associated with more pronounced psychomotor retardation. Our results suggest that reduced perfusion of the CMA and increased rs-FC between the CMA and the SMA are associated with psychomotor retardation in patients with depression.
Collapse
Affiliation(s)
- Tobias Bracht
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Murtenstrasse 21, Bern, 3008, Switzerland.
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland.
| | - Nicolas Mertse
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Murtenstrasse 21, Bern, 3008, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Sigrid Breit
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Murtenstrasse 21, Bern, 3008, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Andrea Federspiel
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Murtenstrasse 21, Bern, 3008, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Roland Wiest
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
- Institute of Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
| | - Leila M Soravia
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Murtenstrasse 21, Bern, 3008, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Murtenstrasse 21, Bern, 3008, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Niklaus Denier
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Murtenstrasse 21, Bern, 3008, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| |
Collapse
|
6
|
Oliver D, Chesney E, Cullen AE, Davies C, Englund A, Gifford G, Kerins S, Lalousis PA, Logeswaran Y, Merritt K, Zahid U, Crossley NA, McCutcheon RA, McGuire P, Fusar-Poli P. Exploring causal mechanisms of psychosis risk. Neurosci Biobehav Rev 2024; 162:105699. [PMID: 38710421 PMCID: PMC11250118 DOI: 10.1016/j.neubiorev.2024.105699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/17/2024] [Accepted: 04/28/2024] [Indexed: 05/08/2024]
Abstract
Robust epidemiological evidence of risk and protective factors for psychosis is essential to inform preventive interventions. Previous evidence syntheses have classified these risk and protective factors according to their strength of association with psychosis. In this critical review we appraise the distinct and overlapping mechanisms of 25 key environmental risk factors for psychosis, and link these to mechanistic pathways that may contribute to neurochemical alterations hypothesised to underlie psychotic symptoms. We then discuss the implications of our findings for future research, specifically considering interactions between factors, exploring universal and subgroup-specific factors, improving understanding of temporality and risk dynamics, standardising operationalisation and measurement of risk and protective factors, and developing preventive interventions targeting risk and protective factors.
Collapse
Affiliation(s)
- Dominic Oliver
- Department of Psychiatry, University of Oxford, Oxford, UK; NIHR Oxford Health Biomedical Research Centre, Oxford, UK; OPEN Early Detection Service, Oxford Health NHS Foundation Trust, Oxford, UK; Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Edward Chesney
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Addictions Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 4 Windsor Walk, London SE5 8AF, UK
| | - Alexis E Cullen
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Clinical Neuroscience, Karolinska Institutet, Sweden
| | - Cathy Davies
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Amir Englund
- Addictions Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 4 Windsor Walk, London SE5 8AF, UK
| | - George Gifford
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Sarah Kerins
- Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Paris Alexandros Lalousis
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Yanakan Logeswaran
- Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Biostatistics & Health Informatics, King's College London, London, UK
| | - Kate Merritt
- Division of Psychiatry, Institute of Mental Health, UCL, London, UK
| | - Uzma Zahid
- Department of Psychology, King's College London, London, UK
| | - Nicolas A Crossley
- Department of Psychiatry, University of Oxford, Oxford, UK; Department of Psychiatry, School of Medicine, Pontificia Universidad Católica de Chile, Chile
| | - Robert A McCutcheon
- Department of Psychiatry, University of Oxford, Oxford, UK; Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Oxford Health NHS Foundation Trust, Oxford, UK
| | - Philip McGuire
- Department of Psychiatry, University of Oxford, Oxford, UK; NIHR Oxford Health Biomedical Research Centre, Oxford, UK; OPEN Early Detection Service, Oxford Health NHS Foundation Trust, Oxford, UK
| | - Paolo Fusar-Poli
- Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University Munich, Munich, Germany; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; OASIS Service, South London and Maudsley NHS Foundation Trust, London SE11 5DL, UK
| |
Collapse
|
7
|
Leserri S, Segura-Amil A, Nowacki A, Debove I, Petermann K, Schäppi L, Preti MG, Van De Ville D, Pollo C, Walther S, Nguyen TAK. Linking connectivity of deep brain stimulation of nucleus accumbens area with clinical depression improvements: a retrospective longitudinal case series. Eur Arch Psychiatry Clin Neurosci 2024; 274:685-696. [PMID: 37668723 PMCID: PMC10994999 DOI: 10.1007/s00406-023-01683-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/14/2023] [Indexed: 09/06/2023]
Abstract
Treatment-resistant depression is a severe form of major depressive disorder and deep brain stimulation is currently an investigational treatment. The stimulation's therapeutic effect may be explained through the functional and structural connectivities between the stimulated area and other brain regions, or to depression-associated networks. In this longitudinal, retrospective study, four female patients with treatment-resistant depression were implanted for stimulation in the nucleus accumbens area at our center. We analyzed the structural and functional connectivity of the stimulation area: the structural connectivity was investigated with probabilistic tractography; the functional connectivity was estimated by combining patient-specific stimulation volumes and a normative functional connectome. These structural and functional connectivity profiles were then related to four clinical outcome scores. At 1-year follow-up, the remission rate was 66%. We observed a consistent structural connectivity to Brodmann area 25 in the patient with the longest remission phase. The functional connectivity analysis resulted in patient-specific R-maps describing brain areas significantly correlated with symptom improvement in this patient, notably the prefrontal cortex. But the connectivity analysis was mixed across patients, calling for confirmation in a larger cohort and over longer time periods.
Collapse
Affiliation(s)
- Simona Leserri
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- ARTORG Center for Biomedical Engineering Research, University Bern, Bern, Switzerland
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Alba Segura-Amil
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- ARTORG Center for Biomedical Engineering Research, University Bern, Bern, Switzerland
| | - Andreas Nowacki
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ines Debove
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Katrin Petermann
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Lea Schäppi
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Maria Giulia Preti
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Department of Radiology and Medical InformaticsFaculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Dimitri Van De Ville
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Department of Radiology and Medical InformaticsFaculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Claudio Pollo
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - T A Khoa Nguyen
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- ARTORG Center for Biomedical Engineering Research, University Bern, Bern, Switzerland.
- ARTORG IGT, Murtenstrasse 50, 3008, Bern, Switzerland.
| |
Collapse
|
8
|
Chu Z, Yuan L, Lian K, He M, Lu Y, Cheng Y, Xu X, Shen Z. Reduced gray matter volume of the hippocampal tail in melancholic depression: evidence from an MRI study. BMC Psychiatry 2024; 24:183. [PMID: 38443878 PMCID: PMC10913289 DOI: 10.1186/s12888-024-05630-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/21/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Melancholic depression (MD) is one of the most prevalent and severe subtypes of major depressive disorder (MDD). Previous studies have revealed inconsistent results regarding alterations in grey matter volume (GMV) of the hippocampus and amygdala of MD patients, possibly due to overlooking the complexity of their internal structure. The hippocampus and amygdala consist of multiple and functionally distinct subregions, and these subregions may play different roles in MD. This study aims to investigate the volumetric alterations of each subregion of the hippocampus and amygdala in patients with MD and non-melancholic depression (NMD). METHODS A total of 146 drug-naïve, first-episode MDD patients (72 with MD and 74 with NMD) and 81 gender-, age-, and education-matched healthy controls (HCs) were included in the study. All participants underwent magnetic resonance imaging (MRI) scans. The subregional segmentation of hippocampus and amygdala was performed using the FreeSurfer 6.0 software. The multivariate analysis of covariance (MANCOVA) was used to detect GMV differences of the hippocampal and amygdala subregions between three groups. Partial correlation analysis was conducted to explore the relationship between hippocampus or amygdala subfields and clinical characteristics in the MD group. Age, gender, years of education and intracranial volume (ICV) were included as covariates in both MANCOVA and partial correlation analyses. RESULTS Patients with MD exhibited a significantly lower GMV of the right hippocampal tail compared to HCs, which was uncorrelated with clinical characteristics of MD. No significant differences were observed among the three groups in overall and subregional GMV of amygdala. CONCLUSIONS Our findings suggest that specific hippocampal subregions in MD patients are more susceptible to volumetric alterations than the entire hippocampus. The reduced right hippocampal tail may underlie the unique neuropathology of MD. Future longitudinal studies are required to better investigate the associations between reduced right hippocampal tail and the onset and progression of MD.
Collapse
Affiliation(s)
- Zhaosong Chu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, 650032, Kunming, China
- Yunnan Province Clinical Research Center for Mental Health, 650032, Kunming, China
| | - Lijin Yuan
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, 650032, Kunming, China
- Yunnan Province Clinical Research Center for Mental Health, 650032, Kunming, China
| | - Kun Lian
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, 650032, Kunming, China
- Yunnan Province Clinical Research Center for Mental Health, 650032, Kunming, China
| | - Mengxin He
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, 650032, Kunming, China
- Yunnan Province Clinical Research Center for Mental Health, 650032, Kunming, China
| | - Yi Lu
- Department of Medical Imaging, The First Affiliated Hospital of Kunming Medical University, 650032, Kunming, China
| | - Yuqi Cheng
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, 650032, Kunming, China
- Yunnan Province Clinical Research Center for Mental Health, 650032, Kunming, China
| | - Xiufeng Xu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, 650032, Kunming, China.
- Yunnan Province Clinical Research Center for Mental Health, 650032, Kunming, China.
| | - Zonglin Shen
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, 650032, Kunming, China.
- Yunnan Province Clinical Research Center for Mental Health, 650032, Kunming, China.
| |
Collapse
|
9
|
Nakamura Y, Ishida T, Tanaka SC, Mitsuyama Y, Yokoyama S, Shinzato H, Itai E, Okada G, Kobayashi Y, Kawashima T, Miyata J, Yoshihara Y, Takahashi H, Aoki R, Nakamura M, Ota H, Itahashi T, Morita S, Kawakami S, Abe O, Okada N, Kunimatsu A, Yamashita A, Yamashita O, Imamizu H, Morimoto J, Okamoto Y, Murai T, Hashimoto R, Kasai K, Kawato M, Koike S. Distinctive alterations in the mesocorticolimbic circuits in various psychiatric disorders. Psychiatry Clin Neurosci 2023; 77:345-354. [PMID: 36905180 PMCID: PMC11488596 DOI: 10.1111/pcn.13542] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
AIM Increasing evidence suggests that psychiatric disorders are linked to alterations in the mesocorticolimbic dopamine-related circuits. However, the common and disease-specific alterations remain to be examined in schizophrenia (SCZ), major depressive disorder (MDD), and autism spectrum disorder (ASD). Thus, this study aimed to examine common and disease-specific features related to mesocorticolimbic circuits. METHODS This study included 555 participants from four institutes with five scanners: 140 individuals with SCZ (45.0% female), 127 individuals with MDD (44.9%), 119 individuals with ASD (15.1%), and 169 healthy controls (HC) (34.9%). All participants underwent resting-state functional magnetic resonance imaging. A parametric empirical Bayes approach was adopted to compare estimated effective connectivity among groups. Intrinsic effective connectivity focusing on the mesocorticolimbic dopamine-related circuits including the ventral tegmental area (VTA), shell and core parts of the nucleus accumbens (NAc), and medial prefrontal cortex (mPFC) were examined using a dynamic causal modeling analysis across these psychiatric disorders. RESULTS The excitatory shell-to-core connectivity was greater in all patients than in the HC group. The inhibitory shell-to-VTA and shell-to-mPFC connectivities were greater in the ASD group than in the HC, MDD, and SCZ groups. Furthermore, the VTA-to-core and VTA-to-shell connectivities were excitatory in the ASD group, while those connections were inhibitory in the HC, MDD, and SCZ groups. CONCLUSION Impaired signaling in the mesocorticolimbic dopamine-related circuits could be an underlying neuropathogenesis of various psychiatric disorders. These findings will improve the understanding of unique neural alternations of each disorder and will facilitate identification of effective therapeutic targets.
Collapse
Affiliation(s)
- Yuko Nakamura
- Center for Evolutionary Cognitive Sciences, Graduate School of Art and SciencesUniversity of TokyoTokyoJapan
- University of Tokyo Institute for Diversity & Adaptation of Human Mind (UTIDAHM)TokyoJapan
| | - Takuya Ishida
- Center for Evolutionary Cognitive Sciences, Graduate School of Art and SciencesUniversity of TokyoTokyoJapan
- Department of NeuropsychiatryGraduate School of Wakayama Medical UniversityWakayamaJapan
| | - Saori C. Tanaka
- Brain Information Communication Research Laboratory GroupAdvanced Telecommunications Research Institutes International (ATR)KyotoJapan
- Information Science, Graduate School of Science and TechnologyNara Institute of Science and TechnologyNaraJapan
| | - Yuki Mitsuyama
- Department of Psychiatry and NeurosciencesHiroshima UniversityHiroshimaJapan
| | - Satoshi Yokoyama
- Department of Psychiatry and NeurosciencesHiroshima UniversityHiroshimaJapan
| | - Hotaka Shinzato
- Department of Psychiatry and NeurosciencesHiroshima UniversityHiroshimaJapan
| | - Eri Itai
- Department of Psychiatry and NeurosciencesHiroshima UniversityHiroshimaJapan
| | - Go Okada
- Department of Psychiatry and NeurosciencesHiroshima UniversityHiroshimaJapan
| | - Yuko Kobayashi
- Department of Psychiatry, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Takahiko Kawashima
- Department of Psychiatry, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Jun Miyata
- Department of Psychiatry, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Yujiro Yoshihara
- Department of Psychiatry, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Hidehiko Takahashi
- Department of Psychiatry and Behavioral SciencesTokyo Medical and Dental UniversityTokyoJapan
| | - Ryuta Aoki
- Medical Institute of Developmental Disabilities ResearchShowa UniversityTokyoJapan
| | - Motoaki Nakamura
- Medical Institute of Developmental Disabilities ResearchShowa UniversityTokyoJapan
| | - Haruhisa Ota
- Medical Institute of Developmental Disabilities ResearchShowa UniversityTokyoJapan
| | - Takashi Itahashi
- Medical Institute of Developmental Disabilities ResearchShowa UniversityTokyoJapan
| | - Susumu Morita
- Department of Neuropsychiatry, Graduate School of MedicineUniversity of TokyoTokyoJapan
| | - Shintaro Kawakami
- Department of Neuropsychiatry, Graduate School of MedicineUniversity of TokyoTokyoJapan
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicinethe University of TokyoTokyoJapan
| | - Naohiro Okada
- The International Research Center for Neurointelligence (WPI‐IRCN), Institutes for Advanced Study (UTIAS)University of TokyoTokyoJapan
| | - Akira Kunimatsu
- Department of RadiologyInternational University of Health and Welfare Mita HospitalTokyoJapan
| | - Ayumu Yamashita
- Brain Information Communication Research Laboratory GroupAdvanced Telecommunications Research Institutes International (ATR)KyotoJapan
- Department of PsychiatryBoston University School of MedicineBostonMassachusettsUSA
| | - Okito Yamashita
- Brain Information Communication Research Laboratory GroupAdvanced Telecommunications Research Institutes International (ATR)KyotoJapan
- Center for Advanced Intelligence ProjectRIKENTokyoJapan
| | - Hiroshi Imamizu
- Brain Information Communication Research Laboratory GroupAdvanced Telecommunications Research Institutes International (ATR)KyotoJapan
- Department of Psychology, Graduate School of Humanities and Sociologythe University of TokyoTokyoJapan
| | - Jun Morimoto
- Brain Information Communication Research Laboratory GroupAdvanced Telecommunications Research Institutes International (ATR)KyotoJapan
- Department of Systems Science, Graduate School of InformaticsKyoto UniversityKyotoJapan
| | - Yasumasa Okamoto
- Department of Psychiatry and NeurosciencesHiroshima UniversityHiroshimaJapan
| | - Toshiya Murai
- Department of Psychiatry, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Ryu‐Ichiro Hashimoto
- Medical Institute of Developmental Disabilities ResearchShowa UniversityTokyoJapan
- Department of Language SciencesTokyo Metropolitan UniversityTokyoJapan
| | - Kiyoto Kasai
- Center for Evolutionary Cognitive Sciences, Graduate School of Art and SciencesUniversity of TokyoTokyoJapan
- University of Tokyo Institute for Diversity & Adaptation of Human Mind (UTIDAHM)TokyoJapan
- Department of Neuropsychiatry, Graduate School of MedicineUniversity of TokyoTokyoJapan
- The International Research Center for Neurointelligence (WPI‐IRCN), Institutes for Advanced Study (UTIAS)University of TokyoTokyoJapan
| | - Mitsuo Kawato
- Brain Information Communication Research Laboratory GroupAdvanced Telecommunications Research Institutes International (ATR)KyotoJapan
| | - Shinsuke Koike
- Center for Evolutionary Cognitive Sciences, Graduate School of Art and SciencesUniversity of TokyoTokyoJapan
- University of Tokyo Institute for Diversity & Adaptation of Human Mind (UTIDAHM)TokyoJapan
- The International Research Center for Neurointelligence (WPI‐IRCN), Institutes for Advanced Study (UTIAS)University of TokyoTokyoJapan
| |
Collapse
|
10
|
Denier N, Walther S, Breit S, Mertse N, Federspiel A, Meyer A, Soravia LM, Wallimann M, Wiest R, Bracht T. Electroconvulsive therapy induces remodeling of hippocampal co-activation with the default mode network in patients with depression. Neuroimage Clin 2023; 38:103404. [PMID: 37068311 PMCID: PMC10130338 DOI: 10.1016/j.nicl.2023.103404] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/15/2023] [Accepted: 04/09/2023] [Indexed: 04/19/2023]
Abstract
INTRODUCTION Electroconvulsive therapy (ECT) is a highly efficient treatment for depression. Previous studies repeatedly reported an ECT-induced volume increase in the hippocampi. We assume that this also affects extended hippocampal networks. This study aims to investigate the structural and functional interplay between hippocampi, hippocampal pathways and core regions of the default mode network (DMN). Twenty patients with a current depressive episode receiving ECT-treatment and twenty age and sex matched healthy controls (HC) were included in the study. ECT-patients underwent multimodal magnetic resonance imaging (MRI)-scans (diffusion weighted imaging, resting state functional MRI) before and after an ECT-index series. HC were also scanned twice in a similar between-scan time-interval. Parahippocampal cingulum (PHC) and uncinate fasciculus (UF) were reconstructed for each participant using manual tractography. Fractional anisotropy (FA) was averaged across tracts. Furthermore, we investigated seed-based functional connectivity (FC) from bilateral hippocampi and from the PCC, a core region of the DMN. At baseline, FA in PHC and UF did not differ between groups. There was no baseline group difference of hippocampal-FC. PCC-FC was decreased in ECT-patients. ECT induced a decrease in FA in the left PHC in the ECT group. No longitudinal changes of FA were found in the UF. Furthermore, there was a decrease in hippocampal-PCC-FC, an increase in hippocampal-supplementary motor area-FC, and an increase in PCC-FC in the ECT-group, reversing group differences at baseline. Our findings suggest that ECT induces structural and functional remodeling of a hippocampal-DMN. Those changes may contribute to ECT-induced clinical response in patients with depression.
Collapse
Affiliation(s)
- Niklaus Denier
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Sigrid Breit
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Nicolas Mertse
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Andrea Federspiel
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Agnes Meyer
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Leila M Soravia
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Meret Wallimann
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Roland Wiest
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland; Institute of Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
| | - Tobias Bracht
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland.
| |
Collapse
|
11
|
Han S, Zheng R, Li S, Zhou B, Jiang Y, Fang K, Wei Y, Wen B, Pang J, Li H, Zhang Y, Chen Y, Cheng J. Altered structural covariance network of nucleus accumbens is modulated by illness duration and severity of symptom in depression. J Affect Disord 2023; 324:334-340. [PMID: 36608848 DOI: 10.1016/j.jad.2022.12.159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 12/19/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023]
Abstract
The differential structural covariance of nucleus accumbens (NAcc), playing a vital role in etiology and treatment, remains unclear in depression. We aimed to investigate whether structural covariance of NAcc was altered and how it was modulated by illness duration and severity of symptom measured with Hamilton Depression scale (HAMD). T1-weighted anatomical images of never-treated first-episode patients with depression (n = 195) and matched healthy controls (HCs, n = 78) were acquired. Gray matter volumes were calculated using voxel-based morphometry analysis for each subject. Then, we explored abnormal structural covariance of NAcc and how the abnormality was modulated by illness duration and severity of symptom. Patients with depression exhibited altered structural covariance of NAcc connected to key brain regions in reward system including the medial orbitofrontal cortex, amygdala, insula, parahippocampa gyrus, precuneus, thalamus, hippocampus and cerebellum. In addition, the structural covariance of the NAcc was distinctly modulated by illness duration and the severity of symptom in patients with depression. What is more, the structural covariance of the NAcc connected to hippocampus was modulated by these two factors at the same time. These results elucidate altered structural covariance of the NAcc and its distinct modulation of illness duration and severity of symptom.
Collapse
Affiliation(s)
- Shaoqiang Han
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, China; Engineering Research Center of medical imaging intelligent diagnosis and treatment of Henan Province, China; Key Laboratory of Magnetic Resonance and Brain function of Henan Province, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, China; Henan Engineering Research Center of Brain Function Development and Application, China.
| | - Ruiping Zheng
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, China; Engineering Research Center of medical imaging intelligent diagnosis and treatment of Henan Province, China; Key Laboratory of Magnetic Resonance and Brain function of Henan Province, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, China; Henan Engineering Research Center of Brain Function Development and Application, China
| | - Shuying Li
- Department of Psychiatry, the First Affiliated Hospital of Zhengzhou University, China
| | - Bingqian Zhou
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, China; Engineering Research Center of medical imaging intelligent diagnosis and treatment of Henan Province, China; Key Laboratory of Magnetic Resonance and Brain function of Henan Province, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, China; Henan Engineering Research Center of Brain Function Development and Application, China
| | - Yu Jiang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, China; Engineering Research Center of medical imaging intelligent diagnosis and treatment of Henan Province, China; Key Laboratory of Magnetic Resonance and Brain function of Henan Province, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, China; Henan Engineering Research Center of Brain Function Development and Application, China
| | - Keke Fang
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, China; Engineering Research Center of medical imaging intelligent diagnosis and treatment of Henan Province, China; Key Laboratory of Magnetic Resonance and Brain function of Henan Province, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, China; Henan Engineering Research Center of Brain Function Development and Application, China
| | - Baohong Wen
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, China; Engineering Research Center of medical imaging intelligent diagnosis and treatment of Henan Province, China; Key Laboratory of Magnetic Resonance and Brain function of Henan Province, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, China; Henan Engineering Research Center of Brain Function Development and Application, China
| | - Jianyue Pang
- Department of Psychiatry, the First Affiliated Hospital of Zhengzhou University, China
| | - Hengfen Li
- Department of Psychiatry, the First Affiliated Hospital of Zhengzhou University, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, China; Engineering Research Center of medical imaging intelligent diagnosis and treatment of Henan Province, China; Key Laboratory of Magnetic Resonance and Brain function of Henan Province, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, China; Henan Engineering Research Center of Brain Function Development and Application, China.
| | - Yuan Chen
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, China; Engineering Research Center of medical imaging intelligent diagnosis and treatment of Henan Province, China; Key Laboratory of Magnetic Resonance and Brain function of Henan Province, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, China; Henan Engineering Research Center of Brain Function Development and Application, China.
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, China; Engineering Research Center of medical imaging intelligent diagnosis and treatment of Henan Province, China; Key Laboratory of Magnetic Resonance and Brain function of Henan Province, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, China; Henan Engineering Research Center of Brain Function Development and Application, China.
| |
Collapse
|
12
|
Yan H, Shlobin NA, Jung Y, Zhang KK, Warsi N, Kulkarni AV, Ibrahim GM. Nucleus accumbens: a systematic review of neural circuitry and clinical studies in healthy and pathological states. J Neurosurg 2023; 138:337-346. [PMID: 35901682 DOI: 10.3171/2022.5.jns212548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/17/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The nucleus accumbens (NAcc) of the ventral striatum is critically involved in goal- and reward-based behavior. Structural and functional abnormalities of the NAcc or its associated neural systems are involved in neurological and psychiatric disorders. Studies of neural circuitry have shed light on the subtleties of the structural and functional derangements of the NAcc across various diseases. In this systematic review, the authors sought to identify human studies involving the NAcc and provide a synthesis of the literature on the known circuity of the NAcc in healthy and diseased states, as well as the clinical outcomes following neuromodulation. METHODS A systematic review was conducted using the PubMed, Embase, and Scopus databases. Neuroimaging studies that reported on neural circuitry related to the human NAcc with sample sizes greater than 5 patients were included. Demographic data, aim, design and duration, participants, and clinical and neurocircuitry details and outcomes of the studies were extracted. RESULTS Of 3591 resultant articles, 123 were included. The NAcc and its corticolimbic connections to other brain regions, such as the prefrontal cortex, are largely involved in reward and pain processes, with distinct functional circuitry between the shell and core in healthy patients. There is heterogeneity between clinical studies with regard to the NAcc indirect targeting coordinates, methods for postoperative confirmation, and blinded trial design. Neuromodulation studies provided promising clinical results in the context of addiction and substance misuse, obsessive-compulsive disorder, and mood disorders. The most common complications were impaired memory or concentration, and a notable serious complication was hypomania. CONCLUSIONS The functional diversity of the NAcc highlights the importance of studying the NAcc in healthy and pathological states. The results of this review suggest that NAcc neuromodulation has been attempted in the management of diverse psychiatric indications. There is promising, emerging evidence that the NAcc may be an effective target for specific reward- or pain-based pathologies with a reasonable risk profile.
Collapse
Affiliation(s)
- Han Yan
- 1Division of Neurosurgery, Hospital for Sick Children, Toronto, Ontario, Canada.,2Institute of Health Policy, Management and Evaluation, University of Toronto, Ontario, Canada.,4McMaster Medical School, Hamilton, Ontario, Canada
| | - Nathan A Shlobin
- 3Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | | | - Kristina K Zhang
- 5Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada; and.,6Institute of Medical Science, University of Toronto, Ontario, Canada
| | - Nebras Warsi
- 1Division of Neurosurgery, Hospital for Sick Children, Toronto, Ontario, Canada.,5Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada; and
| | - Abhaya V Kulkarni
- 1Division of Neurosurgery, Hospital for Sick Children, Toronto, Ontario, Canada.,2Institute of Health Policy, Management and Evaluation, University of Toronto, Ontario, Canada
| | - George M Ibrahim
- 1Division of Neurosurgery, Hospital for Sick Children, Toronto, Ontario, Canada.,5Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada; and.,6Institute of Medical Science, University of Toronto, Ontario, Canada
| |
Collapse
|
13
|
Bracht T, Walther S, Breit S, Mertse N, Federspiel A, Meyer A, Soravia LM, Wiest R, Denier N. Distinct and shared patterns of brain plasticity during electroconvulsive therapy and treatment as usual in depression: an observational multimodal MRI-study. Transl Psychiatry 2023; 13:6. [PMID: 36627288 PMCID: PMC9832014 DOI: 10.1038/s41398-022-02304-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/16/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
Electroconvulsive therapy (ECT) is a highly effective treatment for depression. Previous studies point to ECT-induced volume increase in the hippocampi and amygdalae, and to increase in cortical thickness. However, it is unclear if these neuroplastic changes are associated with treatment response. This observational study aimed to address this research question by comparing neuroplasticity between patients with depression receiving ECT and patients with depression that respond to treatment as usual (TAU-responders). Twenty ECT-patients (16 major depressive disorder (MDD), 4 depressed bipolar disorder), 20 TAU-responders (20 MDD) and 20 healthy controls (HC) were scanned twice with multimodal magnetic resonance imaging (structure: MP2RAGE; perfusion: arterial spin labeling). ECT-patients were scanned before and after an ECT-index series (ECT-group). TAU-responders were scanned during a depressive episode and following remission or treatment response. Volumes and cerebral blood flow (CBF) of the hippocampi and amygdalae, and global mean cortical thickness were compared between groups. There was a significant group × time interaction for hippocampal and amygdalar volumes, CBF in the hippocampi and global mean cortical thickness. Hippocampal and amygdalar enlargements and CBF increase in the hippocampi were observed in the ECT-group but neither in TAU-responders nor in HC. Increase in global mean cortical thickness was observed in the ECT-group and in TAU-responders but not in HC. The co-occurrence of increase in global mean cortical thickness in both TAU-responders and in ECT-patients may point to a shared mechanism of antidepressant response. This was not the case for subcortical volume and CBF increase.
Collapse
Affiliation(s)
- Tobias Bracht
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland. .,Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland.
| | - Sebastian Walther
- grid.5734.50000 0001 0726 5157Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland ,Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Sigrid Breit
- grid.5734.50000 0001 0726 5157Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland ,Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Nicolas Mertse
- grid.5734.50000 0001 0726 5157Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland ,Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Andrea Federspiel
- grid.5734.50000 0001 0726 5157Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland ,Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Agnes Meyer
- grid.5734.50000 0001 0726 5157Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Leila M. Soravia
- grid.5734.50000 0001 0726 5157Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland ,Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Roland Wiest
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland ,grid.5734.50000 0001 0726 5157Institute of Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
| | - Niklaus Denier
- grid.5734.50000 0001 0726 5157Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland ,Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| |
Collapse
|
14
|
Liebenow B, Jones R, DiMarco E, Trattner JD, Humphries J, Sands LP, Spry KP, Johnson CK, Farkas EB, Jiang A, Kishida KT. Computational reinforcement learning, reward (and punishment), and dopamine in psychiatric disorders. Front Psychiatry 2022; 13:886297. [PMID: 36339844 PMCID: PMC9630918 DOI: 10.3389/fpsyt.2022.886297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
In the DSM-5, psychiatric diagnoses are made based on self-reported symptoms and clinician-identified signs. Though helpful in choosing potential interventions based on the available regimens, this conceptualization of psychiatric diseases can limit basic science investigation into their underlying causes. The reward prediction error (RPE) hypothesis of dopamine neuron function posits that phasic dopamine signals encode the difference between the rewards a person expects and experiences. The computational framework from which this hypothesis was derived, temporal difference reinforcement learning (TDRL), is largely focused on reward processing rather than punishment learning. Many psychiatric disorders are characterized by aberrant behaviors, expectations, reward processing, and hypothesized dopaminergic signaling, but also characterized by suffering and the inability to change one's behavior despite negative consequences. In this review, we provide an overview of the RPE theory of phasic dopamine neuron activity and review the gains that have been made through the use of computational reinforcement learning theory as a framework for understanding changes in reward processing. The relative dearth of explicit accounts of punishment learning in computational reinforcement learning theory and its application in neuroscience is highlighted as a significant gap in current computational psychiatric research. Four disorders comprise the main focus of this review: two disorders of traditionally hypothesized hyperdopaminergic function, addiction and schizophrenia, followed by two disorders of traditionally hypothesized hypodopaminergic function, depression and post-traumatic stress disorder (PTSD). Insights gained from a reward processing based reinforcement learning framework about underlying dopaminergic mechanisms and the role of punishment learning (when available) are explored in each disorder. Concluding remarks focus on the future directions required to characterize neuropsychiatric disorders with a hypothesized cause of underlying dopaminergic transmission.
Collapse
Affiliation(s)
- Brittany Liebenow
- Neuroscience Graduate Program, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Rachel Jones
- Neuroscience Graduate Program, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Emily DiMarco
- Neuroscience Graduate Program, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Jonathan D. Trattner
- Neuroscience Graduate Program, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Joseph Humphries
- Neuroscience Graduate Program, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - L. Paul Sands
- Neuroscience Graduate Program, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Kasey P. Spry
- Neuroscience Graduate Program, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Christina K. Johnson
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Evelyn B. Farkas
- Georgia State University Undergraduate Neuroscience Institute, Atlanta, GA, United States
| | - Angela Jiang
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Kenneth T. Kishida
- Neuroscience Graduate Program, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of Neurosurgery, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
15
|
Pizzagalli DA. Toward a Better Understanding of the Mechanisms and Pathophysiology of Anhedonia: Are We Ready for Translation? Am J Psychiatry 2022; 179:458-469. [PMID: 35775159 PMCID: PMC9308971 DOI: 10.1176/appi.ajp.20220423] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Anhedonia-the loss of pleasure or lack of reactivity to pleasurable stimuli-remains a formidable treatment challenge across neuropsychiatric disorders. In major depressive disorder, anhedonia has been linked to poor disease course, worse response to psychological, pharmacological, and neurostimulation treatments, and increased suicide risk. Moreover, although some neural abnormalities linked to anhedonia normalize after successful treatment, several persist-for example, blunted activation of the ventral striatum to reward-related cues and reduced functional connectivity involving the ventral striatum. Critically, some of these abnormalities have also been identified in unaffected, never-depressed children of parents with major depressive disorder and have been found to prospectively predict the first onset of major depression. Thus, neural abnormalities linked to anhedonia may be promising targets for prevention. Despite increased appreciation of the clinical importance of anhedonia and its underlying neural mechanisms, important gaps remain. In this overview, the author first summarizes the extant knowledge about the pathophysiology of anhedonia, which may provide a road map toward novel treatment and prevention strategies, and then highlights several priorities to facilitate clinically meaningful breakthroughs. These include a need for 1) appropriately controlled clinical trials, especially those embracing an experimental therapeutics approach to probe target engagement; 2) novel preclinical models relevant to anhedonia, with stronger translational value; and 3) clinical scales that incorporate neuroscientific advances in our understanding of anhedonia. The author concludes by highlighting important future directions, emphasizing the need for an integrated, collaborative, cross-species, and multilevel approach to tackling anhedonic phenotypes.
Collapse
Affiliation(s)
- Diego A. Pizzagalli
- Department of Psychiatry, Harvard Medical School, Boston, and McLean Hospital, Belmont, Mass
| |
Collapse
|
16
|
Bracht T, Mertse N, Walther S, Lüdi K, Breit S, Federspiel A, Wiest R, Denier N. Link between structural connectivity of the medial forebrain bundle, functional connectivity of the ventral tegmental area, and anhedonia in unipolar depression. Neuroimage Clin 2022; 34:102961. [PMID: 35152053 PMCID: PMC8844724 DOI: 10.1016/j.nicl.2022.102961] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/10/2022] [Accepted: 02/06/2022] [Indexed: 12/17/2022]
Abstract
Tract volume and number of tracts are reduced in the left slMFB. Those microstructural alterations are related to depression severity and anhedonia. There is increased VTA-PFC functional connectivity in depression. Those increases are more pronounced in patients with severe anhedonia. Our results extend pathophysiological models of anhedonia in depression.
The ventral tegmental area (VTA), nucleus accumbens (NAcc), and prefrontal cortex (PFC) are essential for experiencing pleasure and initiating motivated behaviour. The VTA, NAcc, and PFC are connected through the medial forebrain bundle (MFB). In humans, two branches have been described: an infero-medial branch (imMFB) and a supero-lateral branch (slMFB). This study aimed to explore the associations between structural connectivity of the MFB, functional connectivity (FC) of the VTA, anhedonia, and depression severity in patients with depression. Fifty-six patients with unipolar depression and 22 healthy controls matched for age, sex, and handedness were recruited at the University Hospital of Psychiatry and Psychotherapy in Bern, Switzerland. Diffusion-weighted imaging and resting-state functional magnetic resonance imaging scans were acquired. Using manual tractography, the imMFB and slMFB were reconstructed bilaterally for each participant. Seed-based resting-state FC was computed from the VTA to the PFC. Hedonic tone was assessed using the Fawcett-Clark Pleasure Scale. We identified reduced tract volume and reduced number of tracts in the left slMFB. There was an increase in FC between the VTA and right medial PFC in patients with depression. Depression severity was associated with reduced tract volume and fewer tracts in the left slMFB. Reduced hedonic tone was associated with reduced tract volume. Conversely, reduced hedonic tone was associated with increased FC between the VTA and the PFC. In conclusion, our results suggest reduced structural connectivity of the slMFB in patients with depression. Increases in FC between the VTA and PFC may be associated with anhedonia or compensatory hyperactivity.
Collapse
Affiliation(s)
- Tobias Bracht
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.
| | - Nicolas Mertse
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Karin Lüdi
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Sigrid Breit
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Andrea Federspiel
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Roland Wiest
- Institute of Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
| | - Niklaus Denier
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| |
Collapse
|
17
|
Yu Q, Guo X, Zhu Z, Feng C, Jiang H, Zheng Z, Zhang J, Zhu J, Wu H. White Matter Tracts Associated With Deep Brain Stimulation Targets in Major Depressive Disorder: A Systematic Review. Front Psychiatry 2022; 13:806916. [PMID: 35573379 PMCID: PMC9095936 DOI: 10.3389/fpsyt.2022.806916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Background Deep brain stimulation (DBS) has been proposed as a last-resort treatment for major depressive disorder (MDD) and has shown potential antidepressant effects in multiple clinical trials. However, the clinical effects of DBS for MDD are inconsistent and suboptimal, with 30-70% responder rates. The currently used DBS targets for MDD are not individualized, which may account for suboptimal effect. Objective We aim to review and summarize currently used DBS targets for MDD and relevant diffusion tensor imaging (DTI) studies. Methods A literature search of the currently used DBS targets for MDD, including clinical trials, case reports and anatomy, was performed. We also performed a literature search on DTI studies in MDD. Results A total of 95 studies are eligible for our review, including 51 DBS studies, and 44 DTI studies. There are 7 brain structures targeted for MDD DBS, and 9 white matter tracts with microstructural abnormalities reported in MDD. These DBS targets modulate different brain regions implicated in distinguished dysfunctional brain circuits, consistent with DTI findings in MDD. Conclusions In this review, we propose a taxonomy of DBS targets for MDD. These results imply that clinical characteristics and white matter tracts abnormalities may serve as valuable supplements in future personalized DBS for MDD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Junming Zhu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hemmings Wu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
18
|
Mertse N, Denier N, Walther S, Breit S, Grosskurth E, Federspiel A, Wiest R, Bracht T. Associations between anterior cingulate thickness, cingulum bundle microstructure, melancholia and depression severity in unipolar depression. J Affect Disord 2022; 301:437-444. [PMID: 35026360 DOI: 10.1016/j.jad.2022.01.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/04/2022] [Accepted: 01/08/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND Structural and functional alterations of the anterior cingulate cortex (ACC) have been related to emotional, cognitive and behavioral domains of major depressive disorder. In this study, we investigate cortical thickness of rostral and caudal ACC. In addition, we explore white matter microstructure of the cingulum bundle (CB), a white matter pathway connecting multiple segments of the ACC. We hypothesized reduced cortical thickness and reduced white matter microstructure of the CB in MDD, in particular in the melancholic subtype. In addition, we expect an association between depression severity and CB microstructure. METHODS Fifty-four patients with a current depressive episode and 22 healthy controls matched for age, gender and handedness underwent structural and diffusion-weighted MRI-scans. Cortical thickness of rostral and caudal ACC were computed. The CB was reconstructed bilaterally using manual tractography. Cortical thickness and fractional anisotropy (FA) of bilateral CB were compared first between all patients and healthy controls and second between healthy controls, melancholic and non-melancholic patients. Correlations between FA and depression severity were calculated. RESULTS We found no group differences in rostral and caudal ACC cortical thickness or in FA of the CB comparing all patients with healthy controls. Melancholic patients had reduced cortical thickness of bilateral caudal ACC compared to non-melancholic patients and compared to healthy controls. Across all patients, depression severity was associated with reduced FA in bilateral CB. LIMITATIONS Impact of medication CONCLUSIONS: Cortical thickness of the caudal ACC is associated with the melancholic syndrome. CB microstructure may represent a marker of depression severity.
Collapse
Affiliation(s)
- Nicolas Mertse
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bolligenstrasse 111, 3000 Bern 60, Bern, Switzerland
| | - Niklaus Denier
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bolligenstrasse 111, 3000 Bern 60, Bern, Switzerland
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bolligenstrasse 111, 3000 Bern 60, Bern, Switzerland
| | - Sigrid Breit
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bolligenstrasse 111, 3000 Bern 60, Bern, Switzerland
| | - Elmar Grosskurth
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bolligenstrasse 111, 3000 Bern 60, Bern, Switzerland
| | - Andrea Federspiel
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bolligenstrasse 111, 3000 Bern 60, Bern, Switzerland
| | - Roland Wiest
- Institute of Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
| | - Tobias Bracht
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bolligenstrasse 111, 3000 Bern 60, Bern, Switzerland.
| |
Collapse
|
19
|
Luttenbacher I, Phillips A, Kazemi R, Hadipour AL, Sanghvi I, Martinez J, Adamson MM. Transdiagnostic role of glutamate and white matter damage in neuropsychiatric disorders: A Systematic Review. J Psychiatr Res 2022; 147:324-348. [PMID: 35151030 DOI: 10.1016/j.jpsychires.2021.12.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/08/2021] [Accepted: 12/19/2021] [Indexed: 12/09/2022]
Abstract
Neuropsychiatric disorders including generalized anxiety disorder (GAD), obsessive-compulsive disorder (OCD), major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SZ) have been considered distinct categories of diseases despite their overlapping characteristics and symptomatology. We aimed to provide an in-depth review elucidating the role of glutamate/Glx and white matter (WM) abnormalities in these disorders from a transdiagnostic perspective. The PubMed online database was searched for studies published between 2010 and 2021. After careful screening, 401 studies were included. The findings point to decreased levels of glutamate in the Anterior Cingulate Cortex in both SZ and BD, whereas Glx is elevated in the Hippocampus in SZ and MDD. With regard to WM abnormalities, the Corpus Callosum and superior Longitudinal Fascicle were the most consistently identified brain regions showing decreased fractional anisotropy (FA) across all the reviewed disorders, except GAD. Additionally, the Uncinate Fasciculus displayed decreased FA in all disorders, except OCD. Decreased FA was also found in the inferior Longitudinal Fasciculus, inferior Fronto-Occipital Fasciculus, Thalamic Radiation, and Corona Radiata in SZ, BD, and MDD. Decreased FA in the Fornix and Corticospinal Tract were found in BD and SZ patients. The Cingulum and Anterior Limb of Internal Capsule exhibited decreased FA in MDD and SZ patients. The results suggest a gradual increase in severity from GAD to SZ defined by the number of brain regions with WM abnormality which may be partially caused by abnormal glutamate levels. WM damage could thus be considered a potential marker of some of the main neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ines Luttenbacher
- Department of Social & Behavioral Sciences, University of Amsterdam, Amsterdam, Netherlands; Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Angela Phillips
- Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Reza Kazemi
- Department of Cognitive Psychology, Institute for Cognitive Science Studies, Tehran, Iran
| | - Abed L Hadipour
- Department of Cognitive Sciences, University of Messina, Messina, Italy
| | - Isha Sanghvi
- Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Department of Neuroscience, University of Southern California, Los Angeles, CA, USA
| | - Julian Martinez
- Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Palo Alto University, Palo Alto, CA, USA
| | - Maheen M Adamson
- Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
20
|
Liang S, Wu Y, Hanxiaoran L, Greenshaw AJ, Li T. Anhedonia in Depression and Schizophrenia: Brain Reward and Aversion Circuits. Neuropsychiatr Dis Treat 2022; 18:1385-1396. [PMID: 35836582 PMCID: PMC9273831 DOI: 10.2147/ndt.s367839] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/28/2022] [Indexed: 11/23/2022] Open
Abstract
Anhedonia, which is defined as markedly diminished interest or pleasure, is a prominent symptom of psychiatric disorders, most notably major depressive disorder (MDD) and schizophrenia. Anhedonia is considered a transdiagnostic symptom that is associated with deficits in neural reward and aversion functions. Here, we review the characteristics of anhedonia in depression and schizophrenia as well as shared or disorder-specific anhedonia-related alterations in reward and aversion pathways of the brain. In particular, we highlight that anhedonia is characterized by impairments in anticipatory pleasure and integration of reward-related information in MDD, whereas anhedonia in schizophrenia is associated with neurocognitive deficits in representing the value of rewards. Dysregulation of the frontostriatal circuit and mesocortical and mesolimbic circuit systems may be the transdiagnostic neurobiological basis of reward and aversion impairments underlying anhedonia in these two disorders. Blunted aversion processing in depression and relatively strong aversion in schizophrenia are primarily attributed to the dysfunction of the habenula, insula, amygdala, and anterior cingulate cortex. Furthermore, patients with schizophrenia appear to exhibit greater abnormal activation and extended functional coupling than those with depression. From a transdiagnostic perspective, understanding the neural mechanisms underlying anhedonia in patients with psychiatric disorders may help in the development of more targeted and efficacious treatment and intervention strategies.
Collapse
Affiliation(s)
- Sugai Liang
- Affiliated Mental Health Centre & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310013, People's Republic of China
| | - Yue Wu
- Affiliated Mental Health Centre & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310013, People's Republic of China
| | - Li Hanxiaoran
- Affiliated Mental Health Centre & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310013, People's Republic of China
| | - Andrew J Greenshaw
- Department of Psychiatry, University of Alberta, Edmonton, AB, T6G 2B7, Canada
| | - Tao Li
- Affiliated Mental Health Centre & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310013, People's Republic of China
| |
Collapse
|
21
|
He M, Cheng Y, Chu Z, Wang X, Xu J, Lu Y, Shen Z, Xu X. White Matter Network Disruption Is Associated With Melancholic Features in Major Depressive Disorder. Front Psychiatry 2022; 13:816191. [PMID: 35492691 PMCID: PMC9046786 DOI: 10.3389/fpsyt.2022.816191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/22/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The efficacy and prognosis of major depressive disorder (MDD) are limited by its heterogeneity. MDD with melancholic features is an important subtype of MDD. The present study aimed to reveal the white matter (WM) network changes in melancholic depression. MATERIALS AND METHODS Twenty-three first-onset, untreated melancholic MDD, 59 non-melancholic MDD patients and 63 health controls underwent diffusion tensor imaging (DTI) scans. WM network analysis based on graph theory and support vector machine (SVM) were used for image data analysis. RESULTS Compared with HC, small-worldness was reduced and abnormal node attributes were in the right orbital inferior frontal gyrus, left orbital superior frontal gyrus, right caudate nucleus, right orbital superior frontal gyrus, right orbital middle frontal gyrus, left rectus gyrus, and left median cingulate and paracingulate gyrus of MDD patients. Compared with non-melancholic MDD, small-worldness was reduced and abnormal node attributes were in right orbital inferior frontal gyrus, left orbital superior frontal gyrus and right caudate nucleus of melancholic MDD. For correlation analysis, the 7th item score of the HRSD-17 (work and interest) was positively associated with increased node betweenness centrality (aBC) values in right orbital inferior frontal gyrus, while negatively associated with the decreased aBC in left orbital superior frontal gyrus. SVM analysis results showed that abnormal aBC in right orbital inferior frontal gyrus and left orbital superior frontal gyrus showed the highest accuracy of 81.0% (69/83), the sensitivity of 66.3%, and specificity of 85.2% for discriminating MDD patients with or without melancholic features. CONCLUSION There is a significant difference in WM network changes between MDD patients with and without melancholic features.
Collapse
Affiliation(s)
- Mengxin He
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China.,Yunnan Clinical Research Center for Mental Disorders, Kunming, China
| | - Yuqi Cheng
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China.,Yunnan Clinical Research Center for Mental Disorders, Kunming, China
| | - Zhaosong Chu
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China.,Yunnan Clinical Research Center for Mental Disorders, Kunming, China
| | - Xin Wang
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jinlei Xu
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yi Lu
- Department of Medical Imaging, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zonglin Shen
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China.,Yunnan Clinical Research Center for Mental Disorders, Kunming, China.,Mental Health Institute of Yunnan, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiufeng Xu
- Yunnan Clinical Research Center for Mental Disorders, Kunming, China
| |
Collapse
|
22
|
Zhu Z, Hubbard E, Guo X, Barbosa DAN, Popal AM, Cai C, Jiang H, Zheng Z, Lin J, Gao W, Zhang J, Bartas K, Macchia D, Derdeyn P, Halpern CH, Mayberg HS, Beier KT, Zhu J, Wu H. A connectomic analysis of deep brain stimulation for treatment-resistant depression. Brain Stimul 2021; 14:1226-1233. [PMID: 34400379 DOI: 10.1016/j.brs.2021.08.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Deep brain stimulation (DBS) has been used as a treatment of last resort for treatment-resistant depression (TRD) for more than a decade. Many DBS targets have been proposed and tested clinically, but the underlying circuit mechanisms remain unclear. Uncovering white matter tracts (WMT) activated by DBS targets may provide crucial information about the circuit substrates mediating DBS efficacy in ameliorating TRD. METHODS We performed probabilistic tractography using diffusion magnetic resonance imaging datas from 100 healthy volunteers in Human Connectome Project datasets to analyze the structural connectivity patterns of stimulation targeting currently-used DBS target for TRD. We generated mean and binary fiber distribution maps and calculated the numbers of WMT streamlines in the dataset. RESULTS Probabilistic tracking results revealed that activation of distinct DBS targets demonstrated modulation of overlapping but considerably distinct pathways. DBS targets were categorized into 4 groups: Cortical, Striatal, Thalamic, and Medial Forebrain Bundle according to their main modulated WMT and brain areas. Our data also revealed that Brodmann area 10 and amygdala are hub structures that are associated with all DBS targets. CONCLUSIONS Our results together suggest that the distinct mechanism of DBS targets implies individualized target selection and formulation in the future of DBS treatment for TRD. The modulation of Brodmann area 10 and amygdala may be critical for the efficacy of DBS-mediated treatment of TRD.
Collapse
Affiliation(s)
- Zhoule Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, China
| | - Elizabeth Hubbard
- Department of Physiology and Biophysics, University of California, Irvine, CA, 92697-4560, USA
| | - Xinxia Guo
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, China
| | - Daniel A N Barbosa
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Abdul Malik Popal
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, China
| | - Chengwei Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, China
| | - Hongjie Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, China
| | - Zhe Zheng
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, China
| | - Jingquan Lin
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, China
| | - Wei Gao
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, China
| | - Katrina Bartas
- Program in Mathematical, Computational, and Systems Biology, University of California, Irvine, CA, 92697-4560, USA
| | - Desiree Macchia
- Department of Physiology and Biophysics, University of California, Irvine, CA, 92697-4560, USA
| | - Pieter Derdeyn
- Program in Mathematical, Computational, and Systems Biology, University of California, Irvine, CA, 92697-4560, USA
| | - Casey H Halpern
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Helen S Mayberg
- Departments of Neurology and Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kevin T Beier
- Department of Physiology and Biophysics, University of California, Irvine, CA, 92697-4560, USA; Department of Neurobiology and Behavior, University of California, Irvine, CA, 92697-4560, USA; Department of Biomedical Engineering, University of California, Irvine, CA, 92697-4560, USA; Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697-4560, USA; Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, 92697, USA.
| | - Junming Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, China.
| | - Hemmings Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, China.
| |
Collapse
|
23
|
Elias GJB, Loh A, Gwun D, Pancholi A, Boutet A, Neudorfer C, Germann J, Namasivayam A, Gramer R, Paff M, Lozano AM. Deep brain stimulation of the brainstem. Brain 2021; 144:712-723. [PMID: 33313788 DOI: 10.1093/brain/awaa374] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/31/2020] [Accepted: 08/17/2020] [Indexed: 01/02/2023] Open
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus, pallidum, and thalamus is an established therapy for various movement disorders. Limbic targets have also been increasingly explored for their application to neuropsychiatric and cognitive disorders. The brainstem constitutes another DBS substrate, although the existing literature on the indications for and the effects of brainstem stimulation remains comparatively sparse. The objective of this review was to provide a comprehensive overview of the pertinent anatomy, indications, and reported stimulation-induced acute and long-term effects of existing white and grey matter brainstem DBS targets. We systematically searched the published literature, reviewing clinical trial articles pertaining to DBS brainstem targets. Overall, 164 studies describing brainstem DBS were identified. These studies encompassed 10 discrete structures: periaqueductal/periventricular grey (n = 63), pedunculopontine nucleus (n = 48), ventral tegmental area (n = 22), substantia nigra (n = 9), mesencephalic reticular formation (n = 7), medial forebrain bundle (n = 8), superior cerebellar peduncles (n = 3), red nucleus (n = 3), parabrachial complex (n = 2), and locus coeruleus (n = 1). Indications for brainstem DBS varied widely and included central neuropathic pain, axial symptoms of movement disorders, headache, depression, and vegetative state. The most promising results for brainstem DBS have come from targeting the pedunculopontine nucleus for relief of axial motor deficits, periaqueductal/periventricular grey for the management of central neuropathic pain, and ventral tegmental area for treatment of cluster headaches. Brainstem DBS has also acutely elicited numerous motor, limbic, and autonomic effects. Further work involving larger, controlled trials is necessary to better establish the therapeutic potential of DBS in this complex area.
Collapse
Affiliation(s)
- Gavin J B Elias
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada
| | - Aaron Loh
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada
| | - Dave Gwun
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada
| | - Aditya Pancholi
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada
| | - Alexandre Boutet
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada.,Joint Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Clemens Neudorfer
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada
| | - Jürgen Germann
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada
| | - Andrew Namasivayam
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada
| | - Robert Gramer
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada
| | - Michelle Paff
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada
| |
Collapse
|
24
|
Avecillas-Chasin JM, Hurwitz TA, Bogod NM, Honey CR. Tractography-Guided Anterior Capsulotomy for Major Depression and Obsessive-Compulsive Disorder: Targeting the Emotion Network. Oper Neurosurg (Hagerstown) 2021; 20:406-412. [PMID: 33475697 DOI: 10.1093/ons/opaa420] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/07/2020] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Bilateral anterior capsulotomy (BAC) is an effective surgical option for patients with treatment-resistant major depression (TRMD) and treatment-resistant obsessive-compulsive disorder (TROCD). The size of the lesion and its precise dorsal-ventral location within the anterior limb of the internal capsule (ALIC) remain undefined. OBJECTIVE To present a method to identify the trajectories of the associative and limbic white matter pathways within the ALIC for targeting in BAC surgery. METHODS Using high-definition tractography, we prospectively tested the feasibility of this method in 2 patients with TRMD and TROCD to tailor the capsulotomy lesion to their limbic pathway. RESULTS The trajectories of the associative and limbic pathways were identified in the ALIC of both patients and we targeted the limbic pathways by defining the dorsal limit of the lesion in a way to minimize the damage to the associative pathways. The final lesions were smaller than those that have been previously published. This individualized procedure was associated with long-term benefit in both patients. CONCLUSION Tractography-guided capsulotomy is feasible and was associated with long-term benefit in patients with TRMD and TROCD.
Collapse
Affiliation(s)
| | - Trevor A Hurwitz
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nicholas M Bogod
- Neurosciences Program, Vancouver General Hospital, Division of Neurology, UBC Department of Medicine, Vancouver, British Columbia, Canada
| | - Christopher R Honey
- Department of Surgery, Division of Neurosurgery, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
25
|
Bracht T, Soravia L, Moggi F, Stein M, Grieder M, Federspiel A, Tschümperlin R, Batschelet HM, Wiest R, Denier N. The role of the orbitofrontal cortex and the nucleus accumbens for craving in alcohol use disorder. Transl Psychiatry 2021; 11:267. [PMID: 33947835 PMCID: PMC8097061 DOI: 10.1038/s41398-021-01384-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 02/03/2023] Open
Abstract
This study aimed to investigate structural and functional alterations of the reward system and the neurobiology of craving in alcohol use disorder (AUD). We hypothesized reduced volume of the nucleus accumbens (NAcc), reduced structural connectivity of the segment of the supero-lateral medial forebrain bundle connecting the orbitofrontal cortex (OFC) with the NAcc (OFC-NAcc), and reduced resting-state OFC-NAcc functional connectivity (FC). Furthermore, we hypothesized that craving is related to an increase of OFC-NAcc FC. Thirty-nine recently abstinent patients with AUD and 18 healthy controls (HC) underwent structural (T1w-MP2RAGE, diffusion-weighted imaging (DWI)) and functional (resting-state fMRI) MRI-scans. Gray matter volume of the NAcc, white matter microstructure (fractional anisotropy (FA)) and macrostructure (tract length) of the OFC-NAcc connection and OFC-NAcc FC were compared between AUD and HC using a mixed model MANCOVA controlling for age and gender. Craving was assessed using the thoughts subscale of the obsessive-compulsive drinking scale (OCDS) scale and was correlated with OFC-NAcc FC. There was a significant main effect of group. Results were driven by a volume reduction of bilateral NAcc, reduced FA in the left hemisphere, and reduced tract length of bilateral OFC-NAcc connections in AUD patients. OFC-NAcc FC did not differ between groups. Craving was associated with increased bilateral OFC-NAcc FC. In conclusion, reduced volume of the NAcc and reduced FA and tract length of the OFC-NAcc network suggest structural alterations of the reward network in AUD. Increased OFC-NAcc FC is associated with craving in AUD, and may contribute to situational alcohol-seeking behavior in AUD.
Collapse
Affiliation(s)
- Tobias Bracht
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.
| | - Leila Soravia
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Clinic Suedhang, Kirchlindach, Switzerland
| | - Franz Moggi
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Maria Stein
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Department of Clinical Psychology and Psychotherapy, Institute of Psychology, University of Bern, Bern, Switzerland
| | - Matthias Grieder
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Andrea Federspiel
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Raphaela Tschümperlin
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Hallie M Batschelet
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Roland Wiest
- Institute of Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
| | - Niklaus Denier
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| |
Collapse
|
26
|
Abnormal Default-Mode Network Homogeneity in Melancholic and Nonmelancholic Major Depressive Disorder at Rest. Neural Plast 2021; 2021:6653309. [PMID: 33995525 PMCID: PMC8096549 DOI: 10.1155/2021/6653309] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/27/2021] [Accepted: 03/31/2021] [Indexed: 12/27/2022] Open
Abstract
Background Melancholic depression has been assumed as a severe type of major depressive disorder (MDD). We aimed to explore if there were some distinctive alterations in melancholic MDD and whether the alterations could be used to discriminate the melancholic MDD and nonmelancholic MDD. Methods Thirty-one outpatients with melancholic MDD, thirty-three outpatients with nonmelancholic MDD, and thirty-two age- and gender-matched healthy controls were recruited. All participants were scanned by resting-state functional magnetic resonance imaging (fMRI). Imaging data were analyzed with the network homogeneity (NH) and support vector machine (SVM) methods. Results Both patient groups exhibited increased NH in the right PCC/precuneus and right angular gyrus and decreased NH in the right middle temporal gyrus compared with healthy controls. Compared with nonmelancholic patients and healthy controls, melancholic patients exhibited significantly increased NH in the bilateral superior medial frontal gyrus and decreased NH in the left inferior temporal gyrus. But merely for melancholic patients, the NH of the right middle temporal gyrus was negatively correlated with TEPS total and contextual anticipatory scores. SVM analysis showed that a combination of NH values in the left superior medial frontal gyrus and left inferior temporal gyrus could distinguish melancholic patients from nonmelancholic patients with accuracy, sensitivity, and specificity of 79.66% (47/59), 70.97% (22/31), and 89.29%(25/28), respectively. Conclusion Our findings showed distinctive network homogeneity alterations in melancholic MDD which may be potential imaging markers to distinguish melancholic MDD and nonmelancholic MDD.
Collapse
|
27
|
Banihashemi L, Peng CW, Verstynen T, Wallace ML, Lamont DN, Alkhars HM, Yeh FC, Beeney JE, Aizenstein HJ, Germain A. Opposing relationships of childhood threat and deprivation with stria terminalis white matter. Hum Brain Mapp 2021; 42:2445-2460. [PMID: 33739544 PMCID: PMC8090789 DOI: 10.1002/hbm.25378] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 01/27/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
While stress may be a potential mechanism by which childhood threat and deprivation influence mental health, few studies have considered specific stress‐related white matter pathways, such as the stria terminalis (ST) and medial forebrain bundle (MFB). Our goal was to examine the relationships between childhood adversity and ST and MFB structural integrity and whether these pathways may provide a link between childhood adversity and affective symptoms and disorders. Participants were young adults (n = 100) with a full distribution of maltreatment history and affective symptom severity. Threat was determined by measures of childhood abuse and repeated traumatic events. Socioeconomic deprivation (SED) was determined by a measure of childhood socioeconomic status (parental education). Participants underwent diffusion spectrum imaging. Human Connectome Project data was used to perform ST and MFB tractography; these tracts were used as ROIs to extract generalized fractional anisotropy (gFA) from each participant. Childhood threat was associated with ST gFA, such that greater threat was associated with less ST gFA. SED was also associated with ST gFA, however, conversely to threat, greater SED was associated with greater ST gFA. Additionally, threat was negatively associated with MFB gFA, and MFB gFA was negatively associated with post‐traumatic stress symptoms. Our results suggest that childhood threat and deprivation have opposing influences on ST structural integrity, providing new evidence that the context of childhood adversity may have an important influence on its neurobiological effects, even on the same structure. Further, the MFB may provide a novel link between childhood threat and affective symptoms.
Collapse
Affiliation(s)
- Layla Banihashemi
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Christine W Peng
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Timothy Verstynen
- Department of Psychology, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Meredith L Wallace
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Statistics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Daniel N Lamont
- Petersen Institute of NanoScience and Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hussain M Alkhars
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Fang-Cheng Yeh
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Joseph E Beeney
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Howard J Aizenstein
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anne Germain
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
28
|
Masuda Y, Okada G, Takamura M, Shibasaki C, Yoshino A, Yokoyama S, Ichikawa N, Okuhata S, Kobayashi T, Yamawaki S, Okamoto Y. Age-related white matter changes revealed by a whole-brain fiber-tracking method in bipolar disorder compared to major depressive disorder and healthy controls. Psychiatry Clin Neurosci 2021; 75:46-56. [PMID: 33090632 PMCID: PMC7894167 DOI: 10.1111/pcn.13166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/23/2020] [Accepted: 10/15/2020] [Indexed: 02/01/2023]
Abstract
AIM Several studies have reported altered age-associated changes in white matter integrity in bipolar disorder (BD). However, little is known as to whether these age-related changes are illness-specific. We assessed disease-specific effects by controlling for age and investigated age-associated changes and Group × Age interactions in white matter integrity among major depressive disorder (MDD) patients, BD patients, and healthy controls. METHODS Healthy controls (n = 96; age range, 20-77 years), MDD patients (n = 101; age range, 25-78 years), and BD patients (n = 58; age range, 22-76 years) participated in this study. Fractional anisotropy (FA) derived from diffusion tensor imaging in 54 white matter tracts were compared after controlling for the linear and quadratic effect of age using a generalized linear model. Age-related effects and Age × Group interactions were also assessed in the model. RESULTS The main effect of group was significant in the left column and body of the fornix after controlling for both linear and quadratic effects of age, and in the left body of the corpus callosum after controlling for the quadratic effect of age. BD patients exhibited significantly lower FA relative to other groups. There was no Age × Group interaction in the tracts. CONCLUSION Significant FA reductions were found in BD patients after controlling for age, indicating that abnormal white matter integrity in BD may occur at a younger age rather than developing progressively with age.
Collapse
Affiliation(s)
- Yoshikazu Masuda
- Department of Psychiatry and Neuroscience, Hiroshima University, Hiroshima, Japan
| | - Go Okada
- Department of Psychiatry and Neuroscience, Hiroshima University, Hiroshima, Japan
| | - Masahiro Takamura
- Department of Psychiatry and Neuroscience, Hiroshima University, Hiroshima, Japan
| | - Chiyo Shibasaki
- Department of Psychiatry and Neuroscience, Hiroshima University, Hiroshima, Japan
| | - Atsuo Yoshino
- Department of Psychiatry and Neuroscience, Hiroshima University, Hiroshima, Japan
| | - Satoshi Yokoyama
- Department of Psychiatry and Neuroscience, Hiroshima University, Hiroshima, Japan
| | - Naho Ichikawa
- Department of Psychiatry and Neuroscience, Hiroshima University, Hiroshima, Japan
| | - Shiho Okuhata
- Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | | | - Shigeto Yamawaki
- Department of Psychiatry and Neuroscience, Hiroshima University, Hiroshima, Japan
| | - Yasumasa Okamoto
- Department of Psychiatry and Neuroscience, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
29
|
Zhang Y, Cui X, Ou Y, Liu F, Li H, Chen J, Zhao J, Xie G, Guo W. Differentiating Melancholic and Non-melancholic Major Depressive Disorder Using Fractional Amplitude of Low-Frequency Fluctuations. Front Psychiatry 2021; 12:763770. [PMID: 35185634 PMCID: PMC8847389 DOI: 10.3389/fpsyt.2021.763770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/14/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Melancholic major depressive disorder (MDD) is a network-based brain disorder. However, whether or not network-based changes can be applied to differentiate melancholic (MEL) from non-melancholic (NMEL) MDD remains unclear. METHODS Thirty-one MEL patients, 28 NMEL patients, and 32 matched healthy controls (HCs) were scanned using resting-state functional magnetic resonance imaging. Patients were assessed by the Chinese version of Snaith-Hamilton Pleasure Scale (SHAPS-C) and Temporal Experience of Pleasure Scale (TEPS). Fractional amplitude of low-frequency fluctuations (fALFF) and correlation analysis were used to analyze the data. RESULTS Compared with HCs, the MEL group had significantly higher fALFF values in the bilateral inferior frontal gyrus and right supplementary motor area (SMA) and significantly lower fALFF values in the right inferior occipital gyrus (IOG), right middle temporal gyrus (MTG)/left IOG, and bilateral superior occipital gyrus (SOG)/MTG. On the other hand, the NMEL group showed significantly higher fALFF values in the bilateral SMA and significantly lower fALFF values in the bilateral posterior cingulate cortex/precuneus relative to HCs. Compared with the NMEL group, the MEL group showed significantly lower fALFF values in the left anterior cingulate cortex (ACC). A correlation was found between the fALFF values of the right SMA and the SHAPS-C in the MEL group. In addition, correlations were observed between the fALFF values of the left ACC and the TEPS contextual consummatory and total scores in all patients. CONCLUSION Our study uncovered that MDD exhibited altered brain activity in extensive brain networks, including the default-mode network, frontal-striatal network, reward system, and frontal-limbic network. Decreased fALFF in the left ACC might be applied to differentiate the two subtypes of MDD.
Collapse
Affiliation(s)
- Yingying Zhang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xilong Cui
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yangpan Ou
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Huabing Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jindong Chen
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jingping Zhao
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Guangrong Xie
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wenbin Guo
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, China
| |
Collapse
|
30
|
Yan M, Chen J, Liu F, Li H, Huang R, Tang Y, Zhao J, Guo W. Disrupted Regional Homogeneity in Major Depressive Disorder With Gastrointestinal Symptoms at Rest. Front Psychiatry 2021; 12:636820. [PMID: 34122171 PMCID: PMC8187583 DOI: 10.3389/fpsyt.2021.636820] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/19/2021] [Indexed: 12/27/2022] Open
Abstract
Background: Gastrointestinal (GI) symptoms are prominent in patients with major depressive disorder (MDD). Previous studies have reported brain structural and functional changes in both MDD and digestive system diseases but it remains unclear whether MDD patients with GI symptoms have brain imaging changes. Methods: We recruited 35 MDD patients with GI symptoms, 17 MDD patients without GI symptoms and 28 age-, gender-, and education-matched healthy controls. All participants were scanned by resting-state functional magnetic resonance imaging (fMRI). Imaging data were analyzed with regional homogeneity (ReHo). Results: The GI group showed higher total HRSD-17 scores, anxiety/somatization, weight loss, and sleep disturbance scores compared to the non-GI group. We found increased ReHo in the right inferior parietal gyrus (IPL), bilateral supplementary motor area (SMA), bilateral cerebellum Crus II, left inferior frontal gyrus (IFG), and bilateral superior medial frontal cortex (SMFC) and decreased ReHo in the right posterior cingulate cortex (PCC), bilateral cuneus, and left middle occipital gyrus (MOG) in patients with GI symptoms relative to the HCs. The GI group showed higher ReHo values in the bilateral precuneus than the non-GI group. Conclusion: MDD patients with GI symptoms showed a greater severity of symptoms than MDD patients without GI symptoms, particularly in terms of anxiety/somatization, weight loss, and sleep disturbances. Increased activity in the default-mode network might be associated with GI symptoms in MDD patients.
Collapse
Affiliation(s)
- Meiqi Yan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jindong Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Huabing Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Renzhi Huang
- Hunan Key Laboratory of Children's Psychological Development and Brain Cognitive Science, Changsha, China
| | - Yanqing Tang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jingping Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, China
| |
Collapse
|
31
|
Yan M, He Y, Cui X, Liu F, Li H, Huang R, Tang Y, Chen J, Zhao J, Xie G, Guo W. Disrupted Regional Homogeneity in Melancholic and Non-melancholic Major Depressive Disorder at Rest. Front Psychiatry 2021; 12:618805. [PMID: 33679477 PMCID: PMC7928375 DOI: 10.3389/fpsyt.2021.618805] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 01/25/2021] [Indexed: 12/17/2022] Open
Abstract
Background: Melancholic depression has been viewed as one severe subtype of major depressive disorder (MDD). However, it is unclear whether melancholic depression has distinct changes in brain imaging. We aimed to explore specific or distinctive alterations in melancholic MDD and whether the alterations could be used to separate melancholic MDD from non-melancholic MDD or healthy controls. Materials and Methods: Thirty-one outpatients with melancholic MDD and thirty-three outpatients with non-melancholic MDD and thirty-two age- and gender-matched healthy controls were recruited. All participants were scanned by resting-state functional magnetic resonance imaging (fMRI). Imaging data were analyzed with the regional homogeneity (ReHo) and support vector machine (SVM) methods. Results: Melancholic MDD patients exhibited lower ReHo in the right superior occipital gyrus/middle occipital gyrus than non-melancholic MDD patients and healthy controls. Merely for non-melancholic MDD patients, decreased ReHo in the right middle frontal gyrus was negatively correlated with the total HRSD-17 scores. SVM analysis results showed that a combination of abnormal ReHo in the right fusiform gyrus/cerebellum Crus I and the right superior occipital gyrus/middle occipital gyrus exhibited the highest accuracy of 83.05% (49/59), with a sensitivity of 90.32% (28/31), and a specificity of 75.00% (21/28) for discriminating patients with melancholic MDD from patients with non-melancholic MDD. And a combination of abnormal ReHo in the right fusiform gyrus/cerebellum VI and left postcentral gyrus/precentral gyrus exhibited the highest accuracy of 98.41% (62/63), with a sensitivity of 96.77% (30/31), and a specificity of 100.00%(32/32) for separating patients with melancholic MDD from healthy controls. Conclusion: Our findings showed the distinctive ReHo pattern in patients with melancholic MDD and found brain area that may be associated with the pathophysiology of non-melancholic MDD. Potential imaging markers for discriminating melancholic MDD from non-melancholic MDD or healthy controls were reported.
Collapse
Affiliation(s)
- Meiqi Yan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yuqiong He
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xilong Cui
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Huabing Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Renzhi Huang
- Hunan Key Laboratory of Children's Psychological Development and Brain Cognitive Science, Changsha, China
| | - Yanqing Tang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jindong Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jingping Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Guangrong Xie
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, China
| |
Collapse
|
32
|
Masuda Y, Okada G, Takamura M, Shibasaki C, Yoshino A, Yokoyama S, Ichikawa N, Okuhata S, Kobayashi T, Yamawaki S, Okamoto Y. White matter abnormalities and cognitive function in euthymic patients with bipolar disorder and major depressive disorder. Brain Behav 2020; 10:e01868. [PMID: 33009714 PMCID: PMC7749556 DOI: 10.1002/brb3.1868] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 08/12/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES In recent years, a growing number of diffusion tensor imaging (DTI) studies have compared white matter integrity between patients with major depressive disorder (MDD) and bipolar disorder (BD). However, few studies have examined the pathophysiological significance of different degrees of white matter abnormalities between the two disorders. The present study comprehensively assessed white matter integrity among healthy controls (HC) and euthymic patients with MDD and BD using whole-brain tractography and examined associations between white matter integrity and cognitive functioning. METHODS We performed neurocognitive examinations and DTI with 30 HCs, 30 patients with MDD, and 30 patients with BD. We statistically evaluated white matter integrity and cognitive function differences across the three groups, assessing associations between white matter integrities and cognitive function. RESULTS The BD group showed lower fractional anisotropy (FA) for the corpus callosum body, as well as lower, sustained attention and set-shifting scores compared to the other groups. FA for the left body of the corpus callosum was correlated with sustained attention in patients with BD. CONCLUSIONS The significant reduction of white matter integrity in the corpus callosum in BD, compared to MDD, was associated with an impairment of sustained attention. This result promotes the understanding of the significance of white matter integrity in mood disorders.
Collapse
Affiliation(s)
- Yoshikazu Masuda
- Department of Psychiatry and Neuroscience, Hiroshima University, Hiroshima, Japan
| | - Go Okada
- Department of Psychiatry and Neuroscience, Hiroshima University, Hiroshima, Japan
| | - Masahiro Takamura
- Department of Psychiatry and Neuroscience, Hiroshima University, Hiroshima, Japan
| | - Chiyo Shibasaki
- Department of Psychiatry and Neuroscience, Hiroshima University, Hiroshima, Japan
| | - Atsuo Yoshino
- Department of Psychiatry and Neuroscience, Hiroshima University, Hiroshima, Japan
| | - Satoshi Yokoyama
- Department of Psychiatry and Neuroscience, Hiroshima University, Hiroshima, Japan
| | - Naho Ichikawa
- Department of Psychiatry and Neuroscience, Hiroshima University, Hiroshima, Japan
| | - Shiho Okuhata
- Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | | | - Shigeto Yamawaki
- Department of Psychiatry and Neuroscience, Hiroshima University, Hiroshima, Japan
| | - Yasumasa Okamoto
- Department of Psychiatry and Neuroscience, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
33
|
Denier N, Walther S, Schneider C, Federspiel A, Wiest R, Bracht T. Reduced tract length of the medial forebrain bundle and the anterior thalamic radiation in bipolar disorder with melancholic depression. J Affect Disord 2020; 274:8-14. [PMID: 32469836 DOI: 10.1016/j.jad.2020.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/29/2020] [Accepted: 05/06/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND The supero-lateral medial forebrain bundle (slMFB) and the anterior thalamic radiation (ATR) play a core role in reward anticipation and motivational processes. In this study, the slMFB and the ATR were investigated in a group of depressed bipolar disorder (BD) and in healthy controls (HC) using tract length as a measure of fibre geometry and fractional anisotropy (FA) as a measure of white matter microstructure. We hypothesized reduced tract length and FA of the slMFB and the ATR in BD. We expect alterations to be driven by the melancholic subtype. METHODS Nineteen depressed patients with BD and 19 HC matched for age and gender underwent diffusion-weighted magnetic resonance imaging (MRI) scans. Diffusion tensor imaging (DTI) based tractography was used to reconstruct bilateral slMFB and ATR. Mean tract length and FA were computed for the slMFB and the ATR. Mixed-model ANCOVAs and post-hoc ANCOVAs, controlling for age and intracranial volume, were used to compare tract length and FA of bilateral slMFB and ATR between HC and BD and between HC and subgroups with melancholic and non-melancholic symptoms. RESULTS In BD we found a significantly shortened tract length of the right slMFB and ATR in BD compared to HC. Subgroup analyses showed that these findings were driven by the melancholic subgroup. Mean-FA did not differ between HC and BD. LIMITATIONS Sample size CONCLUSIONS: Tract length of the right slMFB and the right ATR is reduced in BD. Those changes of fibre geometry are driven by the melancholic subtype.
Collapse
Affiliation(s)
- Niklaus Denier
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Sebastian Walther
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Christoph Schneider
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Andrea Federspiel
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Roland Wiest
- Institute of Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
| | - Tobias Bracht
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.
| |
Collapse
|
34
|
Lee HS, Baik SY, Kim YW, Kim JY, Lee SH. Prediction of Antidepressant Treatment Outcome Using Event-Related Potential in Patients with Major Depressive Disorder. Diagnostics (Basel) 2020; 10:diagnostics10050276. [PMID: 32375213 PMCID: PMC7277962 DOI: 10.3390/diagnostics10050276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/23/2020] [Accepted: 05/01/2020] [Indexed: 12/22/2022] Open
Abstract
(1) Background: Prediction of treatment outcome has been one of the core objectives in clinical research of patients with major depressive disorder (MDD). This study explored the possibility of event-related potential (ERP) markers to predict antidepressant treatment outcomes among MDD patients; (2) Methods: Fifty-two patients with MDD were recruited and evaluated through Hamilton depression (HAM-D), Hamilton anxiety rating scale (HAM-A), and CORE. Patients underwent a battery of ERP measures including frontal alpha symmetry (FAA) in the low alpha band (8–10 Hz), mismatch negativity (MMN), and loudness-dependent auditory evoked potentials (LDAEP); (3) Results: During the eight weeks of study, 61% of patients achieved remission, and 77% showed successful treatment responsiveness. Patients with low FAA in F5/F6 demonstrated a significantly higher remission/response ratio and better treatment responsiveness (F (2.560, 117.755) = 3.84, p = 0.016) compared to patients with high FAA. In addition, greater FAA in F7/F8 EEG channels was significantly associated with greater melancholia scores (r = 0.34, p = 0.018). Other ERP markers lacked any significant effect; (4) Conclusions: Our results suggested low FAA (i.e., greater left frontal activity) could reflect a good treatment response in MDD patients. These findings support that FAA could be a promising index in understanding both MDD and melancholic subtype.
Collapse
Affiliation(s)
- Hyun Seo Lee
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang 50834, Korea; (H.S.L.); (S.Y.B.); (Y.-W.K.); (J.-Y.K.)
| | - Seung Yeon Baik
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang 50834, Korea; (H.S.L.); (S.Y.B.); (Y.-W.K.); (J.-Y.K.)
| | - Yong-Wook Kim
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang 50834, Korea; (H.S.L.); (S.Y.B.); (Y.-W.K.); (J.-Y.K.)
- Department of Biomedical Engineering, Hanyang University, Seoul 04763, Korea
| | - Jeong-Youn Kim
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang 50834, Korea; (H.S.L.); (S.Y.B.); (Y.-W.K.); (J.-Y.K.)
| | - Seung-Hwan Lee
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang 50834, Korea; (H.S.L.); (S.Y.B.); (Y.-W.K.); (J.-Y.K.)
- Department of Psychiatry, Inje University, Ilsan-Paik Hospital, Goyang 50834, Korea
- Correspondence: or ; Tel.: +82-31-910-7260; Fax: +82-31-910-7268
| |
Collapse
|
35
|
Khan AR, Geiger L, Wiborg O, Czéh B. Stress-Induced Morphological, Cellular and Molecular Changes in the Brain-Lessons Learned from the Chronic Mild Stress Model of Depression. Cells 2020; 9:cells9041026. [PMID: 32326205 PMCID: PMC7226496 DOI: 10.3390/cells9041026] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/14/2020] [Accepted: 04/19/2020] [Indexed: 02/07/2023] Open
Abstract
Major depressive disorder (MDD) is a severe illness imposing an increasing social and economic burden worldwide. Numerous rodent models have been developed to investigate the pathophysiology of MDD. One of the best characterized and most widely used models is the chronic mild stress (CMS) model which was developed more than 30 years ago by Paul Willner. More than 2000 published studies used this model, mainly to assess novel compounds with potential antidepressant efficacy. Most of these studies examined the behavioral consequences of stress and concomitant drug intervention. Much fewer studies focused on the CMS-induced neurobiological changes. However, the stress-induced cellular and molecular changes are important as they may serve as potential translational biomarkers and increase our understanding of the pathophysiology of MDD. Here, we summarize current knowledge on the structural and molecular alterations in the brain that have been described using the CMS model. We discuss the latest neuroimaging and postmortem histopathological data as well as molecular changes including recent findings on microRNA levels. Different chronic stress paradigms occasionally deliver dissimilar findings, but the available experimental data provide convincing evidence that the CMS model has a high translational value. Future studies examining the neurobiological changes in the CMS model in combination with clinically effective antidepressant drug intervention will likely deliver further valuable information on the pathophysiology of MDD.
Collapse
Affiliation(s)
- Ahmad Raza Khan
- Centre of Biomedical Research, Sanjay Gandhi Post Graduate Institute (SGPGI) Campus, Lucknow-226017, U.P, India;
| | - Lili Geiger
- Neurobiology of Stress Research Group, Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary;
- Department of Laboratory Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Ove Wiborg
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark;
| | - Boldizsár Czéh
- Neurobiology of Stress Research Group, Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary;
- Department of Laboratory Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
- Correspondence:
| |
Collapse
|
36
|
Altered directed functional connectivity of the right amygdala in depression: high-density EEG study. Sci Rep 2020; 10:4398. [PMID: 32157152 PMCID: PMC7064485 DOI: 10.1038/s41598-020-61264-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 02/19/2020] [Indexed: 12/20/2022] Open
Abstract
The cortico-striatal-pallidal-thalamic and limbic circuits are suggested to play a crucial role in the pathophysiology of depression. Stimulation of deep brain targets might improve symptoms in treatment-resistant depression. However, a better understanding of connectivity properties of deep brain structures potentially implicated in deep brain stimulation (DBS) treatment is needed. Using high-density EEG, we explored the directed functional connectivity at rest in 25 healthy subjects and 26 patients with moderate to severe depression within the bipolar affective disorder, depressive episode, and recurrent depressive disorder. We computed the Partial Directed Coherence on the source EEG signals focusing on the amygdala, anterior cingulate, putamen, pallidum, caudate, and thalamus. The global efficiency for the whole brain and the local efficiency, clustering coefficient, outflow, and strength for the selected structures were calculated. In the right amygdala, all the network metrics were significantly higher (p < 0.001) in patients than in controls. The global efficiency was significantly higher (p < 0.05) in patients than in controls, showed no correlation with status of depression, but decreased with increasing medication intake (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\bf{R}}}^{{\bf{2}}}{\boldsymbol{=}}{\bf{0.59}}\,{\bf{and}}\,{\bf{p}}{\boldsymbol{=}}{\bf{1.52}}{\bf{e}}{\boldsymbol{ \mbox{-} }}{\bf{05}}$$\end{document}R2=0.59andp=1.52e‐05). The amygdala seems to play an important role in neurobiology of depression. Practical treatment studies would be necessary to assess the amygdala as a potential future DBS target for treating depression.
Collapse
|
37
|
Coenen VA, Schlaepfer TE, Sajonz B, Döbrössy M, Kaller CP, Urbach H, Reisert M. Tractographic description of major subcortical projection pathways passing the anterior limb of the internal capsule. Corticopetal organization of networks relevant for psychiatric disorders. Neuroimage Clin 2020; 25:102165. [PMID: 31954987 PMCID: PMC6965747 DOI: 10.1016/j.nicl.2020.102165] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/06/2019] [Accepted: 01/09/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Major depression (MD) and obsessive-compulsive disorder (OCD) are psychiatric diseases with a huge impact on individual well-being. Despite optimal treatment regiments a subgroup of patients remains treatment resistant and stereotactic surgery (stereotactic lesion surgery, SLS or Deep Brain Stimulation, DBS) might be an option. Recent research has described four networks related to MD and OCD (affect, reward, cognitive control, default network) but only on a cortical and the adjacent sub-cortical level. Despite the enormous impact of comparative neuroanatomy, animal science and stereotactic approaches a holistic theory of subcortical and cortical network interactions is elusive. Because of the dominant hierarchical rank of the neocortex, corticofugal approaches have been used to identify connections in subcortical anatomy without anatomical priors and in part confusing results. We here propose a different corticopetal approach by identifying subcortical networks and search for neocortical convergences thereby following the principle of phylogenetic and ontogenetic network development. MATERIAL AND METHODS This work used a diffusion tensor imaging data from a normative cohort (Human Connectome Project, HCP; n = 200) to describe eight subcortical fiber projection pathways (PPs) from subthalamic nucleus (STN), substantia nigra (SNR), red nucleus (RN), ventral tegmental area (VTA), ventrolateral thalamus (VLT) and mediodorsal thalamus (MDT) in a normative space (MNI). Subcortical and cortical convergences were described including an assignment of the specific pathways to MD/OCD-related networks. Volumes of activated tissue for different stereotactic stimulation sites and procedures were simulated to understand the role of the distinct networks, with respect to symptoms and treatment of OCD and MD. RESULTS The detailed course of eight subcortical PPs (stnPP, snrPP, rnPP, vlATR, vlATRc, mdATR, mdATRc, vtaPP/slMFB) were described together with their subcortical and cortical convergences. The anterior limb of the internal capsule can be subdivided with respect to network occurrences in ventral-dorsal and medio-lateral gradients. Simulation of stereotactic procedures for OCD and MD showed dominant involvement of mdATR/mdATRc (affect network) and vtaPP/slMFB (reward network). DISCUSSION Corticofugal search strategies for the evaluation of stereotactic approaches without anatomical priors often lead to confusing results which do not allow for a clear assignment of a procedure to an involved network. According to our simulation of stereotactic procedures in the treatment of OCD and MD, most of the target regions directly involve the reward (and affect) networks, while side-effects can in part be explained with a co-modulation of the control network. CONCLUSION The here proposed corticopetal approach of a hierarchical description of 8 subcortical PPs with subcortical and cortical convergences represents a new systematics of networks found in all different evolutionary and distinct parts of the human brain.
Collapse
Affiliation(s)
- Volker A Coenen
- Department of Stereotactic and Functional Neurosurgery, Freiburg University Medical Center and Medical Faculty of Freiburg University, Breisacher Strasse 64, Freiburg im Breisgau 79106, Germany; Center for Basics in Neuromodulation, Freiburg University, Germany.
| | - Thomas E Schlaepfer
- Department of Interventional Biological Psychiatry, Freiburg University Medical Center and Medical Faculty of Freiburg University, Germany
| | - Bastian Sajonz
- Department of Stereotactic and Functional Neurosurgery, Freiburg University Medical Center and Medical Faculty of Freiburg University, Breisacher Strasse 64, Freiburg im Breisgau 79106, Germany
| | - Máté Döbrössy
- Department of Stereotactic and Functional Neurosurgery, Freiburg University Medical Center and Medical Faculty of Freiburg University, Breisacher Strasse 64, Freiburg im Breisgau 79106, Germany
| | - Christoph P Kaller
- Department of Neuroradiology, Freiburg University Medical Center and Medical Faculty of Freiburg University, Germany
| | - Horst Urbach
- Department of Neuroradiology, Freiburg University Medical Center and Medical Faculty of Freiburg University, Germany
| | - Marco Reisert
- Department of Stereotactic and Functional Neurosurgery, Freiburg University Medical Center and Medical Faculty of Freiburg University, Breisacher Strasse 64, Freiburg im Breisgau 79106, Germany
| |
Collapse
|
38
|
Avecillas-Chasin J, Hurwitz T, Bogod N, Honey C. An Analysis of Clinical Outcome and Tractography following Bilateral Anterior Capsulotomy for Depression. Stereotact Funct Neurosurg 2019; 97:369-380. [DOI: 10.1159/000505077] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 11/22/2019] [Indexed: 11/19/2022]
|
39
|
Bracht T, Viher PV, Stegmayer K, Strik W, Federspiel A, Wiest R, Walther S. Increased structural connectivity of the medial forebrain bundle in schizophrenia spectrum disorders is associated with delusions of paranoid threat and grandiosity. NEUROIMAGE-CLINICAL 2019; 24:102044. [PMID: 31678911 PMCID: PMC6978276 DOI: 10.1016/j.nicl.2019.102044] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/12/2019] [Accepted: 10/17/2019] [Indexed: 12/25/2022]
Abstract
Increased FA of bilateral slMFB can be found in delusional SSD-patients. Findings are supported by a psychopathological model of paranoia and grandiosity. Findings are in line with a model of underlying network physiology (slMFB).
In many cases delusions in schizophrenia spectrum disorders (SSD) are driven by strong emotions such as feelings of paranoia or grandiosity. We refer to these extreme emotional experiences as psychotic affectivity. We hypothesized that increased structural connectivity of the supero-lateral medial forebrain bundle (slMFB), a major tract of the reward system, is associated with delusional psychotic affectivity. Forty-six patients with SSD and 44 healthy controls (HC) underwent diffusion weighted magnetic resonance imaging (DW-MRI)-scans. The slMFB and a comparison tract (corticospinal tract) were reconstructed using diffusion tensor imaging (DTI)-based tractography. Fractional anisotropy (FA) was sampled across the tracts. We used a mixed-model analyses of variance controlling for age and gender to compare FA of bilateral slMFB between SSD-patients and HC. Correlations of FA of bilateral slMFB and the PANSS-positive item delusions were calculated. In addition, FA was compared between three clinically homogeneous SSD-subgroups in terms of psychotic affectivity (severe, mild and no PA, sPA, mPA, nPA) and HC. FA of the slMFB did not differ between all SSD-patients and HC. In SSD-patients there was a positive correlation between delusions and FA in bilateral slMFB. Likewise, SSD-subgroups of psychotic affectivity and HC differed significantly in FA of the slMFB. Results were driven by higher FA in the right slMFB in sPA as compared to nPA and to HC. There was no significant effect for the comparison tract. In conclusion, increased structural connectivity of the slMFB may underlie delusional experiences of paranoia and grandiosity in SSD.
Collapse
Affiliation(s)
- Tobias Bracht
- University Hospital of Psychiatry, University of Bern, Bern, Switzerland; Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland.
| | - Petra V Viher
- University Hospital of Psychiatry, University of Bern, Bern, Switzerland; Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Katharina Stegmayer
- University Hospital of Psychiatry, University of Bern, Bern, Switzerland; Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Werner Strik
- University Hospital of Psychiatry, University of Bern, Bern, Switzerland; Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Andrea Federspiel
- Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Roland Wiest
- Institute of Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
| | - Sebastian Walther
- University Hospital of Psychiatry, University of Bern, Bern, Switzerland; Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| |
Collapse
|
40
|
Heij GJ, Penninx BWHJ, van Velzen LS, van Tol MJ, van der Wee NJA, Veltman DJ, Aghajani M. White matter architecture in major depression with anxious distress symptoms. Prog Neuropsychopharmacol Biol Psychiatry 2019; 94:109664. [PMID: 31158389 DOI: 10.1016/j.pnpbp.2019.109664] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/29/2019] [Accepted: 05/30/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Comorbid anxious distress is common in Major Depressive Disorder (MDD), and associated with significantly worse clinical course and treatment response. While DSM-5 recently introduced the Anxious Distress (AD) specifier as a potentially useful symptom-based subtyping scheme for MDD, its neurobiological underpinnings remain unclear. The current study hence uniquely probed whether MDD with co-occurring AD (MDD/AD+) relates to distinct perturbations in frontolimbic white matter (WM) pathways tentatively theorized in MDD/AD+ pathophysiology. METHODS Tract-based spatial statistics (TBSS) was therefore used to analyze diffusion tensor imaging data on WM microstructure, in MDD/AD+ patients (N = 20) relative to MDD patients without AD (MDD/AD-; N = 29) and healthy controls (HC; N = 39). Using TBSS, we probed fractional anisotropy and axial/radial/mean diffusivity as proxies for WM integrity. Categorical (between-groups) and dimensional (within-patients) analyses subsequently assessed how Anxious Distress in MDD impacts frontolimbic WM connectivity. Receiver-Operating Characteristics additionally assessed classification capabilities of between-groups WM effects. RESULTS Compared to MDD/AD- and HC participants, MDD/AD+ patients exhibited diminished integrity within the anterior thalamic radiation (ATR). Higher AD specifier scores within MDD patients additionally related to diminished integrity of the uncinate fasciculus and cingulum pathways. These effects were not confounded by key clinical (e.g., comorbid anxiety disorder) and sociodemographic (e.g., age/sex) factors, with altered ATR integrity moreover successfully classifying MDD/AD+ patients from MDD/AD- and HC participants (90% sensitivity | 73% specificity | 77% accuracy). CONCLUSIONS These findings collectively link MDD/AD+ to distinct WM anomalies in frontolimbic tracts important to adaptive emotional functioning, and may as such provide relevant, yet preliminary, clues on MDD/AD+ pathophysiology.
Collapse
Affiliation(s)
- Gijs J Heij
- VU University, Faculty of Earth and Life Sciences, the Netherlands; Amsterdam UMC, Location VUMC, Dept. of Psychiatry & Amsterdam Neuroscience, the Netherlands
| | - Brenda W H J Penninx
- Amsterdam UMC, Location VUMC, Dept. of Psychiatry & Amsterdam Neuroscience, the Netherlands; GGZ InGeest Specialized Mental Health Care, the Netherlands
| | - Laura S van Velzen
- Amsterdam UMC, Location VUMC, Dept. of Psychiatry & Amsterdam Neuroscience, the Netherlands; GGZ InGeest Specialized Mental Health Care, the Netherlands
| | - Marie-José van Tol
- University Medical Center Groningen, Dept. of Psychiatry, the Netherlands
| | | | - Dick J Veltman
- Amsterdam UMC, Location VUMC, Dept. of Psychiatry & Amsterdam Neuroscience, the Netherlands; GGZ InGeest Specialized Mental Health Care, the Netherlands
| | - Moji Aghajani
- Amsterdam UMC, Location VUMC, Dept. of Psychiatry & Amsterdam Neuroscience, the Netherlands; GGZ InGeest Specialized Mental Health Care, the Netherlands.
| |
Collapse
|
41
|
Coenen VA, Schlaepfer TE, Bewernick B, Kilian H, Kaller CP, Urbach H, Li M, Reisert M. Frontal white matter architecture predicts efficacy of deep brain stimulation in major depression. Transl Psychiatry 2019; 9:197. [PMID: 31434867 PMCID: PMC6704187 DOI: 10.1038/s41398-019-0540-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/29/2019] [Accepted: 07/07/2019] [Indexed: 12/13/2022] Open
Abstract
Major depression is a frequent and severe disorder, with a combination of psycho- and pharmacotherapy most patients can be treated. However, ~20% of all patients suffering from major depressive disorder remain treatment resistant; a subgroup might be treated with deep brain stimulation (DBS). We present two trials of DBS to the superolateral medial forebrain bundle (slMFB DBS; FORESEE I and II). The goal was to identify informed features that allow to predict treatment response. Data from N = 24 patients were analyzed. Preoperative imaging including anatomical sequences (T1 and T2) and diffusion tensor imaging (DTI) magnetic resonance imaging sequences were used together with postoperative helical CT scans (for DBS electrode position). Pathway activation modeling (PAM) as well as preoperative structural imaging and morphometry was used to understand the response behavior of patients (MADRS). A left fronto-polar and partly orbitofrontal region was identified that showed increased volume in preoperative anatomical scans. Further statistical analysis shows that the volume of this "HUB-region" is predictive for later MADRS response from DBS. The HUB region connects to typical fiber pathways that have been addressed before in therapeutic DBS in major depression. Left frontal volume growth might indicate intrinsic activity upon disconnection form the main emotional network. The results are significant since for the first time we found an informed feature that might allow to identify and phenotype future responders for slMFB DBS. This is a clear step into the direction of personalized treatments.
Collapse
Affiliation(s)
- Volker A. Coenen
- 0000 0000 9428 7911grid.7708.8Department of Stereotactic and Functional Neurosurgery, Freiburg University Medical Center, Freiburg, Germany ,grid.5963.9Medical Faculty, Freiburg University, Freiburg, Germany ,0000 0000 8786 803Xgrid.15090.3dDepartment of Neurosurgery, Bonn University Medical Center, Bonn, Germany ,grid.5963.9BrainLinks/BrainTools, Cluster of Excellence, Freiburg University, Freiburg, Germany ,grid.5963.9Neuromod, Center for Basics in NeuroModulation, Freiburg University, Freiburg, Germany
| | - Thomas E. Schlaepfer
- grid.5963.9Medical Faculty, Freiburg University, Freiburg, Germany ,grid.5963.9BrainLinks/BrainTools, Cluster of Excellence, Freiburg University, Freiburg, Germany ,0000 0000 9428 7911grid.7708.8Department of Interventional Biological Psychiatry, Freiburg University Medical Center, Freiburg, Germany ,0000 0000 8786 803Xgrid.15090.3dDepartment of Psychiatry and Psychotherapy, Bonn University Medical Center, Bonn, Germany
| | - Bettina Bewernick
- 0000 0000 8786 803Xgrid.15090.3dDepartment of Psychiatry and Psychotherapy, Bonn University Medical Center, Bonn, Germany ,0000 0000 8786 803Xgrid.15090.3dDepartment of Geronto-Psychiatry, Bonn University Medical Center, Bonn, Germany
| | - Hannah Kilian
- grid.5963.9Medical Faculty, Freiburg University, Freiburg, Germany ,0000 0000 9428 7911grid.7708.8Department of Interventional Biological Psychiatry, Freiburg University Medical Center, Freiburg, Germany
| | - Christoph P. Kaller
- grid.5963.9Medical Faculty, Freiburg University, Freiburg, Germany ,grid.5963.9BrainLinks/BrainTools, Cluster of Excellence, Freiburg University, Freiburg, Germany ,0000 0000 9428 7911grid.7708.8Department of Neuroradiology, Freiburg University Medical Center, Freiburg, Germany
| | - Horst Urbach
- grid.5963.9Medical Faculty, Freiburg University, Freiburg, Germany ,0000 0000 9428 7911grid.7708.8Department of Neuroradiology, Freiburg University Medical Center, Freiburg, Germany ,0000 0000 8786 803Xgrid.15090.3dDivision of Neuroradiology/Department of Radiology, Bonn University Medical Center, Bonn, Germany
| | - Meng Li
- 0000 0000 9428 7911grid.7708.8Department of Stereotactic and Functional Neurosurgery, Freiburg University Medical Center, Freiburg, Germany ,grid.5963.9Medical Faculty, Freiburg University, Freiburg, Germany ,0000 0001 2190 1447grid.10392.39Clinical Affective Neuroimaging Laboratory, Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Marco Reisert
- Department of Stereotactic and Functional Neurosurgery, Freiburg University Medical Center, Freiburg, Germany. .,Medical Faculty, Freiburg University, Freiburg, Germany.
| |
Collapse
|
42
|
Development of Neuroimaging-Based Biomarkers in Psychiatry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1192:159-195. [PMID: 31705495 DOI: 10.1007/978-981-32-9721-0_9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This chapter presents an overview of accumulating neuroimaging data with emphasis on translational potential. The subject will be described in the context of three disease states, i.e., schizophrenia, bipolar disorder, and major depressive disorder, and for three clinical goals, i.e., disease risk assessment, subtyping, and treatment decision.
Collapse
|
43
|
Drobisz D, Damborská A. Deep brain stimulation targets for treating depression. Behav Brain Res 2018; 359:266-273. [PMID: 30414974 DOI: 10.1016/j.bbr.2018.11.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/10/2018] [Accepted: 11/05/2018] [Indexed: 12/18/2022]
Abstract
Deep brain stimulation (DBS) is a new therapeutic approach for treatment-resistant depression (TRD). There is a preliminary evidence of the efficacy and safety of DBS for TRD in the subgenual anterior cingulate cortex, the ventral capsule/ventral striatum, the nucleus accumbens, the lateral habenula, the inferior thalamic peduncle, the medial forebrain bundle, and the bed nucleus of the stria terminalis. Optimal stimulation targets, however, have not yet been determined. Here we provide updated knowledge substantiating the suitability of each of the current and potential future DBS targets for treating depression. In this review, we discuss the future outlook for DBS treatment of depression in light of the fact that antidepressant effects of DBS can be achieved using different targets.
Collapse
Affiliation(s)
- Dominik Drobisz
- Department of Psychiatry, University Hospital and Masaryk University, Brno, Czech Republic
| | - Alena Damborská
- Department of Psychiatry, University Hospital and Masaryk University, Brno, Czech Republic; Department of Basic Neurosciences, University of Geneva, Campus Biotech, Geneva, Switzerland; CEITEC - Central European Institute of Technology, Brain and Mind Research Program, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
44
|
Bracht T, Steinau S, Federspiel A, Schneider C, Wiest R, Walther S. Physical activity is associated with left corticospinal tract microstructure in bipolar depression. NEUROIMAGE-CLINICAL 2018; 20:939-945. [PMID: 30308380 PMCID: PMC6178191 DOI: 10.1016/j.nicl.2018.09.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/07/2018] [Accepted: 09/29/2018] [Indexed: 12/22/2022]
Abstract
Psychomotor retardation and reduced daily activities are core features of the depressive syndrome including bipolar disorder (BD). It was the aim of this study to investigate white matter microstructure of the motor system in BD during depression and its association with motor activity. We hypothesized reduced physical activity, microstructural alterations of motor tracts and different associations between activity levels and motor tract microstructure in BD. Nineteen bipolar patients with a current depressive episode (BD) and 19 healthy controls (HC) underwent diffusion weighted magnetic resonance imaging (DW-MRI)-scans. Quantitative motor activity was assessed with 24 h actigraphy recordings. Bilateral corticospinal tracts (CST), interhemispheric connections between the primary motor cortices (M1) and between the pre-supplementary motor areas (pre-SMA) were reconstructed individually based on anatomical landmarks using Diffusion Tensor Imaging (DTI) based tractography. Mean fractional anisotropy (FA) was sampled along the tracts. To enhance specificity of putative findings a segment of the optic radiation was reconstructed as comparison tract. Analyses were complemented with Tract Based Spatial Statistics (TBSS) analyses. BD had lower activity levels (AL). There was a sole increase of fractional anisotropy (FA) in BD in the left CST. Further, there was a significant group x AL interaction for FA of the left CST pointing to a selective positive association between FA and AL in BD. The comparison tract and TBSS analyses did not detect significant group differences. Our results point to white matter microstructure alterations of the left CST in BD. The positive association between motor activity and white matter microstructure suggests a compensatory role of the left CST for psychomotor retardation in BD. Daily physical activity is reduced in bipolar patients with a current depressive episode (BD) The left corticospinal tract (CST) in BD shows increased fractional anisotropy (FA) Increases of FA in the left corticospinal tract in BD are related to less pronounced psychomotor retardation
Collapse
Affiliation(s)
- Tobias Bracht
- University Hospital of Psychiatry, University of Bern, Bern, Switzerland; Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland.
| | - Sarah Steinau
- University Hospital of Psychiatry, University of Bern, Bern, Switzerland; Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland; Psychiatric University Hospital Zurich, Department of Forensic Psychiatry, Zurich, Switzerland
| | - Andrea Federspiel
- Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Christoph Schneider
- University Hospital of Psychiatry, University of Bern, Bern, Switzerland; Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Roland Wiest
- Institute of Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
| | - Sebastian Walther
- University Hospital of Psychiatry, University of Bern, Bern, Switzerland; Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| |
Collapse
|
45
|
Gao S, Calhoun VD, Sui J. Machine learning in major depression: From classification to treatment outcome prediction. CNS Neurosci Ther 2018; 24:1037-1052. [PMID: 30136381 DOI: 10.1111/cns.13048] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/19/2018] [Accepted: 07/21/2018] [Indexed: 01/10/2023] Open
Abstract
AIMS Major depression disorder (MDD) is the single greatest cause of disability and morbidity, and affects about 10% of the population worldwide. Currently, there are no clinically useful diagnostic biomarkers that are able to confirm a diagnosis of MDD from bipolar disorder (BD) in the early depressive episode. Therefore, exploring translational biomarkers of mood disorders based on machine learning is in pressing need, though it is challenging, but with great potential to improve our understanding of these disorders. DISCUSSIONS In this study, we review popular machine-learning methods used for brain imaging classification and predictions, and provide an overview of studies, specifically for MDD, that have used magnetic resonance imaging data to either (a) classify MDDs from controls or other mood disorders or (b) investigate treatment outcome predictors for individual patients. Finally, challenges, future directions, and potential limitations related to MDD biomarker identification are also discussed, with a goal of offering a comprehensive overview that may help readers to better understand the applications of neuroimaging data mining in depression. CONCLUSIONS We hope such efforts may highlight the need for an urgently needed paradigm shift in treatment, to guide personalized optimal clinical care.
Collapse
Affiliation(s)
- Shuang Gao
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Vince D Calhoun
- The Mind Research Network, Albuquerque, New Mexico.,Department of Electrical and Computer Engineering, The University of New Mexico, Albuquerque, New Mexico
| | - Jing Sui
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,CAS Centre for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
46
|
Peng W, Mao L, Yin D, Sun W, Wang H, Zhang Q, Wang J, Chen C, Zeng M, Ding J, Wang X. Functional network changes in the hippocampus contribute to depressive symptoms in epilepsy. Seizure 2018; 60:16-22. [DOI: 10.1016/j.seizure.2018.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/30/2018] [Accepted: 06/01/2018] [Indexed: 12/31/2022] Open
|
47
|
van Diermen L, Schrijvers D, Cools O, Birkenhäger TK, Fransen E, Sabbe BGC. Distinguishing Subgroups Based on Psychomotor Functioning among Patients with Major Depressive Disorder. Neuropsychobiology 2018; 76:199-208. [PMID: 29975958 DOI: 10.1159/000490072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/15/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND Retardation and agitation are symptoms of major depressive disorder (MDD), and their presence could play a role in determining clinically meaningful depressive subtypes such as nonmelancholic depression (NMD) and melancholic depression (MD). In this project, we explored whether three depression subgroups (NMD, MD with psychotic symptoms, and MD without psychotic symptoms) could be distinguished based on objective measures of psychomotor functioning. METHODS Sixty-nine patients with MDD underwent extensive clinical and psychomotor testing prior to treatment with electroconvulsive therapy. Psychomotor functioning was assessed subjectively using the Core Assessment of Psychomotor Change (CORE) and objectively by means of both 24-h actigraphy and performance on a fine motor drawing task. RESULTS The daytime activity levels measured by actigraphy were significantly lower (F = 7.1, p = 0.0004) in MD patients both with and without psychotic symptoms than in those with NMD. No objective psychomotor variable was able to distinguish between melancholic patients with and those without psychotic symptoms. CONCLUSIONS The depression subtypes NMD, MD with psychotic symptoms, and MD without psychotic symptoms are not marked by increasing psychomotor retardation, possibly because psychomotor disturbance in MD with psychotic symptoms often consists of agitation rather than retardation, or a mixture of the two. However, psychomotor functioning as measured by actigraphy can be used to distinguish between NMD patients and MD patients.
Collapse
Affiliation(s)
- Linda van Diermen
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.,University Department, Psychiatric Hospital Duffel, VZW Emmaüs, Duffel, Belgium
| | - Didier Schrijvers
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.,University Department, Psychiatric Hospital Duffel, VZW Emmaüs, Duffel, Belgium
| | - Olivia Cools
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.,University Department, Psychiatric Hospital Duffel, VZW Emmaüs, Duffel, Belgium
| | - Tom K Birkenhäger
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.,Department of Psychiatry, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Erik Fransen
- StatUa Center for Statistics, University of Antwerp, Antwerp, Belgium
| | - Bernard G C Sabbe
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.,University Department, Psychiatric Hospital Duffel, VZW Emmaüs, Duffel, Belgium
| |
Collapse
|
48
|
Dillon DG, Gonenc A, Belleau E, Pizzagalli DA. Depression is associated with dimensional and categorical effects on white matter pathways. Depress Anxiety 2018; 35:440-447. [PMID: 29486093 PMCID: PMC5934303 DOI: 10.1002/da.22734] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 01/10/2018] [Accepted: 01/25/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Diffusion tensor imaging (DTI) studies report reduced fractional anisotropy (FA) in major depressive disorder (MDD). However, whether FA covaries with key depressive symptoms, such as anhedonia, is unclear. METHODS Magnetic resonance imaging data were acquired from 38 unmedicated adults with MDD and 52 healthy controls. DTI metrics were extracted from regions of interest that have consistently shown reduced FA in MDD. Analyses focused first on identifying group differences, and then determining whether reduced FA in depressed adults was related to individual differences in anhedonia and depressive severity. To establish specificity to depression, these analyses controlled for symptoms of anxiety. RESULTS Relative to controls, depressed adults showed reduced FA in the genu of the corpus callosum, the anterior limb of the internal capsule (ALIC), the cingulum bundle near the anterior cingulate cortex, and the uncinate fasciculus (UF). In the depressed group, anhedonia negatively correlated with FA in the genu, cingulum, and UF, but positively correlated with radial diffusivity (RD)-a metric previously linked to demyelination-in the genu and ALIC. Depressive severity positively correlated with RD in the ALIC. These relationships remained significant after accounting for anxiety. CONCLUSION Anhedonia was positively correlated with reduced FA and increased RD in white matter pathways that connect regions critical for value coding, representing stimulus-reward associations, and guiding value-based action selection. Thus, a cardinal symptom of MDD-anhedonia-was lawfully related to abnormalities in reward network connectivity.
Collapse
Affiliation(s)
- Daniel G. Dillon
- Center for Depression, Anxiety and Stress Research, McLean Hospital/Harvard Medical School
| | - Atilla Gonenc
- McLean Imaging Center, McLean Hospital/Harvard Medical School
| | - Emily Belleau
- Center for Depression, Anxiety and Stress Research, McLean Hospital/Harvard Medical School
| | - Diego A. Pizzagalli
- Center for Depression, Anxiety and Stress Research, McLean Hospital/Harvard Medical School
- McLean Imaging Center, McLean Hospital/Harvard Medical School
| |
Collapse
|
49
|
Coenen VA, Schumacher LV, Kaller C, Schlaepfer TE, Reinacher PC, Egger K, Urbach H, Reisert M. The anatomy of the human medial forebrain bundle: Ventral tegmental area connections to reward-associated subcortical and frontal lobe regions. Neuroimage Clin 2018; 18:770-783. [PMID: 29845013 PMCID: PMC5964495 DOI: 10.1016/j.nicl.2018.03.019] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 12/29/2022]
Abstract
Introduction Despite their importance in reward, motivation, and learning there is only sparse anatomical knowledge about the human medial forebrain bundle (MFB) and the connectivity of the ventral tegmental area (VTA). A thorough anatomical and microstructural description of the reward related PFC/OFC regions and their connection to the VTA - the superolateral branch of the MFB (slMFB) - is however mandatory to enable an interpretation of distinct therapeutic effects from different interventional treatment modalities in neuropsychiatric disorders (DBS, TMS etc.). This work aims at a normative description of the human MFB (and more detailed the slMFB) anatomy with respect to distant prefrontal connections and microstructural features. Methods and material Healthy subjects (n = 55; mean age ± SD, 40 ± 10 years; 32 females) underwent high resolution anatomical magnetic resonance imaging including diffusion tensor imaging. Connectivity of the VTA and the resulting slMFB were investigated on the group level using a global tractography approach. The Desikan/Killiany parceling (8 segments) of the prefrontal cortex was used to describe sub-segments of the MFB. A qualitative overlap with Brodmann areas was additionally described. Additionally, a pure visual analysis was performed comparing local and global tracking approaches for their ability to fully visualize the slMFB. Results The MFB could be robustly described both in the present sample as well as in additional control analyses in data from the human connectome project. Most VTA- connections reached the superior frontal gyrus, the middel frontal gyrus and the lateral orbitofrontal region corresponding to Brodmann areas 10, 9, 8, 11, and 11m. The projections to these regions comprised 97% (right) and 98% (left) of the total relative fiber counts of the slMFB. Discussion The anatomical description of the human MFB shows far reaching connectivity of VTA to reward-related subcortical and cortical prefrontal regions - but not to emotion-related regions on the medial cortical surface - realized via the superolateral branch of the MFB. Local tractography approaches appear to be inferior in showing these far-reaching projections. Since these local approaches are typically used for surgical targeting of DBS procedures, the here established detailed map might - as a normative template - guide future efforts to target deep brain stimulation of the slMFB in depression and other disorders related to dysfunction of reward and reward-associated learning.
Collapse
Affiliation(s)
- Volker Arnd Coenen
- Department of Stereotactic and Functional Neurosurgery, Medical Center, Freiburg University, Germany; Medical Faculty, Freiburg University, Germany.
| | - Lena Valerie Schumacher
- Department of Neuroradiology, Medical Center, Freiburg University, Germany; Medical Faculty, Freiburg University, Germany; Medical Psychology and Medical Sociology, Faculty of Medicine, University of Freiburg, Germany
| | - Christoph Kaller
- Department of Neurology, Medical Center, Freiburg University, Germany; Medical Faculty, Freiburg University, Germany
| | - Thomas Eduard Schlaepfer
- Department of Interventional Biological Psychiatry, Medical Center, Freiburg University, Germany; Medical Faculty, Freiburg University, Germany
| | - Peter Christoph Reinacher
- Department of Stereotactic and Functional Neurosurgery, Medical Center, Freiburg University, Germany; Medical Faculty, Freiburg University, Germany
| | - Karl Egger
- Department of Neuroradiology, Medical Center, Freiburg University, Germany; Medical Faculty, Freiburg University, Germany
| | - Horst Urbach
- Department of Neuroradiology, Medical Center, Freiburg University, Germany; Medical Faculty, Freiburg University, Germany
| | - Marco Reisert
- Department of Stereotactic and Functional Neurosurgery, Medical Center, Freiburg University, Germany; Department of Medical Physics, Medical Center, Freiburg University, Germany; Medical Faculty, Freiburg University, Germany
| |
Collapse
|
50
|
Kim YK, Na KS. Application of machine learning classification for structural brain MRI in mood disorders: Critical review from a clinical perspective. Prog Neuropsychopharmacol Biol Psychiatry 2018. [PMID: 28648568 DOI: 10.1016/j.pnpbp.2017.06.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mood disorders are a highly prevalent group of mental disorders causing substantial socioeconomic burden. There are various methodological approaches for identifying the underlying mechanisms of the etiology, symptomatology, and therapeutics of mood disorders; however, neuroimaging studies have provided the most direct evidence for mood disorder neural substrates by visualizing the brains of living individuals. The prefrontal cortex, hippocampus, amygdala, thalamus, ventral striatum, and corpus callosum are associated with depression and bipolar disorder. Identifying the distinct and common contributions of these anatomical regions to depression and bipolar disorder have broadened and deepened our understanding of mood disorders. However, the extent to which neuroimaging research findings contribute to clinical practice in the real-world setting is unclear. As traditional or non-machine learning MRI studies have analyzed group-level differences, it is not possible to directly translate findings from research to clinical practice; the knowledge gained pertains to the disorder, but not to individuals. On the other hand, a machine learning approach makes it possible to provide individual-level classifications. For the past two decades, many studies have reported on the classification accuracy of machine learning-based neuroimaging studies from the perspective of diagnosis and treatment response. However, for the application of a machine learning-based brain MRI approach in real world clinical settings, several major issues should be considered. Secondary changes due to illness duration and medication, clinical subtypes and heterogeneity, comorbidities, and cost-effectiveness restrict the generalization of the current machine learning findings. Sophisticated classification of clinical and diagnostic subtypes is needed. Additionally, as the approach is inevitably limited by sample size, multi-site participation and data-sharing are needed in the future.
Collapse
Affiliation(s)
- Yong-Ku Kim
- Department of Psychiatry, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Kyoung-Sae Na
- Department of Psychiatry, Gachon University Gil Medical Center, Incheon, Republic of Korea.
| |
Collapse
|