1
|
Butler MI, Kittel-Schneider S, Wagner-Skacel J, Mörkl S, Clarke G. The Gut Microbiome in Anxiety Disorders. Curr Psychiatry Rep 2025; 27:347-361. [PMID: 40221592 PMCID: PMC12003441 DOI: 10.1007/s11920-025-01604-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/07/2025] [Indexed: 04/14/2025]
Abstract
PURPOSE OF REVIEW We aim to update readers on the latest evidence regarding the role of the gut microbiome in generalized anxiety disorder (GAD), panic disorder (PD), agoraphobia, and social anxiety disorder (SAD). This review summarises the literature on microbiome composition and function in these conditions, provides insights about causality and mechanisms and evaluates current evidence for microbiome-based interventions in anxiety disorders. RECENT FINDINGS Most studies exploring the microbiome in anxiety disorders are small, cross-sectional studies. Nevertheless, some consistent findings emerge. Bacterial taxa such as Eubacterium, Coprococcus and Faecalibacterium may be depleted in GAD. Studies in PD and SAD are scarce and, to our knowledge, there have been no studies conducted in agoraphobia. Probiotics may help reduce anxiety symptoms, although the majority of studies have been in non-clinical cohorts. Large, prospective studies are required to further elucidate the role of the microbiome-gut-brain axis in anxiety disorders. Microbiome-based interventions hold promise, but randomised controlled trials in clinical populations with relevant diagnoses are now warranted and urgently required.
Collapse
Affiliation(s)
- Mary I Butler
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland.
| | - Sarah Kittel-Schneider
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital of Würzburg, Würzburg, Germany
| | - Jolana Wagner-Skacel
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Sabrina Mörkl
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
2
|
Pan H, Bi J, Hu H, Huang Y, Li A, Zhang H, Wan Y, Zhan K, Wang K, Zhao Z, Bai X. Chinese herbal medicine improves antioxidant capacity of chicken liver at high stocking density involved gut-liver microbiota axis based on multi-omics technologies. Poult Sci 2025; 104:105015. [PMID: 40106906 PMCID: PMC11964641 DOI: 10.1016/j.psj.2025.105015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/01/2025] [Accepted: 03/10/2025] [Indexed: 03/22/2025] Open
Abstract
Traditional Chinese Medicine (TCM), such as artemisinin, berberine and proanthocyanidin, has been considered an effective additive for broiler production. High density farming (HDF), which is the primary modern mode of chicken production, is associated with animal health problems. This work aimed to evaluate the effects of dietary TCMs (dihydroartemisinin, hydrochloride, and oligomeric proanthocyanidins) on improving the antioxidant capacity of chickens under HDF and their underlying mechanisms. A total of 360 Wuding chickens (134-day-old) were divided into five experimental groups: one normal stocking density (8 birds/m2, control group) and four high stocking density (16 birds/m2), with six replicates for each group. For four HDF groups, one group was fed the basal diet, and the other three groups were fed the basal diet supplemented with 80 mg/kg dihydroartemisinin, 600 mg/kg berberine hydrochloride, and 250 mg/kg grape oligomeric proanthocyanidins, respectively. HDF increased malondialadehyde level, but decreased superoxide dismutase, glutathione and glutathione peroxidase levels in the liver of broiler; however, dietary TCMs apparently alleviated this attenuation. Dietary TCMs significantly decreased the expression of genes involved in cholesterol synthesis in the liver and the levels of tripepides in the intestine of the HDF chickens. Meanwhile, dietary TCMs significantly altered the composition of the liver microbiome in the HDF chickens, expressing by reduced Pseudomonas but enriched Bradyrhizobium. The gut microbiota of the HDF chickens was also altered following dietary TCM administration, with a decreased abundance of Microbacter margulisiae and an increased abundance of acetate synthesis genes. Association analysis of the multi-omics results revealed negative correlations between liver cholesterol synthesis and antioxidant factors that could be regulated by gut microbiota-produced short-chain fatty acids. Furthermore, alleviating of oxidative stress by dietary TCMs also showed significant correlations with the liver microbiome, which could be mediated by tripeptides produced by the gut microbiota. These results indicated that dietary TCM is beneficial in improving antioxidant defenses in HDF chickens and interpreted the mechanisms of action of TCM from the perspective of modern science.
Collapse
Affiliation(s)
- Hongbin Pan
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, PR China
| | - Junlong Bi
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, PR China
| | - Hong Hu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, PR China
| | - Ying Huang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, PR China
| | - Anjian Li
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, PR China
| | - Hao Zhang
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing 100193, PR China
| | - Yi Wan
- Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, PR China
| | - Kai Zhan
- Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, PR China
| | - Kunping Wang
- College of Animal Science, Anhui Science and Technology University, Bengbu, 233000, PR China
| | - Zelong Zhao
- Shanghai BIOZERON Biotechnology Co., Ltd., Shanghai, 201800, PR China
| | - Xi Bai
- College of Animal Science, Anhui Science and Technology University, Bengbu, 233000, PR China.
| |
Collapse
|
3
|
Agarwal V, Chaudhary R, Gupta A. Probiotics as a Treatment of Chronic Stress Associated Abnormalities. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10553-y. [PMID: 40285929 DOI: 10.1007/s12602-025-10553-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
Chronic stress is a widespread problem that significantly affects both physical and mental health, leading to numerous complications such as mood disorders, cognitive impairments, gastrointestinal issues, and chronic diseases. The dysregulation of the hypothalamic pituitary adrenal (HPA) axis and the gut-brain axis underlies several stress related disorders, leading to systemic inflammation, neuroinflammation, dysbiosis, and impaired gut barrier integrity. This review emphasizes the growing significance of probiotics as a potential treatment strategy for addressing chronic stress. Probiotics are living bacteria that provide health benefits when consumed in sufficient quantities, acting via several processes including restoration of gut microbial composition, augmentation of gut barrier integrity, and synthesis bioactive compounds such as neurotransmitters and short-chain fatty acids. These effects lead to reduced systemic and neuroinflammation, enhanced neuroplasticity, and the regulation of stress responsive pathways, including the HPA axis. Moreover, probiotics enhance parasympathetic nervous system activity by modulating vagus signaling. Current review indicates the promise of probiotics in alleviating chronic stress; nonetheless, substantial gaps exist regarding strain specific benefits, appropriate doses, and long-term safety. It is essential to address these constraints by comprehensive, large scale clinical studies and tailored therapies. This review highlights the significance of probiotics as a natural, non-invasive approach to chronic stress management, providing an innovative solution for the worldwide issue of stress related health problems.
Collapse
Affiliation(s)
- Vipul Agarwal
- MIT College of Pharmacy, Ram Ganga Vihar Phase-II, Moradabad, 244001, U.P, India.
| | - Rishabh Chaudhary
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, 226 025, U.P, India
| | - Anugya Gupta
- Faculty of Medical and Paramedical Sciences, Madhyanchal Professional University, Bhopal, 462044, M.P, India.
| |
Collapse
|
4
|
Wu W, Li S, Ye Z. Targeting the gut microbiota-inflammation-brain axis as a potential therapeutic strategy for psychiatric disorders: A Mendelian randomization analysis. J Affect Disord 2025; 374:150-159. [PMID: 39809351 DOI: 10.1016/j.jad.2025.01.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
BACKGROUND Extensive research indicates a link between gut microbiota dysbiosis and psychiatric disorders. However, the causal relationships between gut microbiota and different types of psychiatric disorders, as well as whether inflammatory factors mediate these relationships, remain unclear. METHODS We utilized summary statistics from the largest genome-wide association studies to date for gut microbiota (n = 18,340 in MiBioGen consortium), circulating inflammatory factors (n = 8293 for 41 factors and n = 14,824 for 91 factors in GWAS catalog), and six major psychiatric disorders from the Psychiatric Genomics Consortium (PGC): attention deficit hyperactivity disorder (ADHD, n = 38,691), anxiety disorder (ANX, n = 2248), bipolar disorder (BIP, n = 41,917), anorexia nervosa (AN, n = 16,992), schizophrenia (SCZ, n = 36,989), and autism spectrum disorder (ASD, n = 18,381). We conducted bidirectional Mendelian randomization (MR) analysis to explore the causal relationships between gut microbiota and psychiatric disorders. Additionally, we performed two-step MR and multivariable MR (MVMR) analyses to identify potential mediating inflammatory factors. RESULTS We found significant causal relationships between 11 gut microbiota and ADHD, 2 gut microbiota and ANX, 11 gut microbiota and BIP, 8 gut microbiota and AN, 15 gut microbiota and SCZ, and 5 gut microbiota and ASD. There were 16 positive and 15 negative causal effects between inflammatory factors and psychiatric disorders. Furthermore, MVMR analysis results indicated that the correlation between genus Roseburia and ADHD was mediated by MCSF, with a mediation proportion of 3.3 %; the correlation between genus Erysipelotrichaceae UCG003 and BIP was mediated by GDNF, with a mediation proportion of 3.7 %; and the correlation between family Prevotellaceae and SCZ was mediated by CD40, with a mediation proportion of 8.2 %. CONCLUSIONS The MR analysis results supported causal relationships between gut microbiota and six psychiatric disorders, as well as the potential mediating role of inflammatory factors. This study highlights the potential role of the gut microbiota-inflammation-brain axis in psychiatric disorders.
Collapse
Affiliation(s)
- Wenjing Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian Province, China
| | - Shuhan Li
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Zengjie Ye
- School of Nursing, Guangzhou Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
5
|
Yu J, Park S, Jeong S, Ko A, Lee J, Han S, Park SM. Association of cholecystectomy with short-term and long-term risks of depression and suicide. Sci Rep 2025; 15:6557. [PMID: 39994212 PMCID: PMC11850815 DOI: 10.1038/s41598-025-87523-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 01/20/2025] [Indexed: 02/26/2025] Open
Abstract
In addition to the known link between cholecystectomy and depression, the risk of developing short-term and long-term depression after surgery and whether such mental health issues leads to suicide were not known. Therefore, this study aimed to address these questions. Using data from the National Health Insurance Service of Korea (2002-2019), we conducted a retrospective cohort study including 6,688 cholecystectomy patients matched with 66,880 individuals without a history of cholecystectomy for suicide analysis and 6,694 cholecystectomy patients matched with 66,940 individuals for depression analysis. The non-cholecystectomy group was matched at a 1:10 ratio for sex and age. The incidence of depression and suicide were followed from the day of cholecystectomy to December 31, 2019. Adjusted hazard ratios (aHRs) and 95% confidence intervals (CIs) were estimated using multivariable Cox proportional hazards regression. Short-term depression risk within three years of cholecystectomy was significantly elevated (aHR 1.38, 95% CI 1.19-1.59), while the long-term depression risk beyond three years was not significantly greater (aHR 1.09, 95% CI 0.98-1.22). Cholecystectomy was not associated with an increased risk of suicide in any period. These findings highlight the importance of monitoring and providing postoperative mental health support for patients at risk of short-term depression after cholecystectomy. However, no association was observed with long-term depression or suicide risk.
Collapse
Affiliation(s)
- Jiwon Yu
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea
- Department of Artificial Intelligence Convergence, Hallym University Graduate School, Chuncheon, South Korea
| | - Sangwoo Park
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea
| | - Seogsong Jeong
- Department of Biomedical Informatics, Korea University College of Medicine, Seoul, South Korea
| | - Ahryoung Ko
- Department of Family Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Jaewon Lee
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, USA
| | - Saemi Han
- Department of Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Sang Min Park
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea.
- Department of Family Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea.
- Department of Family Medicine and Biomedical Sciences, College of Medicine, Seoul National University, 101, Daehak-ro, Jongno-gu, Seoul, South Korea.
| |
Collapse
|
6
|
Lin S, Fu H, Wang H, Xu Y, Zhao Y, Du S, Wei J, Qiu P, Shi S, Li C, Efferth T, Hong C. Free and Easy Wanderer Ameliorates Intestinal Bloating-Dependent Avoidance Behavior of Caenorhabditis elegans Through Gut-Germline-Neural Signaling. CNS Neurosci Ther 2025; 31:e70291. [PMID: 40008431 PMCID: PMC11862825 DOI: 10.1111/cns.70291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/18/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
PURPOSE The aim of this study was to investigate the protective effect of Free and Easy Wanderer (FAEW) on the avoidance behavior induced by feeding Heat-Killed Escherichia coli, and to elucidate the underlying mechanisms. METHODS Initially, the effects of FAEW on avoidance behavior, survival, neuroendocrine signaling gene expression, and intestinal bloating were examined. The impact of FAEW on gut-germline-neural signaling was assessed by monitoring H4K8ac expression and the avoidance behavior of par-5 RNAi animals and glp-1(e2141) mutants. RNA-sequencing was conducted to analyze potential signaling pathways. Finally, avoidance behavior was examined using daf-16(mu86) mutants and the rescued animals. RESULTS FAEW delayed avoidance behavior. FAEW significantly downregulated gene expression in the neuroendocrine signaling pathway and alleviated intestinal bloating of C. elegans. The levels of H4K8ac and par-5 in the germline decreased significantly with FAEW's treatment, and FAEW failed to affect the avoidance behavior of par-5 RNAi animals and glp-1(e2141) mutants. FAEW's effect on avoidance behavior diminished in daf-16(mu86) mutants but was restored in daf-16 rescued animals. FAEW has been observed to restore daf-16 levels. CONCLUSION FAEW protects against avoidance behavior of C. elegans through downregulating H4K8ac protein expression and activating DAF-16. This study provides crucial experimental evidence supporting FAEW as a promising candidate for protecting against avoidance behavior associated with PTSD.
Collapse
Affiliation(s)
- Siyi Lin
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Huangjie Fu
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Hanxiao Wang
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Yingying Xu
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Yu Zhao
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Shiyu Du
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Jiale Wei
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Ping Qiu
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Senlin Shi
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Changyu Li
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical SciencesJohannes Gutenberg UniversityMainzGermany
| | - Chunlan Hong
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| |
Collapse
|
7
|
Lim HX, Khalid K, Abdullah ADI, Lee LH, Raja Ali RA. Subphenotypes of Long COVID and the clinical applications of probiotics. Biomed Pharmacother 2025; 183:117855. [PMID: 39862702 DOI: 10.1016/j.biopha.2025.117855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/25/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
As the number of infections and deaths attributable to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection continues to rise, it is now becoming apparent that the health impacts of the Coronavirus disease (COVID-19) may not be limited to infection and the subsequent resolution of symptoms. Reports have shown that patients with SARS-CoV-2 infection may experience multiple symptoms across different organ systems that are associated with adverse health outcomes and develop new cardiac, renal, respiratory, musculoskeletal, and nervous conditions, a condition known as Long COVID or the post-acute sequelae of COVID-19 (PASC). This review provides insights into distinct subphenotypes of Long COVID and identifies microbiota dysbiosis as a common theme and crucial target for future therapies. Another important finding is that Long COVID is associated with prolonged and increased inflammation, potentially attributable to immune system dysfunction. A promising solution lies in the potential of probiotics to mitigate Long COVID symptoms by restoring gut microbiota balance and modulating the immune response. By evaluating the current clinical development landscape of the use of probiotics to treat Long COVID symptoms, this paper provides recommendations for future research by stressing the need to understand the modulation of bacterium strains followed by probiotic therapy to understand the association of microbiota dysbiosis with Long COVID symptoms. This will facilitate the development of effective probiotic formulations that could serve as reliable therapies against Long COVID.
Collapse
Affiliation(s)
- Hui Xuan Lim
- Sunway Microbiome Centre, School of Medical and Life Sciences, Sunway University, Petaling Jaya, Selangor 47500, Malaysia.
| | - Kanwal Khalid
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Petaling Jaya, Selangor 47500, Malaysia.
| | | | - Learn-Han Lee
- Microbiome Research Group, Research Centre for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute (CBI), University of Nottingham, Ningbo 315000, China
| | - Raja Affendi Raja Ali
- School of Medical and Life Sciences, Sunway University, Petaling Jaya, Selangor 47500, Malaysia.
| |
Collapse
|
8
|
Iqbal NT, Khan H, Khalid A, Mahmood SF, Nasir N, Khanum I, de Siqueira I, Van Voorhis W. Chronic inflammation in post-acute sequelae of COVID-19 modulates gut microbiome: a review of literature on COVID-19 sequelae and gut dysbiosis. Mol Med 2025; 31:22. [PMID: 39849406 PMCID: PMC11756069 DOI: 10.1186/s10020-024-00986-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/01/2024] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Long COVID or Post-acute sequelae of COVID-19 is an emerging syndrome, recognized in COVID-19 patients who suffer from mild to severe illness and do not recover completely. Most studies define Long COVID, through symptoms like fatigue, brain fog, joint pain, and headache prevailing four or more weeks post-initial infection. Global variations in Long COVID presentation and symptoms make it challenging to standardize features of Long COVID. Long COVID appears to be accompanied by an auto-immune multi-faceted syndrome where the virus or viral antigen persistence causes continuous stimulation of the immune response, resulting in multi-organ immune dysregulation. MAIN TEXT This review is focused on understanding the risk factors of Long COVID with a special emphasis on the dysregulation of the gut-brain axis. Two proposed mechanisms are discussed here. The first mechanism is related to the dysfunction of angiotensin-converting enzyme 2 receptor due to Severe Acute Respiratory Syndrome Corona Virus 2 infection, leading to impaired mTOR pathway activation, reduced AMP secretion, and causing dysbiotic changes in the gut. Secondly, gut-brain axis dysregulation accompanied by decreased production of short-chain fatty acids, impaired enteroendocrine cell function, and increased leakiness of the gut, which favors translocation of pathogens or lipopolysaccharide in circulation causing the release of pro-inflammatory cytokines. The altered Hypothalamic-Pituitary-Adrenal axis is accompanied by the reduced level of neurotransmitter, and decreased stimulation of the vagus nerve, which may cause neuroinflammation and dysregulation of serum cortisol levels. The dysbiotic microbiome in Long COVID patients is characterized by a decrease in beneficial short chain fatty acid-producing bacteria (Faecalibacterium, Ruminococcus, Dorea, and Bifidobacterium) and an increase in opportunistic bacteria (Corynebacterium, Streptococcus, Enterococcus). This dysbiosis is transient and may be impacted by interventions including probiotics, and dietary supplements. CONCLUSIONS Further studies are required to understand the geographic variation, racial and ethnic differences in phenotypes of Long COVID, the influence of viral strains on existing and emerging phenotypes, to explore long-term effects of gut dysbiosis, and gut-brain axis dysregulation, as well as the potential role of diet and probiotics in alleviating those symptoms.
Collapse
Affiliation(s)
- Najeeha Talat Iqbal
- Department of Biological and Biomedical Sciences, Department of Pediatrics and Child Health, Aga Khan University, Stadium Road, P. O Box 3500, Karachi, 74800, Pakistan.
- Department of Pediatrics & Child Health, Aga Khan University, Karachi, Pakistan.
| | - Hana Khan
- Undergraduate Medical Education (UGME), Year II, Aga Khan University, Karachi, Pakistan
| | - Aqsa Khalid
- Department of Pediatrics & Child Health, Aga Khan University, Karachi, Pakistan
| | | | - Nosheen Nasir
- Department of Medicine, Aga Khan University, Karachi, Pakistan
| | - Iffat Khanum
- Department of Medicine, Aga Khan University, Karachi, Pakistan
| | | | - Wes Van Voorhis
- Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, Seattle, USA
| |
Collapse
|
9
|
Leao L, Miri S, Hammami R. Gut feeling: Exploring the intertwined trilateral nexus of gut microbiota, sex hormones, and mental health. Front Neuroendocrinol 2025; 76:101173. [PMID: 39710079 DOI: 10.1016/j.yfrne.2024.101173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/25/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
The complex interplay between the gut microbiota, sex hormones, and mental health is emerging as a pivotal factor in understanding and managing psychiatric disorders. Beyond their traditional roles, sex hormones exert profound effects on various physiological systems including the gut microbiota. Fluctuations in sex hormone levels, notably during the menstrual cycle, influence gut physiology and barrier function, shaping gut microbiota composition and immune responses. Conversely, the gut microbiota actively modulates sex hormone levels via enzymatic processes. This bidirectional relationship underscores the significance of the gut-brain axis in maintaining mental well-being. This review explores the multifaceted interactions between sex hormones, the gut microbiota, and mental health outcomes. We highlight the potential of personalized interventions in treating psychiatric disorders, particularly in vulnerable populations such as premenopausal women and individuals with depressive disorders. By elucidating these complex interactions, we aim to provide insights for future research into targeted interventions, enhancing mental health outcomes.
Collapse
Affiliation(s)
- Luana Leao
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Saba Miri
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Riadh Hammami
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
10
|
Sugden SG, Merlo G. Using lifestyle interventions and the gut microbiota to improve PTSD symptoms. Front Neurosci 2024; 18:1488841. [PMID: 39691626 PMCID: PMC11649671 DOI: 10.3389/fnins.2024.1488841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/04/2024] [Indexed: 12/19/2024] Open
Abstract
Posttraumatic stress disorder is part of a spectrum of psychological symptoms that are frequently linked with a single defining traumatic experience. Symptoms can vary over the lifespan in intensity based on additional life stressors, individual stability, and connectedness to purpose. Historically, treatment has centered on psychotropic agents and individual and group therapy to increase the individual's window of tolerance, improve emotional dysregulation, and strengthen relationships. Unfortunately, there is a growing segment of individuals with posttraumatic stress disorder who do not respond to these traditional treatments, perhaps because they do not address the multidirectional relationships between chronic cortisol, changes in the brain gut microbiota system, neuroinflammation, and posttraumatic symptoms. We will review the literature and explain how trauma impacts the neuroendocrine and neuroimmunology within the brain, how these processes influence the brain gut microbiota system, and provide a mechanism for the development of posttraumatic stress disorder symptoms. Finally, we will show how the lifestyle psychiatry model provides symptom amelioration.
Collapse
Affiliation(s)
- Steven G. Sugden
- Department of Psychiatry, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Gia Merlo
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
11
|
Du J, Wang Z, Xing Y, Gao X, Lu Z, Li D, Tian J. Long-Read Sequencing Revealing the Effectiveness of Captive Breeding Strategy for Improving the Gut Microbiota of Spotted Seal (Phoca largha). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 27:9. [PMID: 39589560 DOI: 10.1007/s10126-024-10397-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024]
Abstract
The spotted seal (Phoca largha) is the sole pinniped species that can reproduce in China and has been classified as the First-Grade State Protection animal. The conventional method for the protection and maintenance of the spotted seal population is the captive maintenance of the species in artificially controlled environments. Nevertheless, the efficacy of the captive strategy remains uncertain, with the potential to impact the health of spotted seals through alterations in gut microbiota. In this study, PacBio sequencing based on the full-length of the bacterial 16S rRNA gene was applied to faeces from captive and wild spotted seals, thereby providing a first reference for the gut microbiota profile of spotted seals at the species scale. The gut microbiota of captive spotted seals was found to be more diverse than that of the wild population. The gut microbiota of spotted seals exhibited notable variation due to captive breeding, with an enrichment of Firmicutes and a reduction in Proteobacteria. The results of the co-occurrence network analysis indicated that the gut microbiota of captive spotted seals exhibited a greater degree of complexity and stability in comparison to that observed in their wild counterparts. The analysis of community assembly mechanisms revealed an increased determinism for the gut microbiota of captive individuals, with a concomitant decrease in the contribution of drift. Furthermore, the results of the predicted functions indicated a reduction in stress responses and an enhanced ability to metabolise sugars in the gut microbiota of captive spotted seals. In conclusion, the results of this study provide evidence that the current captive breeding strategy is an effective approach for improving the gut microbiota of spotted seals. Furthermore, this study demonstrates the potential of monitoring the gut microbiota to assess the health of marine mammals and inform conservation strategies for endangered species.
Collapse
Affiliation(s)
- Jing Du
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, Liaoning, China
| | - Zhen Wang
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, Liaoning, China
| | - Yankuo Xing
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, Liaoning, China
| | - Xianggang Gao
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, Liaoning, China
| | - Zhichuang Lu
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, Liaoning, China
| | - Duohui Li
- Dalian Modern Agricultural Production Development Service Center, Dalian, 116023, Liaoning, China
| | - Jiashen Tian
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, Liaoning, China.
| |
Collapse
|
12
|
Du J, Wang Z, Gao X, Xing Y, Lu Z, Li D, Sanganyado E, Tian J. Unstable pathogen profile in spotted seal (Phoca largha) gut microbiota and limited turnover with habitat microbiome. Int Microbiol 2024:10.1007/s10123-024-00615-6. [PMID: 39532804 DOI: 10.1007/s10123-024-00615-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
It is vital that we monitor the gut microbiota of sentinel species such as spotted seals (Phoca largha) and their association with habitat microbiomes, which can provide critical data for assessing the health of marine mammals and their potential ecological influences. In this study, PacBio technology was used to sequence the full-length bacterial 16S rRNA gene from the feces of captive and wild spotted seals, as well as samples from a wild population and their habitats. Based on the pathogen identification results, the gut microbiota of wild and captive spotted seals showed similar levels of pathogen richness and abundance. In particular, the pathogen profiles in wild spotted seals were more variable, with a high risk of disease in a minority of individuals. Meanwhile, the gut microbiota of spotted seals was significantly less diverse than their habitat microbiomes. Firmicutes and Proteobacteria dominated the gut microbiota of spotted seals and their habitat microbiomes, respectively. Furthermore, network analysis revealed that the gut microbiota of spotted seals was simple and weak. The ratios of microbial turnover between spotted seal gut microbiota and their habitat microbiomes were further analyzed using SourceTracker, and the estimated values were low (< 0.1%). These results provide baseline data on pathogen profiles in spotted seals and their potential interactions with habitat microbiomes.
Collapse
Affiliation(s)
- Jing Du
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, Liaoning, China
| | - Zhen Wang
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, Liaoning, China
| | - Xianggang Gao
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, Liaoning, China
| | - Yankuo Xing
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, Liaoning, China
| | - Zhichuang Lu
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, Liaoning, China
| | - Duohui Li
- Dalian Modern Agricultural Production Development Service Center, Dalian, 116023, Liaoning, China
| | - Edmond Sanganyado
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK
| | - Jiashen Tian
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, Liaoning, China.
| |
Collapse
|
13
|
Misera A, Marlicz W, Podkówka A, Łoniewski I, Skonieczna-Żydecka K. Possible application of Akkermansia muciniphila in stress management. MICROBIOME RESEARCH REPORTS 2024; 3:48. [PMID: 39741949 PMCID: PMC11684984 DOI: 10.20517/mrr.2023.81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 01/03/2025]
Abstract
Akkermansia muciniphila (A. muciniphila) is a promising candidate bacterium for stress management due to its beneficial effects on the microbiota-gut-brain axis (MGBA). As a well-known mucin-degrading bacterium in the digestive tract, A. muciniphila has demonstrated significant benefits for host physiology. Recent research highlights its potential in treating several neuropsychiatric disorders. Proposed mechanisms of action include the bacterium's outer membrane protein Amuc_1100 and potentially its extracellular vesicles (EVs), which interact with host immune receptors and influence serotonin pathways, which are crucial for emotional regulation. Despite its potential, the administration of probiotics containing A. muciniphila faces technological challenges, prompting the development of pasteurized forms recognized as safe by the European Food Safety Authority (EFSA). This review systematically examines the existing literature on the role of A. muciniphila in stress management, emphasizing the need for further research to validate its efficacy. The review follows a structured methodology, including comprehensive database searches and thematic data analysis, to provide a detailed understanding of the relationship between stress, microbiota, and A. muciniphila therapeutic potential.
Collapse
Affiliation(s)
- Agata Misera
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Szczecin 71-460, Poland
| | - Wojciech Marlicz
- Department of Gastroenterology, Pomeranian Medical University in Szczecin, Szczecin 71-252, Poland
| | - Albert Podkówka
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Szczecin 71-460, Poland
| | - Igor Łoniewski
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Szczecin 71-460, Poland
| | | |
Collapse
|
14
|
Kiełbik P, Witkowska-Piłaszewicz O. The Relationship between Canine Behavioral Disorders and Gut Microbiome and Future Therapeutic Perspectives. Animals (Basel) 2024; 14:2048. [PMID: 39061510 PMCID: PMC11273744 DOI: 10.3390/ani14142048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Canine behavioral disorders have become one of the most common concerns and challenging issues among dog owners. Thus, there is a great demand for knowledge about various factors affecting dogs' emotions and well-being. Among them, the gut-brain axis seems to be particularly interesting, especially since in many instances the standard treatment or behavioral therapies insufficiently improve animal behavior. Therefore, to face this challenge, the search for novel therapeutic methods is highly required. Existing data show that mammals' gut microbiome, immune system, and nervous system are in continuous communication and influence animal physiology and behavior. This review aimed to summarize and discuss the most important scientific evidence on the relationship between mental disorders and gut microbiota in dogs, simultaneously presenting comparable outcomes in humans and rodent models. A comprehensive overview of crucial mechanisms of the gut-brain axis is included. This refers especially to the neurotransmitters crucial for animal behavior, which are regulated by the gut microbiome, and to the main microbial metabolites-short-chain fatty acids (SCFAs). This review presents summarized data on gut dysbiosis in relation to the inflammation process within the organism, as well as the activation of the hypothalamic-pituitary-adrenal (HPA) axis. All of the above mechanisms are presented in this review in strict correlation with brain and/or behavioral changes in the animal. Additionally, according to human and laboratory animal studies, the gut microbiome appears to be altered in individuals with mental disorders; thus, various strategies to manipulate the gut microbiota are implemented. This refers also to the fecal microbiome transplantation (FMT) method, based on transferring the fecal matter from a donor into the gastrointestinal tract of a recipient in order to modulate the gut microbiota. In this review, the possible effects of the FMT procedure on animal behavioral disorders are discussed.
Collapse
Affiliation(s)
- Paula Kiełbik
- Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | | |
Collapse
|
15
|
Petakh P, Duve K, Oksenych V, Behzadi P, Kamyshnyi O. Molecular mechanisms and therapeutic possibilities of short-chain fatty acids in posttraumatic stress disorder patients: a mini-review. Front Neurosci 2024; 18:1394953. [PMID: 38887367 PMCID: PMC11182003 DOI: 10.3389/fnins.2024.1394953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
This mini-review explores the role of short-chain fatty acids (SCFAs) in posttraumatic stress disorder (PTSD). Highlighting the microbiota-gut-brain axis, this study investigated the bidirectional communication between the gut microbiome and mental health. SCFAs, byproducts of gut microbial fermentation, have been examined for their potential impact on PTSD, with a focus on molecular mechanisms and therapeutic interventions. This review discusses changes in SCFA levels and bacterial profiles in individuals with PTSD, emphasizing the need for further research. Promising outcomes from clinical trials using probiotics and fermented formulations suggest potential avenues for PTSD management. Future directions involve establishing comprehensive human cohorts, integrating multiomics data, and employing advanced computational methods, with the goal of deepening our understanding of the role of SCFAs in PTSD and exploring microbiota-targeted interventions.
Collapse
Affiliation(s)
- Pavlo Petakh
- Department of Biochemistry and Pharmacology, Uzhhorod National University, Uzhhorod, Ukraine
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Khrystyna Duve
- Department of Neurology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Payam Behzadi
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| |
Collapse
|
16
|
Svačina MKR, Gao T, Sprenger-Svačina A, Lin J, Ganesh BP, Lee J, McCullough LD, Sheikh KA, Zhang G. Rejuvenating fecal microbiota transplant enhances peripheral nerve repair in aged mice by modulating endoneurial inflammation. Exp Neurol 2024; 376:114774. [PMID: 38599367 DOI: 10.1016/j.expneurol.2024.114774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/28/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024]
Abstract
Peripheral nerve injury (PNI) resulting from trauma or neuropathies can cause significant disability, and its prognosis deteriorates with age. Emerging evidence suggests that gut dysbiosis and reduced fecal short-chain fatty acids (SCFAs) contribute to an age-related systemic hyperinflammation (inflammaging), which hinders nerve recovery after injury. This study thus aimed to evaluate the pro-regenerative effects of a rejuvenating fecal microbiota transplant (FMT) in a preclinical PNI model using aged mice. Aged C57BL/6 mice underwent bilateral crush injuries to their sciatic nerves. Subsequently, they either received FMT from young donors at three and four days after the injury or retained their aged gut microbiota. We analyzed gut microbiome composition and SCFA concentrations in fecal samples. The integrity of the ileac mucosal barrier was assessed by immunofluorescence staining of Claudin-1. Flow cytometry was utilized to examine immune cells and cytokine production in the ileum, spleen, and sciatic nerve. Various assessments, including behavioural tests, electrophysiological studies, and morphometrical analyses, were conducted to evaluate peripheral nerve function and repair following injury. Rejuvenating FMT reversed age-related gut dysbiosis by increasing Actinobacteria, especially Bifidobacteriales genera. This intervention also led to an elevation of gut SCFA levels and mitigated age-related ileac mucosal leakiness in aged recipients. Additionally, it augmented the number of T-helper 2 (Th2) and regulatory T (Treg) cells in the ileum and spleen, with the majority being positive for anti-inflammatory interleukin-10 (IL-10). In sciatic nerves, rejuvenating FMT resulted in increased M2 macrophage counts and a higher IL-10 production by IL-10+TNF-α- M2 macrophage subsets. Ultimately, restoring a youthful gut microbiome in aged mice led to improved nerve repair and enhanced functional recovery after PNI. Considering that FMT is already a clinically available technique, exploring novel translational strategies targeting the gut microbiome to enhance nerve repair in the elderly seems promising and warrants further evaluation.
Collapse
Affiliation(s)
- Martin K R Svačina
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA; Department of Neurology, Faculty of Medicine and University Hospital of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Tong Gao
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Alina Sprenger-Svačina
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA; Department of Neurology, Faculty of Medicine and University Hospital of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Jianxin Lin
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Bhanu P Ganesh
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Juneyoung Lee
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Louise D McCullough
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Kazim A Sheikh
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Gang Zhang
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA.
| |
Collapse
|
17
|
Brogna C, Montano L, Zanolin ME, Bisaccia DR, Ciammetti G, Viduto V, Fabrowski M, Baig AM, Gerlach J, Gennaro I, Bignardi E, Brogna B, Frongillo A, Cristoni S, Piscopo M. A retrospective cohort study on early antibiotic use in vaccinated and unvaccinated COVID-19 patients. J Med Virol 2024; 96:e29507. [PMID: 38504586 DOI: 10.1002/jmv.29507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/14/2024] [Accepted: 02/23/2024] [Indexed: 03/21/2024]
Abstract
The bacteriophage behavior of SARS-CoV-2 during the acute and post-COVID-19 phases appears to be an important factor in the development of the disease. The early use of antibiotics seems to be crucial to inhibit disease progression-to prevent viral replication in the gut microbiome, and control toxicological production from the human microbiome. To study the impact of specific antibiotics on recovery from COVID-19 and long COVID (LC) taking into account: vaccination status, comorbidities, SARS-CoV-2 wave, time of initiation of antibiotic therapy and concomitant use of corticosteroids and nonsteroidal anti-inflammatory drugs (NSAIDs). A total of 211 COVID-19 patients were included in the study: of which 59 were vaccinated with mRNA vaccines against SARS-CoV-2 while 152 were unvaccinated. Patients were enrolled in three waves: from September 2020 to October 2022, corresponding to the emergence of the pre-Delta, Delta, and Omicron variants of the SARS-CoV-2 virus. The three criteria for enrolling patients were: oropharyngeal swab positivity or fecal findings; moderate symptoms with antibiotic intake; and measurement of blood oxygen saturation during the period of illness. The use of antibiotic combinations, such as amoxicillin with clavulanic acid (875 + 125 mg tablets, every 12 h) plus rifaximin (400 mg tablets every 12 h), as first choice, as suggested from the previous data, or azithromycin (500 mg tablets every 24 h), plus rifaximin as above, allows healthcare professionals to focus on the gut microbiome and its implications in COVID-19 disease during patient care. The primary outcome measured in this study was the estimated average treatment effect, which quantified the difference in mean recovery between patients receiving antibiotics and those not receiving antibiotics at 3 and 9 days after the start of treatment. In the analysis, both vaccinated and unvaccinated groups had a median illness duration of 7 days (interquartile range [IQR] 6-9 days for each; recovery crude hazard ratio [HR] = 0.94, p = 0.700). The median illness duration for the pre-Delta and Delta waves was 8 days (IQR 7-10 days), while it was shorter, 6.5 days, for Omicron (IQR 6-8 days; recovery crude HR = 1.71, p < 0.001). These results were confirmed by multivariate analysis. Patients with comorbidities had a significantly longer disease duration: median 8 days (IQR 7-10 days) compared to 7 days (IQR 6-8 days) for those without comorbidities (crude HR = 0.75, p = 0.038), but this result was not confirmed in multivariate analysis as statistical significance was lost. Early initiation of antibiotic therapy resulted in a significantly shorter recovery time (crude HR = 4.74, p < 0.001). Concomitant use of NSAIDs did not reduce disease duration and in multivariate analysis prolonged the disease (p = 0.041). A subgroup of 42 patients receiving corticosteroids for a median of 3 days (IQR 3-6 days) had a longer recovery time (median 9 days, IQR 8-10 days) compared to others (median 7 days, IQR 6-8 days; crude HR = 0.542, p < 0.001), as confirmed also by the adjusted HR. In this study, a statistically significant reduction in recovery time was observed among patients who received early antibiotic treatment. Early initiation of antibiotics played a crucial role in maintaining higher levels of blood oxygen saturation. In addition, it is worth noting that a significant number of patients who received antibiotics in the first 3 days and for a duration of 7 days, during the acute phase did not develop LC.
Collapse
Affiliation(s)
- Carlo Brogna
- Craniomed Group Srl. Research Facility, Bresso, Italy
| | - Luigi Montano
- Andrology Unit and Service of Lifestyle Medicine in Uro-Andrology, Local Health Authority (ASL), Salerno, Italy
| | | | | | - Gianluca Ciammetti
- Otorhinolaryngology Unit, Hospital Ferdinando Veneziale Isernia, Regional Health Authority of Molise, Italy
| | | | - Mark Fabrowski
- Department of Emergency Medicine, Royal Sussex County Hospital, University Hospitals Sussex, Brighton, UK
| | - Abdul M Baig
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | | | - Iapicca Gennaro
- Pineta Grande Hospital Group, Department of Urology, Santa Rita Clinic, Atripalda, Italy
| | | | - Barbara Brogna
- Department of Radiology, Moscati Hospital, Avellino, Italy
| | | | | | - Marina Piscopo
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
18
|
He Q, Wang W, Xu D, Xiong Y, Tao C, You C, Ma L, Ma J. Potential causal association between gut microbiome and posttraumatic stress disorder. Transl Psychiatry 2024; 14:67. [PMID: 38296956 PMCID: PMC10831060 DOI: 10.1038/s41398-024-02765-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND The causal effects of gut microbiome and the development of posttraumatic stress disorder (PTSD) are still unknown. This study aimed to clarify their potential causal association using mendelian randomization (MR). METHODS The summary-level statistics for gut microbiome were retrieved from a genome-wide association study (GWAS) of the MiBioGen consortium. As to PTSD, the Freeze 2 datasets were originated from the Psychiatric Genomics Consortium Posttraumatic Stress Disorder Working Group (PGC-PTSD), and the replicated datasets were obtained from FinnGen consortium. Single nucleotide polymorphisms meeting MR assumptions were selected as instrumental variables. The inverse variance weighting (IVW) method was employed as the main approach, supplemented by sensitivity analyses to evaluate potential pleiotropy and heterogeneity and ensure the robustness of the MR results. We also performed reverse MR analyses to explore PTSD's causal effects on the relative abundances of specific features of the gut microbiome. RESULTS In Freeze 2 datasets from PGC-PTSD, eight bacterial traits revealed a potential causal association between gut microbiome and PTSD (IVW, all P < 0.05). In addition, Genus.Dorea and genus.Sellimonas were replicated in FinnGen datasets, in which eight bacterial traits revealed a potential causal association between gut microbiome and the occurrence of PTSD. The heterogeneity and pleiotropy analyses further supported the robustness of the IVW findings, providing additional evidence for their reliability. CONCLUSION Our study provides the potential causal impact of gut microbiomes on the development of PTSD, shedding new light on the understanding of the dysfunctional gut-brain axis in this disorder. Our findings present novel evidence and call for investigations to confirm the association between their links, as well as to illuminate the underlying mechanisms.
Collapse
Affiliation(s)
- Qiang He
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Lane, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Wenjing Wang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, 37 Guoxue Lane, Wuhou District, Chengdu, China
| | - Dingkang Xu
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yang Xiong
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Chuanyuan Tao
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Lane, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Chao You
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Lane, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Lu Ma
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Lane, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Junpeng Ma
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Lane, Wuhou District, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
19
|
Sah RK, Nandan A, Kv A, S P, S S, Jose A, Venkidasamy B, Nile SH. Decoding the role of the gut microbiome in gut-brain axis, stress-resilience, or stress-susceptibility: A review. Asian J Psychiatr 2024; 91:103861. [PMID: 38134565 DOI: 10.1016/j.ajp.2023.103861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
Increased exposure to stress is associated with stress-related disorders, including depression, anxiety, and neurodegenerative conditions. However, susceptibility to stress is not seen in every individual exposed to stress, and many of them exhibit resilience. Thus, developing resilience to stress could be a big breakthrough in stress-related disorders, with the potential to replace or act as an alternative to the available therapies. In this article, we have focused on the recent advancements in gut microbiome research and the potential role of the gut-brain axis (GBA) in developing resilience or susceptibility to stress. There might be a complex interaction between the autonomic nervous system (ANS), immune system, endocrine system, microbial metabolites, and bioactive lipids like short-chain fatty acids (SCFAs), neurotransmitters, and their metabolites that regulates the communication between the gut microbiota and the brain. High fiber intake, prebiotics, probiotics, plant supplements, and fecal microbiome transplant (FMT) could be beneficial against gut dysbiosis-associated brain disorders. These could promote the growth of SCFA-producing bacteria, thereby enhancing the gut barrier and reducing the gut inflammatory response, increase the expression of the claudin-2 protein associated with the gut barrier, and maintain the blood-brain barrier integrity by promoting the expression of tight junction proteins such as claudin-5. Their neuroprotective effects might also be related to enhancing the expression of brain-derived neurotrophic factor (BDNF) and glucagon-like peptide (GLP-1). Further investigations are needed in the field of the gut microbiome for the elucidation of the mechanisms by which gut dysbiosis contributes to the pathophysiology of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ranjay Kumar Sah
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, Kerala, India
| | - Amritasree Nandan
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, Kerala, India
| | - Athira Kv
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, Kerala, India.
| | - Prashant S
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, Kerala, India
| | - Sathianarayanan S
- NITTE (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, Mangalore, India
| | - Asha Jose
- JSS College of Pharmacy, JSS Academy of Higher Education and research, Ooty 643001, Tamil Nadu, India
| | - Baskar Venkidasamy
- Department of Oral & Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600 077, Tamil Nadu, India.
| | - Shivraj Hariram Nile
- Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Sector-81, Mohali 140306, Punjab, India.
| |
Collapse
|
20
|
Kiran NS, Yashaswini C, Chatterjee A. Noxious ramifications of cosmetic pollutants on gastrointestinal microbiome: A pathway to neurological disorders. Life Sci 2024; 336:122311. [PMID: 38043908 DOI: 10.1016/j.lfs.2023.122311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/10/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023]
Abstract
On exposure to cosmetic pollutants, gastrointestinal dysbiosis, which is characterised by a disturbance in the gut microbiota, has come into focus as a possible contributor to the occurrence of neurotoxic consequences. It is normal practice to use personal care products that include parabens, phthalates, sulphates, triclosans/triclocarbans and micro/nano plastics. These substances have been found in a variety of bodily fluids and tissues, demonstrating their systemic dispersion. Being exposed to these cosmetic pollutants has been linked in recent research to neurotoxicity, including cognitive decline and neurodevelopmental problems. A vital part of sustaining gut health and general well-being is the gut flora. Increased intestinal permeability, persistent inflammation, and impaired metabolism may result from disruption of the gut microbial environment, which may in turn contribute to neurotoxicity. The link between gastrointestinal dysbiosis and the neurotoxic effects brought on by cosmetic pollutants may be explained by a number of processes, primarily the gut-brain axis. For the purpose of creating preventative and therapeutic measures, it is crucial to comprehend the intricate interactions involving cosmetic pollutants, gastrointestinal dysbiosis, and neurotoxicity. This review provides an in-depth understanding of the various hazardous cosmetic pollutants and its potential role in the occurrence of neurological disorders via gastrointestinal dysbiosis, providing insights into various described and hypothetical mechanisms regarding the complex toxic effects of these industrial pollutants.
Collapse
Affiliation(s)
- Neelakanta Sarvashiva Kiran
- Department of Biotechnology, School of Applied Sciences, REVA University, Kattigenahalli, Yelahanka, Bangalore, Karnataka 560064, India
| | - Chandrashekar Yashaswini
- Department of Biotechnology, School of Applied Sciences, REVA University, Kattigenahalli, Yelahanka, Bangalore, Karnataka 560064, India
| | - Ankita Chatterjee
- Department of Biotechnology, School of Applied Sciences, REVA University, Kattigenahalli, Yelahanka, Bangalore, Karnataka 560064, India.
| |
Collapse
|
21
|
MacKay M, Yang BH, Dursun SM, Baker GB. The Gut-Brain Axis and the Microbiome in Anxiety Disorders, Post-Traumatic Stress Disorder and Obsessive-Compulsive Disorder. Curr Neuropharmacol 2024; 22:866-883. [PMID: 36815632 PMCID: PMC10845093 DOI: 10.2174/1570159x21666230222092029] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/07/2022] [Accepted: 11/18/2022] [Indexed: 02/24/2023] Open
Abstract
A large body of research supports the role of stress in several psychiatric disorders in which anxiety is a prominent symptom. Other research has indicated that the gut microbiome-immune system- brain axis is involved in a large number of disorders and that this axis is affected by various stressors. The focus of the current review is on the following stress-related disorders: generalized anxiety disorder, panic disorder, social anxiety disorder, post-traumatic stress disorder and obsessivecompulsive disorder. Descriptions of systems interacting in the gut-brain axis, microbiome-derived molecules and of pro- and prebiotics are given. Preclinical and clinical studies on the relationship of the gut microbiome to the psychiatric disorders mentioned above are reviewed. Many studies support the role of the gut microbiome in the production of symptoms in these disorders and suggest the potential for pro- and prebiotics for their treatment, but there are also contradictory findings and concerns about the limitations of some of the research that has been done. Matters to be considered in future research include longer-term studies with factors such as sex of the subjects, drug use, comorbidity, ethnicity/ race, environmental effects, diet, and exercise taken into account; appropriate compositions of pro- and prebiotics; the translatability of studies on animal models to clinical situations; and the effects on the gut microbiome of drugs currently used to treat these disorders. Despite these challenges, this is a very active area of research that holds promise for more effective, precision treatment of these stressrelated disorders in the future.
Collapse
Affiliation(s)
- Marnie MacKay
- Department of Psychiatry, Neurochemical Research Unit, University of Alberta, Edmonton, AB, Canada
| | - Bohan H. Yang
- Department of Psychiatry, Neurochemical Research Unit, University of Alberta, Edmonton, AB, Canada
| | - Serdar M. Dursun
- Department of Psychiatry, Neurochemical Research Unit, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Glen B. Baker
- Department of Psychiatry, Neurochemical Research Unit, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
22
|
Ailioaie LM, Ailioaie C, Litscher G. Gut Microbiota and Mitochondria: Health and Pathophysiological Aspects of Long COVID. Int J Mol Sci 2023; 24:17198. [PMID: 38139027 PMCID: PMC10743487 DOI: 10.3390/ijms242417198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
The current understanding of long COVID (LC) is still limited. This review highlights key findings regarding the role of gut microbiota, mitochondria, and the main pathophysiological aspects of LC revealed by clinical studies, related to the complex interplay between infection, intestinal dysbiosis, dysfunctional mitochondria, and systemic inflammation generated in a vicious circle, reflecting the molecular and cellular processes from the "leaky gut" to the "leaky electron transport chain (ETC)" into a quantum leap. The heterogeneity of LC has hindered progress in deciphering all the pathophysiological mechanisms, and therefore, the approach must be multidisciplinary, with a special focus not only on symptomatic management but also on addressing the underlying health problems of the patients. It is imperative to further assess and validate the effects of COVID-19 and LC on the gut microbiome and their relationship to infections with other viral agents or pathogens. Further studies are needed to better understand LC and expand the interdisciplinary points of view that are required to accurately diagnose and effectively treat this heterogeneous condition. Given the ability of SARS-CoV-2 to induce autoimmunity in susceptible patients, they should be monitored for symptoms of autoimmune disease after contracting the viral infection. One question remains open, namely, whether the various vaccines developed to end the pandemic will also induce autoimmunity. Recent data highlighted in this review have revealed that the persistence of SARS-CoV-2 and dysfunctional mitochondria in organs such as the heart and, to a lesser extent, the kidneys, liver, and lymph nodes, long after the organism has been able to clear the virus from the lungs, could be an explanation for LC.
Collapse
Affiliation(s)
- Laura Marinela Ailioaie
- Department of Medical Physics, Alexandru Ioan Cuza University, 11 Carol I Boulevard, 700506 Iasi, Romania; (L.M.A.); (C.A.)
| | - Constantin Ailioaie
- Department of Medical Physics, Alexandru Ioan Cuza University, 11 Carol I Boulevard, 700506 Iasi, Romania; (L.M.A.); (C.A.)
| | - Gerhard Litscher
- President of the International Society for Medical Laser Applications (ISLA Transcontinental), German Vice President of the German-Chinese Research Foundation (DCFG) for TCM, Honorary President of the European Federation of Acupuncture and Moxibustion Societies, Honorary Professor of China Beijing International Acupuncture Training Center, China Academy of Chinese Medical Sciences, Former Head of Two Research Units and the TCM Research Center at the Medical University of Graz, Auenbruggerplatz, 8036 Graz, Austria
| |
Collapse
|
23
|
Zeamer AL, Salive MC, An X, Beaudoin FL, House SL, Stevens JS, Zeng D, Neylan TC, Clifford GD, Linnstaedt SD, Rauch SL, Storrow AB, Lewandowski C, Musey PI, Hendry PL, Sheikh S, Jones CW, Punches BE, Swor RA, Hudak LA, Pascual JL, Seamon MJ, Harris E, Pearson C, Peak DA, Merchant RC, Domeier RM, Rathlev NK, O'Neil BJ, Sergot P, Sanchez LD, Bruce SE, Kessler RC, Koenen KC, McLean SA, Bucci V, Haran JP. Association between microbiome and the development of adverse posttraumatic neuropsychiatric sequelae after traumatic stress exposure. Transl Psychiatry 2023; 13:354. [PMID: 37980332 PMCID: PMC10657470 DOI: 10.1038/s41398-023-02643-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 10/20/2023] [Accepted: 10/30/2023] [Indexed: 11/20/2023] Open
Abstract
Patients exposed to trauma often experience high rates of adverse post-traumatic neuropsychiatric sequelae (APNS). The biological mechanisms promoting APNS are currently unknown, but the microbiota-gut-brain axis offers an avenue to understanding mechanisms as well as possibilities for intervention. Microbiome composition after trauma exposure has been poorly examined regarding neuropsychiatric outcomes. We aimed to determine whether the gut microbiomes of trauma-exposed emergency department patients who develop APNS have dysfunctional gut microbiome profiles and discover potential associated mechanisms. We performed metagenomic analysis on stool samples (n = 51) from a subset of adults enrolled in the Advancing Understanding of RecOvery afteR traumA (AURORA) study. Two-, eight- and twelve-week post-trauma outcomes for post-traumatic stress disorder (PTSD) (PTSD checklist for DSM-5), normalized depression scores (PROMIS Depression Short Form 8b) and somatic symptom counts were collected. Generalized linear models were created for each outcome using microbial abundances and relevant demographics. Mixed-effect random forest machine learning models were used to identify associations between APNS outcomes and microbial features and encoded metabolic pathways from stool metagenomics. Microbial species, including Flavonifractor plautii, Ruminococcus gnavus and, Bifidobacterium species, which are prevalent commensal gut microbes, were found to be important in predicting worse APNS outcomes from microbial abundance data. Notably, through APNS outcome modeling using microbial metabolic pathways, worse APNS outcomes were highly predicted by decreased L-arginine related pathway genes and increased citrulline and ornithine pathways. Common commensal microbial species are enriched in individuals who develop APNS. More notably, we identified a biological mechanism through which the gut microbiome reduces global arginine bioavailability, a metabolic change that has also been demonstrated in the plasma of patients with PTSD.
Collapse
Affiliation(s)
- Abigail L Zeamer
- Department of Microbiology and Physiologic Systems, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Marie-Claire Salive
- Department of Emergency Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Xinming An
- Institute for Trauma Recovery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Francesca L Beaudoin
- Department of Epidemiology, Brown University, Providence, RI, USA
- Department of Emergency Medicine, Brown University, Providence, RI, USA
| | - Stacey L House
- Department of Emergency Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jennifer S Stevens
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Donglin Zeng
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Thomas C Neylan
- Departments of Psychiatry and Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Gari D Clifford
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Sarah D Linnstaedt
- Institute for Trauma Recovery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- The Many Brains Project, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Scott L Rauch
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Institute for Technology in Psychiatry, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, McLean Hospital, Belmont, MA, USA
| | - Alan B Storrow
- Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Paul I Musey
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Phyllis L Hendry
- Department of Emergency Medicine, University of Florida College of Medicine-Jacksonville, Jacksonville, FL, USA
| | - Sophia Sheikh
- Department of Emergency Medicine, University of Florida College of Medicine-Jacksonville, Jacksonville, FL, USA
| | - Christopher W Jones
- Department of Emergency Medicine, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Brittany E Punches
- Department of Emergency Medicine, Ohio State University College of Medicine, Columbus, OH, USA
- Ohio State University College of Nursing, Columbus, OH, USA
| | - Robert A Swor
- Department of Emergency Medicine, Oakland University William Beaumont School of Medicine, Rochester, MI, USA
| | - Lauren A Hudak
- Department of Emergency Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Jose L Pascual
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark J Seamon
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Erica Harris
- Department of Emergency Medicine, Einstein Medical Center, Philadelphia, PA, USA
| | - Claire Pearson
- Department of Emergency Medicine, Wayne State University, Ascension St. John Hospital, Detroit, MI, USA
| | - David A Peak
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Roland C Merchant
- Department of Emergency Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Robert M Domeier
- Department of Emergency Medicine, Trinity Health-Ann Arbor, Ypsilanti, MI, USA
| | - Niels K Rathlev
- Department of Emergency Medicine, University of Massachusetts Medical School-Baystate, Springfield, MA, USA
| | - Brian J O'Neil
- Department of Emergency Medicine, Wayne State University, Detroit Receiving Hospital, Detroit, MI, USA
| | - Paulina Sergot
- Department of Emergency Medicine, McGovern Medical School at UTHealth, Houston, TX, USA
| | - Leon D Sanchez
- Department of Emergency Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Emergency Medicine, Harvard Medical School, Boston, MA, USA
| | - Steven E Bruce
- Department of Psychological Sciences, University of Missouri - St. Louis, St. Louis, MO, USA
| | - Ronald C Kessler
- Department of Health Care Policy, Harvard Medical School, Boston, MA, USA
| | | | - Samuel A McLean
- Department of Emergency Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Vanni Bucci
- Department of Microbiology and Physiologic Systems, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Program in Microbiome Dynamics, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| | - John P Haran
- Department of Microbiology and Physiologic Systems, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Department of Emergency Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Program in Microbiome Dynamics, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
24
|
Xiao L, Liu S, Wu Y, Huang Y, Tao S, Liu Y, Tang Y, Xie M, Ma Q, Yin Y, Dai M, Zhang M, Llamocca E, Gui H, Wang Q. The interactions between host genome and gut microbiome increase the risk of psychiatric disorders: Mendelian randomization and biological annotation. Brain Behav Immun 2023; 113:389-400. [PMID: 37557965 PMCID: PMC11258998 DOI: 10.1016/j.bbi.2023.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/23/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND The correlation between human gut microbiota and psychiatric diseases has long been recognized. Based on the heritability of the microbiome, genome-wide association studies on human genome and gut microbiome (mbGWAS) have revealed important host-microbiome interactions. However, establishing causal relationships between specific gut microbiome features and psychological conditions remains challenging due to insufficient sample sizes of previous studies of mbGWAS. METHODS Cross-cohort meta-analysis (via METAL) and multi-trait analysis (via MTAG) were used to enhance the statistical power of mbGWAS for identifying genetic variants and genes. Using two large mbGWAS studies (7,738 and 5,959 participants respectively) and12 disease-specific studies from the Psychiatric Genomics Consortium (PGC), we performed bidirectional two-sample mendelian randomization (MR) analyses between microbial features and psychiatric diseases (up to 500,199 individuals). Additionally, we conducted downstream gene- and gene-set-based analyses to investigate the shared biology linking gut microbiota and psychiatric diseases. RESULTS METAL and MTAG conducted in mbGWAS could boost power for gene prioritization and MR analysis. Increases in the number of lead SNPs and mapped genes were witnessed in 13/15 species and 5/10 genera after using METAL, and MTAG analysis gained an increase in sample size equivalent to expanding the original samples from 7% to 63%. Following METAL use, we identified a positive association between Bacteroides faecis and ADHD (OR, 1.09; 95 %CI, 1.02-1.16; P = 0.008). Bacteroides eggerthii and Bacteroides thetaiotaomicron were observed to be positively associated with PTSD (OR, 1.11; 95 %CI, 1.03-1.20; P = 0.007; OR, 1.11; 95 %CI, 1.01-1.23; P = 0.03). These findings remained stable across statistical models and sensitivity analyses. No genetic liabilities to psychiatric diseases may alter the abundance of gut microorganisms.Using biological annotation, we identified that those genes contributing to microbiomes (e.g., GRIN2A and RBFOX1) are expressed and enriched in human brain tissues. CONCLUSIONS Our statistical genetics strategy helps to enhance the power of mbGWAS, and our genetic findings offer new insights into biological pleiotropy and causal relationship between microbiota and psychiatric diseases.
Collapse
Affiliation(s)
- Liling Xiao
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China; West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan, China
| | - Siyi Liu
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China; West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan, China
| | - Yulu Wu
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China; West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan, China
| | - Yunqi Huang
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China; West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan, China
| | - Shiwan Tao
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China; West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan, China
| | - Yunjia Liu
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China; West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan, China
| | - Yiguo Tang
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China; West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan, China
| | - Min Xie
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China; West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan, China
| | - Qianshu Ma
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China; West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan, China
| | - Yubing Yin
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China; West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan, China
| | - Minhan Dai
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China; West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan, China
| | - Mengting Zhang
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China; West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan, China
| | - Elyse Llamocca
- Center for Health Policy and Health Services Research, Henry Ford Health, Detroit, MI, USA
| | - Hongsheng Gui
- Center for Health Policy and Health Services Research, Henry Ford Health, Detroit, MI, USA; Behavioral Health Services and Psychiatry Research, Henry Ford Health, Detroit, MI, USA.
| | - Qiang Wang
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China; West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan, China.
| |
Collapse
|
25
|
Yadav SK, Ahmad R, Moshfegh CM, Sankarasubramanian J, Joshi V, Elkhatib SK, Chhonker YS, Murry DJ, Talmon GA, Guda C, Case AJ, Singh AB. Repeated Social Defeat Stress Induces an Inflammatory Gut Milieu by Altering the Mucosal Barrier Integrity and Gut Microbiota Homeostasis. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:824-836. [PMID: 37881577 PMCID: PMC10593959 DOI: 10.1016/j.bpsgos.2023.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/28/2023] [Accepted: 03/08/2023] [Indexed: 04/07/2023] Open
Abstract
Background Posttraumatic stress disorder (PTSD) is a mental health condition triggered by exposure to traumatic events in an individual's life. Patients with PTSD are also at a higher risk for comorbidities. However, it is not well understood how PTSD affects human health and/or promotes the risk for comorbidities. Nevertheless, patients with PTSD harbor a proinflammatory milieu and dysbiotic gut microbiota. Gut barrier integrity helps to maintain normal gut homeostasis and its dysregulation promotes gut dysbiosis and inflammation. Methods We used a mouse model of repeated social defeat stress (RSDS), a preclinical model of PTSD. Behavioral studies, metagenomics analysis of the microbiome, gut permeability assay (on mouse colon, using an Ussing chamber), immunoblotting, and immunohistochemical analyses were performed. Polarized intestinal epithelial cells and 3-dimensional crypt cultures were used for mechanistic analysis. Results The RSDS mice harbor a heightened proinflammatory gut environment and microbiota dysbiosis. The RSDS mice further showed significant dysregulation of gut barrier functions, including transepithelial electrical resistance, mucin homeostasis, and antimicrobial responses. RSDS mice also showed a specific increase in intestinal expression of claudin-2, a tight junction protein, and epinephrine, a stress-induced neurotransmitter. Treating intestinal epithelial cells or 3-dimensional cultured crypts with norepinephrine or intestinal luminal contents (fecal contents) upregulated claudin-2 expression and inhibited transepithelial electrical resistance. Conclusions Traumatic stress induces dysregulation of gut barrier functions, which may underlie the observed gut microbiota changes and proinflammatory gut milieu, all of which may have an interdependent effect on the health and increased risk of comorbidities in patients with PTSD.
Collapse
Affiliation(s)
- Santosh K. Yadav
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Rizwan Ahmad
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Cassandra M. Moshfegh
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | | | - Vineet Joshi
- Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, Nebraska
| | - Safwan K. Elkhatib
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Yashpal Singh Chhonker
- Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, Nebraska
| | - Daryl J. Murry
- Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, Nebraska
| | - Geoffrey A. Talmon
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Adam J. Case
- Department of Psychiatry and Behavior Sciences, Texas A&M University, College Station, Texas
- Department of Medical Physiology, Texas A&M University, College Station, Texas
| | - Amar B. Singh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| |
Collapse
|
26
|
Leigh SJ, Uhlig F, Wilmes L, Sanchez-Diaz P, Gheorghe CE, Goodson MS, Kelley-Loughnane N, Hyland NP, Cryan JF, Clarke G. The impact of acute and chronic stress on gastrointestinal physiology and function: a microbiota-gut-brain axis perspective. J Physiol 2023; 601:4491-4538. [PMID: 37756251 DOI: 10.1113/jp281951] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The physiological consequences of stress often manifest in the gastrointestinal tract. Traumatic or chronic stress is associated with widespread maladaptive changes throughout the gut, although comparatively little is known about the effects of acute stress. Furthermore, these stress-induced changes in the gut may increase susceptibility to gastrointestinal disorders and infection, and impact critical features of the neural and behavioural consequences of the stress response by impairing gut-brain axis communication. Understanding the mechanisms behind changes in enteric nervous system circuitry, visceral sensitivity, gut barrier function, permeability, and the gut microbiota following stress is an important research objective with pathophysiological implications in both neurogastroenterology and psychiatry. Moreover, the gut microbiota has emerged as a key aspect of physiology sensitive to the effects of stress. In this review, we focus on different aspects of the gastrointestinal tract including gut barrier function as well as the immune, humoral and neuronal elements involved in gut-brain communication. Furthermore, we discuss the evidence for a role of stress in gastrointestinal disorders. Existing gaps in the current literature are highlighted, and possible avenues for future research with an integrated physiological perspective have been suggested. A more complete understanding of the spatial and temporal dynamics of the integrated host and microbial response to different kinds of stressors in the gastrointestinal tract will enable full exploitation of the diagnostic and therapeutic potential in the fast-evolving field of host-microbiome interactions.
Collapse
Affiliation(s)
- Sarah-Jane Leigh
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Friederike Uhlig
- APC Microbiome Ireland, Cork, Ireland
- Department of Physiology, University College Cork, Cork, Ireland
| | - Lars Wilmes
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Paula Sanchez-Diaz
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Cassandra E Gheorghe
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Michael S Goodson
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio, USA
| | - Nancy Kelley-Loughnane
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio, USA
| | - Niall P Hyland
- APC Microbiome Ireland, Cork, Ireland
- Department of Physiology, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| |
Collapse
|
27
|
Yoo JY, McSkimming D, Rajan K, Sarkar A, Labbé N, Groer M, Menon U. A Preliminary Study Exploring the Relationship between Occupational Health Hazards and Gut Microbiota among Firefighters. Life (Basel) 2023; 13:1928. [PMID: 37763331 PMCID: PMC10533145 DOI: 10.3390/life13091928] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Firefighters are exposed to occupational hazards and have a higher prevalence of health issues. The gut microbiota plays a crucial role in the immune, endocrine, and neural systems, and disruptions in its composition can impact health outcomes. This pilot study aimed to investigate the potential association between occupational factors, changes in gut microbiota, and the development of adverse health outcomes in firefighters. To test this hypothesis, we recruited 15 firefighters and age/sex-matched controls to investigate the relationship between occupational environment and gut microbiota. Firefighters exhibit lower intestinal bacterial alpha diversity and a higher presence of pathogenic bacteria than the control. Moreover, unique gut bacterial taxa were observed in firefighters with high post-traumatic stress disorder (PTSD) scores, which could contribute to immune dysregulation and higher susceptibility to pathogen colonization. These preliminary findings suggest that occupational factors, including exposure to traumatic stressors and chemicals, may influence firefighters' health by modulating their gut microbiota. The observed changes in gut microbiota composition and the potential link to occupational hazards highlight the need for further research in larger sample-size studies. Understanding the role of gut microbiota in firefighter health may have implications for preventive measures and interventions to mitigate occupational health risks and improve overall well-being.
Collapse
Affiliation(s)
- Ji Youn Yoo
- College of Nursing, University of Tennessee Knoxville, Knoxville, TN 37996, USA; (A.S.); (M.G.)
| | - Daniel McSkimming
- Interdisciplinary Unit in Data Science & Analytics, Buffalo State University, Buffalo, NY 14222, USA;
| | - Kalavathy Rajan
- Department of Plant and Soil Science, Fiber and Biopolymer Research Institute, Texas Tech University, Lubbock, TX 79403, USA;
| | - Anujit Sarkar
- College of Nursing, University of Tennessee Knoxville, Knoxville, TN 37996, USA; (A.S.); (M.G.)
| | - Nicole Labbé
- Center for Renewable Carbon, The University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA;
| | - Maureen Groer
- College of Nursing, University of Tennessee Knoxville, Knoxville, TN 37996, USA; (A.S.); (M.G.)
| | - Usha Menon
- College of Nursing, University of South Florida, Tampa, FL 33612, USA;
| |
Collapse
|
28
|
Ma L, Yan Y, Webb RJ, Li Y, Mehrabani S, Xin B, Sun X, Wang Y, Mazidi M. Psychological Stress and Gut Microbiota Composition: A Systematic Review of Human Studies. Neuropsychobiology 2023; 82:247-262. [PMID: 37673059 DOI: 10.1159/000533131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 07/10/2023] [Indexed: 09/08/2023]
Abstract
INTRODUCTION The associations between psychological stress and gut microbiota composition are not fully understood. This study investigated associations between psychological stress and gut microbiota composition and examined the potential modifying effects of age, sex, and ethnicity on such associations. METHODS A systematic literature search was conducted using PubMed, Web of Science, PsycINFO, and Embase databases for studies published until November 2021 which examined associations between psychological stress and gut microbiota composition. RESULTS During the search process, 10,790 studies were identified, and after screening, 13 met the eligibility criteria and were included. The median sample size was 70, and the median age of participants was 28.0 years. Most of the included studies did not report associations between measures of alpha- and beta diversity of the gut microbiota composition and psychological stress. A few studies reported that the Shannon index, Chao 1, Simpson index, and weighted UniFrac were negatively associated with psychological stress. Significant reductions in several taxa at the phyla-, family-, and genus-levels were observed in participants with higher psychological stress. At the phylum level, the abundance of Proteobacteria and Verrucomicrobia were negatively associated with psychological stress. At the family-level, no more than two studies reported associations of the same microbiota with psychological stress. At the genus level, the following results were found in more than two studies; psychological stress was negatively associated with the abundance of Lachnospira, Lachnospiraceae, Phascolarctobacterium, Sutterella, and Veillonella, and positively associated with the abundance of Methanobrevibacter, Rhodococcus, and Roseburia. However, it was not possible to determine the influence of age, sex, or ethnicity due to the limited studies included. CONCLUSION Our findings provide evidence that psychological stress is associated with changes in the abundance of the gut microbiota. Larger sample longitudinal studies are needed to determine the causal relationship between psychological stress and the gut microbiota.
Collapse
Affiliation(s)
- Lu Ma
- Global Health Institute, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yating Yan
- Global Health Institute, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China,
| | - Richard James Webb
- School of Health and Sports Sciences, Hope Park Campus, Liverpool Hope University, Liverpool, UK
| | - Ying Li
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Sanaz Mehrabani
- Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bao Xin
- School of Public Health, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xiaomin Sun
- Global Health Institute, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Youfa Wang
- Global Health Institute, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Mohsen Mazidi
- Medical Research Council Population Health Research Unit, University of Oxford, Oxford, UK
- Nuffield Department of Population Health, Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), University of Oxford, Oxford, UK
- Department of Twin Research and Genetic Epidemiology, King's College London, South Wing St Thomas', London, UK
| |
Collapse
|
29
|
Revel-Muroz A, Akulinin M, Shilova P, Tyakht A, Klimenko N. Stability of human gut microbiome: Comparison of ecological modelling and observational approaches. Comput Struct Biotechnol J 2023; 21:4456-4468. [PMID: 37745638 PMCID: PMC10511340 DOI: 10.1016/j.csbj.2023.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/27/2023] [Accepted: 08/27/2023] [Indexed: 09/26/2023] Open
Abstract
The gut microbiome plays a pivotal role in the human body, and perturbations in its composition have been linked to various disorders. Stability is an essential property of a healthy human gut microbiome, which allows it to maintain its functional richness under the external influences. This property has been explored through two distinct methodologies - mathematical modelling based on ecological principles and statistical analysis drawn from observations in interventional studies. Here we conducted a meta-analysis aimed to compare the two approaches utilising the data from 9 interventional and time series studies encompassing 3512 gut microbiome profiles obtained via 16S rRNA gene sequencing. By employing the previously published compositional Lotka-Volterra method, we modelled the dynamics of the microbial community and evaluated ecological stability measures. These measures were compared to those based on observed microbiome changes. There was a substantial correlation between the outcomes of the two approaches. Particularly, local stability assessed within the ecological paradigm was positively correlated with observational stability measures accounting for the compositional nature of microbiome data. Additionally, we were able to reproduce the previously reported inverse relationship between the community's robustness to microorganism loss and local stability, attributed to the distinct impacts of coefficient characterising the network decomposition on these two stability assessments. Our findings demonstrate harmonisation between the ecological and observational approaches to microbiome analysis, advancing the understanding of healthy gut microbiome concept. This paves the way to develop efficient microbiome-targeting interventions for disease prevention and treatment.
Collapse
Affiliation(s)
- Anastasia Revel-Muroz
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Mikhail Akulinin
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Institutskiy per. 9, Dolgoprudny, Moscow Region, Russia
| | - Polina Shilova
- Department of Biology, Moscow State University, 1–12 Leninskie Gory, Moscow, Russia
| | - Alexander Tyakht
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Atlas Biomed Group - Knomx LLC, Interchange House, Office 1.58, 81–85 Station Road, Croydon CR0 2AJ, United Kingdom
| | - Natalia Klimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Atlas Biomed Group - Knomx LLC, Interchange House, Office 1.58, 81–85 Station Road, Croydon CR0 2AJ, United Kingdom
| |
Collapse
|
30
|
Hilakivi-Clarke L, de Oliveira Andrade F. Social Isolation and Breast Cancer. Endocrinology 2023; 164:bqad126. [PMID: 37586098 DOI: 10.1210/endocr/bqad126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023]
Abstract
Although the role of life stressors in breast cancer remains unclear, social isolation is consistently associated with increased breast cancer risk and mortality. Social isolation can be defined as loneliness or an absence of perceived social connections. In female mice and rats, social isolation is mimicked by housing animals 1 per cage. Social isolation causes many biological changes, of which an increase in inflammatory markers and disruptions in mitochondrial and cellular metabolism are commonly reported. It is not clear how the 2 traditional stress-induced pathways, namely, the hypothalamic-pituitary-adrenocortical axis (HPA), resulting in a release of glucocorticoids from the adrenal cortex, and autonomic nervous system (ANS), resulting in a release of catecholamines from the adrenal medulla and postganglionic neurons, could explain the increased breast cancer risk in socially isolated individuals. For instance, glucocorticoid receptor activation in estrogen receptor positive breast cancer cells inhibits their proliferation, and activation of β-adrenergic receptor in immature immune cells promotes their differentiation toward antitumorigenic T cells. However, activation of HPA and ANS pathways may cause a disruption in the brain-gut-microbiome axis, resulting in gut dysbiosis. Gut dysbiosis, in turn, leads to an alteration in the production of bacterial metabolites, such as short chain fatty acids, causing a systemic low-grade inflammation and inducing dysfunction in mitochondrial and cellular metabolism. A possible causal link between social isolation-induced increased breast cancer risk and mortality and gut dysbiosis should be investigated, as it offers new tools to prevent breast cancer.
Collapse
Affiliation(s)
- Leena Hilakivi-Clarke
- Department of Food Science and Nutrition, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Fabia de Oliveira Andrade
- Department of Food Science and Nutrition, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| |
Collapse
|
31
|
Qian L, He X, Liu Y, Gao F, Lu W, Fan Y, Gao Y, Wang W, Zhu F, Wang Y, Ma X. Longitudinal Gut Microbiota Dysbiosis Underlies Olanzapine-Induced Weight Gain. Microbiol Spectr 2023; 11:e0005823. [PMID: 37260381 PMCID: PMC10433857 DOI: 10.1128/spectrum.00058-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/16/2023] [Indexed: 06/02/2023] Open
Abstract
Olanzapine is one of the most effective medicines available for stabilizing schizophrenia spectrum disorders. However, it has been reported to show the greatest propensity for inducing body weight gain and producing metabolic side effects, which cause a great burden in patients with psychiatric disorders. Since the gut microbiota has a profound impact on the initiation and development of metabolic diseases, we conducted a longitudinal study to explore its role in olanzapine-induced obesity and metabolic abnormalities. Female Sprague-Dawley rats were treated with different doses of olanzapine, and metabolic and inflammatory markers were measured. Olanzapine significantly induced body weight gain (up to a 2.1-fold change), which was accompanied by hepatic inflammation and increased plasma triglyceride levels (up to a 2.9-fold change), as well as gut microbiota dysbiosis. Subsequently, fuzzy c-means clustering was used to characterize three clusters of longitudinal trajectories for microbial fluctuations: (i) genera continuing to increase, (ii) genera continuing to decrease, and (iii) genera temporarily changing. Among them, Enterorhabdus (r = 0.38), Parasutterella (r = 0.43), and Prevotellaceae UCG-001 (r = 0.52) positively correlated with body weight gain. In addition, two MetaCyc metabolic pathways were identified as associated with olanzapine-induced body weight gain, including the superpathway of glucose and xylose degradation and the superpathway of l-threonine biosynthesis. In conclusion, we demonstrate that olanzapine can directly alter the gut microbiota and rapidly induce dysbiosis, which is significantly associated with body weight gain. This may suggest gut microbiota targets in future studies on metabolic abnormalities caused by olanzapine. IMPORTANCE Olanzapine is one of the most effective second-generation antipsychotics for stabilizing schizophrenia spectrum disorders. However, olanzapine has multiple drug-induced metabolic side effects, including weight gain. This study provides insight to the gut microbiota target in olanzapine-induced obesity. Specifically, we explored the longitudinal gut microbiota trajectories of female Sprague-Dawley rats undergoing olanzapine treatment. We showed that olanzapine treatment causes a dynamic alteration of gut microbiota diversity. Additionally, we identified three genera, Parasutterella, Enterorhabdus, and Prevotellaceae UCG-001, that may play an important role in olanzapine-induced obesity. In this case, the supply or removal of specific elements of the gut microbiota may represent a promising avenue for treatment of olanzapine-related metabolic side effects.
Collapse
Affiliation(s)
- Li Qian
- Department of Psychiatry, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Shaanxi Belt and Road Joint Laboratory of Precision Medicine in Psychiatry, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaoyan He
- Department of Psychiatry, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Shaanxi Belt and Road Joint Laboratory of Precision Medicine in Psychiatry, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yixin Liu
- Department of Psychiatry, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Shaanxi Belt and Road Joint Laboratory of Precision Medicine in Psychiatry, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Fengjie Gao
- Department of Psychiatry, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Shaanxi Belt and Road Joint Laboratory of Precision Medicine in Psychiatry, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wen Lu
- Department of Psychiatry, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Shaanxi Belt and Road Joint Laboratory of Precision Medicine in Psychiatry, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yajuan Fan
- Department of Psychiatry, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Shaanxi Belt and Road Joint Laboratory of Precision Medicine in Psychiatry, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yuan Gao
- Department of Psychiatry, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Shaanxi Belt and Road Joint Laboratory of Precision Medicine in Psychiatry, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wei Wang
- Department of Psychiatry, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Shaanxi Belt and Road Joint Laboratory of Precision Medicine in Psychiatry, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Feng Zhu
- Department of Psychiatry, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Shaanxi Belt and Road Joint Laboratory of Precision Medicine in Psychiatry, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yanan Wang
- Med-X institute, Center for Immunological and Metabolic Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi’an, China
| | - Xiancang Ma
- Department of Psychiatry, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Shaanxi Belt and Road Joint Laboratory of Precision Medicine in Psychiatry, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
32
|
Colella M, Charitos IA, Ballini A, Cafiero C, Topi S, Palmirotta R, Santacroce L. Microbiota revolution: How gut microbes regulate our lives. World J Gastroenterol 2023; 29:4368-4383. [PMID: 37576701 PMCID: PMC10415973 DOI: 10.3748/wjg.v29.i28.4368] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/16/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023] Open
Abstract
The human intestine is a natural environment ecosystem of a complex of diversified and dynamic microorganisms, determined through a process of competition and natural selection during life. Those intestinal microorganisms called microbiota and are involved in a variety of mechanisms of the organism, they interact with the host and therefore are in contact with the organs of the various systems. However, they play a crucial role in maintaining host homeostasis, also influencing its behaviour. Thus, microorganisms perform a series of biological functions important for human well-being. The host provides the microorganisms with the environment and nutrients, simultaneously drawing many benefits such as their contribution to metabolic, trophic, immunological, and other functions. For these reasons it has been reported that its quantitative and qualitative composition can play a protective or harmful role on the host health. Therefore, a dysbiosis can lead to an association of unfavourable factors which lead to a dysregulation of the physiological processes of homeostasis. Thus, it has pre-viously noted that the gut microbiota can participate in the pathogenesis of autoimmune diseases, chronic intestinal inflammation, diabetes mellitus, obesity and atherosclerosis, neurological disorders (e.g., neurological diseases, autism, etc.) colorectal cancer, and more.
Collapse
Affiliation(s)
- Marica Colella
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, University of Bari “Aldo Moro”, Bari 70124, Italy
| | - Ioannis Alexandros Charitos
- Maugeri Clinical Scientific Research Institutes (IRCCS) of Pavia - Division of Pneumology and Respiratory Rehabilitation, Scientific Institute of Bari, Bari 70124, Italy
| | - Andrea Ballini
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia 71122, Italy
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples 80138, Italy
| | - Concetta Cafiero
- Area of Molecular Pathology, Anatomic Pathology Unit, Fabrizio Spaziani Hospital, Frosinone 03100, Italy
| | - Skender Topi
- Department of Clinical Disciplines, School of Technical Medical Sciences, University of Elbasan “A. Xhuvani”, Elbasan 3001, Albania
| | - Raffaele Palmirotta
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, University of Bari “Aldo Moro”, Bari 70124, Italy
| | - Luigi Santacroce
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, University of Bari “Aldo Moro”, Bari 70124, Italy
| |
Collapse
|
33
|
Xiong RG, Li J, Cheng J, Zhou DD, Wu SX, Huang SY, Saimaiti A, Yang ZJ, Gan RY, Li HB. The Role of Gut Microbiota in Anxiety, Depression, and Other Mental Disorders as Well as the Protective Effects of Dietary Components. Nutrients 2023; 15:3258. [PMID: 37513676 PMCID: PMC10384867 DOI: 10.3390/nu15143258] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
The number of individuals experiencing mental disorders (e.g., anxiety and depression) has significantly risen in recent years. Therefore, it is essential to seek prevention and treatment strategies for mental disorders. Several gut microbiota, especially Firmicutes and Bacteroidetes, are demonstrated to affect mental health through microbiota-gut-brain axis, and the gut microbiota dysbiosis can be related to mental disorders, such as anxiety, depression, and other mental disorders. On the other hand, dietary components, including probiotics (e.g., Lactobacillus and Bifidobacterium), prebiotics (e.g., dietary fiber and alpha-lactalbumin), synbiotics, postbiotics (e.g., short-chain fatty acids), dairy products, spices (e.g., Zanthoxylum bungeanum, curcumin, and capsaicin), fruits, vegetables, medicinal herbs, and so on, could exert protective effects against mental disorders by enhancing beneficial gut microbiota while suppressing harmful ones. In this paper, the mental disorder-associated gut microbiota are summarized. In addition, the protective effects of dietary components on mental health through targeting the gut microbiota are discussed. This paper can be helpful to develop some dietary natural products into pharmaceuticals and functional foods to prevent and treat mental disorders.
Collapse
Affiliation(s)
- Ruo-Gu Xiong
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (J.C.); (D.-D.Z.); (S.-X.W.); (S.-Y.H.); (A.S.); (Z.-J.Y.)
| | - Jiahui Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China;
| | - Jin Cheng
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (J.C.); (D.-D.Z.); (S.-X.W.); (S.-Y.H.); (A.S.); (Z.-J.Y.)
| | - Dan-Dan Zhou
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (J.C.); (D.-D.Z.); (S.-X.W.); (S.-Y.H.); (A.S.); (Z.-J.Y.)
| | - Si-Xia Wu
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (J.C.); (D.-D.Z.); (S.-X.W.); (S.-Y.H.); (A.S.); (Z.-J.Y.)
| | - Si-Yu Huang
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (J.C.); (D.-D.Z.); (S.-X.W.); (S.-Y.H.); (A.S.); (Z.-J.Y.)
| | - Adila Saimaiti
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (J.C.); (D.-D.Z.); (S.-X.W.); (S.-Y.H.); (A.S.); (Z.-J.Y.)
| | - Zhi-Jun Yang
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (J.C.); (D.-D.Z.); (S.-X.W.); (S.-Y.H.); (A.S.); (Z.-J.Y.)
| | - Ren-You Gan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Singapore 138669, Singapore
| | - Hua-Bin Li
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (J.C.); (D.-D.Z.); (S.-X.W.); (S.-Y.H.); (A.S.); (Z.-J.Y.)
| |
Collapse
|
34
|
Lopez-Santamarina A, Mondragon ADC, Cardelle-Cobas A, Santos EM, Porto-Arias JJ, Cepeda A, Miranda JM. Effects of Unconventional Work and Shift Work on the Human Gut Microbiota and the Potential of Probiotics to Restore Dysbiosis. Nutrients 2023; 15:3070. [PMID: 37447396 DOI: 10.3390/nu15133070] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023] Open
Abstract
The work environment is a factor that can significantly influence the composition and functionality of the gut microbiota of workers, in many cases leading to gut dysbiosis that will result in serious health problems. The aim of this paper was to provide a compilation of the different studies that have examined the influence of jobs with unconventional work schedules and environments on the gut microbiota of workers performing such work. As a possible solution, probiotic supplements, via modulation of the gut microbiota, can moderate the effects of sleep disturbance on the immune system, as well as restore the dysbiosis produced. Rotating shift work has been found to be associated with an increase in the risk of various metabolic diseases, such as obesity, metabolic syndrome, and type 2 diabetes. Sleep disturbance or lack of sleep due to night work is also associated with metabolic diseases. In addition, sleep disturbance induces a stress response, both physiologically and psychologically, and disrupts the healthy functioning of the gut microbiota, thus triggering an inflammatory state. Other workers, including military, healthcare, or metallurgy workers, as well as livestock farmers or long-travel seamen, work in environments and schedules that can significantly affect their gut microbiota.
Collapse
Affiliation(s)
- Aroa Lopez-Santamarina
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Alicia Del Carmen Mondragon
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Alejandra Cardelle-Cobas
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Eva Maria Santos
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo km. 4.5, Pachuca 42076, Hidalgo, Mexico
| | - Jose Julio Porto-Arias
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Alberto Cepeda
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Jose Manuel Miranda
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| |
Collapse
|
35
|
Improved Assembly of Metagenome-Assembled Genomes and Viruses in Tibetan Saline Lake Sediment by HiFi Metagenomic Sequencing. Microbiol Spectr 2023; 11:e0332822. [PMID: 36475839 PMCID: PMC9927493 DOI: 10.1128/spectrum.03328-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
With the development and reduced costs of high-throughput sequencing technology, environmental dark matter, such as novel metagenome-assembled genomes (MAGs) and viruses, is now being discovered easily. However, due to read length limitations, MAGs and viromes often suffer from genome discontinuity and deficiencies in key functional elements. Here, by applying long-read sequencing technology to sediment samples from a Tibetan saline lake, we comprehensively analyzed the performance of high-fidelity (HiFi) reads and the possibility of integration with short-read next-generation sequencing (NGS) data. In total, 207 full-length nonredundant 16S rRNA gene sequences and 19 full-length nonredundant 18S rRNA genes were directly obtained from HiFi reads, which greatly surpassed the retrieval performance of NGS technology. We carried out a cross-sectional comparison among multiple assembly strategies, referred to as 'NGS', 'Hybrid (NGS+HiFi)', and 'HiFi'. Two MAGs and 29 viruses with circular genomes were reconstructed using HiFi reads alone, indicating the great power of the 'HiFi' approach to assemble high-quality microbial genomes. Among the 3 strategies, the 'Hybrid' approach produced the highest number of medium/high-quality MAGs and viral genomes, while the ratio of MAGs containing 16S rRNA genes was significantly improved in the 'HiFi' assembly results. Overall, our study provides a practical metagenomic resolution for analyzing complex environmental samples by taking advantage of both the short-read and HiFi long-read sequencing methods to extract the maximum amount of information, including data on prokaryotes, eukaryotes, and viruses, via the 'Hybrid' approach. IMPORTANCE To expand the understanding of microbial dark matter in the environment, we did the first comparative evaluation of multiple assembly strategies based on high-throughput short-read and HiFi data from lake sediments metagenomic sequencing. The results demonstrated great improvement of the 'Hybrid' assembly method (short-read next-generation sequencing data plus HiFi data) in the recovery of medium/high-quality MAGs and viral genomes. Further analysis showed that HiFi data is important to retrieve the complete circular prokaryotic and viral genomes. Meanwhile, hundreds of full-length 16S/18S rRNA genes were assembled directly from HiFi data, which facilitated the species composition studies of complex environmental samples, especially for understanding micro-eukaryotes. Therefore, the application of the latest HiFi long-read sequencing could greatly improve the metagenomic assembly integrity and promote environmental microbiome research.
Collapse
|
36
|
Huang HS, Lin YE, Panyod S, Chen RA, Lin YC, Chai LMX, Hsu CC, Wu WK, Lu KH, Huang YJ, Sheen LY. Anti-depressive-like and cognitive impairment alleviation effects of Gastrodia elata Blume water extract is related to gut microbiome remodeling in ApoE -/- mice exposed to unpredictable chronic mild stress. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115872. [PMID: 36343797 DOI: 10.1016/j.jep.2022.115872] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Gastrodia elata Blume (GE) is a traditional Chinese dietary therapy used to treat neurological disorders. Gastrodia elata Blume water extract (WGE) has been shown to ameliorate inflammation and improve social frustration in mice in a chronic social defeat model. However, studies on the anti-depressive-like effects and cognitive impairment alleviation related to the impact of WGE on the gut microbiome of ApoE-/- mice remain elusive. AIM OF THE STUDY The present study aimed to investigate the anti-depressive-like effect and cognitive impairment alleviation and mechanisms of WGE in ApoE-/- mice subjected to unpredictable chronic mild stress (UCMS), as well as its impact on the gut microbiome of the mice. MATERIALS AND METHODS Sixty ApoE-/- mice (6 months old) were randomly grouped into six groups: control, UCMS, WGE groups [5, 10, 20 mL WGE/kg body weight (bw) + UCMS], and a positive group (fluoxetine 20 mg/kg bw + UCMS). After four weeks of the UCMS paradigm, the sucrose preference, novel object recognition, and open field tests were conducted. The neurotransmitters serotonin (5-HT), dopamine (DA) and their metabolites were measured in the prefrontal cortex. Serum was collected to measure corticosterone and amyloid-42 (Aβ-42) levels. Feces were collected, and the gut microbiome was analyzed. RESULTS WGE restored sucrose preference, exploratory behavior, recognition ability, and decreased the levels of serum corticosterone and Aβ-42 in ApoE-/- mice to alleviate depressive-like behavior and cognitive impairment. Furthermore, WGE regulated the monoamine neurotransmitter via reduced the 5-HT and DA turnover rates in the prefrontal cortex. Moreover, WGE elevated the levels of potentially beneficial bacteria such as Bifidobacterium, Akkermansia, Alloprevotella, Defluviitaleaceae_UCG-011, and Bifidobacterium pseudolongum as well as balanced fecal short-chain fatty acids (SCFAs). CONCLUSION WGE demonstrates anti-depressive-like effects, cognitive impairment alleviation, and gut microbiome and metabolite regulation in ApoE-/- mice. Our results support the possibility of developing a functional and complementary medicine to prevent or alleviate depression and cognitive decline using WGE in CVDs patients.
Collapse
Affiliation(s)
- Huai-Syuan Huang
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan.
| | - Yu-En Lin
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan.
| | - Suraphan Panyod
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan.
| | - Rou-An Chen
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan.
| | - Ying-Cheng Lin
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan.
| | | | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, Taipei, Taiwan.
| | - Wei-Kai Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.
| | - Kuan-Hung Lu
- Institute of Food Safety and Health, National Taiwan University, Taipei, Taiwan; Institute of Environmental and Occupational Health Sciences, National Taiwan University, Taipei, Taiwan.
| | - Yun-Ju Huang
- Department of Biotechnology and Food Technology, Southern Taiwan University of Science and Technology, Tainan, Taiwan.
| | - Lee-Yan Sheen
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan; Center for Food and Biomolecules, National Taiwan University, Taipei, Taiwan; National Center for Food Safety Education and Research, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
37
|
Mańkowska-Wierzbicka D, Zuraszek J, Wierzbicka A, Gabryel M, Mahadea D, Baturo A, Zakerska-Banaszak O, Slomski R, Skrzypczak-Zielinska M, Dobrowolska A. Alterations in Gut Microbiota Composition in Patients with COVID-19: A Pilot Study of Whole Hypervariable 16S rRNA Gene Sequencing. Biomedicines 2023; 11:biomedicines11020367. [PMID: 36830905 PMCID: PMC9953267 DOI: 10.3390/biomedicines11020367] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/13/2022] [Accepted: 01/09/2023] [Indexed: 01/28/2023] Open
Abstract
It is crucial to consider the importance of the microbiome and the gut-lung axis in the context of SARS-CoV-2 infection. This pilot study examined the fecal microbial composition of patients with COVID-19 following a 3-month recovery. Using for the first time metagenomic analysis based on all hypervariable regions (V1-V9) of the 16S rRNA gene, we have identified 561 microbial species; however, 17 were specific only for the COVID-19 group (n = 8). The patients' cohorts revealed significantly greater alpha diversity of the gut microbiota compared to healthy controls (n = 14). This finding has been demonstrated by operational taxonomic units (OTUs) richness (p < 0.001) and Chao1 index (p < 0.01). The abundance of the phylum Verrucomicrobia was 30 times higher in COVID-19 patients compared to healthy subjects. Accordingly, this disproportion was also noted at other taxonomic levels: in the class Verrucomicrobiae, the family Verrucomicrobiaceae, and the genus Akkermansia. Elevated pathobionts such as Escherichia coli, Bilophila wadsworthia, and Parabacteroides distasonis were found in COVID-19 patients. Considering the gut microbiota's ability to disturb the immune response, our findings suggest the importance of the enteric microbiota in the course of SARS-CoV-2 infection. This pilot study shows that the composition of the microbial community may not be fully restored in individuals with SARS-CoV-2 following a 3-month recovery.
Collapse
Affiliation(s)
- Dorota Mańkowska-Wierzbicka
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, 60-355 Poznan, Poland
- Correspondence: (D.M.-W.); (M.S.-Z.)
| | - Joanna Zuraszek
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland
| | - Adrianna Wierzbicka
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Marcin Gabryel
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Dagmara Mahadea
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Alina Baturo
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | | | - Ryszard Slomski
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland
| | - Marzena Skrzypczak-Zielinska
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland
- Correspondence: (D.M.-W.); (M.S.-Z.)
| | - Agnieszka Dobrowolska
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| |
Collapse
|
38
|
Prescott SL, Logan AC, Bristow J, Rozzi R, Moodie R, Redvers N, Haahtela T, Warber S, Poland B, Hancock T, Berman B. Exiting the Anthropocene: Achieving personal and planetary health in the 21st century. Allergy 2022; 77:3498-3512. [PMID: 35748742 PMCID: PMC10083953 DOI: 10.1111/all.15419] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/10/2022] [Accepted: 06/20/2022] [Indexed: 01/28/2023]
Abstract
Planetary health provides a perspective of ecological interdependence that connects the health and vitality of individuals, communities, and Earth's natural systems. It includes the social, political, and economic ecosystems that influence both individuals and whole societies. In an era of interconnected grand challenges threatening health of all systems at all scales, planetary health provides a framework for cross-sectoral collaboration and unified systems approaches to solutions. The field of allergy is at the forefront of these efforts. Allergic conditions are a sentinel measure of environmental impact on human health in early life-illuminating how ecological changes affect immune development and predispose to a wider range of inflammatory noncommunicable diseases (NCDs). This shows how adverse macroscale ecology in the Anthropocene penetrates to the molecular level of personal and microscale ecology, including the microbial systems at the foundations of all ecosystems. It provides the basis for more integrated efforts to address widespread environmental degradation and adverse effects of maladaptive urbanization, food systems, lifestyle behaviors, and socioeconomic disadvantage. Nature-based solutions and efforts to improve nature-relatedness are crucial for restoring symbiosis, balance, and mutualism in every sense, recognizing that both personal lifestyle choices and collective structural actions are needed in tandem. Ultimately, meaningful ecological approaches will depend on placing greater emphasis on psychological and cultural dimensions such as mindfulness, values, and moral wisdom to ensure a sustainable and resilient future.
Collapse
Affiliation(s)
- Susan L Prescott
- Medical School, University of Western Australia, Nedlands, WA, Australia.,Nova Institute for Health, Baltimore, Maryland, USA.,ORIGINS Project, Telethon Kids Institute at Perth Children's Hospital, Nedlands, WA, Australia
| | - Alan C Logan
- Nova Institute for Health, Baltimore, Maryland, USA
| | | | - Ricardo Rozzi
- Cape Horn International Center (CHIC), University of Magallanes, Puerto Williams, Chile.,Philosophy and Religion, University of North Texas, Denton, Texas, USA
| | - Rob Moodie
- School of Population and Global Health (MSPGH), University of Melbourne, Parkville, Vic., Australia
| | - Nicole Redvers
- School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Tari Haahtela
- Skin and Allergy Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Sara Warber
- Nova Institute for Health, Baltimore, Maryland, USA.,Department of Family Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Blake Poland
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Trevor Hancock
- School of Public Health and Social Policy, University of Victoria, Victoria, BC, Canada
| | - Brian Berman
- Nova Institute for Health, Baltimore, Maryland, USA.,Department of Family and Community Medicine, Center for Integrative Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
39
|
Probiotics in the Management of Mental and Gastrointestinal Post-COVID Symptomes. J Clin Med 2022; 11:jcm11175155. [PMID: 36079082 PMCID: PMC9457065 DOI: 10.3390/jcm11175155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/17/2022] [Accepted: 08/29/2022] [Indexed: 01/30/2023] Open
Abstract
Patients with “post-COVID” syndrome manifest with a variety of signs and symptoms that continue/develop after acute COVID-19. Among the most common are gastrointestinal (GI) and mental symptoms. The reason for symptom occurrence lies in the SARS-CoV-2 capability of binding to exact receptors, among other angiotensin converting enzyme 2 (ACE2) receptors in gastrointestinal lining and neuropilin-1 (NRP-1) in the nervous system, which leads to loss of gastrointestinal and blood-brain barriers integrity and function. The data are mounting that SARS-CoV-2 can trigger systemic inflammation and lead to disruption of gut-brain axis (GBA) and the development of disorders of gut brain interaction (DGBIs). Functional dyspepsia (FD) and irritable bowel syndrome (IBS) are the most common DGBIs syndromes. On the other hand, emotional disorders have also been demonstrated as DGBIs. Currently, there are no official recommendations or recommended procedures for the use of probiotics in patients with COVID-19. However, it can be assumed that many doctors, pharmacists, and patients will want to use a probiotic in the treatment of this disease. In such cases, strains with documented activity should be used. There is a constant need to plan and conduct new trials on the role of probiotics and verify their clinical efficacy for counteracting the negative consequences of COVID-19 pandemic. Quality control is another important but often neglected aspect in trials utilizing probiotics in various clinical entities. It determines the safety and efficacy of probiotics, which is of utmost importance in patients with post-acute COVID-19 syndrome.
Collapse
|