1
|
Hernández-Cacho A, García-Gavilán JF, Atzeni A, Konstanti P, Belzer C, Vioque J, Corella D, Fitó M, Vidal J, Mela V, Liang L, Torres-Collado L, Coltell O, Babio N, Clish C, Hernando-Redondo J, Martínez-González MÁ, Wang F, Moreno-Indias I, Ni J, Dennis C, Ruiz-Canela M, Tinahones FJ, Hu FB, Salas-Salvadó J. Multi-omics approach identifies gut microbiota variations associated with depression. NPJ Biofilms Microbiomes 2025; 11:68. [PMID: 40295565 PMCID: PMC12038053 DOI: 10.1038/s41522-025-00707-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 04/17/2025] [Indexed: 04/30/2025] Open
Abstract
The gut microbiota plays a potential role in the pathophysiology of depression through the gut-brain axis. This cross-sectional study in 400 participants from the PREDIMED-Plus study investigates the interplay between gut microbiota and depression using a multi-omics approach. Depression was defined as antidepressant use or high Beck Depression Inventory-II scores. Gut microbiota was characterized by 16S rRNA sequencing, and faecal metabolites were analysed via liquid chromatography-tandem mass spectrometry. Participants with depression exhibited significant differences in gut microbial composition and metabolic profiles. Differentially abundant taxa included Acidaminococcus, Christensenellaceae R-7 group, and Megasphaera, among others. Metabolomic analysis revealed 15 significantly altered metabolites, primarily lipids, organic acids, and benzenoids, some of which correlated with gut microbial features. This study highlights the interplay between the gut microbiota and depression, paving the way for future research to determine whether gut microbiota influences depression pathophysiology or reflects changes associated with depression.
Collapse
Affiliation(s)
- Adrián Hernández-Cacho
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Alimentació, Nutrició, Desenvolupament i Salut Mental ANUT-DSM, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús F García-Gavilán
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Alimentació, Nutrició, Desenvolupament i Salut Mental ANUT-DSM, Reus, Spain.
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain.
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain.
| | - Alessandro Atzeni
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Alimentació, Nutrició, Desenvolupament i Salut Mental ANUT-DSM, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Prokopis Konstanti
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | - Jesús Vioque
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante, Universidad Miguel Hernández (ISABIAL-UMH), Alicante, Spain
| | - Dolores Corella
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Preventive Medicine, University of Valencia, Valencia, Spain
| | - Montserrat Fitó
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar de Investigaciones Médicas Municipal d'Investigació Médica (IMIM), Barcelona, Spain
| | - Josep Vidal
- CIBER Diabetes y Enfermedades Metabólicas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Endocrinology, Institut d'Investigacions Biomédiques August Pi Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Virginia Mela
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition, Instituto de Investigación Biomédica de Málaga - IBIMA, Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- The Broad Institute of Harvard and MIT, Boston, MA, USA
| | - Laura Torres-Collado
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante, Universidad Miguel Hernández (ISABIAL-UMH), Alicante, Spain
| | - Oscar Coltell
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Computer Languages and Systems, Jaume I University, Castellón, Spain
| | - Nancy Babio
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Alimentació, Nutrició, Desenvolupament i Salut Mental ANUT-DSM, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Clary Clish
- The Broad Institute of Harvard and MIT, Boston, MA, USA
| | - Javier Hernando-Redondo
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar de Investigaciones Médicas Municipal d'Investigació Médica (IMIM), Barcelona, Spain
| | - Miguel Á Martínez-González
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Fenglei Wang
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Isabel Moreno-Indias
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition, Instituto de Investigación Biomédica de Málaga - IBIMA, Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Jiaqi Ni
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Alimentació, Nutrició, Desenvolupament i Salut Mental ANUT-DSM, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Miguel Ruiz-Canela
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Francisco J Tinahones
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition, Instituto de Investigación Biomédica de Málaga - IBIMA, Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Frank B Hu
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Channing Division for Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jordi Salas-Salvadó
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Alimentació, Nutrició, Desenvolupament i Salut Mental ANUT-DSM, Reus, Spain.
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain.
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
2
|
Orme W, Grimm SL, Vella DSN, Fowler JC, Frueh BC, Weinstein BL, Petrosino J, Coarfa C, Madan A. Relationships of Personality Traits With the Taxonomic Composition of the Gut Microbiome Among Psychiatric Inpatients. J Neuropsychiatry Clin Neurosci 2025:appineuropsych20240126. [PMID: 40134271 DOI: 10.1176/appi.neuropsych.20240126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
OBJECTIVE Through the brain-gut-microbiome axis, myriad psychological functions that affect behavior share a dynamic, bidirectional relationship with the intestinal microbiome. Little is known about the relationship between personality-a stable construct that influences social- and health-related behaviors-and the bacterial ecosystem. The authors of this exploratory study examined the relationship between general and maladaptive personality traits and the composition of the gut microbiome. METHODS In total, 105 psychiatric inpatients provided clinical data and fecal samples. Personality traits were measured with the five-factor model of personality, the Structured Clinical Interview for DSM-IV Axis II Personality Disorders, and the Personality Inventory for DSM-5; 16S ribosomal DNA sequencing and whole-genome shotgun sequencing methods were used on fecal samples. Machine learning (ML) was used to identify personality traits associated with bacterial variability and specific taxa. RESULTS Supervised ML techniques were used to classify traits of social detachment (maximum area under the receiver operating characteristic curve [AUROC]=0.944, R2>0.20), perceptual disturbance (maximum AUROC=0.763, R2=0.301), and hoarding behaviors (maximum AUROC=0.722) by using limited sets of discriminant bacterial species or genera. Established bacterial genera associated with psychosis (e.g., Peptococcus and Coprococcus) were associated with traits of perceptual disturbance. Hoarding behaviors were associated with a defined gut microbial composition that included Streptococcus, a known contributor to the development of pediatric autoimmune neuropsychiatric disorders. CONCLUSIONS Observations from this study are consistent with recent findings demonstrating person-to-person interactions as a mode of gut microbiome transmission. This study adds to the emerging literature on the intricate connections between brain and gut function, expanding the interdisciplinary field of psychiatric microbiology.
Collapse
Affiliation(s)
- William Orme
- Department of Psychiatry and Behavioral Health, Houston Methodist, Houston (Orme, Fowler, Weinstein, Madan); Department of Psychiatry, Weill Cornell Medical College, New York (Orme, Fowler, Madan); Department of Molecular and Cellular Biology (Grimm, Vella, Coarfa), Dan L. Duncan Comprehensive Cancer Center (Grimm, Coarfa), and Department of Molecular Virology and Microbiology, Alkek Center for Metagenomics and Microbiome Research (Petrosino), Baylor College of Medicine, Houston; Department of Psychology, University of Hawaii, Hilo, Hawaii (Frueh)
| | - Sandra L Grimm
- Department of Psychiatry and Behavioral Health, Houston Methodist, Houston (Orme, Fowler, Weinstein, Madan); Department of Psychiatry, Weill Cornell Medical College, New York (Orme, Fowler, Madan); Department of Molecular and Cellular Biology (Grimm, Vella, Coarfa), Dan L. Duncan Comprehensive Cancer Center (Grimm, Coarfa), and Department of Molecular Virology and Microbiology, Alkek Center for Metagenomics and Microbiome Research (Petrosino), Baylor College of Medicine, Houston; Department of Psychology, University of Hawaii, Hilo, Hawaii (Frueh)
| | - Divya S N Vella
- Department of Psychiatry and Behavioral Health, Houston Methodist, Houston (Orme, Fowler, Weinstein, Madan); Department of Psychiatry, Weill Cornell Medical College, New York (Orme, Fowler, Madan); Department of Molecular and Cellular Biology (Grimm, Vella, Coarfa), Dan L. Duncan Comprehensive Cancer Center (Grimm, Coarfa), and Department of Molecular Virology and Microbiology, Alkek Center for Metagenomics and Microbiome Research (Petrosino), Baylor College of Medicine, Houston; Department of Psychology, University of Hawaii, Hilo, Hawaii (Frueh)
| | - J Christopher Fowler
- Department of Psychiatry and Behavioral Health, Houston Methodist, Houston (Orme, Fowler, Weinstein, Madan); Department of Psychiatry, Weill Cornell Medical College, New York (Orme, Fowler, Madan); Department of Molecular and Cellular Biology (Grimm, Vella, Coarfa), Dan L. Duncan Comprehensive Cancer Center (Grimm, Coarfa), and Department of Molecular Virology and Microbiology, Alkek Center for Metagenomics and Microbiome Research (Petrosino), Baylor College of Medicine, Houston; Department of Psychology, University of Hawaii, Hilo, Hawaii (Frueh)
| | - B Christopher Frueh
- Department of Psychiatry and Behavioral Health, Houston Methodist, Houston (Orme, Fowler, Weinstein, Madan); Department of Psychiatry, Weill Cornell Medical College, New York (Orme, Fowler, Madan); Department of Molecular and Cellular Biology (Grimm, Vella, Coarfa), Dan L. Duncan Comprehensive Cancer Center (Grimm, Coarfa), and Department of Molecular Virology and Microbiology, Alkek Center for Metagenomics and Microbiome Research (Petrosino), Baylor College of Medicine, Houston; Department of Psychology, University of Hawaii, Hilo, Hawaii (Frueh)
| | - Benjamin L Weinstein
- Department of Psychiatry and Behavioral Health, Houston Methodist, Houston (Orme, Fowler, Weinstein, Madan); Department of Psychiatry, Weill Cornell Medical College, New York (Orme, Fowler, Madan); Department of Molecular and Cellular Biology (Grimm, Vella, Coarfa), Dan L. Duncan Comprehensive Cancer Center (Grimm, Coarfa), and Department of Molecular Virology and Microbiology, Alkek Center for Metagenomics and Microbiome Research (Petrosino), Baylor College of Medicine, Houston; Department of Psychology, University of Hawaii, Hilo, Hawaii (Frueh)
| | - Joseph Petrosino
- Department of Psychiatry and Behavioral Health, Houston Methodist, Houston (Orme, Fowler, Weinstein, Madan); Department of Psychiatry, Weill Cornell Medical College, New York (Orme, Fowler, Madan); Department of Molecular and Cellular Biology (Grimm, Vella, Coarfa), Dan L. Duncan Comprehensive Cancer Center (Grimm, Coarfa), and Department of Molecular Virology and Microbiology, Alkek Center for Metagenomics and Microbiome Research (Petrosino), Baylor College of Medicine, Houston; Department of Psychology, University of Hawaii, Hilo, Hawaii (Frueh)
| | - Cristian Coarfa
- Department of Psychiatry and Behavioral Health, Houston Methodist, Houston (Orme, Fowler, Weinstein, Madan); Department of Psychiatry, Weill Cornell Medical College, New York (Orme, Fowler, Madan); Department of Molecular and Cellular Biology (Grimm, Vella, Coarfa), Dan L. Duncan Comprehensive Cancer Center (Grimm, Coarfa), and Department of Molecular Virology and Microbiology, Alkek Center for Metagenomics and Microbiome Research (Petrosino), Baylor College of Medicine, Houston; Department of Psychology, University of Hawaii, Hilo, Hawaii (Frueh)
| | - Alok Madan
- Department of Psychiatry and Behavioral Health, Houston Methodist, Houston (Orme, Fowler, Weinstein, Madan); Department of Psychiatry, Weill Cornell Medical College, New York (Orme, Fowler, Madan); Department of Molecular and Cellular Biology (Grimm, Vella, Coarfa), Dan L. Duncan Comprehensive Cancer Center (Grimm, Coarfa), and Department of Molecular Virology and Microbiology, Alkek Center for Metagenomics and Microbiome Research (Petrosino), Baylor College of Medicine, Houston; Department of Psychology, University of Hawaii, Hilo, Hawaii (Frueh)
| |
Collapse
|
3
|
Zandifar A, Badrfam R, Mohammaditabar M, Kargar B, Goodarzi S, Hajialigol A, Ketabforoush S, Heidari A, Fathi H, Shafiee A, Pourjafar H. The Effect of Prebiotics and Probiotics on Levels of Depression, Anxiety, and Cognitive Function: A Meta-Analysis of Randomized Clinical Trials. Brain Behav 2025; 15:e70401. [PMID: 40038860 PMCID: PMC11879892 DOI: 10.1002/brb3.70401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/06/2025] [Accepted: 02/16/2025] [Indexed: 03/06/2025] Open
Abstract
INTRODUCTION Recent studies have emphasized the relationship between mental health and the human intestine microbiota. In this study, we evaluate the effect of consuming Biotics, on levels of depression, anxiety, and cognitive function. METHODS This meta-analysis adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) standards. We searched MEDLINE (PubMed), Cochrane Library, Scopus, Web of Science, and ClinicalTrials.gov. All full-text articles and major reviews were manually searched for additional studies. RESULTS The initial analysis was based on the concept that consuming Biotics causes changes in anxiety, measured using various instruments. This analysis showed that consuming Biotics significantly reduced anxiety in our study participants (SMD = 0.2894, Z = 2.46, P = 0.0139, I^2 = 92.4%). The meta-analysis included 4295 samples (2194 in the experimental group and 2101 in the control group). In terms of depression, the analysis showed that consuming Biotics significantly reduced depression in our study participants (SMD = 0.2942, Z = 2.13, P = 0.0335, I^2 = 91.7%). The meta-analysis included 3179 samples (1603 in the experimental group and 1576 in the control group). Regarding cognitive function, the analysis showed that consuming Biotics significantly improved cognitive function in our study participants (SMD = 0.4819, Z = 3.00, P = 0.0027, I^2 = 77.9%). The meta-analysis included 915 samples (470 in the experimental group and 445 in the control group). CONCLUSIONS Our results indicate that most recent studies support the effectiveness of probiotics in reducing symptoms of anxiety, depression, and cognitive issues despite some discrepancies in the findings. People with mild symptoms may experience greater benefits from taking probiotics. TRIAL REGISTRATION PROSPERO registration ID: CRD42024589507.
Collapse
Affiliation(s)
- Atefeh Zandifar
- Dietary Supplements and Probiotic Research CenterAlborz University of Medical SciencesKarajIran
- Clinical Research Development Unit of Imam Hossein Medical Education CenterAlborz University of Medical SciencesKarajIran
- Social Determinants of Health Research CenterAlborz University of Medical SciencesKarajIran
| | - Rahim Badrfam
- Department of Psychosomatic MedicineShariati Hospital, Alborz University of Medical SciencesKarajAlborzIran
- Non‐communicable Diseases Research CenterAlborz University of Medical SciencesKarajAlborzIran
- Community Mental Health CenterAlborz University of Medical SciencesKarajAlborzIran
| | - Mahdi Mohammaditabar
- Student Research Committee, School of MedicineAlborz University of Medical SciencesKarajIran
- Alborz Office of Universal Scientific Education and Research Network (USERN)Alborz University of Medical SciencesKarajIran
| | - Bita Kargar
- Tehran Medical Sciences Islamic Azad UniversityTehranIran
| | - Saba Goodarzi
- Student Research Committee, School of MedicineAlborz University of Medical SciencesKarajIran
| | - Amirhossein Hajialigol
- Alborz Office of Universal Scientific Education and Research Network (USERN)Alborz University of Medical SciencesKarajIran
| | - Shera Ketabforoush
- Student Research CommitteeTehran Medical Sciences Islamic Azad UniversityTehranIran
| | - Afshin Heidari
- School of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Hanie Fathi
- Student Research Committee, School of MedicineAlborz University of Medical SciencesKarajIran
| | - Arman Shafiee
- Student Research Committee, School of MedicineAlborz University of Medical SciencesKarajIran
| | - Hadi Pourjafar
- Dietary Supplements and Probiotic Research CenterAlborz University of Medical SciencesKarajIran
| |
Collapse
|
4
|
Borgiani G, Possidente C, Fabbri C, Oliva V, Bloemendaal M, Arias Vasquez A, Dinan TG, Vieta E, Menchetti M, De Ronchi D, Serretti A, Fanelli G. The bidirectional interaction between antidepressants and the gut microbiota: are there implications for treatment response? Int Clin Psychopharmacol 2025; 40:3-26. [PMID: 39621492 PMCID: PMC11594561 DOI: 10.1097/yic.0000000000000533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/13/2023] [Indexed: 07/13/2024]
Abstract
This review synthesizes the evidence on associations between antidepressant use and gut microbiota composition and function, exploring the microbiota's possible role in modulating antidepressant treatment outcomes. Antidepressants exert an influence on measures of gut microbial diversity. The most consistently reported differences were in β-diversity between those exposed to antidepressants and those not exposed, with longitudinal studies supporting a potential causal association. Compositional alterations in antidepressant users include an increase in the Bacteroidetes phylum, Christensenellaceae family, and Bacteroides and Clostridium genera, while a decrease was found in the Firmicutes phylum, Ruminococcaceae family, and Ruminococcus genus. In addition, antidepressants attenuate gut microbial differences between depressed and healthy individuals, modulate microbial serotonin transport, and influence microbiota's metabolic functions. These include lyxose degradation, peptidoglycan maturation, membrane transport, and methylerythritol phosphate pathways, alongside gamma-aminobutyric acid metabolism. Importantly, baseline increased α-diversity and abundance of the Roseburia and Faecalibacterium genera, in the Firmicutes phylum, are associated with antidepressant response, emerging as promising biomarkers. This review highlights the potential for gut microbiota as a predictor of treatment response and emphasizes the need for further research to elucidate the mechanisms underlying antidepressant-microbiota interactions. More homogeneous studies and standardized techniques are required to confirm these initial findings.
Collapse
Affiliation(s)
- Gianluca Borgiani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Chiara Possidente
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona (UB)
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Chiara Fabbri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Vincenzo Oliva
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona (UB)
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Mirjam Bloemendaal
- Department of Psychiatry, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- Department for Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt-Goethe University, Frankfurt, Germany
| | - Alejandro Arias Vasquez
- Department of Psychiatry, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Ted G. Dinan
- APC Microbiome Ireland
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
| | - Eduard Vieta
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona (UB)
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Marco Menchetti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Diana De Ronchi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alessandro Serretti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Department of Medicine and Surgery, Kore University of Enna, Italy
| | - Giuseppe Fanelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Green M, Trivedi MH, Foster JA. Microbes and mood: innovative biomarker approaches in depression. Trends Mol Med 2025; 31:50-63. [PMID: 39353744 DOI: 10.1016/j.molmed.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/18/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024]
Abstract
Although the field of psychiatry has made gains in biomarker discovery, our ability to change long-term outcomes remains inadequate. Matching individuals to the best treatment for them is a persistent clinical challenge. Moreover, the development of novel treatments has been hampered in part due to a limited understanding of the biological mechanisms underlying individual differences that contribute to clinical heterogeneity. The gut microbiome has become an area of intensive research in conditions ranging from metabolic disorders to cancer. Innovation in these spaces has led to translational breakthroughs, offering novel microbiome-informed approaches that may improve patient outcomes. In this review we examine how translational microbiome research is poised to advance biomarker discovery in mental health, with a focus on depression.
Collapse
Affiliation(s)
- Miranda Green
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, ON, Canada
| | - Madhukar H Trivedi
- Center for Depression Research and Clinical Care, Department of Psychiatry and Peter O'Donnell Jr Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jane A Foster
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, ON, Canada; Center for Depression Research and Clinical Care, Department of Psychiatry and Peter O'Donnell Jr Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
6
|
Wang I, Buffington SA, Salas R. Microbiota-Gut-Brain Axis in Psychiatry: Focus on Depressive Disorders. CURR EPIDEMIOL REP 2024; 11:222-232. [PMID: 40130013 PMCID: PMC11932714 DOI: 10.1007/s40471-024-00349-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 03/26/2025]
Abstract
Purpose of Review Gut microbiota contribute to several physiological processes in the host. The composition of the gut microbiome is associated with different neurological and neurodevelopmental diseases. In psychiatric disease, stress may be a major factor leading to gut microbiota alterations. Depressive disorders are the most prevalent mental health issues worldwide and patients often report gastrointestinal symptoms. Accordingly, evidence of gut microbial alterations in depressive disorders has been growing. Here we review current literature revealing links between the gut microbiome and brain function in the context of depression. Recent Findings The gut-brain axis could impact the behavioral manifestation of depression and the underlying neuropathology via multiple routes: the HPA axis, immune function, the enteric nervous system, and the vagus nerve. Furthermore, we explore possible therapeutic interventions including fecal microbiota transplant or probiotic supplementation in alleviating depressive symptoms. Summary Understanding the mechanisms by which bidirectional communication along the gut-brain axis can be dysregulated in patients with depression could lead to the development of personalized, microbiome-targeted therapies for the treatment of this disorder.
Collapse
Affiliation(s)
- I–Ching Wang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Shelly A. Buffington
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Ramiro Salas
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Psychiatry & Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
- Center for Translational Research On Inflammatory Diseases, Michael E DeBakey VA Medical, Houston, TX, USA
- The Menninger Clinic, Houston, TX, USA
| |
Collapse
|
7
|
Pan X, Guo A, Guan K, Chen C, Xu S, Tang Y, Li X, Huang Z. Lactobacillus rhamnosus GG attenuates depression-like behaviour and cognitive deficits in chronic ethanol exposure mice by down-regulating systemic inflammatory factors. Addict Biol 2024; 29:e13445. [PMID: 39585236 PMCID: PMC11587820 DOI: 10.1111/adb.13445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/31/2024] [Accepted: 09/20/2024] [Indexed: 11/26/2024]
Abstract
Ethanol can directly or indirectly lead to cognitive and mental disorders. The long-term intake of alcohol can directly affect the distribution of gut microbiota. Lactobacillus rhamnosus GG (LGG) is a natural bacterium isolated from healthy human intestines that has the function of preventing cytokine-induced cell apoptosis and protecting cell barriers. However, the regulatory effect of LGG on cognitive and mental disorders caused by chronic ethanol exposure (CEE) is still unclear. In this study, we established a CEE mouse model through free alcohol consumption and added LGG or antibiotics in the later stages of the model. Sequencing analysis of the 16S rRNA gene showed that CEE resulted in a decrease in the abundance and diversity of mouse gut microbial communities accompanied by alterations in the relative abundance of multiple enterobacterial genera. The use of LGG and antibiotics alleviated the depression-like behaviour and cognitive impairment of CEE-induced mice, reduced expression of inflammatory factors such as interleukin (IL)-6, IL-1β and tumour necrosis factor (TNF)-α in the ileum, serum and brain and increased the expression of synaptophysin (SYN), postsynaptic density protein-95 (PSD-95) and brain-derived neurotrophic factor (BDNF) in the hippocampus. Together, LGG can alleviate depression-like behaviour caused by CEE in mice while also improving cognitive and memory functions through reducing peripheral and nervous system inflammation factors and balancing gut microbiota.
Collapse
Affiliation(s)
- Xiaoyu Pan
- The Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Anqi Guo
- The Affiliated Kangning Hospital of Wenzhou Medical University, Zhejiang Provincial Clinical Research Center for Mental DisordersWenzhouZhejiangChina
| | - Kaiyu Guan
- Peking University Sixth Hospital, Peking University Institute of Mental HealthBeijingChina
| | - Congcong Chen
- The Affiliated Kangning Hospital of Wenzhou Medical University, Zhejiang Provincial Clinical Research Center for Mental DisordersWenzhouZhejiangChina
| | - Shengnan Xu
- The Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Yali Tang
- Institute of Brain ScienceWenzhou Medical UniversityWenzhouZhejiangChina
| | - Xi Li
- The Affiliated Kangning Hospital of Wenzhou Medical University, Zhejiang Provincial Clinical Research Center for Mental DisordersWenzhouZhejiangChina
| | - Zhengwei Huang
- The Affiliated Kangning Hospital of Wenzhou Medical University, Zhejiang Provincial Clinical Research Center for Mental DisordersWenzhouZhejiangChina
| |
Collapse
|
8
|
Jiang X, Wang X, Zhang M, Yu L, He J, Wu S, Yan J, Zheng Y, Zhou Y, Chen Y. Associations between specific dietary patterns, gut microbiome composition, and incident subthreshold depression in Chinese young adults. J Adv Res 2024; 65:183-195. [PMID: 38879123 PMCID: PMC11518947 DOI: 10.1016/j.jare.2024.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/25/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024] Open
Abstract
INTRODUCTION The interplay between influential factors and the incidence of subthreshold depression (SD) in young adults remains poorly understood. OBJECTIVES This study sought to understand the dietary habits, gut microbiota composition, etc. among individuals with SD in young adults and to investigate their association with SD occurrence. METHODS Employing a cross-sectional approach, 178 individuals with SD, aged 18-32 years, were matched with 114 healthy counterparts. SD status was evaluated using the Zung Self-rating Depression Scale (SDS), Zung Self-rating Anxiety Scale (SAS), Beck Depression Inventory 2nd version (BDI-II), the 17-item Hamilton Rating Scales of Depression (HAMD-17), and Pittsburgh Sleep Quality Index (PSQI). Metagenomic sequencing was utilized to identify fecal microbial profiles. Dietary patterns were discerned via factor analysis of a 25-item food frequency questionnaire (FFQ). Logistic regression analysis and mediation analysis were performed to explore the potential links between gut microbiota, dietary patterns, and incident SD. RESULTS Data on dietary habits were available for 292 participants (mean [SD] age, 22.1 [2.9] years; 216 [73.9 %] female). Logistic regression analysis revealed that dietary patterns Ⅰ (odds ratio [OR], 0.34; 95 % CI, 0.15-0.75) and IV (OR, 0.39; 95 % CI, 0.17-0.86 and OR, 0.39; 95 % CI, 0.18-0.84) were associated with reduced risk of SD. Distinct microbial profiles were observed in young adults with SD, marked by increased microbial diversity and taxonomic alterations. Moreover, mediation analysis suggested Veillonella atypica as a potential mediator linking SDS or BDI-II scores with a healthy dietary pattern rich in bean products, coarse grains, nuts, fruits, mushrooms, and potatoes (β = 0.25, 95 % CI: 0.02-0.78 and β = 0.18, 95 % CI: 0.01-0.54). CONCLUSIONS Our findings highlight the complex interplay between dietary patterns, gut microbiota, and the risk of developing SD in young adults, underscoring the potential for dietary interventions and microbiome modulation in mental health promotion.
Collapse
Affiliation(s)
- Xiumin Jiang
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China; South China Research Center for Acupuncture and Moxibustion, Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaotong Wang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China; South China Research Center for Acupuncture and Moxibustion, Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Meng Zhang
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lin Yu
- Department of Traditional Chinese Medicine, the Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Sleep Research Institute of Integrative Medicine, the Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jun He
- Rehabilitation Center, Counseling Department, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shengwei Wu
- Department of Traditional Chinese Medicine, the Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jinglan Yan
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuanjia Zheng
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuanyuan Zhou
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yongjun Chen
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China; South China Research Center for Acupuncture and Moxibustion, Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China.
| |
Collapse
|
9
|
Gawlik-Kotelnicka O, Burzyński J, Rogalski J, Skowrońska A, Strzelecki D. Probiotics may be useful for drug-induced liver dysfunction in patients with depression - A secondary analysis of a randomized clinical trial. Clin Nutr ESPEN 2024; 63:604-614. [PMID: 39089652 DOI: 10.1016/j.clnesp.2024.07.1024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND & AIMS There is a need to identify new treatment options for depression with its comorbidities. Depression often coexists with liver steatosis and the two may share a pathophysiological overlap, including inflammation and microbiota changes. Probiotics might represent a safe option as an adjunctive therapy in patients with depression and possible liver steatosis. The paper presents the secondary analysis of a clinical trial of the effect of probiotic supplementation on the levels of non-invasive markers of liver steatosis and fibrosis in adult patients with depressive disorders. METHODS The research had a two-arm, parallel-group, prospective, randomized, double-blind, controlled design on probiotics in depression. 116 participants received a probiotic preparation containing Lactobacillus helveticus Rosell®-52 and Bifidobacterium longum Rosell®-175 over 60 days. Here, data from 92 subjects was analyzed. The following were assessed: alanine aminotransferase (ALT), alanine aminotransferase/aspartate aminotransferase (ALT/AST) ratio, Hepatic Steatosis Index, Framingham Steatosis Index, as well as non-invasive biomarkers of liver fibrosis (AST to Platelet Ratio Index, Fibosis-4 Index), or baseline socio-demographic, clinical, and laboratory parameters. RESULTS The probiotics did not influence liver steatosis and fibrosis parameters compared with placebo (p = 0.940 for HSI). However, the subgroup analysis revealed significant differences in liver-related parameters when stratified by the main diagnosis group (better improvement in steatosis indices after probiotics in depressive episode than mixed depression and anxiety disorder patients) or psychotropic medications use (better improvement in ALT-based indices after probiotics in antidepressant-treated subjects than those non-antidepressant-treated). The interplay between probiotics, medications, clinical and metabolic profiles of depression, and the changes in liver-related parameters has been discussed. CONCLUSIONS Multiple factors may modulate the postulated hepatoprotective properties of probiotics efficacy in patients with depression. Further studies with larger sample sizes, different probiotic strains, and longer intervention period are necessary to assess the real significance of probiotics for liver health in this population. CLINICALTRIALS GOV IDENTIFIER NCT04756544.
Collapse
Affiliation(s)
- Oliwia Gawlik-Kotelnicka
- Department of Affective and Psychotic Disorders, Medical University of Lodz, 8/10 Czechoslowacka St., 92-216 Lodz, Poland.
| | - Jacek Burzyński
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 15 Mazowiecka St., 92-215 Lodz, Poland.
| | - Jakub Rogalski
- Military Teaching and Veterans Central Hospital, Medical University of Lodz, 113 Zeromskiego St., 90-549 Lodz, Poland.
| | - Anna Skowrońska
- Department of Affective and Psychotic Disorders, Medical University of Lodz, 8/10 Czechoslowacka St., 92-216 Lodz, Poland.
| | - Dominik Strzelecki
- Department of Affective and Psychotic Disorders, Medical University of Lodz, 8/10 Czechoslowacka St., 92-216 Lodz, Poland.
| |
Collapse
|
10
|
Chen CY, Wang YF, Lei L, Zhang Y. Impacts of microbiota and its metabolites through gut-brain axis on pathophysiology of major depressive disorder. Life Sci 2024; 351:122815. [PMID: 38866215 DOI: 10.1016/j.lfs.2024.122815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/21/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024]
Abstract
Major depressive disorder (MDD) is characterized by a high rate of recurrence and disability, which seriously affects the quality of life of patients. That's why a deeper understanding of the mechanisms of MDD pathology is an urgent task, and some studies have found that intestinal symptoms accompany people with MDD. The microbiota-gut-brain axis is the bidirectional communication between the gut microbiota and the central nervous system, which was found to have a strong association with the pathogenesis of MDD. Previous studies have focused more on the communication between the gut and the brain through neuroendocrine, neuroimmune and autonomic pathways, and the role of gut microbes and their metabolites in depression is unclear. Metabolites of intestinal microorganisms (e.g., tryptophan, kynurenic acid, indole, and lipopolysaccharide) can participate in the pathogenesis of MDD through immune and inflammatory pathways or by altering the permeability of the gut and blood-brain barrier. In addition, intestinal microbes can communicate with intestinal neurons and glial cells to affect the integrity and function of intestinal nerves. However, the specific role of gut microbes and their metabolites in the pathogenesis of MDD is not well understood. Hence, the present review summarizes how gut microbes and their metabolites are directly or indirectly involved in the pathogenesis of MDD.
Collapse
Affiliation(s)
- Cong-Ya Chen
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yu-Fei Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Lan Lei
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
11
|
Logan AC, Prescott SL, LaFata EM, Nicholson JJ, Lowry CA. Beyond Auto-Brewery: Why Dysbiosis and the Legalome Matter to Forensic and Legal Psychology. LAWS 2024; 13:46. [DOI: 10.3390/laws13040046] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
International studies have linked the consumption of ultra-processed foods with a variety of non-communicable diseases. Included in this growing body of research is evidence linking ultra-processed foods to mental disorders, aggression, and antisocial behavior. Although the idea that dietary patterns and various nutrients or additives can influence brain and behavior has a long history in criminology, in the absence of plausible mechanisms and convincing intervention trials, the topic was mostly excluded from mainstream discourse. The emergence of research across nutritional neuroscience and nutritional psychology/psychiatry, combined with mechanistic bench science, and human intervention trials, has provided support to epidemiological findings, and legitimacy to the concept of nutritional criminology. Among the emergent research, microbiome sciences have illuminated mechanistic pathways linking various socioeconomic and environmental factors, including the consumption of ultra-processed foods, with aggression and antisocial behavior. Here in this review, we examine this burgeoning research, including that related to ultra-processed food addiction, and explore its relevance across the criminal justice spectrum—from prevention to intervention—and in courtroom considerations of diminished capacity. We use auto-brewery syndrome as an example of intersecting diet and gut microbiome science that has been used to refute mens rea in criminal charges. The legalome—microbiome and omics science applied in forensic and legal psychology—appears set to emerge as an important consideration in matters of criminology, law, and justice.
Collapse
Affiliation(s)
| | - Susan L. Prescott
- Nova Institute for Health, Baltimore, MD 21231, USA
- School of Medicine, University of Western Australia, Perth, WA 6009, Australia
- Department of Family and Community Medicine, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Erica M. LaFata
- Center for Weight, Eating, and Lifestyle Science, Drexel University, 3141 Chestnut St, Philadelphia, PA 19104, USA
| | | | - Christopher A. Lowry
- Departments of Integrative Physiology and Psychology and Neuroscience, Center for Neuroscience and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
12
|
Yuan M, Zhang Z, Liu T, Feng H, Liu Y, Chen K. The Role of Nondigestible Oligosaccharides in Alleviating Human Chronic Diseases by Regulating the Gut Microbiota: A Review. Foods 2024; 13:2157. [PMID: 38998662 PMCID: PMC11241040 DOI: 10.3390/foods13132157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/30/2024] [Accepted: 07/06/2024] [Indexed: 07/14/2024] Open
Abstract
The gut has been a focus of chronic disease research. The gut microbiota produces metabolites that act as signaling molecules and substrates, closely influencing host health. Nondigestible oligosaccharides (NDOs), as a common dietary fiber, play an important role in regulating the structure and function of the gut microbiota. Their mechanism of action is mainly attributed to providing a carbon source as specific probiotics, producing related metabolites, and regulating the gut microbial community. However, due to the selective utilization of oligosaccharides, some factors, such as the type and structure of oligosaccharides, have different impacts on the composition of microbial populations and the production of metabolites in the colon ecosystem. This review systematically describes the key factors influencing the selective utilization of oligosaccharides by microorganisms and elaborates how oligosaccharides affect the host's immune system, inflammation levels, and energy metabolism by regulating microbial diversity and metabolic function, which in turn affects the onset and progress of chronic diseases, especially diabetes, obesity, depression, intestinal inflammatory diseases, and constipation. In this review, we re-examine the interaction mechanisms between the gut microbiota and its associated metabolites and diseases, and we explore new strategies for promoting human health and combating chronic diseases through dietary interventions.
Collapse
Affiliation(s)
- Meiyu Yuan
- State Key Laboratory of Food Science and Resource, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China; (M.Y.); (Z.Z.)
| | - Zhongwei Zhang
- State Key Laboratory of Food Science and Resource, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China; (M.Y.); (Z.Z.)
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang 330019, China;
| | - Tongying Liu
- Jiangxi Maternel and Child Health Hospital, Nanchang 330108, China;
| | - Hua Feng
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang 330019, China;
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Resource, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China; (M.Y.); (Z.Z.)
- Chongqing Research Institute of Nanchang University, Chongqing 402660, China
| | - Kai Chen
- Shangrao Innovation Institute of Agricultural Technology, College of Life Science, Shangrao Normal University, Shangrao 334001, China
| |
Collapse
|
13
|
Xie Y, Zhu H, Yuan Y, Guan X, Xie Q, Dong Z. Baseline gut microbiota profiles affect treatment response in patients with depression. Front Microbiol 2024; 15:1429116. [PMID: 39021622 PMCID: PMC11251908 DOI: 10.3389/fmicb.2024.1429116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024] Open
Abstract
The role of the gut microbiota in the pathophysiology of depression has been explored in numerous studies, which have confirmed that the baseline gut microbial profiles of patients with depression differ from those of healthy individuals. The gut microbiome affects metabolic activity in the immune and central nervous systems and regulates intestinal ecology through the neuroendocrine system. Additionally, baseline changes in the gut microbiota differed among patients with depression who demonstrated varying treatment response. Currently, probiotics are an emerging treatment for depression; however, the efficacy of modulating the gut microbiota in the treatment of depression remains uncertain. Additionally, the mechanisms by which changes in the gut microbiota affect treatment response in patients with depression remain unclear. In this review, we aimed to summarize the differences in the baseline gut microbiota between the remission and non-remission groups after antidepressant therapy. Additionally, we summarized the possible mechanisms that may contribute to antidepressant resistance through the effects of the gut microbiome on the immune and nervous systems, various enzymes, bioaccumulation, and blood-brain barrier, and provide a basis for treating depression by targeting the gut microbiota.
Collapse
Affiliation(s)
- Yingjing Xie
- West China Hospital, Sichuan University, Chengdu, China
| | - Hanwen Zhu
- West China Hospital, Sichuan University, Chengdu, China
| | - Yanling Yuan
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Xuan Guan
- Chengdu Medical College, Chengdu, China
| | - Qinglian Xie
- Department of Outpatient, West China Hospital, Sichuan University, Chengdu, China
| | - Zaiquan Dong
- Department of Psychiatry and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Kaye AD, Allen KE, Smith Iii VS, Tong VT, Mire VE, Nguyen H, Lee Z, Kouri M, Jean Baptiste C, Mosieri CN, Kaye AM, Varrassi G, Shekoohi S. Emerging Treatments and Therapies for Autism Spectrum Disorder: A Narrative Review. Cureus 2024; 16:e63671. [PMID: 39092332 PMCID: PMC11293483 DOI: 10.7759/cureus.63671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
The prevalence of autism spectrum disorder (ASD) has increased over the last decade. In this regard, many emerging therapies have been described as ASD therapies. Although ASD does not have a cure, there are several management options available that can help reduce symptom severity. ASD is highly variable and, therefore, standard treatment protocols and studies are challenging to perform. Many of these therapies also address comorbidities for which patients with ASD have an increased risk. These concurrent diagnoses can include psychiatric and neurological disorders, including attention deficit and hyperactivity disorder, anxiety disorders, and epilepsy, as well as gastrointestinal symptoms such as chronic constipation and diarrhea. Both the extensive list of ASD-associated disorders and adverse effects from commonly prescribed medications for patients with ASD can impact presenting symptomatology. It is important to keep these potential interactions in mind when considering additional drug treatments or complementary therapies. This review addresses current literature involving novel pharmacological treatments such as oxytocin, bumetanide, acetylcholinesterase inhibitors, and memantine. It also discusses additional therapies such as diet intervention, acupuncture, music therapy, melatonin, and the use of technology to aid education. Notably, several of these therapies require more long-term research to determine efficacy in specific ASD groups within this patient population.
Collapse
Affiliation(s)
- Alan D Kaye
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Kaitlyn E Allen
- School of Medicine, Louisiana State University Health New Orleans School of Medicine, New Orleans, USA
| | - Van S Smith Iii
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Victoria T Tong
- School of Medicine, Louisiana State University Health New Orleans School of Medicine, New Orleans, USA
| | - Vivian E Mire
- School of Medicine, Louisiana State University Health New Orleans School of Medicine, New Orleans, USA
| | - Huy Nguyen
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Zachary Lee
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Maria Kouri
- Anesthesia, National and Kapodistrian University of Athens, Athens, GRC
| | - Carlo Jean Baptiste
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Chizoba N Mosieri
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Adam M Kaye
- Department of Pharmacy Practice, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, USA
| | | | - Sahar Shekoohi
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| |
Collapse
|
15
|
Costa CFFA, Ferreira-Gomes J, Barbosa F, Sampaio-Maia B, Burnet PWJ. Importance of good hosting: reviewing the bi-directionality of the microbiome-gut-brain-axis. Front Neurosci 2024; 18:1386866. [PMID: 38812976 PMCID: PMC11133738 DOI: 10.3389/fnins.2024.1386866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024] Open
Abstract
Gut microorganisms have been shown to significantly impact on central function and studies that have associated brain disorders with specific bacterial genera have advocated an anomalous gut microbiome as the pathophysiological basis of several psychiatric and neurological conditions. Thus, our knowledge of brain-to-gut-to microbiome communication in this bidirectional axis seems to have been overlooked. This review examines the known mechanisms of the microbiome-to-gut-to-brain axis, highlighting how brain-to-gut-to-microbiome signaling may be key to understanding the cause of disrupted gut microbial communities. We show that brain disorders can alter the function of the brain-to-gut-to-microbiome axis, which will in turn contribute to disease progression, while the microbiome-to gut-to brain direction presents as a more versatile therapeutic axis, since current psychotropic/neurosurgical interventions may have unwanted side effects that further cause disruption to the gut microbiome. A consideration of the brain-to-gut-to-microbiome axis is imperative to better understand how the microbiome-gut-brain axis overall is involved in brain illnesses, and how it may be utilized as a preventive and therapeutic tool.
Collapse
Affiliation(s)
- Carolina F. F. A. Costa
- ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- NanoBiomaterials for Targeted Therapies, INEB-Institute of Biomedical Engineering, i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Joana Ferreira-Gomes
- Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
- IBMC-Institute for Molecular and Cell Biology, i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Fernando Barbosa
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal
| | - Benedita Sampaio-Maia
- NanoBiomaterials for Targeted Therapies, INEB-Institute of Biomedical Engineering, i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- Faculty of Dental Medicine, University of Porto, Porto, Portugal
| | | |
Collapse
|
16
|
Knudsen JK, Bundgaard-Nielsen C, Leutscher P, Hjerrild S, Nielsen RE, Sørensen S. Differences in bacterial taxa between treatment-naive patients with major depressive disorder and non-affected controls may be related to a proinflammatory profile. BMC Psychiatry 2024; 24:84. [PMID: 38297265 PMCID: PMC10832199 DOI: 10.1186/s12888-024-05547-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/21/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is characterized by sadness and anhedonia, but also physical symptoms such as changes in appetite and weight. Gut microbiota has been hypothesized to be involved in MDD through gut-brain axis signaling. Moreover, antidepressants display antibacterial properties in the gastrointestinal tract. The aim of this study was to compare the gut microbiota and systemic inflammatory profile of young patients with MDD before and after initiation of antidepressant treatment and/or psychotherapy in comparison with a non-depressed control group (nonMDD). METHODS Fecal and blood samples were collected at baseline and at follow-up after four and twelve weeks, respectively. Patients started treatment immediately after collection of the baseline samples. The gut microbiota was characterized by 16 S rRNA gene sequencing targeting the hypervariable V4 region. Plasma levels of 49 unique immune markers were assessed using Mesoscale. RESULTS In total, 27 MDD patients and 32 nonMDD controls were included in the study. The gut microbiota in the baseline samples of MDD versus nonMDD participants did not differ regarding α- or β-diversity. However, there was a higher relative abundance of the genera Ruminococcus gnavus group, and a lower relative abundance of the genera Desulfovibrio, Tyzzerella, Megamonas, Olsenella, Gordonibacter, Allisonella and Rothia in the MDD group compared to the nonMDD group. In the MDD group, there was an increase in the genera Rothia, Desulfovibrio, Gordinobacteer and Lactobacillus, while genera belonging to the Firmicutes phylum were found depleted at twelve weeks follow-up compared to baseline. In the MDD group, IL-7, IL-8 and IL-17b levels were elevated compared to the nonMDD group at baseline. Furthermore, MDI score in the MDD group was found to correlate with Bray-Curtis dissimilarity at baseline, and several inflammatory markers at both baseline and after initiation of antidepressant treatment. CONCLUSION Several bacterial taxa differed between the MDD group and the nonMDD group at baseline and changed in relative abundance during antidepressant treatment and/or psychotherapy. The MDD group was furthermore found to have a pro-inflammatory profile compared to the nonMDD group at baseline. Further studies are required to investigate the gut microbiota and pro-inflammatory profile of patients with MDD.
Collapse
Affiliation(s)
- Julie Kristine Knudsen
- Centre for Clinical Research, North Denmark Regional Hospital, Bispensgade 37, Hjørring, 9800, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Caspar Bundgaard-Nielsen
- Centre for Clinical Research, North Denmark Regional Hospital, Bispensgade 37, Hjørring, 9800, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Peter Leutscher
- Centre for Clinical Research, North Denmark Regional Hospital, Bispensgade 37, Hjørring, 9800, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Steno Diabetes Center North Denmark, Aalborg, Denmark
| | - Simon Hjerrild
- Psychosis Research Unit, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - René Ernst Nielsen
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Psychiatry, Aalborg University Hospital, Aalborg, Denmark
| | - Suzette Sørensen
- Centre for Clinical Research, North Denmark Regional Hospital, Bispensgade 37, Hjørring, 9800, Denmark.
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
- Steno Diabetes Center North Denmark, Aalborg, Denmark.
| |
Collapse
|
17
|
He H, He H, Mo L, You Z, Zhang J. Priming of microglia with dysfunctional gut microbiota impairs hippocampal neurogenesis and fosters stress vulnerability of mice. Brain Behav Immun 2024; 115:280-294. [PMID: 37914097 DOI: 10.1016/j.bbi.2023.10.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Mental disorders may be involved in neuroinflammatory processes that are triggered by gut microbiota. How gut microbiota influence microglia-mediated sensitivity to stress remains unclear. Here we explored in an animal model of depression whether disruption of the gut microbiome primes hippocampal microglia, thereby impairing neurogenesis and sensitizing to stress. METHODS Male C57BL/6J mice were exposed to chronic unpredictable mild stress (CUMS) for 4 weeks, and effects on gut microbiota were assessed using 16S rRNA sequencing. Fecal microbiota was transplanted from control or CUMS mice into naïve animals. The depression-like behaviors of recipients were evaluated in a forced swimming test and sucrose preference test. The morphology and phenotype of microglia in the hippocampus of recipients were examined using immunohistochemistry, quantitative PCR, and enzyme-linked immunosorbent assays. The recipients were treated with lipopolysaccharide or chronic stress exposure, and effects were evaluated on behavior, microglial responses and hippocampal neurogenesis. Finally, we explored the ability of minocycline to reverse the effects of CUMS on hippocampal neurogenesis and stress sensitivity in recipients. RESULTS CUMS altered the gut microbiome, leading to higher relative abundance of some bacteria (Helicobacter, Bacteroides, and Desulfovibrio) and lower relative abundance of some bacteria (Lactobacillus, Bifidobacterium, and Akkermansia). Fecal microbiota transplantation from CUMS mice to naïve animals induced microglial priming in the dentate gyrus of recipients. This microglia showed hyper-ramified morphology, and became more sensitive to LPS challenge or chronic stress, which characterized by more significant morphological changes and inflammatory responses, as well as impaired hippocampal neurogenesis and increased depressive-like behaviors. Giving minocycline to recipients reversed these effects of fecal transplantation. CONCLUSIONS These findings suggest that gut microbiota from stressed animals can induce microglial priming in the dentate gyrus, which is associated with a hyper-immune response to stress and impaired hippocampal neurogenesis. Remodeling the gut microbiome or inhibiting microglial priming may be strategies to reduce sensitivity to stress.
Collapse
Affiliation(s)
- Hui He
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Haili He
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Li Mo
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zili You
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Jinqiang Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| |
Collapse
|
18
|
Yadav M, Sehrawat N, Sharma AK, Kumar S, Singh R, Kumar A, Kumar A. Synbiotics as potent functional food: recent updates on therapeutic potential and mechanistic insight. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:1-15. [PMID: 38192708 PMCID: PMC10771572 DOI: 10.1007/s13197-022-05621-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/14/2022] [Accepted: 11/03/2022] [Indexed: 11/15/2022]
Abstract
Synbiotics are the specific mixtures of prebiotics with probiotics intended to give health benefits to the host by stabilizing and supporting the gut microbiota.The prebiotic substance used in the synbiotics selectively favors the growth and metabolite production of probiotics. Gut microbiome dysbiosis may lead to generation and progression of various chronic diseases. Synbiotics act synergistically to modulate the gut ecosystem for improvement of metabolic health of the host. Probiotics have been found promising against various diseases being safer, effective, as an alternative or combinatorial therapy. Specific combinations of probiotics with suitable prebiotic substrate as synbiotics, may be the more effective therapeutic agents that can provide all benefits of probiotics as well as prebiotics. Though, effective combinations, dosage, mechanism of action, safety, cost effectiveness and other clinical investigations are required to be established along with other relevant aspects. Synbiotics have the potential to be functional food of importance in future. Present review summarizes the mechanistic overview of synbiotics related to gut microbiota, therapeutic potential and promising health benefits for human illnesses according to the available literature. In present scenario, synbiotics are more promising future alternatives as therapeutics to maintain healthy microbiota inside the host gut which directly affects the onset or development ofrelated disorders or diseases.
Collapse
Affiliation(s)
- Mukesh Yadav
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana India
| | - Nirmala Sehrawat
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana India
| | - Anil Kumar Sharma
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana India
| | - Sunil Kumar
- Department of Microbiology, Faculty of Biomedical Sciences, Kampala International University, Western Campus, Ishaka, Uganda
| | - Rajbir Singh
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram, Haryana India
| | - Ashwani Kumar
- Department of Biotechnology, Chaudhary Bansi Lal University, Bhiwani, Haryana 127021 India
| | - Amit Kumar
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P. India
| |
Collapse
|
19
|
Alsholi DM, Yacoub GS, Rehman AU, Ullah H, Khan AI, Deng T, Siddiqui NZ, Alioui Y, Farooqui NA, Elkharti M, Li Y, Wang L, Xin Y. Lactobacillus rhamnosus Attenuates Cisplatin-Induced Intestinal Mucositis in Mice via Modulating the Gut Microbiota and Improving Intestinal Inflammation. Pathogens 2023; 12:1340. [PMID: 38003804 PMCID: PMC10674506 DOI: 10.3390/pathogens12111340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/26/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Lactobacillus rhamnosus (LBS) is a well-documented probiotic strain in oncology and has a pivotal role in clinical applications. Here, we have investigated the protective effect of Lactobacillus rhamnosus on intestinal mucositis induced by cisplatin (CP) and explored the underlying mechanisms targeting inflammatory proteins, as well as the histological changes in the intestinal tissue of mice, in addition, the bacterial strains that may be related to the health-enhancing properties. BALB/c mice were pre-treated with or without LBS via oral gavage, followed by mucositis induction with cisplatin. Our results revealed that the LBS-treated groups significantly attenuated proinflammatory cytokine levels (IL-1β, IL-6, and TNF-α) compared to the CP group. Furthermore, LBS mitigated the damaged tight junction integrity caused by CP via up-regulating the levels of claudin, occludin, ZO-1, and mucin-2 protein (MUC-2). Finally, the 16S rRNA fecal microbiome genomic analysis showed that LBS administration enhanced the growth of beneficial bacteria, i.e., Firmicutes and Lachnospiraceae, while the relative abundance of the opportunistic bacteria Bacteroides and Proteobacteria decreased. Collectively, LBS was found to beneficially modulate microbial composition structure and functions and enrich the ecological diversity in the gut.
Collapse
Affiliation(s)
- Duaa M. Alsholi
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (D.M.A.); (A.U.R.); (H.U.); (A.I.K.); (T.D.); (N.Z.S.); (Y.A.); (N.A.F.)
| | - Ghazi Suleiman Yacoub
- Department of Dermatology, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Lu, Dalian 116011, China;
| | - Ata Ur Rehman
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (D.M.A.); (A.U.R.); (H.U.); (A.I.K.); (T.D.); (N.Z.S.); (Y.A.); (N.A.F.)
| | - Hidayat Ullah
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (D.M.A.); (A.U.R.); (H.U.); (A.I.K.); (T.D.); (N.Z.S.); (Y.A.); (N.A.F.)
| | - Asif Iqbal Khan
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (D.M.A.); (A.U.R.); (H.U.); (A.I.K.); (T.D.); (N.Z.S.); (Y.A.); (N.A.F.)
| | - Ting Deng
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (D.M.A.); (A.U.R.); (H.U.); (A.I.K.); (T.D.); (N.Z.S.); (Y.A.); (N.A.F.)
| | - Nimra Zafar Siddiqui
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (D.M.A.); (A.U.R.); (H.U.); (A.I.K.); (T.D.); (N.Z.S.); (Y.A.); (N.A.F.)
| | - Yamina Alioui
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (D.M.A.); (A.U.R.); (H.U.); (A.I.K.); (T.D.); (N.Z.S.); (Y.A.); (N.A.F.)
| | - Nabeel Ahmed Farooqui
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (D.M.A.); (A.U.R.); (H.U.); (A.I.K.); (T.D.); (N.Z.S.); (Y.A.); (N.A.F.)
| | - Maroua Elkharti
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China;
| | - Yanxia Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Liang Wang
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yi Xin
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (D.M.A.); (A.U.R.); (H.U.); (A.I.K.); (T.D.); (N.Z.S.); (Y.A.); (N.A.F.)
| |
Collapse
|
20
|
Kouraki A, Kelly A, Vijay A, Gohir S, Astbury S, Georgopoulos V, Millar B, Walsh DA, Ferguson E, Menni C, Valdes AM. Reproducible microbiome composition signatures of anxiety and depressive symptoms. Comput Struct Biotechnol J 2023; 21:5326-5336. [PMID: 37954149 PMCID: PMC10637863 DOI: 10.1016/j.csbj.2023.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 11/14/2023] Open
Abstract
The gut microbiome is a significant contributor to mental health, with growing evidence linking its composition to anxiety and depressive disorders. Gut microbiome composition is associated with signs of anxiety and depression both in clinically diagnosed mood disorders and subclinically in the general population and may be influenced by dietary fibre intake and the presence of chronic pain. We provide an update of current evidence on the role of gut microbiome composition in depressive and anxiety disorders or symptoms by reviewing available studies. Analysing data from three independent cohorts (osteoarthritis 1 (OA1); n = 46, osteoarthritis 2 (OA2); n = 58, and healthy controls (CON); n = 67), we identified microbial composition signatures of anxiety and depressive symptoms at genus level and cross-validated our findings performing meta-analyses of our results with results from previously published studies. The genera Bifidobacterium (fixed-effect beta (95% CI) = -0.22 (-0.34, -0.10), p = 3.90e-04) and Lachnospiraceae NK4A136 group (fixed-effect beta (95% CI) = -0.09 (-0.13, -0.05), p = 2.53e-06) were found to be the best predictors of anxiety and depressive symptoms, respectively, across our three cohorts and published literature taking into account demographic and lifestyle covariates, such as fibre intake. The association with anxiety was robust in accounting for heterogeneity between cohorts and supports previous observations of the potential prophylactic effect of Bifidobacterium against anxiety symptoms.
Collapse
Affiliation(s)
- Afroditi Kouraki
- Academic Unit of Injury, Recovery and Inflammation Sciences, Rheumatology, School of Medicine, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - Anthony Kelly
- Academic Unit of Injury, Recovery and Inflammation Sciences, Rheumatology, School of Medicine, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - Amrita Vijay
- Academic Unit of Injury, Recovery and Inflammation Sciences, Rheumatology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Sameer Gohir
- Academic Unit of Injury, Recovery and Inflammation Sciences, Rheumatology, School of Medicine, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - Stuart Astbury
- Academic Unit of Injury, Recovery and Inflammation Sciences, Rheumatology, School of Medicine, University of Nottingham, Nottingham, UK
- Nottingham Digestive Diseases Centre, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - Vasileios Georgopoulos
- Academic Unit of Injury, Recovery and Inflammation Sciences, Rheumatology, School of Medicine, University of Nottingham, Nottingham, UK
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham, UK
| | - Bonnie Millar
- Academic Unit of Injury, Recovery and Inflammation Sciences, Rheumatology, School of Medicine, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham, UK
| | - David Andrew Walsh
- Academic Unit of Injury, Recovery and Inflammation Sciences, Rheumatology, School of Medicine, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham, UK
| | - Eamonn Ferguson
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham, UK
- School of Psychology, University of Nottingham, University Park, Nottingham, UK
- National Institute for Health and Care Research Blood and Transplant Research Unit in Donor Health and Behaviour, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Cristina Menni
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Ana M. Valdes
- Academic Unit of Injury, Recovery and Inflammation Sciences, Rheumatology, School of Medicine, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham, UK
| |
Collapse
|
21
|
Yuan C, He Y, Xie K, Feng L, Gao S, Cai L. Review of microbiota gut brain axis and innate immunity in inflammatory and infective diseases. Front Cell Infect Microbiol 2023; 13:1282431. [PMID: 37868345 PMCID: PMC10585369 DOI: 10.3389/fcimb.2023.1282431] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023] Open
Abstract
The microbiota gut brain (MGB) axis has been shown to play a significant role in the regulation of inflammatory and infective diseases. Exploring the structure and communication mode of MGB axis is crucial for understanding its role in diseases, and studying the signaling pathways and regulatory methods of MGB axis regulation in diseases is also of profound significance for future clinical research. This article reviews the composition, communication mechanism of MGB axis and its role in inflammatory and infective diseases, including Parkinson's disease (PD), Alzheimer's disease (AD), multiple sclerosis (MS), autism spectrum disorder (ASD), depression, psoriasis, irritable bowel syndrome (IBS), and inflammatory bowel diseases (IBD). In addition, our investigation delved into the regulatory functions of the inflammasome, IFN-I, NF-κB, and PARK7/DJ-1 innate immune signaling pathway in the context of inflammatory and infective diseases. Ultimately, we discussed the efficacy of various interventions, including fecal microbiota transplantation (FMT), antibiotics, probiotics, prebiotics, synbiotics, and postbiotics, in the management of inflammatory and infective diseases. Understanding the role and mechanism of the MGB axis might make positive effects in the treatment of inflammatory and infective diseases.
Collapse
Affiliation(s)
- Chongshan Yuan
- Department of Obstetrics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Yuhong He
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Kunyu Xie
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Lianjun Feng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Shouyang Gao
- Department of Obstetrics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Lifu Cai
- Department of Obstetrics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
22
|
Rust C, Malan-Muller S, van den Heuvel LL, Tonge D, Seedat S, Pretorius E, Hemmings SMJ. Platelets bridging the gap between gut dysbiosis and neuroinflammation in stress-linked disorders: A narrative review. J Neuroimmunol 2023; 382:578155. [PMID: 37523892 DOI: 10.1016/j.jneuroim.2023.578155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 08/02/2023]
Abstract
In this narrative review, we examine the association between gut dysbiosis, neuroinflammation, and stress-linked disorders, including depression, anxiety, and post-traumatic stress disorder (PTSD), and investigate whether tryptophan (TRP) metabolism and platelets play a role in this association. The mechanisms underlying the aetiology of stress-linked disorders are complex and not yet completely understood. However, a potential link between chronic inflammation and these disorders may potentially be found in TRP metabolism and platelets. By critically analysing existing literature on platelets, the gut microbiome, and stress-linked disorders, we hope to elicit the role of platelets in mediating the effects on serotonin (5-HT) levels and neuroinflammation. We have included studies specifically investigating platelets and TRP metabolism in relation to inflammation, neuroinflammation and neuropsychiatric disorders. Alteration in microbial composition due to stress could contribute to increased intestinal permeability, facilitating the translocation of microbial products, and triggering the release of pro-inflammatory cytokines. This causes platelets to become hyperactive and secrete 5-HT into the plasma. Increased levels of pro-inflammatory cytokines may also lead to increased permeability of the blood-brain barrier (BBB), allowing inflammatory mediators entry into the brain, affecting the balance of TRP metabolism products, such as 5-HT, kynurenic acid (KYNA), and quinolinic acid (QUIN). These alterations may contribute to neuroinflammation and possible neurological damage. Furthermore, platelets can cross the compromised BBB and interact with astrocytes and neurons, leading to the secretion of 5-HT and pro-inflammatory factors, exacerbating inflammatory conditions in the brain. The mechanisms underlying neuroinflammation resulting from peripheral inflammation are still unclear, but the connection between the brain and gut through the bloodstream could be significant. Identifying peripheral biomarkers and mechanisms in the plasma that reflect neuroinflammation may be important. This review serves as a foundation for further research on the association between the gut microbiome, blood microbiome, and neuropsychiatric disorders. The integration of these findings with protein and metabolite markers in the blood may expand our understanding of the subject.
Collapse
Affiliation(s)
- Carlien Rust
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Unit, Cape Town, South Africa.
| | - Stefanie Malan-Muller
- Department of Pharmacology and Toxicology, Faculty of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain; Biomedical Network Research Center of Mental Health (CIBERSAM), Institute of Health Carlos III, Madrid, Spain; Neurochemistry Research Institute UCM, Hospital 12 de Octubre Research Institute (Imas12), Madrid, Spain
| | - Leigh L van den Heuvel
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Unit, Cape Town, South Africa
| | - Daniel Tonge
- School of Life Sciences, Faculty of Natural Sciences, Keele University, ST5 5BG Newcastle, England, UK
| | - Soraya Seedat
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Unit, Cape Town, South Africa
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa; Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology Biosciences Building, University of Liverpool, Liverpool, United Kingdom.
| | - Sian M J Hemmings
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Unit, Cape Town, South Africa
| |
Collapse
|
23
|
Brown LC, Bobo WV, Gall CA, Müller DJ, Bousman CA. Pharmacomicrobiomics of Antidepressants in Depression: A Systematic Review. J Pers Med 2023; 13:1086. [PMID: 37511699 PMCID: PMC10381387 DOI: 10.3390/jpm13071086] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
This systematic review evaluated the animal and human evidence for pharmacomicrobiomics (PMx) interactions of antidepressant medications. Studies of gut microbiota effects on functional and behavioral effects of antidepressants in human and animal models were identified from PubMed up to December 2022. Risk of bias was assessed, and results are presented as a systematic review following PRISMA guidelines. A total of 28 (21 animal, 7 human) studies were included in the review. The reviewed papers converged on three themes: (1) Antidepressants can alter the composition and metabolites of gut microbiota, (2) gut microbiota can alter the bioavailability of certain antidepressants, and (3) gut microbiota may modulate the clinical or modeled mood modifying effects of antidepressants. The majority (n = 22) of studies had at least moderate levels of bias present. While strong evidence is still lacking to understand the clinical role of antidepressant PMx in human health, there is evidence for interactions among antidepressants, microbiota changes, microbiota metabolite changes, and behavior. Well-controlled studies of the mediating and moderating effects of baseline and treatment-emergent changes in microbiota on therapeutic and adverse responses to antidepressants are needed to better establish a potential role of PMx in personalizing antidepressant treatment selection and response prediction.
Collapse
Affiliation(s)
- Lisa C Brown
- Great Scott! Consulting LLC, New York, NY 11222, USA
| | - William V Bobo
- Department of Psychiatry & Psychology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Cory A Gall
- Department of Veterinary Tropical Diseases, University of Pretoria, Onderstepoort 0028, South Africa
| | - Daniel J Müller
- Pharmacogenetics Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M6J 1H4, Canada
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, 97080 Würzburg, Germany
| | - Chad A Bousman
- The Mathison Centre for Mental Health Research and Education, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Departments of Medical Genetics, Psychiatry, Physiology and Pharmacology, and Community Health Sciences, University of Calgary, Calgary, AB T2N 4N1, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
24
|
Chin Fatt CR, Asbury S, Jha MK, Minhajuddin A, Sethuram S, Mayes T, Kennedy SH, Foster JA, Trivedi MH. Leveraging the microbiome to understand clinical heterogeneity in depression: findings from the T-RAD study. Transl Psychiatry 2023; 13:139. [PMID: 37117195 PMCID: PMC10147668 DOI: 10.1038/s41398-023-02416-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/25/2023] [Accepted: 03/24/2023] [Indexed: 04/30/2023] Open
Abstract
Alterations in the gut microbiome have been linked to a variety of mental illnesses including anxiety and depression. This study utilized advanced bioinformatics tools that integrated both the compositional and community nature of gut microbiota to investigate how gut microbiota influence clinical symptoms in a sample of participants with depression. Gut microbiota of 179 participants with major depressive disorder (MDD) in the Texas Resilience Against Depression (T-RAD) study were analyzed by 16S rRNA gene sequencing of stool samples. Severity of anxiety, depression, and anhedonia symptoms were assessed with General Anxiety Disorder - 7 item scale, Patient Health 9-item Questionnaire, and Dimensional Anhedonia Rating Scale, respectively. Using weighted correlation network analysis, a data-driven approach, three co-occurrence networks of bacterial taxa were identified. One of these co-occurrence networks was significantly associated with clinical features including depression and anxiety. The hub taxa associated with this co-occurrence module -one Ruminococcaceae family taxon, one Clostridiales vadinBB60 group family taxon, and one Christencenellaceae family taxon- were connected to several additional butyrate-producing bacteria suggesting that deficits in butyrate production may contribute to clinical symptoms. Therefore, by considering the community nature of the gut microbiome in a real world clinical sample, this study identified a gut microbial co-occurrence network that was significantly associated with clinical anxiety in a cohort of depressed individuals.
Collapse
Affiliation(s)
- Cherise R Chin Fatt
- Center for Depression Research and Clinical Care, Peter O'Donnell Jr. Brain Institute and the Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sarah Asbury
- Department of Psychiatry & Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Manish K Jha
- Center for Depression Research and Clinical Care, Peter O'Donnell Jr. Brain Institute and the Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Abu Minhajuddin
- Center for Depression Research and Clinical Care, Peter O'Donnell Jr. Brain Institute and the Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sangita Sethuram
- Center for Depression Research and Clinical Care, Peter O'Donnell Jr. Brain Institute and the Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Taryn Mayes
- Center for Depression Research and Clinical Care, Peter O'Donnell Jr. Brain Institute and the Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sidney H Kennedy
- Department of Psychiatry, University of Toronto and Centre for Depression and Suicide Studies, Unity Health, Toronto, ON, Canada
| | - Jane A Foster
- Center for Depression Research and Clinical Care, Peter O'Donnell Jr. Brain Institute and the Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Psychiatry & Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada.
| | - Madhukar H Trivedi
- Center for Depression Research and Clinical Care, Peter O'Donnell Jr. Brain Institute and the Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
25
|
Yu S, Wang L, Jing X, Wang Y, An C. Features of gut microbiota and short-chain fatty acids in patients with first-episode depression and their relationship with the clinical symptoms. Front Psychol 2023; 14:1088268. [PMID: 37168424 PMCID: PMC10165121 DOI: 10.3389/fpsyg.2023.1088268] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/31/2023] [Indexed: 05/13/2023] Open
Abstract
Objective To compare the differences in gut microbiota and short-chain fatty acids (SCFAs; metabolites of gut microbiota) in the serum of patients with first-episode depression and the healthy population and to analyze the relationship between gut microbiota and metabolite SCFAs and the clinical symptoms of major depressive disorder (MDD). Methods A total of 45 patients with first-episode depression and 22 healthy volunteers were chosen to complete relevant scale evaluations, and feces samples and venous blood samples were collected. The 16S RNA method was used to analyze the intestinal microflora and the characteristics of serum SCFAs detection by ELISA kit, as well as the intestinal flora, SCFAs content and their correlation with MDD clinical indicators. Results The abundance of Akkermansia, Megamonas, Prevotellaceae NK3B31 group, and butyrate-producing bacteria, Lachnospira, Subdoligranulum, Blautia, and Dialister, and acetate-producing bacteria, Streptococcus, in the gut microbiota of the MDD group was lower than that in the control (C) group. The abundance of Parasutterella in the MDD group was higher than that in the C group. Dialister negatively correlated with all measured clinical symptoms (r < 0, P < 0.05). The serum SCFA content in the MDD group was higher than that in the C group, and the content positively correlated with the Hamilton anxiety scale scores (r = 0.584, P < 0.05). Conclusion The results demonstrated that the MDD group differed from the C group in terms of gut microbiota and SCFAs in the serum and that the change in certain intestinal bacteria might participate in the pathogenic mechanism of MDD.
Collapse
Affiliation(s)
| | | | | | | | - Cuixia An
- Mental Health Center, The First Hospital of Hebei Medical University, Hebei Clinical Research Center for Mental Disorders and Institute of Mental Health, Hebei Technical Innovation Center for Mental Health Assessment and Intervention, Shijiazhuang, China
| |
Collapse
|
26
|
Rohr JC, Bourassa KA, Thompson DS, Fowler JC, Frueh BC, Weinstein BL, Petrosino J, Madan A. History of childhood physical abuse is associated with gut microbiota diversity among adult psychiatric inpatients. J Affect Disord 2023; 331:50-56. [PMID: 36933668 DOI: 10.1016/j.jad.2023.03.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/03/2023] [Accepted: 03/11/2023] [Indexed: 03/20/2023]
Abstract
BACKGROUND Traumatic life events are associated with the development of psychiatric and chronic medical illnesses. This exploratory study examined the relationship between traumatic life events and the gut microbiota among adult psychiatric inpatients. METHODS 105 adult psychiatric inpatients provided clinical data and a single fecal sample shortly after admission. A modified version of the Stressful Life Events Screening Questionnaire was used to quantify history of traumatic life events. 16S rRNA gene sequencing was used to analyze the gut microbial community. RESULTS Gut microbiota diversity was not associated with overall trauma score or any of the three trauma factor scores. Upon item-level analysis, history of childhood physical abuse was uniquely associated with beta diversity. Linear Discriminant Analysis Effect Size (LefSe) analyses revealed that childhood physical abuse was associated with abundance of distinct bacterial taxa associated with inflammation. LIMITATIONS This study did not account for dietary differences, though diet was highly restricted as all participants were psychiatric inpatients. Absolute variance accounted for by the taxa was small though practically meaningful. The study was not powered for full subgroup analysis based on race and ethnicity. CONCLUSIONS This study is among the first to demonstrate a relationship between childhood physical abuse and gut microbiota composition among adult psychiatric patients. These findings suggest that early childhood adverse events may have long-conferred systemic consequences. Future efforts may target the gut microbiota for the prevention and/or treatment of psychiatric and medical risk associated with traumatic life events.
Collapse
Affiliation(s)
- Jessica C Rohr
- Department of Psychiatry & Behavioral Health, Houston Methodist, Houston, TX, USA.
| | - Katelynn A Bourassa
- Department of Psychiatry & Behavioral Health, Houston Methodist, Houston, TX, USA
| | - Dominique S Thompson
- Department of Psychiatry & Behavioral Health, Houston Methodist, Houston, TX, USA; Department of Molecular Virology & Microbiology, Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - J Christopher Fowler
- Department of Psychiatry & Behavioral Health, Houston Methodist, Houston, TX, USA; Houston Methodist Academic Institute, Houston, TX, USA; Department of Psychiatry, Weill Cornell Medical College, New York, NY, USA
| | | | - Benjamin L Weinstein
- Department of Psychiatry & Behavioral Health, Houston Methodist, Houston, TX, USA
| | - Joseph Petrosino
- Department of Molecular Virology & Microbiology, Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Alok Madan
- Department of Psychiatry & Behavioral Health, Houston Methodist, Houston, TX, USA; Houston Methodist Academic Institute, Houston, TX, USA; Department of Psychiatry, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
27
|
Gawlik-Kotelnicka O, Margulska A, Skowrońska A, Strzelecki D. PRO-DEMET Randomized Controlled Trial on Probiotics in Depression—Pilot Study Results. Nutrients 2023; 15:nu15061400. [PMID: 36986132 PMCID: PMC10058314 DOI: 10.3390/nu15061400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
There is a pressing need to identify new treatment options for depression and its comorbidities. Depression often coexists with metabolic complications, and the two may share a pathophysiological overlap, including inflammation and microbiota changes. Microbiota interventions (e.g., probiotics) may represent a safe and easy-to-use treatment option as an adjunctive therapy in patients only partially responsive to pharmacologic treatment. (1) Objective: The paper presents the results of a feasibility and pilot study. The study is an internal part of a randomized controlled trail (RCT) of the effect of probiotic supplementation on psychometric, anthropometric, metabolic, and inflammatory parameters in adult patients with depressive disorders depending on the presence of metabolic syndrome. (2) Methods: The trial has a four-arm, parallel-group, prospective, randomized, double-blind, controlled design. Sixty participants received a probiotic preparation containing Lactobacillus helveticus Rosell®-52 and Bifidobacterium longum Rosell®-175 over 60 days. The feasibility of the study design was assessed, as well as the rates of recruitment, eligibility, consent, and study completion. The following were assessed: depressive, anxiety and stress symptoms, quality of life, blood pressure, body mass index and waist circumference, complete blood count with differential, serum levels of C-reactive protein, high-density lipoprotein cholesterol, triglycerides, fasting glucose, some secondary markers of inflammation and metabolic health, as well as noninvasive biomarkers of liver fibrosis (APRI and FIB-4). (3) Results: The study was found to be generally feasible. The eligibility rate was 52% of recruited participants with 80% completing the study protocol. No differences in sociodemographic or anthropometric factors or basic laboratory findings were found between the placebo and probiotic group at the start of the intervention period. Importantly, the proportion of recruited participants fulfilling the criteria of metabolic syndrome was too low. (4) Conclusions: Whilst the whole study protocol was feasible, some different timepoint procedures require modification. The major weakness of the recruitment methods was that the percentage of metabolic arms participants was insufficient. Overall, the full RCT design on probiotics in depression with vs. without metabolic syndrome was shown to be feasible with little modification.
Collapse
Affiliation(s)
- Oliwia Gawlik-Kotelnicka
- Department of Affective and Psychotic Disorders, Medical University of Lodz, 92-216 Lodz, Poland
- Correspondence:
| | - Aleksandra Margulska
- Department of Adolescent Psychiatry, Medical University of Lodz, 92-216 Lodz, Poland
| | - Anna Skowrońska
- Department of Affective and Psychotic Disorders, Medical University of Lodz, 92-216 Lodz, Poland
| | - Dominik Strzelecki
- Department of Affective and Psychotic Disorders, Medical University of Lodz, 92-216 Lodz, Poland
| |
Collapse
|
28
|
Differential co-expression networks of the gut microbiota are associated with depression and anxiety treatment resistance among psychiatric inpatients. Prog Neuropsychopharmacol Biol Psychiatry 2023; 120:110638. [PMID: 36122838 DOI: 10.1016/j.pnpbp.2022.110638] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Comorbid anxiety and depression are common and are associated with greater disease burden than either alone. Our recent efforts have identified an association between gut microbiota dysfunction and severity of anxiety and depression. In this follow-up, we applied Differential Co-Expression Analysis (DiffCoEx) to identify potential gut microbiota biomarker(s) candidates of treatment resistance among psychiatric inpatients. METHODS In a sample of convenience, 100 psychiatric inpatients provided clinical data at admission and discharge; fecal samples were collected early during the hospitalization. Whole genome shotgun sequencing methods were used to process samples. DiffCoEx was used to identify clusters of microbial features significantly different based on treatment resistance status. Once overlapping features were identified, a knowledge-mining tool was used to review the literature using a list of microbial species/pathways and a select number of medical subject headlines (MeSH) terms relevant for depression, anxiety, and brain-gut-axis dysregulation. Network analysis used overlapping features to identify microbial interactions that could impact treatment resistance. RESULTS DiffCoEx analyzed 10,403 bacterial features: 43/44 microbial features associated with depression treatment resistance overlapped with 43/114 microbial features associated with anxiety treatment resistance. Network analysis resulted in 8 biological interactions between 16 bacterial species. Clostridium perfringens evidenced the highest connection strength (0.95). Erysipelotrichaceae bacterium 6_1_45 has been most widely examined, is associated with inflammation and dysbiosis, but has not been associated with depression or anxiety. CONCLUSION DiffCoEx potentially identified gut bacteria biomarker candidates of depression and anxiety treatment-resistance. Future efforts in psychiatric microbiology should examine the mechanistic relationship of identified pro-inflammatory species, potentially contributing to a biomarker-based algorithm for treatment resistance.
Collapse
|
29
|
Brown EL, Essigmann HT, Hoffman KL, Alexander AS, Newmark M, Jiang ZD, Suescun J, Schiess MC, Hanis CL, DuPont HL. IgA-Biome Profiles Correlate with Clinical Parkinson's Disease Subtypes. JOURNAL OF PARKINSON'S DISEASE 2023; 13:501-513. [PMID: 37212075 PMCID: PMC10357173 DOI: 10.3233/jpd-230066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/18/2023] [Indexed: 05/23/2023]
Abstract
BACKGROUND Parkinson's disease is a heterogeneous neurodegenerative disorder with distinctive gut microbiome patterns suggesting that interventions targeting the gut microbiota may prevent, slow, or reverse disease progression and severity. OBJECTIVE Because secretory IgA (SIgA) plays a key role in shaping the gut microbiota, characterization of the IgA-Biome of individuals classified into either the akinetic rigid (AR) or tremor dominant (TD) Parkinson's disease clinical subtypes was used to further define taxa unique to these distinct clinical phenotypes. METHODS Flow cytometry was used to separate IgA-coated and -uncoated bacteria from stool samples obtained from AR and TD patients followed by amplification and sequencing of the V4 region of the 16 S rDNA gene on the MiSeq platform (Illumina). RESULTS IgA-Biome analyses identified significant alpha and beta diversity differences between the Parkinson's disease phenotypes and the Firmicutes/Bacteroides ratio was significantly higher in those with TD compared to those with AR. In addition, discriminant taxa analyses identified a more pro-inflammatory bacterial profile in the IgA+ fraction of those with the AR clinical subclass compared to IgA-Biome analyses of those with the TD subclass and with the taxa identified in the unsorted control samples. CONCLUSION IgA-Biome analyses underscores the importance of the host immune response in shaping the gut microbiome potentially affecting disease progression and presentation. In the present study, IgA-Biome analyses identified a unique proinflammatory microbial signature in the IgA+ fraction of those with AR that would have otherwise been undetected using conventional microbiome analysis approaches.
Collapse
Affiliation(s)
- Eric L. Brown
- Center for Infectious Diseases, Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX, USA
| | - Heather T. Essigmann
- Center for Infectious Diseases, Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX, USA
| | - Kristi L. Hoffman
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | | | | | - Zhi-Dong Jiang
- Center for Infectious Diseases, Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX, USA
| | - Jessika Suescun
- Department of Neurology/UTMOVE University of Texas McGovern Medical School, Houston, TX, USA
| | - Mya C. Schiess
- Department of Neurology/UTMOVE University of Texas McGovern Medical School, Houston, TX, USA
| | - Craig L. Hanis
- Human Genetics Center, Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX, USA
| | - Herbert L. DuPont
- Center for Infectious Diseases, Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX, USA
- Kelsey Research Foundation, Houston, TX, USA
- Department of Internal Medicine, University of Texas McGovern Medical School, Houston, TX, USA
| |
Collapse
|
30
|
Lynch CMK, O’Riordan KJ, Clarke G, Cryan JF. Gut Microbes: The Gut Brain Connection. CLINICAL UNDERSTANDING OF THE HUMAN GUT MICROBIOME 2023:33-59. [DOI: 10.1007/978-3-031-46712-7_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
31
|
Liu L, Wang H, Zhang H, Chen X, Zhang Y, Wu J, Zhao L, Wang D, Pu J, Ji P, Xie P. Toward a Deeper Understanding of Gut Microbiome in Depression: The Promise of Clinical Applicability. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203707. [PMID: 36285702 PMCID: PMC9762301 DOI: 10.1002/advs.202203707] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/15/2022] [Indexed: 05/30/2023]
Abstract
The emergence of the coronavirus disease 2019 pandemic has dramatically increased the global prevalence of depression. Unfortunately, antidepressant drugs benefit only a small minority of patients. Thus, there is an urgent need to develop new interventions. Accumulating evidence supports a causal relationship between gut microbiota dysbiosis and depression. To advance microbiota-based diagnostics and therapeutics of depression, a comprehensive overview of microbial alterations in depression is presented to identify effector microbial biomarkers. This procedure generated 215 bacterial taxa from humans and 312 from animal models. Compared to controls, depression shows significant differences in β-diversity, but no changes in microbial richness and diversity. Additionally, species-specific microbial changes are identified like increased Eggerthella in humans and decreased Acetatifactor in rodent models. Moreover, a disrupted microbiome balance and functional changes, characterized by an enrichment of pro-inflammatory bacteria (e.g., Desulfovibrio and Escherichia/Shigella) and depletion of anti-inflammatory butyrate-producing bacteria (e.g., Bifidobacterium and Faecalibacterium) are consistently shared across species. Confounding effects of geographical region, depression type, and intestinal segments are also investigated. Ultimately, a total of 178 species and subspecies probiotics are identified to alleviate the depressive phenotypes. Current findings provide a foundation for developing microbiota-based diagnostics and therapeutics and advancing microbiota-oriented precision medicine for depression.
Collapse
Affiliation(s)
- Lanxiang Liu
- Department of NeurologyYongchuan Hospital of Chongqing Medical UniversityChongqing402160China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional DiseasesThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Department of NeurologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Haiyang Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional DiseasesThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- College of Stomatology and Affiliated Stomatological Hospital of Chongqing Medical UniversityChongqing401147China
| | - Hanping Zhang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional DiseasesThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Department of NeurologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Xueyi Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional DiseasesThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Yangdong Zhang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional DiseasesThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Department of NeurologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Ji Wu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional DiseasesThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Department of NeurologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Libo Zhao
- Department of NeurologyYongchuan Hospital of Chongqing Medical UniversityChongqing402160China
| | - Dongfang Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional DiseasesThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Juncai Pu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional DiseasesThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Department of NeurologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Ping Ji
- College of Stomatology and Affiliated Stomatological Hospital of Chongqing Medical UniversityChongqing401147China
| | - Peng Xie
- Department of NeurologyYongchuan Hospital of Chongqing Medical UniversityChongqing402160China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional DiseasesThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Department of NeurologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- College of Stomatology and Affiliated Stomatological Hospital of Chongqing Medical UniversityChongqing401147China
| |
Collapse
|
32
|
Liang J, Zhao Y, Xi Y, Xiang C, Yong C, Huo J, Zou H, Hou Y, Pan Y, Wu M, Xie Q, Lin Q. Association between Depression, Anxiety Symptoms and Gut Microbiota in Chinese Elderly with Functional Constipation. Nutrients 2022; 14:5013. [PMID: 36501044 PMCID: PMC9740187 DOI: 10.3390/nu14235013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/19/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022] Open
Abstract
This study aimed to investigate the relationship between anxiety, depression, and gut microbiota in elderly patients with FC. METHODS in this cross-sectional study, a total of 198 elderly participants (85 male and 113 female) aged over 60 years were recruited. The study was conducted in Changsha city, China. The participants completed an online questionnaire, including The Patient Health Questionnaire-9 (PHQ-9), Generalized Anxiety Disorder-7 (GAD-7), The Patient Assessment of Symptoms (PAC-SYM), and The Patient Assessment of Quality of Life (PAC-QoL). We selected the 16S rDNA V3 + V4 region as the amplification region and sequenced the gut microbiota using the Illumina Novaseq PE250 high-throughput sequencing platform. RESULTS in total, 30.3% of patients with constipation had depression, while 21.3% had anxiety. The relative abundance of intestinal microbiota in the normal group was higher than that in the anxiety and depression group. According to LEfSe analysis, the relative abundance of g_Peptoniphilus and g_Geobacter in the people without depression and anxiety was higher. The relative abundance of g_Pseudoramibacter-Eubacterium and g_Candidatus-Solibacter in the depression group was lower, and the relative abundance of g_Bacteroides and g_Paraprevotella, g_Cc_115 in the anxiety group was higher. In addition, according to the correlation analysis, g_Aquicella and g_Limnohabitans were negatively correlated with constipation symptoms, anxiety, and depression. CONCLUSIONS this study found that gut microbiota composition may be associated with a higher incidence of anxiety and depression in patients with FC, thus providing insight into the mechanisms that ameliorate mood disorders in patients with FC.
Collapse
Affiliation(s)
- Jiajing Liang
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, 110 Xiangya Rd, Changsha 410078, China
| | - Yueming Zhao
- Hyproca Nutrition Co., Ltd., Changsha 410011, China
| | - Yue Xi
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, 110 Xiangya Rd, Changsha 410078, China
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510275, China
| | - Caihong Xiang
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, 110 Xiangya Rd, Changsha 410078, China
| | - Cuiting Yong
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, 110 Xiangya Rd, Changsha 410078, China
| | - Jiaqi Huo
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, 110 Xiangya Rd, Changsha 410078, China
| | - Hanshuang Zou
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, 110 Xiangya Rd, Changsha 410078, China
| | - Yanmei Hou
- Hyproca Nutrition Co., Ltd., Changsha 410011, China
| | - Yunfeng Pan
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, 110 Xiangya Rd, Changsha 410078, China
| | - Minchan Wu
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, 110 Xiangya Rd, Changsha 410078, China
| | - Qingqing Xie
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, 110 Xiangya Rd, Changsha 410078, China
| | - Qian Lin
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, 110 Xiangya Rd, Changsha 410078, China
| |
Collapse
|
33
|
Zheng Y, Zhang L, He S, Xie Z, Zhang J, Ge C, Sun G, Huang J, Li H. Integrated Module of Multidimensional Omics for Peripheral Biomarkers (iMORE) in patients with major depressive disorder: rationale and design of a prospective multicentre cohort study. BMJ Open 2022; 12:e067447. [PMID: 36418119 PMCID: PMC9685190 DOI: 10.1136/bmjopen-2022-067447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION Major depressive disorder (MDD) represents a worldwide burden on healthcare and the response to antidepressants remains limited. Systems biology approaches have been used to explore the precision therapy. However, no reliable biomarker clinically exists for prognostic prediction at present. The objectives of the Integrated Module of Multidimensional Omics for Peripheral Biomarkers (iMORE) study are to predict the efficacy of antidepressants by integrating multidimensional omics and performing validation in a real-world setting. As secondary aims, a series of potential biomarkers are explored for biological subtypes. METHODS AND ANALYSIS iMore is an observational cohort study in patients with MDD with a multistage design in China. The study is performed by three mental health centres comprising an observation phase and a validation phase. A total of 200 patients with MDD and 100 healthy controls were enrolled. The protocol-specified antidepressants are selective serotonin reuptake inhibitors and serotonin-norepinephrine reuptake inhibitors. Clinical visits (baseline, 4 and 8 weeks) include psychiatric rating scales for symptom assessment and biospecimen collection for multiomics analysis. Participants are divided into responders and non-responders based on treatment response (>50% reduction in Montgomery-Asberg Depression Rating Scale). Antidepressants' responses are predicted and biomarkers are explored using supervised learning approach by integration of metabolites, cytokines, gut microbiomes and immunophenotypic cells. The accuracy of the prediction models constructed is verified in an independent validation phase. ETHICS AND DISSEMINATION The study was approved by the ethics committee of Shanghai Mental Health Center (approval number 2020-87). All participants need to sign a written consent for the study entry. Study findings will be published in peer-reviewed journals. TRIAL REGISTRATION NUMBER NCT04518592.
Collapse
Affiliation(s)
- Yuzhen Zheng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linna Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shen He
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zuoquan Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jing Zhang
- Shanghai Green Valley Pharmaceutical Co Ltd, Shanghai, China
| | - Changrong Ge
- Shanghai Green Valley Pharmaceutical Co Ltd, Shanghai, China
| | - Guangqiang Sun
- Shanghai Green Valley Pharmaceutical Co Ltd, Shanghai, China
| | - Jingjing Huang
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Clinical Research Center for Mental Health, Shanghai Mental Health Center, Shanghai, China
| | - Huafang Li
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Clinical Research Center for Mental Health, Shanghai Mental Health Center, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
34
|
Association Between Gut Microbiota and Depressive Symptoms: A Cross-Sectional Population-Based Study in South Korea. Psychosom Med 2022; 84:757-765. [PMID: 35980774 DOI: 10.1097/psy.0000000000001111] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE This study aimed to investigate the association between gut microbiota and depressive symptoms in a large population cohort of Korean adults. METHODS Overall, 1238 participants were included in the study. Participants were categorized into depressed or non-depressed groups, based on the depressive symptoms reported on the Center for Epidemiologic Studies Rating Scale for Depression, with a cutoff score of 16, and their fecal microbiota was profiled using 16S ribosomal RNA gene sequencing. Several alpha and beta diversity measures were also estimated. The association between depressive symptoms and gut microbiota was analyzed using generalized linear models. The inferred function of the metagenomes was compared between the two groups. RESULTS There were no consistent differences in alpha and beta diversity between the depressed and non-depressed groups. However, the continuous measure of depressive symptoms was inversely associated with one of four measures of alpha diversity (Shannon's diversity, p = .021). We also found a substantial difference between the depressed and non-depressed groups in the Bray-Curtis dissimilarity among the four beta diversity indices ( p = .004). Participants whose depressive symptoms exceeded a clinical cutoff score had a lower relative abundance of the genus Faecalibacterium when compared with controls (coefficient = -0.025, q = 0.047). However, the depressed group had a significantly higher abundance of the genus Oscillospira than did the non-depressed group (coefficient = 0.002, q = 0.023). CONCLUSIONS Our findings contribute to the identification of potential relationships between the gut microbiota and depressive symptoms and provide useful insights for developing microbiota-based interventions for patients with depressive symptoms.
Collapse
|
35
|
Kumar Palepu MS, Dandekar MP. Remodeling of microbiota gut-brain axis using psychobiotics in depression. Eur J Pharmacol 2022; 931:175171. [PMID: 35926568 DOI: 10.1016/j.ejphar.2022.175171] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/14/2022] [Accepted: 07/21/2022] [Indexed: 12/11/2022]
Abstract
Depression is a multifaceted psychiatric disorder mainly orchestrated by dysfunction of neuroendocrine, neurochemical, immune, and metabolic systems. The interconnection of gut microbiota perturbation with the central nervous system disorders has been well documented in recent times. Indeed, alteration of commensal intestinal microflora is noted in several psychiatric disorders such as anxiety and depression, which are presumed to be routed through the enteric nervous system, autonomic nervous system, endocrine, and immune system. This review summarises the new mechanisms underlying the crosstalk between gut microbiota and brain involved in the management of depression. Depression-induced changes in the commensal intestinal microbiota are majorly linked with the disruption of gut integrity, hyperinflammation, and modulation of short-chain fatty acids, neurotransmitters, kynurenine metabolites, endocannabinoids, brain-derived neurotropic factors, hypothalamic-pituitary-adrenal axis, and gut peptides. The restoration of gut microbiota with prebiotics, probiotics, postbiotics, synbiotics, and fermented foods (psychobiotics) has gained a considerable attention for the management of depression. Recent evidence also propose the role of gut microbiota in the process of treatment-resistant depression. Thus, remodeling of the microbiota-gut-brain axis using psychobiotics appears to be a promising therapeutic approach for the reversal of psychiatric disorders, and it is imperative to decipher the underlying mechanisms for gut-brain crosstalk.
Collapse
Affiliation(s)
- Mani Surya Kumar Palepu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Manoj P Dandekar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India.
| |
Collapse
|
36
|
Laue HE, Karagas MR, Coker MO, Bellinger DC, Baker ER, Korrick SA, Madan JC. Sex-specific relationships of the infant microbiome and early-childhood behavioral outcomes. Pediatr Res 2022; 92:580-591. [PMID: 34732816 PMCID: PMC9065210 DOI: 10.1038/s41390-021-01785-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND A link between the gut microbiome and behavior is hypothesized, but most previous studies are cross-sectional or in animal models. The modifying role of host sex is poorly characterized. We aimed to identify sex-specific prospective associations between the early-life gut microbiome and preschool-age neurobehavior. METHODS In a prospective cohort, gut microbiome diversity and taxa were estimated with 16S rRNA sequencing at 6 weeks, 1 year, and 2 years. Species and gene pathways were inferred from metagenomic sequencing at 6 weeks and 1 year. When subjects were 3 years old, parents completed the Behavioral Assessment System for Children, second edition (BASC-2). A total of 260 children contributed 523 16S rRNA and 234 metagenomics samples to analysis. Models adjusted for sociodemographic characteristics. RESULTS Higher diversity at 6 weeks was associated with better internalizing problems among boys, but not girls [βBoys = -1.86 points/SD Shannon diversity; 95% CI (-3.29, -0.42), pBoys = 0.01, βGirls = 0.22 (-1.43, 1.87), pGirls = 0.8, pinteraction = 0.06]. Among other taxa-specific associations, Bifidobacterium at 6 weeks was associated with Adaptive Skills scores in a sex-specific manner. We observed relationships between functional features and BASC-2 scores, including vitamin B6 biosynthesis pathways and better Depression scores. CONCLUSIONS This study advances our understanding of microbe-host interactions with implications for childhood behavioral health. IMPACT This is one of the first studies to examine the early-life microbiome and neurobehavior, and the first to examine prospective sex-specific associations. Infant and early-childhood microbiomes relate to neurobehavior including anxiety, depression, hyperactivity, and social behaviors in a time- and sex-specific manner. Our findings suggest future studies should evaluate whether host sex impacts the relationship between the gut microbiome and behavioral health outcomes.
Collapse
Affiliation(s)
- Hannah E Laue
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA.
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - Modupe O Coker
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
- School of Dental Medicine, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - David C Bellinger
- Department of Neurology, Harvard Medical School and Boston Children's Hospital, Boston, MA, USA
| | - Emily R Baker
- Department of Obstetrics and Gynecology, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
| | - Susan A Korrick
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Juliette C Madan
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
- Departments of Pediatrics and Psychiatry, Children's Hospital at Dartmouth, Lebanon, NH, USA
| |
Collapse
|
37
|
Simon MS, Barton BB, Glocker C, Musil R. A comprehensive approach to predicting weight gain and therapy response in psychopharmacologically treated major depressed patients: A cohort study protocol. PLoS One 2022; 17:e0271793. [PMID: 35862413 PMCID: PMC9302848 DOI: 10.1371/journal.pone.0271793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 07/07/2022] [Indexed: 11/22/2022] Open
Abstract
Background A subgroup of patients with Major Depressive Disorder shows signs of low-grade inflammation and metabolic abberances, while antidepressants can induce weight gain and subsequent metabolic disorders, and lacking antidepressant response is associated with inflammation. Objectives A comprehensive investigation of patient phenotypes and their predictive capability for weight gain and treatment response after psychotropic treatment will be performed. The following factors will be analyzed: inflammatory and metabolic markers, gut microbiome composition, lifestyle indicators (eating behavior, physical activity, chronotype, patient characteristics (childhood adversity among others), and polygenic risk scores. Methods Psychiatric inpatients with at least moderate Major Depressive Disorder will be enrolled in a prospective, observational, naturalistic, monocentric study using stratified sampling. Ethical approval was obtained. Primary outcomes at 4 weeks will be percent weight change and symptom score change on the Montgomery Asberg Depression Rating Scale. Both outcomes will also be binarized into clinically relevant outcomes at 5% weight gain and 50% symptom score reduction. Predictors for weight gain and treatment response will be tested using multiple hierachical regression for continuous outcomes, and multiple binary logistic regression for binarized outcomes. Psychotropic premedication, current medication, eating behavior, baseline BMI, age, and sex will be included as covariates. Further, a comprehensive analysis will be carried out using machine learning. Polygenic risk scores will be added in a second step to estimate the additional variance explained by genetic markers. Sample size calculation yielded a total amount of N = 171 subjects. Discussion Patient and physician expectancies regarding the primary outcomes and non-random sampling may affect internal validity and external validity, respectively. Through the prospective and naturalistic design, results will gain relevance to clinical practice. Examining the predictive value of patient profiles for weight gain and treatment response during pharmacotherapy will allow for targeted adjustments before and concomitantly to the start of treatment.
Collapse
Affiliation(s)
- Maria S. Simon
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians-University, Munich, Germany
- * E-mail:
| | - Barbara B. Barton
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Catherine Glocker
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Richard Musil
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
38
|
Cang W, Wu J, Ding R, Wang W, Li N, Shi H, Shi L, Lee Y, Wu R. Potential of Probiotics as an Adjunct for Patients with Major Depressive Disorder. Mol Nutr Food Res 2022; 66:e2101057. [PMID: 35286767 DOI: 10.1002/mnfr.202101057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/12/2022] [Indexed: 11/06/2022]
Abstract
Major depressive disorder (MDD) is an enfeebling disease with a lifetime incidence of 20%. While accumulating studies implicate a correlation between the disease and gut microbiota, data show that not every patient responded to probiotic treatments. To comprehensively assess the potential role of probiotics in MDD, this study first summarizes the current pathological hypothesis of the disease from a life-stage perspective, focuses on the potential role of "depression gut microbiota." Currently available managements are then briefly summarized and novel bio-materials having potential therapeutic effects on MDD are also evaluated. To harness the positive effect of probiotics, prebiotics, and postbiotics, clinical evidence and their applications on MDD patients are listed. Factors that may counteract the pre/probiotic applications, such as diet, physiology, gender difference, and use of antibiotics and antidepressants are also discussed. The endocannabinoid (eCBs) system may be promising targets for probiotic therapy. More evidence is needed to demonstrate the hierarchical factors in the complex network driving the disease, and probiotic can be one promising adjunct for patients with MDD.
Collapse
Affiliation(s)
- Weihe Cang
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, P. R. China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, P. R. China.,Engineering Research Center of Food Fermentation Technology, Liaoning, 110866, P. R. China.,Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, 110866, P. R. China
| | - Ruixue Ding
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, P. R. China.,Engineering Research Center of Food Fermentation Technology, Liaoning, 110866, P. R. China.,Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, 110866, P. R. China
| | - Weiming Wang
- Heilongjiang Academy of Traditional Chinese Medicine, Harbin, 150036, P. R. China
| | - Na Li
- Children's Neurorehabilitation Laboratory, Shenyang Children's Hospital, Shenyang, 110033, P. R. China
| | - Haisu Shi
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, P. R. China.,Engineering Research Center of Food Fermentation Technology, Liaoning, 110866, P. R. China.,Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, 110866, P. R. China
| | - Lin Shi
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, P. R. China.,Engineering Research Center of Food Fermentation Technology, Liaoning, 110866, P. R. China.,Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, 110866, P. R. China
| | - Yuankun Lee
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, P. R. China.,Engineering Research Center of Food Fermentation Technology, Liaoning, 110866, P. R. China.,Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, 110866, P. R. China
| |
Collapse
|
39
|
Shoubridge AP, Choo JM, Martin AM, Keating DJ, Wong ML, Licinio J, Rogers GB. The gut microbiome and mental health: advances in research and emerging priorities. Mol Psychiatry 2022; 27:1908-1919. [PMID: 35236957 DOI: 10.1038/s41380-022-01479-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/17/2022] [Accepted: 02/08/2022] [Indexed: 12/19/2022]
Abstract
The gut microbiome exerts a considerable influence on human neurophysiology and mental health. Interactions between intestinal microbiology and host regulatory systems have now been implicated both in the development of psychiatric conditions and in the efficacy of many common therapies. With the growing acceptance of the role played by the gut microbiome in mental health outcomes, the focus of research is now beginning to shift from identifying relationships between intestinal microbiology and pathophysiology, and towards using this newfound insight to improve clinical outcomes. Here, we review recent advances in our understanding of gut microbiome-brain interactions, the mechanistic underpinnings of these relationships, and the ongoing challenge of distinguishing association and causation. We set out an overarching model of the evolution of microbiome-CNS interaction and examine how a growing knowledge of these complex systems can be used to determine disease susceptibility and reduce risk in a targeted manner.
Collapse
Affiliation(s)
- Andrew P Shoubridge
- Microbiome and Host Health, South Australian Health and Medical Research Institute, Adelaide, SA, 5001, Australia.,Infection and Immunity, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Jocelyn M Choo
- Microbiome and Host Health, South Australian Health and Medical Research Institute, Adelaide, SA, 5001, Australia.,Infection and Immunity, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Alyce M Martin
- Neuroscience, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Damien J Keating
- Neuroscience, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Ma-Li Wong
- Department of Psychiatry and Behavioral Sciences and Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA
| | - Julio Licinio
- Department of Psychiatry and Behavioral Sciences and Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA.,Department of Psychiatry, Flinders University College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Geraint B Rogers
- Microbiome and Host Health, South Australian Health and Medical Research Institute, Adelaide, SA, 5001, Australia. .,Infection and Immunity, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia.
| |
Collapse
|
40
|
Palacios-García I, Mhuireach GA, Grasso-Cladera A, Cryan JF, Parada FJ. The 4E approach to the human microbiome: Nested interactions between the gut-brain/body system within natural and built environments. Bioessays 2022; 44:e2100249. [PMID: 35338496 DOI: 10.1002/bies.202100249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/13/2022] [Accepted: 03/15/2022] [Indexed: 12/17/2022]
Abstract
The complexity of the human mind and its interaction with the environment is one of the main epistemological debates throughout history. Recent ideas, framed as the 4E perspective to cognition, highlight that human experience depends causally on both cerebral and extracranial processes, but also is embedded in a particular sociomaterial context and is a product of historical accumulation of trajectory changes throughout life. Accordingly, the human microbiome is one of the most intriguing actors modulating brain function and physiology. Here, we present the 4E approach to the Human Microbiome for understanding mental processes from a broader perspective, encompassing one's body physiology and environment throughout their lifespan, interconnected by microbiome community structure and dynamics. We review evidence supporting the approach theoretically and motivates the study of the global set of microbial ecosystem networks encountered by a person across their lifetime (from skin to gut to natural and built environments). We furthermore trace future empirical implementation of the approach. We finally discuss novel research opportunities and clinical interventions aimed toward developing low-cost/high-benefit integrative and personalized bio-psycho-socio-environmental treatments for mental health and including the brain-gut-microbiome axis.
Collapse
Affiliation(s)
- Ismael Palacios-García
- Centro de Estudios en Neurociencia Humana y Neuropsicología. Facultad de Psicología, Universidad Diego Portales, Santiago, Chile.,Laboratorio de Psicofisiología, Escuela de Psicología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gwynne A Mhuireach
- Biology and the Built Environment Center, University of Oregon, Oregon, USA
| | - Aitana Grasso-Cladera
- Centro de Estudios en Neurociencia Humana y Neuropsicología. Facultad de Psicología, Universidad Diego Portales, Santiago, Chile
| | - John F Cryan
- Department of Anatomy & Neuroscience, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Francisco J Parada
- Centro de Estudios en Neurociencia Humana y Neuropsicología. Facultad de Psicología, Universidad Diego Portales, Santiago, Chile
| |
Collapse
|
41
|
Davis GE, Davis MJ, Lowell WE. The effect of ultraviolet radiation on the incidence and severity of major mental illness using birth month, birth year, and sunspot data. Heliyon 2022; 8:e09197. [PMID: 35368522 PMCID: PMC8969152 DOI: 10.1016/j.heliyon.2022.e09197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/06/2021] [Accepted: 03/22/2022] [Indexed: 11/16/2022] Open
Abstract
Background and objectives The evaluation of the severity of patients afflicted with major mental illness (MMI) has been problematic because of confounding variables and genetic variability. There have been multiple studies that suggest several human diseases, especially schizophrenia, are predisposed to be born in certain months or seasons. This observation implied an epigenetic effect of sunlight, likely ultraviolet radiation (UVR), which is damaging to DNA, especially in an embryo. This paper outlines a method to evaluate the severity of schizophrenia (SZ), bipolar disorder (BPD), and schizoaffective disorder (SZ-AFF) using the month/year of birth of those affected compared to the month/year of birth of the general population (GP). Relevance Our previous research found that more intense UVR (equal to or greater than 90 sunspot number (SSN)) had a negative effect on the average human lifespan. Also, human birth rates vary in frequency by month of birth reflecting variables like availability of food, sunlight, and other unknown epigenetic factors. We wanted to see if the patient month of birth varied from the average birth months of the general population and if UVR has an epigenetic effect promoting these diseases. Methods We obtained the month and year of birth of 1,233 patients admitted over a 15-year period to Maine's largest state psychiatric hospital and counted the months of birth for each diagnosis of SZ, BPD, and SZ-AFF, and compared these results to the general population's birth months of 4,265,555 persons from U. S. Census Year 2006. The number of patients in each month was normalized to August and compared with the normalized birth months of the general population (GP). Plots of the normalized months were considered rates of change (e.g., derivatives) and their respective integrals gave domains of each mental illness relative to the GP. Normalizing the GP to unity was then related to the factor 1.28, e.g., 28% more entropy, deduced from the Sun's fractal dimension imprinted on biological organisms. Results The percent of patients meeting our criterion for severity: SZ = 27%; BPD = 26%; SZ-AFF = 100%. Conclusions High UVR intensity or a rapid increase in UVR in early gestation are likely epigenetic triggers of major mental illness. BPD is more epigenetically affected than SZ or SZ-AFF disorders. We found that 52% of 1,233 patients comprised the core function of a tertiary-care psychiatric hospital. Also, mental illness exacerbated when the median SSN doubled. This work also validates the Kraeplinian dichotomy. What is new in this research This paper offers a new paradigm for evaluating the severity of MMI and supports significant epigenetic effects from UVR.
Collapse
Affiliation(s)
- George E Davis
- Riverview Psychiatric Center, 250 Arsenal Street, State House Station #11, Augusta, Maine, 04333-0011, USA
| | - Matthew J Davis
- Riverview Psychiatric Center, 250 Arsenal Street, State House Station #11, Augusta, Maine, 04333-0011, USA
| | - Walter E Lowell
- Riverview Psychiatric Center, 250 Arsenal Street, State House Station #11, Augusta, Maine, 04333-0011, USA
| |
Collapse
|
42
|
Lai J, Li A, Jiang J, Yuan X, Zhang P, Xi C, Wu L, Wang Z, Chen J, Lu J, Lu S, Mou T, Zhou H, Wang D, Huang M, Dong F, Li MD, Xu Y, Song X, Hu S. Metagenomic analysis reveals gut bacterial signatures for diagnosis and treatment outcome prediction in bipolar depression. Psychiatry Res 2022; 307:114326. [PMID: 34896845 DOI: 10.1016/j.psychres.2021.114326] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 11/28/2021] [Accepted: 12/03/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND We aimed to characterize gut microbial alterations in depressed patients with bipolar disorder (BD) following quetiapine monotherapy and explored its potential for disease diagnosis and outcome prediction. METHODS Fecal samples were obtained from 60 healthy individuals and 62 patients in acute depressive episodes. All patients received one-month quetiapine treatment after enrollment. The structure of gut microbiota was measured with metagenomic sequencing, and its correlation with clinical profiles and brain function as indicated by resting-state functional magnetic resonance imaging was analyzed. Random forest models based on bacterial species were constructed to distinguish patients from controls, and responders from non-responders, respectively. RESULTS BD patients displayed specific alterations in gut microbial diversity and composition. Quetiapine treatment increased the diversity of microbial communities and changed the composition. The abundance of Clostridium bartlettii was negatively associated with age, baseline depression severity, while positively associated with spontaneous neural oscillation in the hippocampus. Tree-based classification models for (1) patients and controls and (2) responders and non-responders showed an area under the curve of 0.733 and 0.800, respectively. CONCLUSION Our findings add new evidence to the existing literature regarding gut dysbiosis in BD and reveal the potential of microbe-based biomarkers for disease diagnosis and treatment outcome prediction.
Collapse
Affiliation(s)
- Jianbo Lai
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou 310003, China; Brain Research Institute of Zhejiang University, Hangzhou 310003, China
| | - Ang Li
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jiajun Jiang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xiuxia Yuan
- Department of Psychiatry, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Peifen Zhang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Caixi Xi
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Lingling Wu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Zheng Wang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou 310003, China; Brain Research Institute of Zhejiang University, Hangzhou 310003, China
| | - Jingkai Chen
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou 310003, China; Brain Research Institute of Zhejiang University, Hangzhou 310003, China
| | - Jing Lu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou 310003, China; Brain Research Institute of Zhejiang University, Hangzhou 310003, China
| | - Shaojia Lu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou 310003, China; Brain Research Institute of Zhejiang University, Hangzhou 310003, China
| | - Tingting Mou
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou 310003, China; Brain Research Institute of Zhejiang University, Hangzhou 310003, China
| | - Hetong Zhou
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou 310003, China; Brain Research Institute of Zhejiang University, Hangzhou 310003, China
| | - Dandan Wang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou 310003, China; Brain Research Institute of Zhejiang University, Hangzhou 310003, China
| | - Manli Huang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou 310003, China; Brain Research Institute of Zhejiang University, Hangzhou 310003, China
| | - Fengqin Dong
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ming D Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yi Xu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou 310003, China; Brain Research Institute of Zhejiang University, Hangzhou 310003, China
| | - Xueqin Song
- Department of Psychiatry, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Shaohua Hu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou 310003, China; Brain Research Institute of Zhejiang University, Hangzhou 310003, China; The MOE Frontier Science Center for Brain Science & Brain-machine Integration, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
43
|
Plassmann H, Schelski DS, Simon M, Koban L. How we decide what to eat: Toward an interdisciplinary model of gut-brain interactions. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2022; 13:e1562. [PMID: 33977675 PMCID: PMC9286667 DOI: 10.1002/wcs.1562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 11/12/2022]
Abstract
Everyday dietary decisions have important short-term and long-term consequences for health and well-being. How do we decide what to eat, and what physiological and neurobiological systems are involved in those decisions? Here, we integrate findings from thus-far separate literatures: (a) the cognitive neuroscience of dietary decision-making, and (b) growing evidence of gut-brain interactions and especially influences of the gut microbiome on diet and health outcomes. We review findings that suggest that dietary decisions and food consumption influence nutrient sensing, homeostatic signaling in the gut, and the composition of the gut microbiome. In turn, the microbiome can influence host health and behavior. Through reward signaling pathways, the microbiome could potentially affect food and drink decisions. Such bidirectional links between gut microbiome and the brain systems underlying dietary decision-making may lead to self-reinforcing feedback loops that determine long-term dietary patterns, body mass, and health outcomes. This article is categorized under: Economics > Individual Decision-Making Psychology > Brain Function and Dysfunction Psychology > Reasoning and Decision Making.
Collapse
Affiliation(s)
- Hilke Plassmann
- Marketing AreaINSEADFontainebleauFrance
- Paris Brain Institute (ICM)INSERM U 1127, CNRS UMR 7225, Sorbonne UniversitéParisFrance
| | - Daniela Stephanie Schelski
- Center for Economics and NeuroscienceUniversity of BonnBonnGermany
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical CenterBonnGermany
| | - Marie‐Christine Simon
- Institute of Nutrition and Food Science (IEL), Nutrition and Microbiota, University of BonnBonnGermany
| | - Leonie Koban
- Marketing AreaINSEADFontainebleauFrance
- Paris Brain Institute (ICM)INSERM U 1127, CNRS UMR 7225, Sorbonne UniversitéParisFrance
| |
Collapse
|
44
|
Laue HE, Coker MO, Madan JC. The Developing Microbiome From Birth to 3 Years: The Gut-Brain Axis and Neurodevelopmental Outcomes. Front Pediatr 2022; 10:815885. [PMID: 35321011 PMCID: PMC8936143 DOI: 10.3389/fped.2022.815885] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/10/2022] [Indexed: 12/18/2022] Open
Abstract
The volume and breadth of research on the role of the microbiome in neurodevelopmental and neuropsychiatric disorders has expanded greatly over the last decade, opening doors to new models of mechanisms of the gut-brain axis and therapeutic interventions to reduce the burden of these outcomes. Studies have highlighted the window of birth to 3 years as an especially sensitive window when interventions may be the most effective. Harnessing the powerful gut-brain axis during this critical developmental window clarifies important investigations into the microbe-human connection and the developing brain, affording opportunities to prevent rather than treat neurodevelopmental disorders and neuropsychiatric illness. In this review, we present an overview of the developing intestinal microbiome in the critical window of birth to age 3; and its prospective relationship with neurodevelopment, with particular emphasis on immunological mechanisms. Next, the role of the microbiome in neurobehavioral outcomes (such as autism, anxiety, and attention-deficit hyperactivity disorder) as well as cognitive development are described. In these sections, we highlight the importance of pairing mechanistic studies in murine models with large scale epidemiological studies that aim to clarify the typical health promoting microbiome in early life across varied populations in comparison to dysbiosis. The microbiome is an important focus in human studies because it is so readily alterable with simple interventions, and we briefly outline what is known about microbiome targeted interventions in neurodevelopmental outcomes. More novel examinations of known environmental chemicals that adversely impact neurodevelopmental outcomes and the potential role of the microbiome as a mediator or modifier are discussed. Finally, we look to the future and emphasize the need for additional research to identify populations that are sensitive to alterations in their gut microbiome and clarify how interventions might correct and optimize neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Hannah E Laue
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Modupe O Coker
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States.,Rutgers School of Dental Medicine, The State University of New Jersey, Newark, NJ, United States
| | - Juliette C Madan
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States.,Department of Pediatrics and Psychiatry, Children's Hospital at Dartmouth, Lebanon, NH, United States
| |
Collapse
|
45
|
The Role of the Gut Microbiota in the Development and Progression of Major Depressive and Bipolar Disorder. Nutrients 2021; 14:nu14010037. [PMID: 35010912 PMCID: PMC8746924 DOI: 10.3390/nu14010037] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023] Open
Abstract
A growing number of studies in rodents indicate a connection between the intestinal microbiota and the brain, but comprehensive human data is scarce. Here, we systematically reviewed human studies examining the connection between the intestinal microbiota and major depressive and bipolar disorder. In this review we discuss various changes in bacterial abundance, particularly on low taxonomic levels, in terms of a connection with the pathophysiology of major depressive and bipolar disorder, their use as a diagnostic and treatment response parameter, their health-promoting potential, as well as novel adjunctive treatment options. The diversity of the intestinal microbiota is mostly decreased in depressed subjects. A consistent elevation of phylum Actinobacteria, family Bifidobacteriaceae, and genus Bacteroides, and a reduction of family Ruminococcaceae, genus Faecalibacterium, and genus Roseburia was reported. Probiotics containing Bifidobacterium and/or Lactobacillus spp. seemed to improve depressive symptoms, and novel approaches with different probiotics and synbiotics showed promising results. Comparing twin studies, we report here that already with an elevated risk of developing depression, microbial changes towards a “depression-like” microbiota were found. Overall, these findings highlight the importance of the microbiota and the necessity for a better understanding of its changes contributing to depressive symptoms, potentially leading to new approaches to alleviate depressive symptoms via alterations of the gut microbiota.
Collapse
|
46
|
Thompson DS, Fowler JC, Bradshaw MR, Frueh BC, Weinstein BL, Petrosino J, Hadden JK, Madan A. Is the gut microbiota associated with suicidality? Non-significant finding among a large cohort of psychiatrically hospitalized individuals with serious mental illness. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2021. [DOI: 10.1016/j.jadr.2021.100266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
47
|
The impact of the Th17:Treg axis on the IgA-Biome across the glycemic spectrum. PLoS One 2021; 16:e0258812. [PMID: 34669745 PMCID: PMC8528330 DOI: 10.1371/journal.pone.0258812] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/05/2021] [Indexed: 11/24/2022] Open
Abstract
Secretory IgA (SIgA) is released into mucosal surfaces where its function extends beyond that of host defense to include the shaping of resident microbial communities by mediating exclusion/inclusion of respective microbes and regulating bacterial gene expression. In this capacity, SIgA acts as the fulcrum on which host immunity and the health of the microbiota are balanced. We recently completed an analysis of the gut and salivary IgA-Biomes (16S rDNA sequencing of SIgA-coated/uncoated bacteria) in Mexican-American adults that identified IgA-Biome differences across the glycemic spectrum. As Th17:Treg ratio imbalances are associated with gut microbiome dysbiosis and chronic inflammatory conditions such as type 2 diabetes, the present study extends our prior work by examining the impact of Th17:Treg ratios (pro-inflammatory:anti-inflammatory T-cell ratios) and the SIgA response (Th17:Treg-SIgA axis) in shaping microbial communities. Examining the impact of Th17:Treg ratios (determined by epigenetic qPCR lymphocyte subset quantification) on the IgA-Biome across diabetes phenotypes identified a proportional relationship between Th17:Treg ratios and alpha diversity in the stool IgA-Biome of those with dysglycemia, significant changes in community composition of the stool and salivary microbiomes across glycemic profiles, and genera preferentially abundant by T-cell inflammatory phenotype. This is the first study to associate epigenetically quantified Th17:Treg ratios with both the larger and SIgA-fractionated microbiome, assess these associations in the context of a chronic inflammatory disease, and offers a novel frame through which to evaluate mucosal microbiomes in the context of host responses and inflammation.
Collapse
|
48
|
Hofmeister M, Clement F, Patten S, Li J, Dowsett LE, Farkas B, Mastikhina L, Egunsola O, Diaz R, Cooke NCA, Taylor VH. The effect of interventions targeting gut microbiota on depressive symptoms: a systematic review and meta-analysis. CMAJ Open 2021; 9:E1195-E1204. [PMID: 34933877 PMCID: PMC8695538 DOI: 10.9778/cmajo.20200283] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Despite their popularity, the efficacy of interventions targeting gut microbiota to improve depressive symptoms is unknown. Our objective is to summarize the effect of microbiome-targeting interventions on depressive symptoms. METHODS We conducted a systematic review and meta-analysis. We searched MEDLINE, Embase, PsycINFO, Database of Abstracts of Reviews of Effects, Cochrane Database of Systematic Reviews and the Cochrane Controlled Register of Trials from inception to Mar. 5, 2021. We included studies that evaluated probiotic, prebiotic, synbiotic, paraprobiotic or fecal microbiota transplant interventions in an adult population (age ≥ 18 yr) with an inactive or placebo comparator (defined by the absence of active intervention). Studies must have measured depressive symptoms with a validated scale, and used a randomized controlled trial study design. We conducted a random effects meta-analysis of change scores, using standardized mean difference as the measure of effect. RESULTS Sixty-two studies formed the final data set, with 50 included in the meta-analysis. Probiotic, prebiotic, and synbiotic interventions on depressive symptoms showed statistically significant benefits. In the single studies evaluating each of fecal microbiota transplant and paraprobiotic interventions, neither showed a statistically significant benefit. INTERPRETATION Despite promising findings of benefit of probiotic, prebiotic and synbiotic interventions for depressive symptoms in study populations, there is not yet strong enough evidence to favour inclusion of these interventions in treatment guidelines for depression. Critical questions about species administered, dosage and timing relative to other antidepressant medications remain to be answered. STUDY REGISTRATION PROSPERO no. 143178.
Collapse
Affiliation(s)
- Mark Hofmeister
- Department of Community Health Sciences (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and O'Brien Institute for Public Health (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and Departments of Psychiatry (Patten, Taylor) and Biochemistry and Molecular Biology (Cooke), Teaching Research and Wellness Building, University of Calgary, Calgary, Alta
| | - Fiona Clement
- Department of Community Health Sciences (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and O'Brien Institute for Public Health (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and Departments of Psychiatry (Patten, Taylor) and Biochemistry and Molecular Biology (Cooke), Teaching Research and Wellness Building, University of Calgary, Calgary, Alta
| | - Scott Patten
- Department of Community Health Sciences (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and O'Brien Institute for Public Health (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and Departments of Psychiatry (Patten, Taylor) and Biochemistry and Molecular Biology (Cooke), Teaching Research and Wellness Building, University of Calgary, Calgary, Alta
| | - Joyce Li
- Department of Community Health Sciences (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and O'Brien Institute for Public Health (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and Departments of Psychiatry (Patten, Taylor) and Biochemistry and Molecular Biology (Cooke), Teaching Research and Wellness Building, University of Calgary, Calgary, Alta
| | - Laura E Dowsett
- Department of Community Health Sciences (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and O'Brien Institute for Public Health (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and Departments of Psychiatry (Patten, Taylor) and Biochemistry and Molecular Biology (Cooke), Teaching Research and Wellness Building, University of Calgary, Calgary, Alta
| | - Brenlea Farkas
- Department of Community Health Sciences (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and O'Brien Institute for Public Health (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and Departments of Psychiatry (Patten, Taylor) and Biochemistry and Molecular Biology (Cooke), Teaching Research and Wellness Building, University of Calgary, Calgary, Alta
| | - Liza Mastikhina
- Department of Community Health Sciences (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and O'Brien Institute for Public Health (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and Departments of Psychiatry (Patten, Taylor) and Biochemistry and Molecular Biology (Cooke), Teaching Research and Wellness Building, University of Calgary, Calgary, Alta
| | - Oluwaseun Egunsola
- Department of Community Health Sciences (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and O'Brien Institute for Public Health (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and Departments of Psychiatry (Patten, Taylor) and Biochemistry and Molecular Biology (Cooke), Teaching Research and Wellness Building, University of Calgary, Calgary, Alta
| | - Ruth Diaz
- Department of Community Health Sciences (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and O'Brien Institute for Public Health (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and Departments of Psychiatry (Patten, Taylor) and Biochemistry and Molecular Biology (Cooke), Teaching Research and Wellness Building, University of Calgary, Calgary, Alta
| | - Noah C A Cooke
- Department of Community Health Sciences (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and O'Brien Institute for Public Health (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and Departments of Psychiatry (Patten, Taylor) and Biochemistry and Molecular Biology (Cooke), Teaching Research and Wellness Building, University of Calgary, Calgary, Alta
| | - Valerie H Taylor
- Department of Community Health Sciences (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and O'Brien Institute for Public Health (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and Departments of Psychiatry (Patten, Taylor) and Biochemistry and Molecular Biology (Cooke), Teaching Research and Wellness Building, University of Calgary, Calgary, Alta.
| |
Collapse
|
49
|
The role of microbiota-gut-brain axis in neuropsychiatric and neurological disorders. Pharmacol Res 2021; 172:105840. [PMID: 34450312 DOI: 10.1016/j.phrs.2021.105840] [Citation(s) in RCA: 362] [Impact Index Per Article: 90.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/14/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022]
Abstract
Emerging evidence indicates that the gut microbiota play a crucial role in the bidirectional communication between the gut and the brain suggesting that the gut microbes may shape neural development, modulate neurotransmission and affect behavior, and thereby contribute to the pathogenesis and/or progression of many neurodevelopmental, neuropsychiatric, and neurological conditions. This review summarizes recent data on the role of microbiota-gut-brain axis in the pathophysiology of neuropsychiatric and neurological disorders including depression, anxiety, schizophrenia, autism spectrum disorders, Parkinson's disease, migraine, and epilepsy. Also, the involvement of microbiota in gut disorders co-existing with neuropsychiatric conditions is highlighted. We discuss data from both in vivo preclinical experiments and clinical reports including: (1) studies in germ-free animals, (2) studies exploring the gut microbiota composition in animal models of diseases or in humans, (3) studies evaluating the effects of probiotic, prebiotic or antibiotic treatment as well as (4) the effects of fecal microbiota transplantation.
Collapse
|
50
|
Spichak S, Bastiaanssen TFS, Berding K, Vlckova K, Clarke G, Dinan TG, Cryan JF. Mining microbes for mental health: Determining the role of microbial metabolic pathways in human brain health and disease. Neurosci Biobehav Rev 2021; 125:698-761. [PMID: 33675857 DOI: 10.1016/j.neubiorev.2021.02.044] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022]
Abstract
There is increasing knowledge regarding the role of the microbiome in modulating the brain and behaviour. Indeed, the actions of microbial metabolites are key for appropriate gut-brain communication in humans. Among these metabolites, short-chain fatty acids, tryptophan, and bile acid metabolites/pathways show strong preclinical evidence for involvement in various aspects of brain function and behaviour. With the identification of neuroactive gut-brain modules, new predictive tools can be applied to existing datasets. We identified 278 studies relating to the human microbiota-gut-brain axis which included sequencing data. This spanned across psychiatric and neurological disorders with a small number also focused on normal behavioural development. With a consistent bioinformatics pipeline, thirty-five of these datasets were reanalysed from publicly available raw sequencing files and the remainder summarised and collated. Among the reanalysed studies, we uncovered evidence of disease-related alterations in microbial metabolic pathways in Alzheimer's Disease, schizophrenia, anxiety and depression. Amongst studies that could not be reanalysed, many sequencing and technical limitations hindered the discovery of specific biomarkers of microbes or metabolites conserved across studies. Future studies are warranted to confirm our findings. We also propose guidelines for future human microbiome analysis to increase reproducibility and consistency within the field.
Collapse
Affiliation(s)
- Simon Spichak
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Thomaz F S Bastiaanssen
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Kirsten Berding
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Klara Vlckova
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Institute, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Institute, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland.
| |
Collapse
|