1
|
Gizzi G, Fiorani F, Albi E, Cataldi S, Mazzeschi C, Delvecchio E. Depression in Adolescence: Relevance of Serotonin Receptor Polymorphisms. Depress Anxiety 2025; 2025:5239931. [PMID: 40421468 PMCID: PMC12105883 DOI: 10.1155/da/5239931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 04/18/2025] [Indexed: 05/28/2025] Open
Abstract
Depression in adolescence is influenced by the environment, family members, social relationships, and genetic factors. Gene polymorphisms of serotonin receptors were associated with mental/psychiatric disorders, including impulsive, aggressive, violent, antisocial or criminal conduct, schizophrenia, eating disorders, alexithymia, autism, and major depressive disorder (MDD). Few studies reported the association between serotonin receptor polymorphisms and depressive symptoms in nonclinical subjects. The present study aimed to evaluate the serotonin receptor polymorphisms in nonclinical adolescents presenting depressive symptoms. The results clearly demonstrated that nonclinical adolescents with severe depressive symptoms had a high concentration of GA + AA in the recessive model and of AA in the homozygous model of the rs6311 polymorphism. The data indicated that the A allele was associated with severe depressive symptoms. Moreover, the analysis highlighted a trend of association of TT + CT in the recessive model for rs6313 polymorphism and severe symptoms. In conclusion, our study confirms that the A allele for rs6311 represents a risk factor, and the allele T for rs6313 could be a possible risk factor for severe depressive symptoms. As a consequence, the allele G for rs6311 and the allele C for rs6313 could be protective against severe depressive symptoms. Therefore, it might be appropriate to work preventively on adolescents with the A allele for rs6311 and T allele for rs6313 polymorphism to reduce the possibility of developing depressive symptoms and to preserve mental health in young people.
Collapse
Affiliation(s)
- Giulia Gizzi
- Department of Philosophy, Social Sciences and Education, University of Perugia, Perugia, Italy
| | - Federico Fiorani
- Department of Pharmaceutical Sciences, University of Perugia, Perugia 06123, Italy
| | - Elisabetta Albi
- Department of Pharmaceutical Sciences, University of Perugia, Perugia 06123, Italy
| | - Samuela Cataldi
- Department of Pharmaceutical Sciences, University of Perugia, Perugia 06123, Italy
| | - Claudia Mazzeschi
- Department of Philosophy, Social Sciences and Education, University of Perugia, Perugia, Italy
| | - Elisa Delvecchio
- Department of Philosophy, Social Sciences and Education, University of Perugia, Perugia, Italy
| |
Collapse
|
2
|
Anghel SA, Dinu-Pirvu CE, Costache MA, Voiculescu AM, Ghica MV, Anuța V, Popa L. Receptor Pharmacogenomics: Deciphering Genetic Influence on Drug Response. Int J Mol Sci 2024; 25:9371. [PMID: 39273318 PMCID: PMC11395000 DOI: 10.3390/ijms25179371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
The paradigm "one drug fits all" or "one dose fits all" will soon be challenged by pharmacogenetics research and application. Drug response-efficacy or safety-depends on interindividual variability. The current clinical practice does not include genetic screening as a routine procedure and does not account for genetic variation. Patients with the same illness receive the same treatment, yielding different responses. Integrating pharmacogenomics in therapy would provide critical information about how a patient will respond to a certain drug. Worldwide, great efforts are being made to achieve a personalized therapy-based approach. Nevertheless, a global harmonized guideline is still needed. Plasma membrane proteins, like receptor tyrosine kinase (RTK) and G protein-coupled receptors (GPCRs), are ubiquitously expressed, being involved in a diverse array of physiopathological processes. Over 30% of drugs approved by the FDA target GPCRs, reflecting the importance of assessing the genetic variability among individuals who are treated with these drugs. Pharmacogenomics of transmembrane protein receptors is a dynamic field with profound implications for precision medicine. Understanding genetic variations in these receptors provides a framework for optimizing drug therapies, minimizing adverse reactions, and advancing the paradigm of personalized healthcare.
Collapse
Affiliation(s)
- Sorina Andreea Anghel
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", 6 Traian Vuia Str., 020956 Bucharest, Romania
- Department of Molecular Cell Biology, Institute of Biochemistry, Splaiul Independentei 296, 060031 Bucharest, Romania
| | - Cristina-Elena Dinu-Pirvu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", 6 Traian Vuia Str., 020956 Bucharest, Romania
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), "Carol Davila" University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Mihaela-Andreea Costache
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Ana Maria Voiculescu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Mihaela Violeta Ghica
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", 6 Traian Vuia Str., 020956 Bucharest, Romania
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), "Carol Davila" University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Valentina Anuța
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", 6 Traian Vuia Str., 020956 Bucharest, Romania
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), "Carol Davila" University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Lăcrămioara Popa
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", 6 Traian Vuia Str., 020956 Bucharest, Romania
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), "Carol Davila" University of Medicine and Pharmacy, 020956 Bucharest, Romania
| |
Collapse
|
3
|
Morozova A, Ushakova V, Pavlova O, Bairamova S, Andryshenko N, Ochneva A, Abramova O, Zorkina Y, Spektor VA, Gadisov T, Ukhov A, Zubkov E, Solovieva K, Alexeeva P, Khobta E, Nebogina K, Kozlov A, Klimenko T, Gurina O, Shport S, Kostuyk G, Chekhonin V, Pavlov K. BDNF, DRD4, and HTR2A Gene Allele Frequency Distribution and Association with Mental Illnesses in the European Part of Russia. Genes (Basel) 2024; 15:240. [PMID: 38397229 PMCID: PMC10887670 DOI: 10.3390/genes15020240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The prevalence of mental disorders and how they are diagnosed represent some of the major problems in psychiatry. Modern genetic tools offer the potential to reduce the complications concerning diagnosis. However, the vast genetic diversity in the world population requires a closer investigation of any selected populations. In the current research, four polymorphisms, namely rs6265 in BDNF, rs10835210 in BDNF, rs6313 in HTR2A, and rs1800955 in DRD4, were analyzed in a case-control study of 2393 individuals (1639 patients with mental disorders (F20-F29, F30-F48) and 754 controls) from the European part of Russia using the TaqMan SNP genotyping method. Significant associations between rs6265 BDNF and rs1800955 DRD4 and mental impairments were detected when comparing the general group of patients with mental disorders (without separation into diagnoses) to the control group. Associations of rs6265 in BDNF, rs1800955 in DRD4, and rs6313 in HTR2A with schizophrenia in patients from the schizophrenia group separately compared to the control group were also found. The obtained results can extend the concept of a genetic basis for mental disorders in the Russian population and provide a basis for the future improvement in psychiatric diagnostics.
Collapse
Affiliation(s)
- Anna Morozova
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Valeriya Ushakova
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
- Department of Neurobiology, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Olga Pavlova
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
| | - Sakeena Bairamova
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
| | - Nika Andryshenko
- Department of Biology, MSU-BIT Shenzhen University, Shenzhen 518172, China;
| | - Aleksandra Ochneva
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Olga Abramova
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Yana Zorkina
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Valery A. Spektor
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
| | - Timur Gadisov
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
| | - Andrey Ukhov
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
| | - Eugene Zubkov
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
| | - Kristina Solovieva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Polina Alexeeva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Elena Khobta
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Kira Nebogina
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
| | - Alexander Kozlov
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
| | - Tatyana Klimenko
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
| | - Olga Gurina
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
| | - Svetlana Shport
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
| | - George Kostuyk
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Vladimir Chekhonin
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
- Department of Medical Nanobiotechnologies, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Konstantin Pavlov
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| |
Collapse
|
4
|
Hoogland AI, Gonzalez BD, Park JY, Small BJ, Sutton SK, Pidala JA, Smith KS, Bower JE, Jacobsen PB, Jim HS. Associations of Germline Genetic Variants With Depression and Fatigue Among Hematologic Cancer Patients Treated With Allogeneic Hematopoietic Cell Transplantation. Psychosom Med 2023; 85:813-819. [PMID: 37678326 PMCID: PMC10915106 DOI: 10.1097/psy.0000000000001251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
OBJECTIVE Depression and fatigue are common among cancer patients and are associated with germline genetic variation. The goal of this pilot study was to examine genetic associations with depression and fatigue in the year after allogeneic hematopoietic cell transplant (HCT). METHODS Blood was collected from patients and their donors before HCT. Patients completed self-report measures of depression and fatigue before HCT (T1), 90 days post-HCT (T2), and 1 year post-HCT (T3). Of the 384 genetic variants genotyped on a custom Illumina BeadChip microarray, 267 were retained for analysis based on quality control. Main effects of patient and donor variants as well as their interaction were examined using regression analyses. Significant variants were defined as those with a false discovery rate-adjusted p value of <.05. RESULTS The sample consisted of 59 patient-donor pairs. Mean levels of depression and fatigue did not change significantly over time ( p values of > .41). Increases in depression from T1 to T2 were associated with patient-donor interactions at rs1928040 ( p = 3.0 × 10 -4 ) and rs6311 ( p = 2.0 × 10 -4 ) in HTR2A . Increases in fatigue from T1 to T2 were associated with patient rs689021 in SORL1 ( p = 6.0 × 10 -5 ) and a patient-donor interaction at rs1885884 in HTR2A ( p < 1.0 × 10 -4 ). CONCLUSIONS Data suggest that variants in genes regulating the serotonergic system ( HTR2A ) and lipid metabolism ( SORL1 ) are associated with changes in depression and fatigue in allogeneic HCT patients, implicating patients' own genetic inheritance as well as that of donors. Additional studies are warranted to confirm these findings.
Collapse
Affiliation(s)
- Aasha I. Hoogland
- Department of Health Outcomes and Behavior, Moffitt Cancer Center, Tampa, FL 33612 USA
| | - Brian D. Gonzalez
- Department of Health Outcomes and Behavior, Moffitt Cancer Center, Tampa, FL 33612 USA
| | - Jong Y. Park
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Brent J. Small
- College of Aging, University of South Florida, Tampa, FL 33620 USA
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL 33612 USA
| | - Steven K. Sutton
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL 33612 USA
| | - Joseph A. Pidala
- Department of Blood and Marrow Transplantation and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL 33612 USA
| | - Kristen S. Smith
- Department of Health Outcomes and Behavior, Moffitt Cancer Center, Tampa, FL 33612 USA
| | - Julienne E. Bower
- Department of Psychology, University of California-Los Angeles, Los Angeles, CA 90095 USA
| | - Paul B. Jacobsen
- Department of Health Outcomes and Behavior, Moffitt Cancer Center, Tampa, FL 33612 USA
| | - Heather S.L. Jim
- Department of Health Outcomes and Behavior, Moffitt Cancer Center, Tampa, FL 33612 USA
| |
Collapse
|
5
|
Massoud S, Salmanian M, Tabibian M, Ghamari R, Tavabe Ghavami TS, Alizadeh F. The contribution of the 5-hydroxytryptamine receptor 2 A gene polymorphisms rs6311 and rs6313 to Schizophrenia in Iran. Mol Biol Rep 2023; 50:2633-2639. [PMID: 36639522 DOI: 10.1007/s11033-022-08222-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Schizophrenia is an acute mental disorder with an undefined etiology. Its high heritability suggests that several genetic variants and polymorphisms may contribute to the severity and emergence of its symptoms. Former molecular evidence has shed some light on the association of serotonergic pathway genetic polymorphisms with schizophrenia. This study aimed to investigate the association between schizophrenia and two SNPs from one haplotype block, which lies in the 5-hydroxytryptamine receptor 2 A (5-HTR2A) gene in the Iranian population. MATERIAL AND METHODS Blood samples were collected from one-hundred and fifty-two patients diagnosed with schizophrenia and one-hundred and fifty-eight cases of the healthy control, who were matched in terms of age and gender. The participants were genotyped for rs6311 and rs6313 using PCR-RFLP. R programming language and Haploview software were respectively leveraged for statistical and haplotype inferencing. RESULTS The results showed that there was no significant association between rs6313 and schizophrenia. However, the rs6311 T allele was independently associated with schizophrenia, and it was significantly associated with SCZ in an rs6311-rs6313 haplotype. Moreover, the general linear model confirmed the potential predictor role of rs6311 for schizophrenia and the C allele of rs6313 demonstrated a higher frequency among females compared to males. CONCLUSION The findings of this study indicated the association of rs6311 and rs6311-rs6313 haplotype with schizophrenia in the Iranian population and also suggested a potential schizophrenia risk predictor role for rs6311.
Collapse
Affiliation(s)
- Sareh Massoud
- Department of Genomic Psychiatry and Behavioral Genomics (DGPBG), Roozbeh Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Salmanian
- Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mobina Tabibian
- Department of Cellular and Molecular Biology, Faculty of Life Sciences and Biotechnologies, Shahid Beheshti University, Tehran, Iran
| | - Rana Ghamari
- Department of Genetics, Faculty of Biology, Kharazmi University, Tehran, Iran
| | | | - Fatemeh Alizadeh
- Department of Genomic Psychiatry and Behavioral Genomics (DGPBG), Roozbeh Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Popova NK, Tsybko AS, Naumenko VS. The Implication of 5-HT Receptor Family Members in Aggression, Depression and Suicide: Similarity and Difference. Int J Mol Sci 2022; 23:ijms23158814. [PMID: 35955946 PMCID: PMC9369404 DOI: 10.3390/ijms23158814] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/21/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
Being different multifactorial forms of psychopathology, aggression, depression and suicidal behavior, which is considered to be violent aggression directed against the self, have principal neurobiological links: preclinical and clinical evidence associates depression, aggression and suicidal behavior with dysregulation in central serotonergic (5-HT) neurotransmission. The implication of different types of 5-HT receptors in the genetic and epigenetic mechanisms of aggression, depression and suicidality has been well recognized. In this review, we consider and compare the orchestra of 5-HT receptors involved in these severe psychopathologies. Specifically, it concentrates on the role of 5-HT1A, 5-HT1B, 5-HT2A, 5-HT2B, 5-HT2C, 5-HT3 and 5-HT7 receptors in the mechanisms underlying the predisposition to aggression, depression and suicidal behavior. The review provides converging lines of evidence that: (1) depression-related 5-HT receptors include those receptors with pro-depressive properties (5-HT2A, 5-HT3 and 5-HT7) as well as those providing an antidepressant effect (5-HT1A, 5-HT1B, 5-HT2C subtypes). (2) Aggression-related 5-HT receptors are identical to depression-related 5-HT receptors with the exception of 5-HT7 receptors. Activation of 5-HT1A, 5-HT1B, 5-HT2A, 5-HT2C receptors attenuate aggressiveness, whereas agonists of 5-HT3 intensify aggressive behavior.
Collapse
|
7
|
Kutelev G, Malyshkin S, Krivoruchko A, Ivanov A, Cherkashin D, Trandina A, Morozova N, Derevyankin D. Characterization of genetic polymorphisms associated with neurophysiological processes and analysis of their allele frequency distribution in the Russian population. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:122-127. [DOI: 10.17116/jnevro2022122061122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Yan P, Gao B, Wang S, Wang S, Li J, Song M. Association of 5-HTR2A T102C and A-1438G polymorphisms with clinical response to atypical antipsychotic treatment in schizophrenia: A meta-analysis. Neurosci Lett 2021; 770:136395. [PMID: 34919991 DOI: 10.1016/j.neulet.2021.136395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/14/2021] [Accepted: 12/09/2021] [Indexed: 01/10/2023]
Abstract
Associations of serotonin 2A receptor (5-HTR2A) gene polymorphisms with clinical response to atypical antipsychotics (AAPs) treatment in schizophrenia (SCZ) were inconsistent. Thus we conducted a meta-analysis to investigate more reliable estimates. The Cochrane Library, Embase, PubMed, Weipu, CNKI and Wanfang databases were searched for eligible studies published up to September 2021. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were calculated in four genetic models. Subgroup analyses were performed by ethnicity and antipsychotic type. Meta-regression was used to evaluate the potential effects of confounding variables. In total, 19 studies were included for the meta-analysis, of which 17 studies containing 2359 patients were identified for T102C polymorphism and 7 studies containing 1408 patients for A-1438G polymorphism. The results showed that A-1438G polymorphism was significantly associated with clinical response to AAPs treatment in SCZ in four genetic models (allele model, A vs. G, OR = 1.87, 95% CI = 1.05-3.33, P = 0.034; recessive model, AA vs. GA + GG: OR = 1.79, 95% CI = 1.17-2.72, P = 0.007; dominant model, AA + GA vs. GG: OR = 3.40, 95% CI = 1.15-10.10, P = 0.027; co-dominant model, AA vs. GG: OR = 3.44, 95% CI = 1.07-11.10, P = 0.039) in Asians, but not in Caucasians. When stratified by antipsychotic type, A-1438G polymorphism was related to the efficacy of olanzapine in recessive model (AA vs. GA + GG, OR = 1.85, 95% CI = 1.18-2.90, P = 0.007), but not in other models. However, neither four genetic models nor subgroup analyses of T102C polymorphism were found any significant associations with AAPs response (P > 0.05). Meta-regression revealed that no association was confounded by mean age, male ratio, treatment duration and illness duration (P > 0.05). The present meta-analysis indicated that 5-HTR2A A-1438G polymorphism, but not T102C polymorphism, was significantly associated with AAPs response in SCZ, especially in Asians and olanzapine-treated patients.
Collapse
Affiliation(s)
- Pan Yan
- Molecular Biology Laboratory, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310013, China
| | - Bing Gao
- Department of Health Hazard Monitoring, Hangzhou Center for Disease Control and Prevention, Hangzhou 310013, China
| | - Shuqi Wang
- Molecular Biology Laboratory, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310013, China
| | - Shengdong Wang
- Molecular Biology Laboratory, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310013, China
| | - Jing Li
- Molecular Biology Laboratory, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310013, China
| | - Mingfen Song
- Molecular Biology Laboratory, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310013, China.
| |
Collapse
|
9
|
Serotonin 2A receptor polymorphism rs3803189 mediated by dynamics of default mode network: a potential biomarker for antidepressant early response. J Affect Disord 2021; 283:130-138. [PMID: 33548906 DOI: 10.1016/j.jad.2021.01.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND Serotonin 2A receptors (HTR2A) play a crucial role in the therapeutic response to antidepressant. The activity of serotonergic system could modulate the connectivity of the default mode network (DMN) in human brain. Our research investigated the influence of the single nucleotide polymorphism (SNP) of HTR2A on the early treatment response of antidepressant and their relation to dynamic changes of DMN for the first time. METHODS A total of 134 major depressive disorder patients and 95 healthy controls from two independent datasets were enrolled. All subjects have genotyped candidate HTR2A polymorphisms, dynamic brain parameters flexibility and integration were calculated according to the resting-state functional magnetic resonance imaging (rs-fMRI) at baseline. Patients received selective serotonin reuptake inhibitors (SSRIs) treatment with conventional dose in the next two weeks. RESULTS We found the correlation of the risk-associated variant belonged to HTR2A polymorphism rs3803189 with the achievements of antidepressant early response, and also with the stronger dynamic changes of DMN. Further mediation analysis indicated that the bond between rs3803189 and antidepressant early response was mediated by the integration between the right angular gyrus (AG.R) and the subcortical network (SCN), which were validated over both the main and replication datasets. LIMITATIONS Except the AG.R-SCN circuit, other factors which influence the relationship between rs3803189 and antidepressant therapy deserve to be explored further. Besides, heterogeneity of samples limited the power of the current result. CONCLUSIONS Our findings provided a potential biomarker for individual treatment sensitivity and produced positive effects on revealing the complicated gene-brain-disorder relationship.
Collapse
|
10
|
Kao CF, Kuo PH, Yu YWY, Yang AC, Lin E, Liu YL, Tsai SJ. Gene-Based Association Analysis Suggests Association of HTR2A With Antidepressant Treatment Response in Depressed Patients. Front Pharmacol 2021; 11:559601. [PMID: 33519430 PMCID: PMC7845659 DOI: 10.3389/fphar.2020.559601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/08/2020] [Indexed: 11/13/2022] Open
Abstract
The serotonin [5-hydroxytryptamine (5-HT)] system has been implicated in the pathogenesis of major depressive disorder (MDD). Among the 5-HT receptor subtypes, 5-HT2 is one of the major pharmacological therapeutic targets for MDD. There have been inconsistent findings in previous pharmacogenetic studies investigating the antidepressant therapeutic response using one or several 5-HT2A (HTR2A) genetic polymorphisms. By using gene-based association analysis, we hope to identify genetic variants of HTR2A which are related to MDD susceptibility and its antidepressant therapeutic response. 288 HTR2A single nucleotide polymorphisms in MDD susceptibility have been investigated through a case–control (455 MDD patients and 2, 998 healthy controls) study, as well as in antidepressant efficacy (n = 455) in our current research. The 21-item Hamilton Rating Scale for Depression was used to evaluate measures of antidepressant therapeutic efficacy. From two MDD groups in the antidepressant therapeutic response, by using gene-based analyses, we have identified 14 polymorphisms as suggestive markers for therapeutic response (13 for remission and 1 for response) in both meta- and mega-analyses. All of these HTR2A reported polymorphisms did not reach statistical significance in the case–control association study. This current investigation supported the link between HTR2A variants and antidepressant therapeutic response in MDD but not with MDD susceptibility.
Collapse
Affiliation(s)
- Chung-Feng Kao
- Department of Agronomy, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan.,Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Po-Hsiu Kuo
- Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan.,Department of Public Health, National Taiwan University, Taipei, Taiwan
| | | | - Albert C Yang
- Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.,Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan.,Brain Medicine Center, Taoyuan Psychiatric Center, Taoyuan City, Taiwan
| | - Eugene Lin
- Department of Biostatistics, University of Washington, Seattle, WA, United States.,Department of Electrical & Computer Engineering, University of Washington, Seattle, WA, United States.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Yu-Li Liu
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan Town, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Psychiatry, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
11
|
Wan YS, Zhai XJ, Tan HA, Ai YS, Zhao LB. Associations between the 1438A/G, 102T/C, and rs7997012G/A polymorphisms of HTR2A and the safety and efficacy of antidepressants in depression: a meta-analysis. THE PHARMACOGENOMICS JOURNAL 2020; 21:200-215. [PMID: 33097827 DOI: 10.1038/s41397-020-00197-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 09/12/2020] [Accepted: 10/08/2020] [Indexed: 11/10/2022]
Abstract
The correlations between hydroxytryptamine receptor 2A (HTR2A) gene polymorphisms (1438A/G, 102T/C, and rs7997012G/A) and the safety and efficacy of antidepressants in depression patients were constantly reported, but conclusions are debatable. This meta-analysis ascertained forty-two studies on the efficacy (including response and remission) and side-effect issued before February 2020. Pooled analyses indicated significant associations of 1438A/G polymorphism (16 studies, 1931 subjects) and higher response within dominant model (OR: 1.40, 95% CI: 1.12-1.76); rs7997012G/A polymorphism (nine studies, 1434 subjects) and higher remission in overall models (dominant model: OR: 1.30, 95% CI: 1.01-1.66; recessive model: OR: 2.20, 95% CI: 1.53-3.16; homozygote model: OR: 2.73, 95% CI: 1.78-4.17); 102T/C polymorphism (eight studies, 804 subjects) and reduced risk of side-effect within recessive (OR: 0.57, 95% CI: 0.4-0.83) and homozygote models (OR: 0.54, 95% CI: 0.29-0.99). For depression patients, genotyping of HTR2A polymorphisms is a promising tool for estimating the outcome and side-effect of antidepressants.
Collapse
Affiliation(s)
- Yuan-Sheng Wan
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue-Jia Zhai
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong-Ai Tan
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - You-Sheng Ai
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Li-Bo Zhao
- Beijing Children's Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
12
|
Du D, Tang Q, Han Q, Zhang J, Liang X, Tan Y, Liu K, Xiang B. Association between genetic polymorphism and antidepressants in major depression: a network meta-analysis. Pharmacogenomics 2020; 21:963-974. [PMID: 32819202 DOI: 10.2217/pgs-2020-0037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This network meta-analysis was conducted to compare the predictive value of eight SNPs on the efficacy of antidepressants in major depressive disorder (MDD), including 5-HTTLPR, 5HTR2A (rs6311, rs6314, rs7997012 and rs6313), 5HTR2A (rs6295), BDNF (rs6265) and 5HTTSTin2. Databases were searched for related studies published up to December 2019. A total of 16 studies were included in this study. The predictive value were evaluated by the use of the odd ratios (OR) and drawing surface under the cumulative ranking curves (SUCRA). The pairwise meta-analysis indicated that in terms of overall response ratio, the SNPs were not associated with the efficacy of antidepressants in MDD. The result of this network meta-analysis suggested that there was no significant difference in predictive value of eight SNPs on the efficacy of antidepressants in MDD. More research is needed to explore the relationship between SNPs and antidepressant response.
Collapse
Affiliation(s)
- Dan Du
- Department of Psychiatry, Laboratory of Neurological Diseases & Brain Function, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Qiong Tang
- Department of Psychiatry, Laboratory of Neurological Diseases & Brain Function, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Qiong Han
- Department of Breast Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Jin Zhang
- Department of Psychiatry, Laboratory of Neurological Diseases & Brain Function, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China.,Zigong Mental Health Research Center & Institute on Aging at Zigong, Zigong, 643020, Sichuan Province, China
| | - Xuemei Liang
- Geriatrics Department, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Youguo Tan
- Zigong Mental Health Center, Zigong, 643020, Sichuan Province, China.,Zigong Mental Health Research Center & Institute on Aging at Zigong, Zigong, 643020, Sichuan Province, China
| | - Kezhi Liu
- Department of Psychiatry, Laboratory of Neurological Diseases & Brain Function, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Bo Xiang
- Department of Psychiatry, Laboratory of Neurological Diseases & Brain Function, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China.,Zigong Mental Health Research Center & Institute on Aging at Zigong, Zigong, 643020, Sichuan Province, China
| |
Collapse
|
13
|
Cuéllar-Barboza AB, McElroy SL, Veldic M, Singh B, Kung S, Romo-Nava F, Nunez NA, Cabello-Arreola A, Coombes BJ, Prieto M, Betcher HK, Moore KM, Winham SJ, Biernacka JM, Frye MA. Potential pharmacogenomic targets in bipolar disorder: considerations for current testing and the development of decision support tools to individualize treatment selection. Int J Bipolar Disord 2020; 8:23. [PMID: 32632502 PMCID: PMC7338319 DOI: 10.1186/s40345-020-00184-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 03/07/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Treatment in bipolar disorder (BD) is commonly applied as a multimodal therapy based on decision algorithms that lack an integrative understanding of molecular mechanisms or a biomarker associated clinical outcome measure. Pharmacogenetics/genomics study the individual genetic variation associated with drug response. This selective review of pharmacogenomics and pharmacogenomic testing (PGT) in BD will focus on candidate genes and genome wide association studies of pharmacokinetic drug metabolism and pharmacodynamic drug response/adverse event, and the potential role of decision support tools that incorporate multiple genotype/phenotype drug recommendations. MAIN BODY We searched PubMed from January 2013 to May 2019, to identify studies reporting on BD and pharmacogenetics, pharmacogenomics and PGT. Studies were selected considering their contribution to the field. We summarize our findings in: targeted candidate genes of pharmacokinetic and pharmacodynamic pathways, genome-wide association studies and, PGT platforms, related to BD treatment. This field has grown from studies of metabolizing enzymes (i.e., pharmacokinetics) and drug transporters (i.e., pharmacodynamics), to untargeted investigations across the entire genome with the potential to merge genomic data with additional biological information. CONCLUSIONS The complexity of BD genetics and, the heterogeneity in BD drug-related phenotypes, are important considerations for the design and interpretation of BD PGT. The clinical applicability of PGT in psychiatry is in its infancy and is far from reaching the robust impact it has in other medical disciplines. Nonetheless, promising findings are discovered with increasing frequency with remarkable relevance in neuroscience, pharmacology and biology.
Collapse
Affiliation(s)
- Alfredo B Cuéllar-Barboza
- Department of Psychiatry, University Hospital, Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
- Department of Psychiatry and Psychology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Susan L McElroy
- Lindner Center of HOPE and Department of Psychiatry, University of Cincinnati, Cincinnati, OH, USA
| | - Marin Veldic
- Department of Psychiatry, University Hospital, Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
| | - Balwinder Singh
- Department of Psychiatry, University Hospital, Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
| | - Simon Kung
- Department of Psychiatry and Psychology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Francisco Romo-Nava
- Lindner Center of HOPE and Department of Psychiatry, University of Cincinnati, Cincinnati, OH, USA
| | - Nicolas A Nunez
- Department of Psychiatry and Psychology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Alejandra Cabello-Arreola
- Department of Psychiatry and Psychology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | | | - Miguel Prieto
- Department of Psychiatry, Universidad de los Andes, Santiago, Chile
| | - Hannah K Betcher
- Department of Psychiatry and Psychology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Katherine M Moore
- Department of Psychiatry and Psychology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Stacey J Winham
- Department of Health Sciences Research, Mayo Clinic, Rochester, USA
| | - Joanna M Biernacka
- Department of Psychiatry, University Hospital, Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
- Department of Health Sciences Research, Mayo Clinic, Rochester, USA
| | - Mark A Frye
- Department of Psychiatry, University Hospital, Universidad Autonoma de Nuevo Leon, Monterrey, Mexico.
- Department of Psychiatry and Psychology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
14
|
Wang M, Wang S, Li Y, Cai G, Cao M, Li L. Integrated analysis and network pharmacology approaches to explore key genes of Xingnaojing for treatment of Alzheimer's disease. Brain Behav 2020; 10:e01610. [PMID: 32304290 PMCID: PMC7303382 DOI: 10.1002/brb3.1610] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD), as a neurodegenerative condition, is one of the leading causes of dementia. Our study aims to explore the key genes of Xingnaojing (XNJ) for treatment of AD by integrated microarray analysis and network pharmacology. METHODS The differentially expressed genes (DEGs) were identified in AD compared with normal control. According to these DEGs, we performed the functional annotation, protein-protein interaction (PPI) network construction. The network pharmacology was used to explore the potential targets of XNJ in the treatment of AD. The expression level of selected candidate genes was validated by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS A total of 1,424 DEGs (620 genes were upregulated and 804 genes were downregulated) between AD and normal control were obtained. The functional annotation results displayed that neuroactive ligand-receptor interaction, regulation of actin cytoskeleton, Estrogen signaling pathway and notch signaling pathway were significantly enriched pathways in AD. Comparing the target genes of four active ingredients, a total of 16 shared genes were found. Among which, HTR2A and ADRA2A were also enriched in pathway of neuroactive ligand-receptor interaction. The expression of 4 DEGs (SORCS3, HTR2A, NEFL, and TAC1) was validated by qRT-PCR. Except for TAC1, the other 3 DEGs in AD were consistent with our integrated analysis. CONCLUSIONS The results of this study may provide novel insights into the molecular mechanisms of AD and indicate potential therapeutic targets for AD.
Collapse
Affiliation(s)
- Meixia Wang
- Department of PharmaceuticalAffiliated Hospital of Jining Medical UniversityJiningChina
| | - Shouyong Wang
- Medication Procurement OfficeAffiliated Hospital of Jining Medical UniversityJiningChina
| | - Yong Li
- EICUAffiliated Hospital of Jining Medical UniversityJiningChina
| | - Gaomei Cai
- Department of Neurology WardAffiliated Hospital of Jining Medical UniversityJiningChina
| | - Min Cao
- Continuing Education OfficeAffiliated Hospital of Jining Medical UniversityJiningChina
| | - Lanfang Li
- Department of Clinical PharmacyAffiliated Hospital of Jining Medical UniversityJiningChina
| |
Collapse
|
15
|
Miller MW. Leveraging genetics to enhance the efficacy of PTSD pharmacotherapies. Neurosci Lett 2020; 726:133562. [DOI: 10.1016/j.neulet.2018.04.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/13/2018] [Accepted: 04/20/2018] [Indexed: 12/12/2022]
|
16
|
Lewis CR, Preller KH, Braden BB, Riecken C, Vollenweider FX. Rostral Anterior Cingulate Thickness Predicts the Emotional Psilocybin Experience. Biomedicines 2020; 8:biomedicines8020034. [PMID: 32085521 PMCID: PMC7168190 DOI: 10.3390/biomedicines8020034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 01/02/2023] Open
Abstract
Psilocybin is the psychoactive compound of mushrooms in the psilocybe species. Psilocybin directly affects a number of serotonin receptors, with highest affinity for the serotonin 2A receptor (5HT-2Ar). Generally, the effects of psilocybin, and its active metabolite psilocin, are well established and include a range of cognitive, emotional, and perceptual perturbations. Despite the generality of these effects, there is a high degree of inter-individual variability in subjective psilocybin experiences that are not well understood. Others have shown brain morphology metrics derived from magnetic resonance imaging (MRI) can predict individual drug response. Due to high expression of serotonin 2A receptors (5HT-2Ar) in the cingulate cortex, and its prior associations with psilocybin, we investigate if cortical thickness of this structure predicts the psilocybin experience in healthy adults. We hypothesized that greater cingulate thickness would predict higher subjective ratings in sub-scales of the Five-Dimensional Altered State of Consciousness (5D-ASC) with high emotionality in healthy participants (n = 55) who received oral psilocybin (either low dose: 0.160 mg/kg or high dose: 0.215 mg/kg). After controlling for sex, age, and using false discovery rate (FDR) correction, we found the rostral anterior cingulate predicted all four emotional sub-scales, whereas the caudal and posterior cingulate did not. How classic psychedelic compounds induce such large inter-individual variability in subjective states has been a long-standing question in serotonergic research. These results extend the traditional set and setting hypothesis of the psychedelic experience to include brain structure metrics.
Collapse
Affiliation(s)
- Candace R. Lewis
- Translational Genomics Research Institute, Neurogenomics Division, Phoenix, AZ 85004, USA
- Neuropsychopharamacology and Brain Imaging, Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital for Psychiatry, Zurich 8032, Switzerland; (K.H.P.); (F.X.V.)
- Correspondence: ; Tel.: +1-602-343-8400
| | - Katrin H. Preller
- Neuropsychopharamacology and Brain Imaging, Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital for Psychiatry, Zurich 8032, Switzerland; (K.H.P.); (F.X.V.)
| | - B. Blair Braden
- Arizona State University, College of Health Solutions, Tempe 85281, AZ 85004, USA; (B.B.B.); (C.R.)
| | - Cory Riecken
- Arizona State University, College of Health Solutions, Tempe 85281, AZ 85004, USA; (B.B.B.); (C.R.)
| | - Franz X. Vollenweider
- Neuropsychopharamacology and Brain Imaging, Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital for Psychiatry, Zurich 8032, Switzerland; (K.H.P.); (F.X.V.)
| |
Collapse
|
17
|
Xin J, Yuan M, Peng Y, Wang J. Analysis of the Deleterious Single-Nucleotide Polymorphisms Associated With Antidepressant Efficacy in Major Depressive Disorder. Front Psychiatry 2020; 11:151. [PMID: 32256400 PMCID: PMC7093583 DOI: 10.3389/fpsyt.2020.00151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/18/2020] [Indexed: 12/26/2022] Open
Abstract
Major depressive disorder (MDD) is a serious mental disease with negative effects on both mental and physical health of the patient. Currently, antidepressants are among the major ways to ease or treat MDD. However, the existing antidepressants have limited efficacy in treating MDD, with a large fraction of patients either responding inadequately or differently to antidepressants during the treatment. Pharmacogenetics studies have found that the genetic features of some genes are associated with the antidepressant efficacy. In order to obtain a better understanding on the relationship between the genetic factors and antidepressant treatment response, we compiled a list of 233 single-nucleotide polymorphisms (SNPs) significantly associated with the antidepressant efficacy in treating MDD. Of the 13 non-synonymous SNPs in the list, three (rs1065852, rs3810651, and rs117986340) may influence the structures and function of the corresponding proteins. Besides, the influence of rs1065852 on the structure of CYP2D6 was further investigated via molecular dynamics simulations. Our results showed that compared to the native CYP2D6 the flexibility of the F-G loop was reduced in the mutant. As a portion of the substrate access channel, the lower flexibility of F-G loop may reduce the ability of the substrates to enter the channel, which may be the reason for the lower enzyme activity of mutant. This study may help us to understand the impact of genetic variation on antidepressant efficacy and provide clues for developing new antidepressants.
Collapse
Affiliation(s)
- Juncai Xin
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Meng Yuan
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Yonglin Peng
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Ju Wang
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| |
Collapse
|
18
|
Fortinguerra S, Sorrenti V, Giusti P, Zusso M, Buriani A. Pharmacogenomic Characterization in Bipolar Spectrum Disorders. Pharmaceutics 2019; 12:E13. [PMID: 31877761 PMCID: PMC7022469 DOI: 10.3390/pharmaceutics12010013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/14/2019] [Accepted: 12/19/2019] [Indexed: 12/15/2022] Open
Abstract
The holistic approach of personalized medicine, merging clinical and molecular characteristics to tailor the diagnostic and therapeutic path to each individual, is steadily spreading in clinical practice. Psychiatric disorders represent one of the most difficult diagnostic challenges, given their frequent mixed nature and intrinsic variability, as in bipolar disorders and depression. Patients misdiagnosed as depressed are often initially prescribed serotonergic antidepressants, a treatment that can exacerbate a previously unrecognized bipolar condition. Thanks to the use of the patient's genomic profile, it is possible to recognize such risk and at the same time characterize specific genetic assets specifically associated with bipolar spectrum disorder, as well as with the individual response to the various therapeutic options. This provides the basis for molecular diagnosis and the definition of pharmacogenomic profiles, thus guiding therapeutic choices and allowing a safer and more effective use of psychotropic drugs. Here, we report the pharmacogenomics state of the art in bipolar disorders and suggest an algorithm for therapeutic regimen choice.
Collapse
Affiliation(s)
- Stefano Fortinguerra
- Maria Paola Belloni Center for Personalized Medicine, Data Medica Group (Synlab Limited), 35131 Padova, Italy; (S.F.); (V.S.)
- Department of Pharmaceutical & Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (P.G.); (M.Z.)
| | - Vincenzo Sorrenti
- Maria Paola Belloni Center for Personalized Medicine, Data Medica Group (Synlab Limited), 35131 Padova, Italy; (S.F.); (V.S.)
- Department of Pharmaceutical & Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (P.G.); (M.Z.)
- Bendessere™ Study Center, Solgar Italia Multinutrient S.p.A., 35131 Padova, Italy
| | - Pietro Giusti
- Department of Pharmaceutical & Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (P.G.); (M.Z.)
| | - Morena Zusso
- Department of Pharmaceutical & Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (P.G.); (M.Z.)
| | - Alessandro Buriani
- Maria Paola Belloni Center for Personalized Medicine, Data Medica Group (Synlab Limited), 35131 Padova, Italy; (S.F.); (V.S.)
- Department of Pharmaceutical & Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (P.G.); (M.Z.)
| |
Collapse
|
19
|
Brunoni AR, Carracedo A, Amigo OM, Pellicer AL, Talib L, Carvalho AF, Lotufo PA, Benseñor IM, Gattaz W, Cappi C. Association of BDNF, HTR2A, TPH1, SLC6A4, and COMT polymorphisms with tDCS and escitalopram efficacy: ancillary analysis of a double-blind, placebo-controlled trial. ACTA ACUST UNITED AC 2019; 42:128-135. [PMID: 31721892 PMCID: PMC7115450 DOI: 10.1590/1516-4446-2019-0620] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 08/20/2019] [Indexed: 12/31/2022]
Abstract
OBJECTIVE We investigated whether single nucleotide polymorphisms (SNPs) associated with neuroplasticity and activity of monoamine neurotransmitters, such as the brain-derived neurotrophic factor (BDNF, rs6265), the serotonin transporter (SLC6A4, rs25531), the tryptophan hydroxylase 1 (TPH1, rs1800532), the 5-hydroxytryptamine receptor 2A (HTR2A, rs6311, rs6313, rs7997012), and the catechol-O-methyltransferase (COMT, rs4680) genes, are associated with efficacy of transcranial direct current stimulation (tDCS) in major depression. METHODS Data from the Escitalopram vs. Electrical Current Therapy for Treating Depression Clinical Study (ELECT-TDCS) were used. Participants were antidepressant-free at baseline and presented with an acute, moderate-to-severe unipolar depressive episode. They were randomized to receive escitalopram/tDCS-sham (n=75), tDCS/placebo-pill (n=75), or placebo-pill/sham-tDCS (n=45). General linear models assessed the interaction between treatment group and allele-wise carriers. Additional analyses were performed for each group and each genotype separately. RESULTS Pairwise group comparisons (tDCS vs. placebo, tDCS vs. escitalopram, and escitalopram vs. placebo) did not identify alleles associated with depression improvement. In addition, exploratory analyses also did not identify any SNP unequivocally associated with improvement of depression in any treatment group. CONCLUSION Larger, combined datasets are necessary to identify candidate genes for tDCS response.
Collapse
Affiliation(s)
- Andre R Brunoni
- Departamento de Medicina Interna, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Angel Carracedo
- Grupo de Medicina Xenómica/Pharmacogenetics Research, Laboratorio SSL1, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Santiago de Compostela, Spain
| | - Olalla M Amigo
- Grupo de Medicina Xenómica/Pharmacogenetics Research, Laboratorio SSL1, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Santiago de Compostela, Spain
| | - Ana L Pellicer
- Grupo de Medicina Xenómica/Pharmacogenetics Research, Laboratorio SSL1, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Santiago de Compostela, Spain
| | - Leda Talib
- Laboratório de Neurociências (LIM-27) and Instituto Nacional de Biomarcadores em Psiquiatria (INBION), Departamento e Instituto de Psiquiatria, Faculdade de Medicina, São Paulo, SP, Brazil
| | - Andre F Carvalho
- Department of Psychiatry, Faculty of Medicine, University of Toronto & Centre for Addiction & Mental Health (CAMH), Toronto, Canada
| | - Paulo A Lotufo
- Departamento de Medicina Interna, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Isabela M Benseñor
- Departamento de Medicina Interna, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Wagner Gattaz
- Laboratório de Neurociências (LIM-27) and Instituto Nacional de Biomarcadores em Psiquiatria (INBION), Departamento e Instituto de Psiquiatria, Faculdade de Medicina, São Paulo, SP, Brazil
| | - Carolina Cappi
- Programa Transtornos do Espectro Obsessivo-Compulsivo, Departamento e Instituto de Psiquiatria, Faculdade de Medicina, USP, São Paulo, SP, Brazil
| |
Collapse
|
20
|
Zhao L, Wang H, Zhang Y, Wei J, Ni P, Ren H, Li G, Wang Q, Reynolds GP, Yue W, Deng W, Yan H, Tan L, Chen Q, Yang G, Lu T, Wang L, Zhang F, Yang J, Li K, Lv L, Tan Q, Li Y, Yu H, Zhang H, Ma X, Yang F, Li L, Wang C, Wang H, Li X, Guo W, Hu X, Tian Y, Ma X, Coid J, Zhang D, Chen C, Li T. Interaction Between Variations in Dopamine D2 and Serotonin 2A Receptor is Associated with Short-Term Response to Antipsychotics in Schizophrenia. Neurosci Bull 2019; 35:1102-1105. [PMID: 31571100 DOI: 10.1007/s12264-019-00432-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/12/2019] [Indexed: 02/05/2023] Open
Affiliation(s)
- Liansheng Zhao
- Psychiatric Laboratory and Mental Health Center, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Huijuan Wang
- The National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi'an, 710069, China
| | - Yamin Zhang
- Psychiatric Laboratory and Mental Health Center, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Jinxue Wei
- Psychiatric Laboratory and Mental Health Center, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Peiyan Ni
- Psychiatric Laboratory and Mental Health Center, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Hongyan Ren
- Psychiatric Laboratory and Mental Health Center, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Gang Li
- Shaanxi Lifegen Co., Ltd, Xi'an, 712000, China
| | - Qiang Wang
- Psychiatric Laboratory and Mental Health Center, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Gavin P Reynolds
- Biomolecular Science Research Centre, Sheffield Hallam University, Sheffield, S11WB, UK
| | - Weihua Yue
- Peking University Sixth Hospital (Institute of Mental Health), Beijing, 100083, China.,National Clinical Research Center for Mental Disorders and Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, 100871, China
| | - Wei Deng
- Psychiatric Laboratory and Mental Health Center, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Hao Yan
- Peking University Sixth Hospital (Institute of Mental Health), Beijing, 100083, China.,National Clinical Research Center for Mental Disorders and Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, 100871, China
| | - Liwen Tan
- Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Qi Chen
- Beijing Anding Hospital, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100088, China
| | - Guigang Yang
- Beijing HuiLongGuan Hospital, Beijing, 102200, China
| | - Tianlan Lu
- Peking University Sixth Hospital (Institute of Mental Health), Beijing, 100083, China.,National Clinical Research Center for Mental Disorders and Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, 100871, China
| | - Lifang Wang
- Peking University Sixth Hospital (Institute of Mental Health), Beijing, 100083, China.,National Clinical Research Center for Mental Disorders and Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, 100871, China
| | - Fuquan Zhang
- Wuxi Mental Health Center, Nanjing Medical University, Wuxi, 214121, China
| | - Jianli Yang
- Institute of Mental Health, Tianjin Anding Hospital, Tianjin, 300222, China.,Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Keqing Li
- Hebei Mental Health Center, Baoding, 071000, China
| | - Luxian Lv
- Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, China
| | - Qingrong Tan
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yinfei Li
- Psychiatric Laboratory and Mental Health Center, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Hua Yu
- Psychiatric Laboratory and Mental Health Center, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Hongyan Zhang
- Peking University Sixth Hospital (Institute of Mental Health), Beijing, 100083, China.,National Clinical Research Center for Mental Disorders and Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, 100871, China
| | - Xin Ma
- Beijing Anding Hospital, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100088, China
| | - Fude Yang
- Beijing HuiLongGuan Hospital, Beijing, 102200, China
| | - Lingjiang Li
- Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Chuanyue Wang
- Beijing Anding Hospital, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100088, China
| | - Huiyao Wang
- Psychiatric Laboratory and Mental Health Center, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xiaojing Li
- Psychiatric Laboratory and Mental Health Center, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Wanjun Guo
- Psychiatric Laboratory and Mental Health Center, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xun Hu
- Huaxi Biobank, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yang Tian
- Psychiatric Laboratory and Mental Health Center, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xiaohong Ma
- Psychiatric Laboratory and Mental Health Center, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Jeremy Coid
- Psychiatric Laboratory and Mental Health Center, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Dai Zhang
- Peking University Sixth Hospital (Institute of Mental Health), Beijing, 100083, China.,National Clinical Research Center for Mental Disorders and Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, 100871, China
| | - Chao Chen
- The National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi'an, 710069, China.
| | - Tao Li
- Psychiatric Laboratory and Mental Health Center, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China. .,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, 610041, China.
| | | |
Collapse
|
21
|
Knisely MR, Conley YP, Smoot B, Paul SM, Levine JD, Miaskowski C. Associations Between Catecholaminergic and Serotonergic Genes and Persistent Arm Pain Severity Following Breast Cancer Surgery. THE JOURNAL OF PAIN 2019; 20:1100-1111. [PMID: 30904518 PMCID: PMC6736756 DOI: 10.1016/j.jpain.2019.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/17/2019] [Accepted: 03/19/2019] [Indexed: 01/09/2023]
Abstract
Persistent arm pain is a common problem after breast cancer surgery. Little is known about genetic factors that contribute to this type of postsurgical pain. Study purpose was to explore associations between persistent arm pain phenotypes and genetic polymorphisms among 15 genes involved in catecholaminergic and serotonergic neurotransmission. Women (n = 398) rated the presence and intensity of arm pain monthly for 6 months after breast cancer surgery. Three distinct latent classes of patients were identified (ie, no arm pain [41.6%], mild arm pain (23.6%), and moderate arm pain (34.8%). Logistic regression analyses were used to evaluate for differences between genotype or haplotype frequencies and the persistent arm pain classes. Compared with the no arm pain class, 3 single nucleotide polymorphisms and 1 haplotype, in 4 genes, were associated with membership in the mild arm pain class: COMT rs4633, HTR2A haplotype B02 (composed of rs1923886 and rs7330636), HTR3A rs1985242, and TH rs2070762. Compared with the no arm pain class, 4 single nucleotide polymorphisms in 3 genes were associated with membership in the moderate arm pain class: COMT rs165656, HTR2A rs2770298 and rs9534511, and HTR3A rs1985242. Findings suggest that variations in catecholaminergic and serotonergic genes play a role in the development of persistent arm pain. PERSPECTIVE: Limited information is available on genetic factors that contribute to persistent arm pain after breast cancer surgery. Genetic polymorphisms in genes involved in catecholaminergic and serotonergic neurotransmission were associated with 2 persistent arm pain phenotypes. Findings may be used to identify patients are higher risk for this common pain condition.
Collapse
Affiliation(s)
| | - Yvette P Conley
- School of Nursing, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Betty Smoot
- Schools of Medicine, University of California, San Francisco, California
| | - Steven M Paul
- Schools of Nursing, University of California, San Francisco, California
| | - Jon D Levine
- Schools of Medicine, University of California, San Francisco, California
| | | |
Collapse
|
22
|
Poweleit EA, Aldrich SL, Martin LJ, Hahn D, Strawn JR, Ramsey LB. Pharmacogenetics of Sertraline Tolerability and Response in Pediatric Anxiety and Depressive Disorders. J Child Adolesc Psychopharmacol 2019; 29:348-361. [PMID: 31066578 DOI: 10.1089/cap.2019.0017] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Objective: To determine whether genetic variants in a pharmacokinetic gene (the number of CYP2C19 reduced function alleles [RFAs]), and in pharmacodynamic genes (HTR2A, SLC6A4, and GRIK4) influence sertraline tolerability and response in a cohort of pediatric patients with anxiety and depressive disorders. Methods: A retrospective analysis was performed using the electronic medical record data of 352 patients <19 years of age being treated for anxiety and/or depressive disorders with sertraline and who underwent routine clinical CYP2C19 genotyping. Additional genotyping and analysis of variants in HTR2A, SLC6A4, and GRIK4 were conducted for 249 patients. Multivariate regression models testing for associations with CYP2C19 were adjusted for concomitant use of interacting medications. Combinatorial classification and regression tree (CART) analyses containing all pharmacokinetic and pharmacodynamic genes and clinical factors were performed. Results: The maximum sertraline dose during the initial titration period of sertraline was inversely associated with the number of CYP2C19 RFAs and sertraline dose at 60 (p = 0.025) and 90 days (p = 0.025). HTR2A rs6313 was associated with sertraline dose (p = 0.011) and time to the average maximum sertraline dose (p = 0.039). Regarding efficacy, the number of CYP2C19 RFAs was not associated with the sertraline dose at the time of response (p = 0.22), whereas for the pharmacodynamic genes, only HTR2A rs6313 was associated with response dose (p = 0.022). An association was observed between predicted expression levels of SLC6A4 and the duration on sertraline (p = 0.025). Combinatorial CART and multivariate regression analyses implicated that pharmacodynamic genes and clinical factors influence the maximum sertraline dose and response dose. The total number of side effects was not associated with any of the variants tested. Conclusion: Both pharmacokinetic and pharmacodynamic factors, in addition to clinical and demographic components, influence sertraline dose, response, and tolerability, thereby necessitating further research to assess for the validity of these pharmacogenetic associations in children and adolescents.
Collapse
Affiliation(s)
- Ethan A Poweleit
- 1 Division of Research in Patient Services, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Stacey L Aldrich
- 2 Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Lisa J Martin
- 2 Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio.,3 Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - David Hahn
- 4 Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jeffrey R Strawn
- 5 Anxiety Disorders Research Program, Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio.,6 Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Laura B Ramsey
- 1 Division of Research in Patient Services, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,2 Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio.,4 Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
23
|
Stenbaek DS, Kristiansen S, Burmester D, Madsen MK, Frokjaer VG, Knudsen GM, Fisher PM. Trait Openness and serotonin 2A receptors in healthy volunteers: A positron emission tomography study. Hum Brain Mapp 2019; 40:2117-2124. [PMID: 30633430 DOI: 10.1002/hbm.24511] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/13/2018] [Accepted: 12/28/2018] [Indexed: 12/21/2022] Open
Abstract
Recent research found lasting increases in personality trait Openness in healthy individuals and patients after administration of the serotonin 2A receptor (5-HT2A R) agonist psilocybin. However, no studies have investigated whether 5-HT2A R availability as imaged using positron emission tomography (PET) is associated with this trait. In 159 healthy individuals (53 females), the association between 5-HT2A R binding in neocortex imaged with [18 F]altanserin or [11 C]Cimbi-36 PET and personality trait Openness was investigated using linear regression models. In these models the influence of sex on the association was also investigated. Trait Openness was assessed with the NEO Personality Inventory-Revised. No significant associations between neocortical 5-HT2A R binding and trait Openness were found for [18 F]altanserin (p = 0.5) or [11 C]Cimbi-36 (p = 0.8). Pooling the data in a combined model did not substantially change our results (p = 0.4). No significant interactions with sex were found (p > 0.35). Our results indicate that differences in 5-HT2A R availability are not related to variations in trait Openness in healthy individuals. Although stimulation of the 5-HT2A R with compounds such as psilocybin may contribute to long-term changes in trait Openness, there is no evidence in favor of an association between 5-HT2A R and trait Openness.
Collapse
Affiliation(s)
- Dea Siggaard Stenbaek
- Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark.,Center for Integrated Molecular Brain Imaging, Rigshospitalet, Copenhagen, Denmark.,The Neuroscience Centre, Rigshospitalet, Copenhagen, Denmark
| | - Sara Kristiansen
- Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark.,Center for Integrated Molecular Brain Imaging, Rigshospitalet, Copenhagen, Denmark.,The Neuroscience Centre, Rigshospitalet, Copenhagen, Denmark
| | - Daniel Burmester
- Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark.,Center for Integrated Molecular Brain Imaging, Rigshospitalet, Copenhagen, Denmark.,The Neuroscience Centre, Rigshospitalet, Copenhagen, Denmark
| | - Martin Korsbak Madsen
- Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark.,Center for Integrated Molecular Brain Imaging, Rigshospitalet, Copenhagen, Denmark.,The Neuroscience Centre, Rigshospitalet, Copenhagen, Denmark
| | - Vibe Gedsoe Frokjaer
- Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark.,Center for Integrated Molecular Brain Imaging, Rigshospitalet, Copenhagen, Denmark.,The Neuroscience Centre, Rigshospitalet, Copenhagen, Denmark
| | - Gitte Moos Knudsen
- Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark.,Center for Integrated Molecular Brain Imaging, Rigshospitalet, Copenhagen, Denmark.,The Neuroscience Centre, Rigshospitalet, Copenhagen, Denmark
| | - Patrick MacDonald Fisher
- Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark.,Center for Integrated Molecular Brain Imaging, Rigshospitalet, Copenhagen, Denmark.,The Neuroscience Centre, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
24
|
Pharmacogenomics in Psychiatric Disorders. Pharmacogenomics 2019. [DOI: 10.1016/b978-0-12-812626-4.00007-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
25
|
Werneke U. Conference proceedings of the 4th Masterclass Psychiatry: Transcultural Psychiatry - Diagnostics and Treatment, Luleå, Sweden, 22-23 February 2018 (Region Norrbotten in collaboration with the Maudsley Hospital and Tavistock Clinic London). Nord J Psychiatry 2018:1-33. [PMID: 30547691 DOI: 10.1080/08039488.2018.1481525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/23/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND According to estimates from the European Commission, Europe has experienced the greatest mass movement of people since the Second World War. More than one million refugees and migrants have arrived in the European Union in the past few years. Mental health and primary care professionals are more likely than ever to meet patients from different cultures and backgrounds. AIMS To equip mental health and primary care professionals with transcultural skills to deal with patients from unfamiliar backgrounds. METHOD Lectures and case discussions to explore the latest advances in the diagnosis and treatment of serious mental health problems in a transcultural context. RESULTS Lectures covered transcultural aspects of mental health problems, treatment in different cultural and ethnic contexts, and assessment of risk factors for self-harm and harm in migrant populations. CONCLUSIONS Clinicians require a sound grounding in transcultural skills to confidently and empathically deal with patients from unfamiliar backgrounds.
Collapse
Affiliation(s)
- Ursula Werneke
- a Department of Clinical Sciences, Division of Psychiatry, Sunderby Research Unit , Umeå University , Umeå , Sweden
| |
Collapse
|
26
|
Gómez-Molina C, Sandoval M, Henzi R, Ramírez JP, Varas-Godoy M, Luarte A, Lafourcade CA, Lopez-Verrilli A, Smalla KH, Kaehne T, Wyneken U. Small Extracellular Vesicles in Rat Serum Contain Astrocyte-Derived Protein Biomarkers of Repetitive Stress. Int J Neuropsychopharmacol 2018; 22:232-246. [PMID: 30535257 PMCID: PMC6403096 DOI: 10.1093/ijnp/pyy098] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 11/23/2018] [Accepted: 12/04/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Stress precipitates mood disorders, characterized by a range of symptoms present in different combinations, suggesting the existence of disease subtypes. Using an animal model, we previously described that repetitive stress via restraint or immobilization induced depressive-like behaviors in rats that were differentially reverted by a serotonin- or noradrenaline-based antidepressant drug, indicating that different neurobiological mechanisms may be involved. The forebrain astrocyte protein aldolase C, contained in small extracellular vesicles, was identified as a potential biomarker in the cerebrospinal fluid; however, its specific origin remains unknown. Here, we propose to investigate whether serum small extracellular vesicles contain a stress-specific protein cargo and whether serum aldolase C has a brain origin. METHODS We isolated and characterized serum small extracellular vesicles from rats exposed to restraint, immobilization, or no stress, and their proteomes were identified by mass spectrometry. Data available via ProteomeXchange with identifier PXD009085 were validated, in part, by western blot. In utero electroporation was performed to study the direct transfer of recombinant aldolase C-GFP from brain cells to blood small extracellular vesicles. RESULTS A differential proteome was identified among the experimental groups, including aldolase C, astrocytic glial fibrillary acidic protein, synaptophysin, and reelin. Additionally, we observed that, when expressed in the brain, aldolase C tagged with green fluorescent protein could be recovered in serum small extracellular vesicles. CONCLUSION The protein cargo of serum small extracellular vesicles constitutes a valuable source of biomarkers of stress-induced diseases, including those characterized by depressive-like behaviors. Brain-to-periphery signaling mediated by a differential molecular cargo of small extracellular vesicles is a novel and challenging mechanism by which the brain might communicate health and disease states to the rest of the body.
Collapse
Affiliation(s)
| | | | - Roberto Henzi
- Centro de Investigación Biomédica, Universidad de los Andes, Chile
| | | | | | - Alejandro Luarte
- Centro de Investigación Biomédica, Universidad de los Andes, Chile
| | | | | | | | - Thilo Kaehne
- Otto-von-Guericke University, Magdeburg, Germany
| | - Ursula Wyneken
- Centro de Investigación Biomédica, Universidad de los Andes, Chile,Correspondence: Ursula Wyneken, Laboratorio de Neurociencias, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes; Mons. Alvaro del Portillo 12.455, Las Condes; Santiago, Chile ().C.G.-M. and M.S. contributed equally to this work
| |
Collapse
|
27
|
Gassó P, Blázquez A, Rodríguez N, Boloc D, Torres T, Mas S, Lafuente A, Lázaro L. Further Support for the Involvement of Genetic Variants Related to the Serotonergic Pathway in the Antidepressant Response in Children and Adolescents After a 12-Month Follow-Up: Impact of the HTR2A rs7997012 Polymorphism. J Child Adolesc Psychopharmacol 2018; 28:711-718. [PMID: 29975559 DOI: 10.1089/cap.2018.0004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Objective: Fluoxetine is an effective and well-tolerated pharmacological treatment for children and adolescents with major depressive disorder (MDD). However, a high percentage of patients do not respond. There is a substantial genetic contribution to this variable clinical outcome. Based on previous genetic results of our group and given the lack of pharmacogenetics studies of antidepressant response with a long follow-up period, we evaluated the influence of single nucleotide polymorphisms (SNPs) in genes related to the serotonergic pathway on remission and recovery in children and adolescents diagnosed with MDD after 12 months of initiating fluoxetine treatment. Methods: The assessment was performed in 46 patients. All of them were visited at least once a month during the 12-month follow-up. Psychiatrists interviewed patients and their parents to explore clinical improvement. A total of 75 genotyped SNPs in 10 candidate genes were included in the genetic association analysis with remission and recovery. Bonferroni correction for multiple testing was applied to avoid false positive results. Results: The HTR2A rs7997012 SNP was significantly associated after Bonferroni correction with clinical improvement. Particularly, the homozygotes for the major allele (GG) showed the highest percentage of remitters and the highest score reductions on the Clinical Global Impressions-Severity (CGI-S) scale. Moreover, although the results were on the border of statistical significance, the GG homozygotes also tended to experience fewer readmissions during the follow-up period Conclusions: These results provide more evidence of the involvement of genetic variants related to the serotonergic pathway in the antidepressant response. Studies with larger cohorts are needed to integrate all relevant variants into clinical predictors of antidepressant response.
Collapse
Affiliation(s)
- Patricia Gassó
- Department of Basic Clinical Practice, Unit of Pharmacology, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ana Blázquez
- Department of Child and Adolescent Psychiatry and Psychology, Institute of Neurosciences, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Natalia Rodríguez
- Department of Basic Clinical Practice, Unit of Pharmacology, University of Barcelona, Barcelona, Spain
| | - Daniel Boloc
- Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Teresa Torres
- Department of Basic Clinical Practice, Unit of Pharmacology, University of Barcelona, Barcelona, Spain
| | - Sergi Mas
- Department of Basic Clinical Practice, Unit of Pharmacology, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - Amalia Lafuente
- Department of Basic Clinical Practice, Unit of Pharmacology, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - Luisa Lázaro
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Department of Child and Adolescent Psychiatry and Psychology, Institute of Neurosciences, Hospital Clinic de Barcelona, Barcelona, Spain.,Department of Medicine, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| |
Collapse
|
28
|
Knisely MR, Conley YP, Kober KM, Smoot B, Paul SM, Levine JD, Miaskowski C. Associations Between Catecholaminergic and Serotonergic Genes and Persistent Breast Pain Phenotypes After Breast Cancer Surgery. THE JOURNAL OF PAIN 2018; 19:1130-1146. [DOI: 10.1016/j.jpain.2018.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 03/04/2018] [Accepted: 04/12/2018] [Indexed: 12/20/2022]
|
29
|
Calabrò M, Mandelli L, Crisafulli C, Lee SJ, Jun TY, Wang SM, Patkar AA, Masand PS, Benedetti F, Han C, Pae CU, Serretti A. Neuroplasticity, Neurotransmission and Brain-Related Genes in Major Depression and Bipolar Disorder: Focus on Treatment Outcomes in an Asiatic Sample. Adv Ther 2018; 35:1656-1670. [PMID: 30178121 PMCID: PMC6182627 DOI: 10.1007/s12325-018-0781-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Mood disorders are common and disabling disorders. Despite the availability of over 100 psychotropic compounds, only one-third of patients benefit from first-line treatments. Over the past 20 years, many studies have focused on the biological factors modulating disease risk and response to treatments, but with still inconclusive data. In order to improve our current knowledge, in this study, we investigated the role of a set of genes involved in different pathways (neurotransmission, neuroplasticity, circadian rhythms, transcription factors, signal transduction and cellular metabolism) in the treatment outcome of major depressive disorder (MDD) and bipolar disorder (BD) after naturalistic pharmacological treatment. METHODS Totals of 242 MDD, 132 BD patients and 326 healthy controls of Asian ethnicity (Koreans) were genotyped for polymorphisms within 19 genes. Response and remission after 6-8 weeks of treatment with antidepressants and mood stabilizers were evaluated. In secondary analyses, genetic associations with disease risk and some disease-associated features (age of onset, suicide attempt and psychotic BD) were also tested. RESULTS None of the variants within the investigated genes was significantly associated with treatment outcomes. Some marginal association (uncorrected p < 0.01) was observed for HTR2A, BDNF, CHL1, RORA and HOMER1 SNPs. In secondary analyses, HTR2A (rs643627, p = 0.002) and CHL1 (rs4003413, p = 0.002) were found associated with risk for BD, HOMER1 (rs6872497, p = 0.002) with lifetime history of suicide attempt in patients, and RORA with early onset and presence of psychotic features in BD. Marginal results were also observed for ST8SIA2 and COMT. DISCUSSION Despite limitations linked to multiple testing on small samples, methodological shortcomings and small significance of the findings, this study may support the involvement of some candidate genes in the outcomes of treatments for mood disorders, as well as in BD risk and other disease features.
Collapse
Affiliation(s)
- Marco Calabrò
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Laura Mandelli
- Department of Biomedical and Neuromotor Sciences, Psychiatric Section, University of Bologna, Bologna, Italy
| | - Concetta Crisafulli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Soo-Jung Lee
- Department of Psychiatry, The Catholic University of Korea College of Medicine, Seoul, Republic of Korea
| | - Tae-Youn Jun
- Department of Psychiatry, The Catholic University of Korea College of Medicine, Seoul, Republic of Korea
| | - Sheng-Min Wang
- Department of Psychiatry, The Catholic University of Korea College of Medicine, Seoul, Republic of Korea
| | - Ashwin A Patkar
- Department of Psychiatry and Behavioural Sciences, Duke University Medical Center, Durham, NC, USA
| | | | - Francesco Benedetti
- Psychiatry and Clinical Psychobiology Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Changsu Han
- Department of Psychiatry, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Chi-Un Pae
- Department of Psychiatry, The Catholic University of Korea College of Medicine, Seoul, Republic of Korea.
- Department of Psychiatry and Behavioural Sciences, Duke University Medical Center, Durham, NC, USA.
- Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Alessandro Serretti
- Department of Biomedical and Neuromotor Sciences, Psychiatric Section, University of Bologna, Bologna, Italy
| |
Collapse
|
30
|
Gonda X, Petschner P, Eszlari N, Baksa D, Edes A, Antal P, Juhasz G, Bagdy G. Genetic variants in major depressive disorder: From pathophysiology to therapy. Pharmacol Ther 2018; 194:22-43. [PMID: 30189291 DOI: 10.1016/j.pharmthera.2018.09.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In spite of promising preclinical results there is a decreasing number of new registered medications in major depression. The main reason behind this fact is the lack of confirmation in clinical studies for the assumed, and in animals confirmed, therapeutic results. This suggests low predictive value of animal studies for central nervous system disorders. One solution for identifying new possible targets is the application of genetics and genomics, which may pinpoint new targets based on the effect of genetic variants in humans. The present review summarizes such research focusing on depression and its therapy. The inconsistency between most genetic studies in depression suggests, first of all, a significant role of environmental stress. Furthermore, effect of individual genes and polymorphisms is weak, therefore gene x gene interactions or complete biochemical pathways should be analyzed. Even genes encoding target proteins of currently used antidepressants remain non-significant in genome-wide case control investigations suggesting no main effect in depression, but rather an interaction with stress. The few significant genes in GWASs are related to neurogenesis, neuronal synapse, cell contact and DNA transcription and as being nonspecific for depression are difficult to harvest pharmacologically. Most candidate genes in replicable gene x environment interactions, on the other hand, are connected to the regulation of stress and the HPA axis and thus could serve as drug targets for depression subgroups characterized by stress-sensitivity and anxiety while other risk polymorphisms such as those related to prominent cognitive symptoms in depression may help to identify additional subgroups and their distinct treatment. Until these new targets find their way into therapy, the optimization of current medications can be approached by pharmacogenomics, where metabolizing enzyme polymorphisms remain prominent determinants of therapeutic success.
Collapse
Affiliation(s)
- Xenia Gonda
- Department of Psychiatry and Psychotherapy, Kutvolgyi Clinical Centre, Semmelweis University, Budapest, Hungary; NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary; MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary.
| | - Peter Petschner
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary; Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Nora Eszlari
- NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary; Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Daniel Baksa
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary; SE-NAP 2 Genetic Brain Imaging Migraine Research Group, Hungarian Academy of Sciences, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Andrea Edes
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary; SE-NAP 2 Genetic Brain Imaging Migraine Research Group, Hungarian Academy of Sciences, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Peter Antal
- Department of Measurement and Information Systems, Budapest University of Technology and Economics, Budapest, Hungary
| | - Gabriella Juhasz
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary; SE-NAP 2 Genetic Brain Imaging Migraine Research Group, Hungarian Academy of Sciences, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary; Neuroscience and Psychiatry Unit, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Gyorgy Bagdy
- NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary; MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary; Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
31
|
Abstract
BACKGROUND Ethnopharmacology relates to the study of substances used medicinally by different ethnic or cultural groups or handling of, drugs-based ethnicity or pharmacogenetics. AIMS To review the key aspects of ethnopharmacology. METHOD This lecture gives an overview of the relationship between geography, culture, pharmacogenomics and prescribing. RESULTS Although the majority of antipsychotics, antidepressants and mood-stabilisers are widely and cheaply available in generic forms, prescription rates can vary. Clozapine is one such example with prescribing-rates ranging from less than 10 patients per 100,000 people to nearly 180 patients/100,000 people. Pharmacogenetic studies of antipsychotics and antidepressants concern gene polymorphisms that may affect both, pharmacodynamic or pharmacokinetic properties. Considerable genetic and ethnic variability has been seen for the P450 microsomal enzymes CYP 2D6 and 1A2. CONCLUSIONS With accelerated global mobility and increased understanding of medicinal substances at molecular level, understanding of ethnopharmacology will become increasingly important in routine clinical practice.
Collapse
Affiliation(s)
- David M Taylor
- a Pharmacy Department Denmark Hill , Maudsley Hospital , London , UK
- b King's College London Institute of Pharmaceutical Science , London , UK
| | - Ursula Werneke
- c Department of Clinical Sciences, Division of Psychiatry , Sunderby Research Unit, Umeå University , Umeå , Sweden
| |
Collapse
|
32
|
Abstract
Introduction: Pharmacogenomic tests relevant to neuropsychiatric medications have been clinically available for more than a decade, but the utility of regular testing is still unknown. Tests available include both pharmacokinetic and pharmacodynamic targets. The potential practice benefits vary with each target. Methods: A 10-year literature review was completed utilizing the PubMed database to identify articles relating to the specific pharmacogenomic targets discussed. Further article selection was based on author review for clinical utility. Results: The clinical dosing guidance available for neuropsychiatric medications such as selective serotonin reuptake inhibitors and tricyclic antidepressants with varying genotypes is useful and has strong evidence to support testing, but it is limited to mainly pharmacokinetic application. Pharmacodynamic targets are gaining additional evidence with increased research, and although the mechanisms behind the potential interactions are scientifically sound, the bridge to clinical practice application is still lacking. Discussion: Although the benefits of decreasing adverse reactions and improving response time are appealing, clinicians may not utilize pharmacogenomic testing in routine practice due to several barriers. Further clinical guidance and studies are needed to support testing for other neuropsychiatric medications and targets.
Collapse
Affiliation(s)
- Tonya Gross
- Clinical Psychiatric Pharmacist, Avera Behavioral Health Center, Sioux Falls, South Dakota
| | - Jeremy Daniel
- (Corresponding author) Clinical Psychiatric Pharmacist, Avera Behavioral Health Center, Assistant Professor, South Dakota State University College of Pharmacy and Allied Health Professions, Sioux Falls, South Dakota,
| |
Collapse
|
33
|
Kitzlerová E, Fišar Z, Lelková P, Jirák R, Zvěřová M, Hroudová J, Manukyan A, Martásek P, Raboch J. Interactions Among Polymorphisms of Susceptibility Loci for Alzheimer's Disease or Depressive Disorder. Med Sci Monit 2018; 24:2599-2619. [PMID: 29703883 PMCID: PMC5944403 DOI: 10.12659/msm.907202] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background Several genetic susceptibility loci for major depressive disorder (MDD) or Alzheimer’s disease (AD) have been described. Interactions among polymorphisms are thought to explain the differences between low- and high-risk groups. We tested for the contribution of interactions between multiple functional polymorphisms in the risk of MDD or AD. Material/Methods A genetic association case-control study was performed in 68 MDD cases, 84 AD cases (35 of them with comorbid depression), and 90 controls. The contribution of 7 polymorphisms from 5 genes (APOE, HSPA1A, SLC6A4, HTR2A, and BDNF) related to risk of MDD or AD development was analyzed. Results Significant associations were found between MDD and interactions among polymorphisms in HSPA1A, SLC6A4, and BDNF or HSPA1A, BDNF, and APOE genes. For polymorphisms in the APOE gene in AD, significant differences were confirmed on the distributions of alleles and genotype rates compared to the control or MDD. Increased probability of comorbid depression was found in patients with AD who do not carry the ɛ4 allele of APOE. Conclusions Assessment of the interactions among polymorphisms of susceptibility loci in both MDD and AD confirmed a synergistic effect of genetic factors influencing inflammatory, serotonergic, and neurotrophic pathways at these heterogenous complex diseases. The effect of interactions was greater in MDD than in AD. A presence of the ɛ4 allele was confirmed as a genetic susceptibility factor in AD. Our findings indicate a role of APOE genotype in onset of comorbid depression in a subgroup of patients with AD who are not carriers of the APOE ɛ4 allele.
Collapse
Affiliation(s)
- Eva Kitzlerová
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Petra Lelková
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Roman Jirák
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Martina Zvěřová
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jana Hroudová
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Ada Manukyan
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Pavel Martásek
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jiří Raboch
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
34
|
Busch Y, Menke A. Blood-based biomarkers predicting response to antidepressants. J Neural Transm (Vienna) 2018; 126:47-63. [PMID: 29374800 DOI: 10.1007/s00702-018-1844-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 01/11/2018] [Indexed: 01/04/2023]
Abstract
Major depressive disorder is a common, serious and in some cases, life-threatening condition and affects approximately 350 million people globally. Although there is effective treatment available for it, more than 50% of the patients fail to respond to the first antidepressant they receive. The selection of a distinct treatment is still exclusively based on clinical judgment without incorporating lab-derived objective measures. However, there is growing evidence of biomarkers that it helps to improve diagnostic processes and treatment algorithms. Here genetic markers and blood-based biomarkers of the monoamine pathways, inflammatory pathways and the hypothalamic-pituitary-adrenal (HPA) axis are reviewed. Promising findings arise from studies investigating inflammatory pathways and immune markers that may identify patients suitable for anti-inflammatory based treatment regimes. Next, an early normalization of a disturbed HPA axis or depleted neurotrophic factors may predict stable treatment response. Genetic markers within the serotonergic system may identify patients who are vulnerable because of stressful life events, but evidence for guiding treatment regimes still is inconsistent. Therefore, there is still a great need for studies investigating and validating biomarkers for the prediction of treatment response to facilitate the treatment selection and shorten the time to remission and thus provide personalized medicine in psychiatry.
Collapse
Affiliation(s)
- Yasmin Busch
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Wuerzburg, Margarete-Hoeppel-Platz 1, 97080, Würzburg, Germany
| | - Andreas Menke
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Wuerzburg, Margarete-Hoeppel-Platz 1, 97080, Würzburg, Germany. .,Comprehensive Heart Failure Center, University Hospital of Wuerzburg, Am Schwarzenberg 15, 97080, Würzburg, Germany.
| |
Collapse
|
35
|
Fortinguerra S, Buriani A, Sorrenti V, Lenzi M, Giusti P. Molecular network-selected pharmacogenomics in a case of bipolar spectrum disorder. Pharmacogenomics 2017; 18:1631-1642. [PMID: 29173093 DOI: 10.2217/pgs-2017-0133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Personal genomic analysis was used for molecular diagnosis and pharmacogenomics in a 53-year-old female suffering from alternating depressive and dysphoric episodes. A total of 52 genes and 108 SNPs were analyzed in the whole genome. Results from the pharmacogenomic analysis were consistent with the pharmacological history and indicate mutations associated with low monoaminergic tone, but also a hyperactive 5HT2A receptor, a feature that associates to a high probability of developing a bipolar condition, especially under 5-hydroxytryptamine potentiating pharmacology. This aligns with the patient developing dysphoria with high clomipramine. The pharmacokinetic genomics pointed out to some absorption, distribution, metabolism, and excretion (ADME) alterations that can lower or nullify drug's activity. A personalized regimen was proposed, with a positive outcome after 1 year.
Collapse
Affiliation(s)
- Stefano Fortinguerra
- Maria Paola Belloni Center for Personalized Medicine, Data Medica Group, (Synlab Limited) Padova 35100, Italy
| | - Alessandro Buriani
- Maria Paola Belloni Center for Personalized Medicine, Data Medica Group, (Synlab Limited) Padova 35100, Italy
| | - Vincenzo Sorrenti
- Maria Paola Belloni Center for Personalized Medicine, Data Medica Group, (Synlab Limited) Padova 35100, Italy.,Department of Pharmaceutical & Pharmacological Sciences, University of Padova, Padova, Italy
| | - Michele Lenzi
- Maria Paola Belloni Center for Personalized Medicine, Data Medica Group, (Synlab Limited) Padova 35100, Italy
| | - Pietro Giusti
- Department of Pharmaceutical & Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
36
|
Abstract
Pharmacogenomic testing in psychiatry is becoming an established clinical procedure. Several vendors provide clinical interpretation of combinatorial pharmacogenomic testing of gene variants that have documented predictive implications regarding either pharmacologic response or adverse effects in depression and other psychiatric conditions. Such gene profiles have demonstrated improvements in outcome in depression, and reduction of cost of care of patients with inadequate clinical response. Additionally, several new gene variants are being studied to predict specific response in individuals. Many of these genes have demonstrated a role in the pathophysiology of depression or specific depressive symptoms. This article reviews the current state-of-the-art application of psychiatric pharmacogenomics.
Collapse
|
37
|
Jiang J, Wang J, Li C. Potential Mechanisms Underlying the Therapeutic Effects of Electroconvulsive Therapy. Neurosci Bull 2017; 33:339-347. [PMID: 28032314 PMCID: PMC5567510 DOI: 10.1007/s12264-016-0094-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/23/2016] [Indexed: 01/01/2023] Open
Abstract
In spite of the extensive application of electroconvulsive therapy (ECT), how it works remains unclear. So far, researchers have made great efforts in figuring out the mechanisms underlying the effect of ECT treatment via determining the levels of neurotransmitters and cytokines and using genetic and epigenetic tools, as well as structural and functional neuroimaging. To help address this question and provide implications for future research, relevant clinical trials and animal experiments are reviewed.
Collapse
Affiliation(s)
- Jiangling Jiang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, China
- Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Chunbo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China.
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, China.
- Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, 200030, China.
| |
Collapse
|
38
|
Anderson MR, Miller L, Wickramaratne P, Svob C, Odgerel Z, Zhao R, Weissman MM. Genetic Correlates of Spirituality/Religion and Depression: A Study in Offspring and Grandchildren at High and Low Familial Risk for Depression. ACTA ACUST UNITED AC 2017; 4:43-63. [PMID: 29057276 DOI: 10.1037/scp0000125] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
RATIONALE Possible genetic correlates of spirituality and depression have been identified in community samples. We investigate some of the previously identified candidates in a sample of families at both high and low-risk for depression. METHOD Offspring and grandchildren of individuals at high and low-risk for depression, participating in a multi-wave thirty-year longitudinal study, were assessed for seven SNPS drawn from four single gene candidates associated with systems implicated in both depression and spirituality: Serotonin (5-HT1B and 5-HT2A), Dopamine (DRD2), Oxytocin (OT) and Monoamine Vesicular Transporter (VMAT1). RESULTS Dopamine (DRD2) Serotonin (5-HT1B), their Transporter (VMAT1) and Oxytocin (OXTR) were positively associated with a high level of importance of spirituality or religion (S/R) in the group at low familial risk for depression. DRD2 minor allele was associated with both lifetime major depressive disorder (MDD) and spirituality in the low-risk group for depression. No SNPs were related to S/R in the group at high familial risk for depression. OXTR was associated with lifetime MDD in the full sample. CONCLUSION Genes for dopamine, serotonin, their vesicular transporter, and oxytocin may be associated with S/R in people at low familial risk for depression. Genes for dopamine may be associated both with S/R and increased risk for depression in people at low-risk for depression, suggesting a common pathway or physiology to mild to moderate depression. MDD is associated with oxytocin across risk groups. In the high-risk group, phenotypic expression of S/R may be suppressed. IMPLICATIONS The shared association of DRD2 by S/R and depression, generally found to be inversely related, calls for further research on their common physiological pathways, and the phenotypic expression of these pathways based upon use and environment. Prevention for offspring at high familial risk for depression might include support for the development of child spirituality.
Collapse
Affiliation(s)
| | - Lisa Miller
- Teachers College, Columbia University, New York, NY
| | - Priya Wickramaratne
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Division of Epidemiology, New York State Psychiatric Institute, New York, NY, USA.,Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Connie Svob
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Division of Epidemiology, New York State Psychiatric Institute, New York, NY, USA
| | - Zagaa Odgerel
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Division of Epidemiology, New York State Psychiatric Institute, New York, NY, USA
| | - Ruixin Zhao
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Division of Epidemiology, New York State Psychiatric Institute, New York, NY, USA
| | - Myrna M Weissman
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Division of Epidemiology, New York State Psychiatric Institute, New York, NY, USA.,Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
39
|
Fabbri C, Hosak L, Mössner R, Giegling I, Mandelli L, Bellivier F, Claes S, Collier DA, Corrales A, Delisi LE, Gallo C, Gill M, Kennedy JL, Leboyer M, Lisoway A, Maier W, Marquez M, Massat I, Mors O, Muglia P, Nöthen MM, O'Donovan MC, Ospina-Duque J, Propping P, Shi Y, St Clair D, Thibaut F, Cichon S, Mendlewicz J, Rujescu D, Serretti A. Consensus paper of the WFSBP Task Force on Genetics: Genetics, epigenetics and gene expression markers of major depressive disorder and antidepressant response. World J Biol Psychiatry 2017; 18:5-28. [PMID: 27603714 DOI: 10.1080/15622975.2016.1208843] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 06/29/2016] [Indexed: 12/11/2022]
Abstract
Major depressive disorder (MDD) is a heritable disease with a heavy personal and socio-economic burden. Antidepressants of different classes are prescribed to treat MDD, but reliable and reproducible markers of efficacy are not available for clinical use. Further complicating treatment, the diagnosis of MDD is not guided by objective criteria, resulting in the risk of under- or overtreatment. A number of markers of MDD and antidepressant response have been investigated at the genetic, epigenetic, gene expression and protein levels. Polymorphisms in genes involved in antidepressant metabolism (cytochrome P450 isoenzymes), antidepressant transport (ABCB1), glucocorticoid signalling (FKBP5) and serotonin neurotransmission (SLC6A4 and HTR2A) were among those included in the first pharmacogenetic assays that have been tested for clinical applicability. The results of these investigations were encouraging when examining patient-outcome improvement. Furthermore, a nine-serum biomarker panel (including BDNF, cortisol and soluble TNF-α receptor type II) showed good sensitivity and specificity in differentiating between MDD and healthy controls. These first diagnostic and response-predictive tests for MDD provided a source of optimism for future clinical applications. However, such findings should be considered very carefully because their benefit/cost ratio and clinical indications were not clearly demonstrated. Future tests may include combinations of different types of biomarkers and be specific for MDD subtypes or pathological dimensions.
Collapse
Affiliation(s)
- Chiara Fabbri
- a Department of Biomedical and Neuromotor Sciences , University of Bologna , Bologna , Italy
| | - Ladislav Hosak
- b Department of Psychiatrics , Charles University, Faculty of Medicine and University Hospital, Hradec Králové , Czech Republic
| | - Rainald Mössner
- c Department of Psychiatry and Psychotherapy , University of Tübingen , Tübingen , Germany
| | - Ina Giegling
- d Department of Psychiatry, Psychotherapy and Psychosomatics , Martin Luther University of Halle-Wittenberg , Halle , Germany
| | - Laura Mandelli
- a Department of Biomedical and Neuromotor Sciences , University of Bologna , Bologna , Italy
| | - Frank Bellivier
- e Fondation Fondamental, Créteil, France AP-HP , GH Saint-Louis-Lariboisière-Fernand-Widal, Pôle Neurosciences , Paris , France
| | - Stephan Claes
- f GRASP-Research Group, Department of Neuroscience , University of Leuven , Leuven , Belgium
| | - David A Collier
- g Social, Genetic and Developmental Psychiatry Centre , Institute of Psychiatry, King's College London , London , UK
| | - Alejo Corrales
- h National University (UNT) Argentina, Argentinean Association of Biological Psychiatry , Buenos Aires , Argentina
| | - Lynn E Delisi
- i VA Boston Health Care System , Brockton , MA , USA
| | - Carla Gallo
- j Departamento de Ciencias Celulares y Moleculares, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía , Universidad Peruana Cayetano Heredia , Lima , Peru
| | - Michael Gill
- k Neuropsychiatric Genetics Research Group, Department of Psychiatry , Trinity College Dublin , Dublin , Ireland
| | - James L Kennedy
- l Neurogenetics Section, Centre for Addiction and Mental Health , Toronto , Ontario , Canada
| | - Marion Leboyer
- m Faculté de Médecine , Université Paris-Est Créteil, Inserm U955, Equipe Psychiatrie Translationnelle , Créteil , France
| | - Amanda Lisoway
- l Neurogenetics Section, Centre for Addiction and Mental Health , Toronto , Ontario , Canada
| | - Wolfgang Maier
- n Department of Psychiatry , University of Bonn , Bonn , Germany
| | - Miguel Marquez
- o Director of ADINEU (Asistencia, Docencia e Investigación en Neurociencia) , Buenos Aires , Argentina
| | - Isabelle Massat
- p UNI - ULB Neurosciences Institute, ULB , Bruxelles , Belgium
| | - Ole Mors
- q Department P , Aarhus University Hospital , Risskov , Denmark
| | | | - Markus M Nöthen
- s Institute of Human Genetics , University of Bonn , Bonn , Germany
| | - Michael C O'Donovan
- t MRC Centre for Neuropsychiatric Genetics and Genomics , Institute of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University , Cardiff , UK
| | - Jorge Ospina-Duque
- u Grupo de Investigación en Psiquiatría, Departamento de Psiquiatría, Facultad de Medicina , Universidad de Antioquia , Medellín , Colombia
| | | | - Yongyong Shi
- w Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education , Shanghai Jiao Tong University , Shanghai , China
| | - David St Clair
- x University of Aberdeen, Institute of Medical Sciences , Aberdeen , UK
| | - Florence Thibaut
- y University Hospital Cochin (Site Tarnier), University Sorbonne Paris Cité (Faculty of Medicine Paris Descartes), INSERM U 894 Centre Psychiatry and Neurosciences , Paris , France
| | - Sven Cichon
- z Division of Medical Genetics, Department of Biomedicine , University of Basel , Basel , Switzerland
| | - Julien Mendlewicz
- aa Laboratoire de Psychologie Medicale, Centre Européen de Psychologie Medicale , Université Libre de Bruxelles and Psy Pluriel , Brussels , Belgium
| | - Dan Rujescu
- d Department of Psychiatry, Psychotherapy and Psychosomatics , Martin Luther University of Halle-Wittenberg , Halle , Germany
| | - Alessandro Serretti
- a Department of Biomedical and Neuromotor Sciences , University of Bologna , Bologna , Italy
| |
Collapse
|
40
|
Pharmacogenetics and Imaging-Pharmacogenetics of Antidepressant Response: Towards Translational Strategies. CNS Drugs 2016; 30:1169-1189. [PMID: 27752945 DOI: 10.1007/s40263-016-0385-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Genetic variation underlies both the response to antidepressant treatment and the occurrence of side effects. Over the past two decades, a number of pharmacogenetic variants, among these the SCL6A4, BDNF, FKBP5, GNB3, GRIK4, and ABCB1 genes, have come to the forefront in this regard. However, small effects sizes, mixed results in independent samples, and conflicting meta-analyses results led to inherent difficulties in the field of pharmacogenetics translating these findings into clinical practice. Nearly all antidepressant pharmacogenetic variants have potentially pleiotropic effects in which they are associated with major depressive disorder, intermediate phenotypes involved in emotional processes, and brain areas affected by antidepressant treatment. The purpose of this article is to provide a comprehensive review of the advances made in the field of pharmacogenetics of antidepressant efficacy and side effects, imaging findings of antidepressant response, and the latest results in the expanding field of imaging-pharmacogenetics studies. We suggest there is mounting evidence that genetic factors exert their impact on treatment response by influencing brain structural and functional changes during antidepressant treatment, and combining neuroimaging and genetic methods may be a more powerful way to detect biological mechanisms of response than either method alone. The most promising imaging-pharmacogenetics findings exist for the SCL6A4 gene, with converging associations with antidepressant response, frontolimbic predictors of affective symptoms, and normalization of frontolimbic activity following antidepressant treatment. More research is required before imaging-pharmacogenetics informed personalized medicine can be applied to antidepressant treatment; nevertheless, inroads have been made towards assessing genetic and neuroanatomical liability and potential clinical application.
Collapse
|
41
|
Xu Z, Reynolds GP, Yuan Y, Shi Y, Pu M, Zhang Z. TPH-2 Polymorphisms Interact with Early Life Stress to Influence Response to Treatment with Antidepressant Drugs. Int J Neuropsychopharmacol 2016; 19:pyw070. [PMID: 27521242 PMCID: PMC5137282 DOI: 10.1093/ijnp/pyw070] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 08/04/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Variation in genes implicated in monoamine neurotransmission may interact with environmental factors to influence antidepressant response. We aimed to determine how a range of single nucleotide polymorphisms in monoaminergic genes influence this response to treatment and how they interact with childhood trauma and recent life stress in a Chinese sample. An initial study of monoaminergic coding region single nucleotide polymorphisms identified significant associations of TPH2 and HTR1B single nucleotide polymorphisms with treatment response that showed interactions with childhood and recent life stress, respectively (Xu et al., 2012). METHODS A total of 47 further single nucleotide polymorphisms in 17 candidate monoaminergic genes were genotyped in 281 Chinese Han patients with major depressive disorder. Response to 6 weeks' antidepressant treatment was determined by change in the 17-item Hamilton Depression Rating Scale score, and previous stressful events were evaluated by the Life Events Scale and Childhood Trauma Questionnaire-Short Form. RESULTS Three TPH2 single nucleotide polymorphisms (rs11178998, rs7963717, and rs2171363) were significantly associated with antidepressant response in this Chinese sample, as was a haplotype in TPH2 (rs2171363 and rs1487278). One of these, rs2171363, showed a significant interaction with childhood adversity in its association with antidepressant response. CONCLUSIONS These findings provide further evidence that variation in TPH2 is associated with antidepressant response and may also interact with childhood trauma to influence outcome of antidepressant treatment.
Collapse
Affiliation(s)
- Zhi Xu
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing 210009, PR China (Drs Xu and Yuan); Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom (Dr Reynolds); Department of Neuropsychiatry, Nanjing First Hospital Affiliated to Nanjing Medical University, Nanjing 210000, PR China (Dr Shi); Department of Neurology, Wuxi first people's Hospital, Wuxi 214000, PR China (Dr Pu); Department of Neurology, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing 210009, PR China (Dr Zhang).
| | | | | | | | | | | |
Collapse
|
42
|
Lv X, Si T, Wang G, Wang H, Liu Q, Hu C, Wang J, Su Y, Huang Y, Jiang H, Yu X. The establishment of the objective diagnostic markers and personalized medical intervention in patients with major depressive disorder: rationale and protocol. BMC Psychiatry 2016; 16:240. [PMID: 27422150 PMCID: PMC4946102 DOI: 10.1186/s12888-016-0953-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/01/2016] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Major depressive disorders (MDD) is a common mental disorder with high prevalence, frequent relapse and associated with heavy disease burden. Heritability, environment and their interaction play important roles in the development of MDD. MDD patients usually display a wide variation in clinical symptoms and signs, while the diagnosis of MDD is relatively subjective. The treatment response varies substantially between different subtypes of MDD patients and only half respond adequately to the first antidepressant. This study aims to define subtypes of MDD, develop multi-dimension diagnostic test and combined predictors for improving the diagnostic accuracy and promoting personalized intervention in MDD patients. METHODS/DESIGN This is a multi-center, multi-stage and prospective study. The first stage of this study is a case-control study, aims to explore the risk factors for developing MDD and then define the subtypes of MDD using 1200 MDD patients and 1200 healthy controls with a set of questionnaire. The second stage is a diagnostic test, aims to indentify and replicate the potential indicators to assist MDD diagnosis using 600 MDD patients and 300 healthy controls from the first stage with a set of questionnaire, neuropsychological assessment and a series of biomarkers. The third stage is a 96-week longitudinal study, including 8-week acute period treatment and 88-week stable period treatment, aims to identify overall predictors of treatment effectiveness on MDD at week 8 post treatment and to explore the predictors on MDD prognosis in the following 2 years using 600 MDD patients from the first stage with a set of questionnaire, neuropsychological assessment and a series of biomarkers. The primary outcome measure is the change of the total score of 17-Item Hamilton Rating Scale for Depression. DISCUSSION This study will provide strong and suitable evidence for enhancing the accuracy of MDD diagnosis and promoting personalized treatment for MDD patients in clinical practice. TRIAL REGISTRATION ClinicalTrials.gov: NCT02023567 ; registration date: December 2013.
Collapse
Affiliation(s)
- Xiaozhen Lv
- />Peking University Sixth Hospital (Institute of Mental Health), Beijing, China
- />National Clinical Research Center for Mental Disorders & Key Laboratory for Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Tianmei Si
- />Peking University Sixth Hospital (Institute of Mental Health), Beijing, China
- />National Clinical Research Center for Mental Disorders & Key Laboratory for Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Gang Wang
- />Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Huali Wang
- />Peking University Sixth Hospital (Institute of Mental Health), Beijing, China
- />National Clinical Research Center for Mental Disorders & Key Laboratory for Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Qi Liu
- />Peking University Sixth Hospital (Institute of Mental Health), Beijing, China
- />National Clinical Research Center for Mental Disorders & Key Laboratory for Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Changqing Hu
- />Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Jing Wang
- />Peking University Sixth Hospital (Institute of Mental Health), Beijing, China
- />National Clinical Research Center for Mental Disorders & Key Laboratory for Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Yunai Su
- />Peking University Sixth Hospital (Institute of Mental Health), Beijing, China
- />National Clinical Research Center for Mental Disorders & Key Laboratory for Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Yu Huang
- />National Engineering Research Center for Software Engineering, Peking University, Beijing, China
| | - Hui Jiang
- />National Engineering Research Center for Software Engineering, Peking University, Beijing, China
| | - Xin Yu
- />Peking University Sixth Hospital (Institute of Mental Health), Beijing, China
- />National Clinical Research Center for Mental Disorders & Key Laboratory for Mental Health, Ministry of Health, Peking University, Beijing, China
| |
Collapse
|
43
|
Dong ZQ, Li XR, He L, He G, Yu T, Sun XL. 5-HTR1A and 5-HTR2A genetic polymorphisms and SSRI antidepressant response in depressive Chinese patients. Neuropsychiatr Dis Treat 2016; 12:1623-1629. [PMID: 27445478 PMCID: PMC4938133 DOI: 10.2147/ndt.s93562] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE Genetic variabilities within the serotoninergic system may predict response or remission to antidepressant drugs. Several serotonin receptor (5-HTR) gene polymorphisms have been associated with susceptibility to psychiatric diseases. In this study, we analyzed the correlation between 5-HTR1A and 5-HTR2A polymorphisms and response or remission to selective serotonin reuptake inhibitors (SSRIs) drugs. METHODS Two hundred and ninety patients who met the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition criteria for major depressive disorder were involved in this study. SSRIs (fluoxetine, paroxetine, citalopram, or sertraline) were selected randomly for treatment. The Hamilton Rating Scale for Depression was used to evaluate the antidepressant effect. To assess 5-HTR gene variabilities, two single-nucleotide polymorphisms in 5-HTR1A (rs1364043 and rs10042486) and three in 5-HTR2A (rs6311, rs6313, and rs17289304) were genotyped by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using the Sequenom MassARRAY Analyzer 4 system. RESULTS There were 220 responders and 70 nonresponders (120 remissioners and 170 nonremissioners) after 6 weeks of treatment. We found no association between any of the five 5-HTR1A and 5-HTR2A gene polymorphisms and antidepressant drug response or remission (P>0.05). It is worth mentioning that TT genotype frequency of rs10042486 was significantly different from the CT genotype frequency between responders and nonresponders, although the significance was not maintained after correcting for multiple testing. CONCLUSION Thus, 5-HTR1A and 5-HTR2A gene polymorphisms may not play an important role in antidepressant drug response or remission.
Collapse
Affiliation(s)
- Zai-Quan Dong
- Psychological Center, West China Hospital, Sichuan University, Chengdu, Sichuan
| | - Xi-Rong Li
- Mental Health Center, First Affiliated Hospital, Chongqing Medical University, Chongqing
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Guang He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Tao Yu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Xue-Li Sun
- Psychological Center, West China Hospital, Sichuan University, Chengdu, Sichuan
| |
Collapse
|
44
|
Miller MW, Sperbeck E, Robinson ME, Sadeh N, Wolf EJ, Hayes JP, Logue M, Schichman SA, Stone A, Milberg W, McGlinchey R. 5-HT2A Gene Variants Moderate the Association between PTSD and Reduced Default Mode Network Connectivity. Front Neurosci 2016; 10:299. [PMID: 27445670 PMCID: PMC4923242 DOI: 10.3389/fnins.2016.00299] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/13/2016] [Indexed: 02/02/2023] Open
Abstract
The default mode network (DMN) has been used to study disruptions of functional connectivity in a wide variety of psychiatric and neurological conditions, including posttraumatic stress disorder (PTSD). Studies indicate that the serotonin system exerts a modulatory influence on DMN connectivity; however, no prior study has examined associations between serotonin receptor gene variants and DMN connectivity in either clinical or healthy samples. We examined serotonin receptor single nucleotide polymorphisms (SNPs), PTSD, and their interactions for association with DMN connectivity in 134 White non-Hispanic veterans. We began by analyzing candidate SNPs identified in prior meta-analyses of relevant psychiatric traits and found that rs7997012 (an HTR2A SNP), implicated previously in anti-depressant medication response in the Sequenced Treatment Alternatives for Depression study (STAR(*)D; McMahon et al., 2006), interacted with PTSD to predict reduced connectivity between the posterior cingulate cortex (PCC) and the right medial prefrontal cortex and right middle temporal gyrus (MTG). rs130058 (HTR1B) was associated with connectivity between the PCC and right angular gyrus. We then expanded our analysis to 99 HTR1B and HTR2A SNPs and found two HTR2A SNPs (rs977003 and rs7322347) that significantly moderated the association between PTSD severity and the PCC-right MTG component of the DMN after correcting for multiple testing. Finally, to obtain a more precise localization of the most significant SNP × PTSD interaction, we performed a whole cortex vertex-wise analysis of the rs977003 effect. This analysis revealed the locus of the pre-frontal effect to be in portions of the superior frontal gyrus, while the temporal lobe effect was centered in the middle and inferior temporal gyri. These findings point to the influence of HTR2A variants on DMN connectivity and advance knowledge of the role of 5-HT2A receptors in the neurobiology of PTSD.
Collapse
Affiliation(s)
- Mark W Miller
- Behavioral Science Division, National Center for PTSD, VA Boston Healthcare SystemBoston, MA, USA; Department of Psychiatry, Boston University School of MedicineBoston, MA, USA
| | - Emily Sperbeck
- Department of Psychiatry, Boston University School of Medicine Boston, MA, USA
| | - Meghan E Robinson
- Neuroimaging Research for Veterans Center, VA Boston Healthcare SystemBoston, MA, USA; Geriatric Research Educational and Clinical Center and Translational Research Center for TBI and Stress Disorders, VA Boston Healthcare SystemBoston, MA, USA; Department of Neurology, Boston University School of MedicineBoston, MA, USA
| | - Naomi Sadeh
- Behavioral Science Division, National Center for PTSD, VA Boston Healthcare SystemBoston, MA, USA; Department of Psychiatry, Boston University School of MedicineBoston, MA, USA
| | - Erika J Wolf
- Behavioral Science Division, National Center for PTSD, VA Boston Healthcare SystemBoston, MA, USA; Department of Psychiatry, Boston University School of MedicineBoston, MA, USA
| | - Jasmeet P Hayes
- Behavioral Science Division, National Center for PTSD, VA Boston Healthcare SystemBoston, MA, USA; Department of Psychiatry, Boston University School of MedicineBoston, MA, USA
| | - Mark Logue
- Behavioral Science Division, National Center for PTSD, VA Boston Healthcare SystemBoston, MA, USA; Department of Psychiatry, Boston University School of MedicineBoston, MA, USA; Biomedical Genetics, Boston University School of MedicineBoston, MA, USA; Department of Biostatistics, Boston University School of Public HealthBoston, MA, USA
| | - Steven A Schichman
- Pharmacogenomics Analysis Laboratory, Research Service, Central Arkansas Veterans Healthcare System Little Rock, AR, USA
| | - Angie Stone
- Pharmacogenomics Analysis Laboratory, Research Service, Central Arkansas Veterans Healthcare System Little Rock, AR, USA
| | - William Milberg
- Geriatric Research Educational and Clinical Center and Translational Research Center for TBI and Stress Disorders, VA Boston Healthcare SystemBoston, MA, USA; Department of Psychiatry, Harvard Medical SchoolBoston, MA, USA
| | - Regina McGlinchey
- Geriatric Research Educational and Clinical Center and Translational Research Center for TBI and Stress Disorders, VA Boston Healthcare SystemBoston, MA, USA; Department of Psychiatry, Harvard Medical SchoolBoston, MA, USA
| |
Collapse
|
45
|
Fabbri C, Crisafulli C, Calabrò M, Spina E, Serretti A. Progress and prospects in pharmacogenetics of antidepressant drugs. Expert Opin Drug Metab Toxicol 2016; 12:1157-68. [DOI: 10.1080/17425255.2016.1202237] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Chiara Fabbri
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Concetta Crisafulli
- Department of Biomedical Science, Odontoiatric and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Marco Calabrò
- Department of Biomedical Science, Odontoiatric and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Edoardo Spina
- Department of Biomedical Science, Odontoiatric and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Alessandro Serretti
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
46
|
Noordam R, Avery CL, Visser LE, Stricker BH. Identifying genetic loci affecting antidepressant drug response in depression using drug-gene interaction models. Pharmacogenomics 2016; 17:1029-40. [PMID: 27248517 DOI: 10.2217/pgs-2016-0024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Antidepressants are often only moderately successful in decreasing the severity of depressive symptoms. In part, antidepressant treatment response in patients with depression is genetically determined. However, although a large number of studies have been conducted aiming to identify genetic variants associated with antidepressant drug response in depression, only a few variants have been repeatedly identified. Within the present review, we will discuss the methodological challenges and limitations of the studies that have been conducted on this topic to date (e.g., 'treated-only design', statistical power) and we will discuss how specifically drug-gene interaction models can be used to be better able to identify genetic variants associated with antidepressant drug response in depression.
Collapse
Affiliation(s)
- Raymond Noordam
- Department of Gerontology and Geriatrics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands.,Department of Epidemiology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Christy L Avery
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC, USA
| | - Loes E Visser
- Department of Epidemiology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands.,Apotheek Haagse Ziekenhuizen - HAGA, The Hague, The Netherlands
| | - Bruno H Stricker
- Department of Epidemiology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands.,Inspectorate of Health Care, Utrecht, The Netherlands
| |
Collapse
|
47
|
Genetic variation in the tryptophan hydroxylase 2 gene moderates depressive symptom trajectories and remission over 8 weeks of escitalopram treatment. Int Clin Psychopharmacol 2016; 31:127-33. [PMID: 26745768 DOI: 10.1097/yic.0000000000000115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The serotonin system plays an important role in the pathogenesis of major depressive disorder (MDD) and genetic variations in serotonin-related genes affect the efficacy of antidepressants. The aim of this study was to investigate the relationship between genotypic variation in six candidate serotonergic genes (ADCY9, HTR1B, GNB3, HTR2A, TPH2, SLC6A4) and depressive and anxiety symptom severity trajectories as well as remission following escitalopram treatment. A total of 166 Chinese patients with MDD were treated with escitalopram (open-label) for 8 weeks. TPH2 rs4570625 GG carriers were more likely to achieve depressive and anxiety symptom remission compared with T-allele carriers. At the trend level (P(corrected)=0.05), depressive symptom severity trajectories were moderated by TPH2 rs4570625. Patients with the GT or the GG genotype showed more favorable depressive symptom severity trajectories compared with TT genotype carriers. Polymorphisms in ADCY9, HTR1B, and HTR2A were nominally associated with symptom remission, but did not withstand correction for multiple comparisons. The HTTLPR polymorphism was not included in our final analysis because of a high percentage of missing data. These results suggested that genotypic variation in TPH2 may moderate the therapeutic response to esciatlopram among Chinese patients with MDD.
Collapse
|
48
|
Genome-wide association study of antidepressant response: involvement of the inorganic cation transmembrane transporter activity pathway. BMC Psychiatry 2016; 16:106. [PMID: 27091189 PMCID: PMC4836090 DOI: 10.1186/s12888-016-0813-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 04/11/2016] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) represent the current frontier in pharmacogenomics. Thousands of subjects of Caucasian ancestry have been included in previous GWAS investigating antidepressant response. GWAS focused on this phenotype are lacking in Asian populations. METHODS A sample of 109 major depressive disorder (MDD) patients of Korean origin in antidepressant treatment was collected. Phenotypes were response and remission according to the Hamilton Rating Scale for Depression (HRSD). Genome-wide genotyping was performed using the Illumina Human Omni2.5-8 platform. The same phenotypes were used in the STAR*D level 1 (n = 1677) for independent replication. In order to corroborate findings and increase the comparability between the two datasets, three levels of analysis (SNPs, genes and pathways) were carried out. Bonferroni correction, permutations, and replication across samples were used to reduce the risk of false positives. RESULTS Among the genes replicated across the two samples (permutated p < 0.05 in both of them), CTNNA3 appeared promising. The inorganic cation transmembrane transporter activity pathway (GO:0022890) was associated with antidepressant response in both samples (p = 2.9e-5 and p = 0.001 in the Korean and STAR*D samples, respectively) and this pathway included CACNA1A, CACNA1C, and CACNB2 genes. CONCLUSIONS The present study supported the involvement of genes coding for subunits of L-type voltage-gated calcium channel in antidepressant efficacy across different ethnicities but replication of findings is required before any definitive statement.
Collapse
|
49
|
Qesseveur G, Petit AC, Nguyen HT, Dahan L, Colle R, Rotenberg S, Seif I, Robert P, David D, Guilloux JP, Gardier AM, Verstuyft C, Becquemont L, Corruble E, Guiard BP. Genetic dysfunction of serotonin 2A receptor hampers response to antidepressant drugs: A translational approach. Neuropharmacology 2016; 105:142-153. [PMID: 26764241 DOI: 10.1016/j.neuropharm.2015.12.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/23/2015] [Accepted: 12/24/2015] [Indexed: 01/31/2023]
Abstract
Pharmacological studies have yielded valuable insights into the role of the serotonin 2A (5-HT2A) receptor in major depressive disorder (MDD) and antidepressant drugs (ADs) response. However, it is still unknown whether genetic variants in the HTR2A gene affect the therapeutic outcome of ADs and the mechanism underlying the regulation of such response remains poorly described. In this context, a translational human-mouse study offers a unique opportunity to address the possibility that variations in the HTR2A gene may represent a relevant marker to predict the efficacy of ADs. In a first part of this study, we investigated in depressed patients the effect of three HTR2A single nucleotide polymorphisms (SNPs), selected for their potential functional consequences on 5-HT2A receptor (rs6313, rs6314 and rs7333412), on response and remission rates after 3 months of antidepressant treatments. We also explored the consequences of the constitutive genetic inactivation of the 5-HT2A receptor (i.e. in 5-HT2A(-/-) mice) on the activity of acute and prolonged administration of SSRIs. Our clinical data indicate that GG patients for the rs7333412 SNP were less prone to respond to ADs than AA/AG patients. In the preclinical study, we demonstrated that the 5-HT2A receptor exerts an inhibitory influence on the neuronal activity of the serotonergic system after acute administration of SSRIs. However, while the chronic administration of the SSRIs escitalopram or fluoxetine elicited a progressive increased in the firing rate of 5-HT neurons in 5-HT2A(+/+) mice, it failed to do so in 5-HT2A(-/-) mutants. These electrophysiological impairments were associated with a decreased ability of the chronic administration of fluoxetine to stimulate hippocampal plasticity and to produce antidepressant-like activities. Genetic loss of the 5-HT2A receptor compromised the activity of chronic treatment with SSRIs, making this receptor a putative marker to predict ADs response.
Collapse
Affiliation(s)
- Gaël Qesseveur
- Université Paris-Saclay, Univ. Paris-Sud, INSERM UMR-S 1178, Fac Pharmacie, Châtenay Malabry, 92290, France
| | - Anne Cécile Petit
- Université Paris-Saclay, Univ. Paris-Sud, INSERM UMR-S 1178, CESP, Fac Médecine Paris Sud, 94275, Le Kremlin Bicêtre, France; Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Service de Psychiatrie, Le Kremlin Bicêtre, F-94275, France
| | - Hai Thanh Nguyen
- Université Paris-Saclay, Univ. Paris-Sud, INSERM UMR-S 1178, Fac Pharmacie, Châtenay Malabry, 92290, France
| | - Lionel Dahan
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France
| | - Romain Colle
- Université Paris-Saclay, Univ. Paris-Sud, INSERM UMR-S 1178, CESP, Fac Médecine Paris Sud, 94275, Le Kremlin Bicêtre, France; Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Service de Psychiatrie, Le Kremlin Bicêtre, F-94275, France
| | - Samuel Rotenberg
- Université Paris-Saclay, Univ. Paris-Sud, INSERM UMR-S 1178, CESP, Fac Médecine Paris Sud, 94275, Le Kremlin Bicêtre, France; Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Service de Psychiatrie, Le Kremlin Bicêtre, F-94275, France
| | - Isabelle Seif
- Université Paris-Saclay, Univ. Paris-Sud, INSERM UMR-S 1178, Fac Pharmacie, Châtenay Malabry, 92290, France
| | - Pauline Robert
- UMS IPSIT (INST. Paris-Saclay d'innovation Thérapeutique), Paris Sud, France
| | - Denis David
- Université Paris-Saclay, Univ. Paris-Sud, INSERM UMR-S 1178, Fac Pharmacie, Châtenay Malabry, 92290, France
| | - Jean-Philippe Guilloux
- Université Paris-Saclay, Univ. Paris-Sud, INSERM UMR-S 1178, Fac Pharmacie, Châtenay Malabry, 92290, France
| | - Alain M Gardier
- Université Paris-Saclay, Univ. Paris-Sud, INSERM UMR-S 1178, Fac Pharmacie, Châtenay Malabry, 92290, France
| | - Céline Verstuyft
- INSERM U1184, Le Kremlin Bicêtre, F-94276, France; Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Service de Génétique moléculaire, Pharmacogénétique et Hormonologie, Le Kremlin Bicêtre, F-94275, France
| | - Laurent Becquemont
- INSERM U1184, Le Kremlin Bicêtre, F-94276, France; Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Service de Génétique moléculaire, Pharmacogénétique et Hormonologie, Le Kremlin Bicêtre, F-94275, France
| | - Emmanuelle Corruble
- Université Paris-Saclay, Univ. Paris-Sud, INSERM UMR-S 1178, CESP, Fac Médecine Paris Sud, 94275, Le Kremlin Bicêtre, France; Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Service de Psychiatrie, Le Kremlin Bicêtre, F-94275, France.
| | - Bruno P Guiard
- Université Paris-Saclay, Univ. Paris-Sud, INSERM UMR-S 1178, Fac Pharmacie, Châtenay Malabry, 92290, France; Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France
| |
Collapse
|
50
|
Li J, Chen C, Wu K, Zhang M, Zhu B, Chen C, Moyzis RK, Dong Q. Genetic variations in the serotonergic system contribute to amygdala volume in humans. Front Neuroanat 2015; 9:129. [PMID: 26500508 PMCID: PMC4598478 DOI: 10.3389/fnana.2015.00129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/17/2015] [Indexed: 11/13/2022] Open
Abstract
The amygdala plays a critical role in emotion processing and psychiatric disorders associated with emotion dysfunction. Accumulating evidence suggests that amygdala structure is modulated by serotonin-related genes. However, there is a gap between the small contributions of single loci (less than 1%) and the reported 63–65% heritability of amygdala structure. To understand the “missing heritability,” we systematically explored the contribution of serotonin genes on amygdala structure at the gene set level. The present study of 417 healthy Chinese volunteers examined 129 representative polymorphisms in genes from multiple biological mechanisms in the regulation of serotonin neurotransmission. A system-level approach using multiple regression analyses identified that nine SNPs collectively accounted for approximately 8% of the variance in amygdala volume. Permutation analyses showed that the probability of obtaining these findings by chance was low (p = 0.043, permuted for 1000 times). Findings showed that serotonin genes contribute moderately to individual differences in amygdala volume in a healthy Chinese sample. These results indicate that the system-level approach can help us to understand the genetic basis of a complex trait such as amygdala structure.
Collapse
Affiliation(s)
- Jin Li
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University Beijing, China ; Brainnetome Center, Institute of Automation, Chinese Academy of Sciences Beijing, China ; National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences Beijing, China
| | - Chunhui Chen
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University Beijing, China ; Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University Beijing, China
| | - Karen Wu
- Department of Psychology and Social Behavior, University of California, Irvine Irvine, CA, USA
| | - Mingxia Zhang
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences Beijing, China
| | - Bi Zhu
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University Beijing, China ; Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University Beijing, China
| | - Chuansheng Chen
- Department of Psychology and Social Behavior, University of California, Irvine Irvine, CA, USA
| | - Robert K Moyzis
- Department of Biological Chemistry, University of California, Irvine Irvine, CA, USA ; Institute of Genomics and Bioinformatics, University of California, Irvine Irvine, CA, USA
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University Beijing, China ; Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University Beijing, China
| |
Collapse
|