1
|
Rosendahl S, Trudzinski FC, Polke M, Herth FJF, Kreuter M, Giese T. SARS-CoV-2 Vaccination in Primary Humoral Immunodeficiency: Experience from a German Lung Clinic. Respiration 2024; 104:349-359. [PMID: 39701048 DOI: 10.1159/000543146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/06/2024] [Indexed: 12/21/2024] Open
Abstract
INTRODUCTION During the COVID-19 pandemic, the effectiveness of vaccines against SARS-CoV-2 in immunodeficient patients not only did affect the individual risk of these vulnerable patients but endangered the selection of new variants of concern due to prolonged virus shedding by these patients. METHODS In a tertiary center for pulmonary diseases, we investigated the immune response of 11 patients with primary humoral immunodeficiency and 13 healthy controls on the humoral and cellular level after full vaccination with an mRNA or vector vaccine against SARS-CoV-2. RESULTS In the majority of patients (73%), we found antibodies against the spike protein above the threshold of positivity. Likewise, patients showed a promising cellular response: the upregulated production of INFγ, TNFα, and CXCL10 by T cells did not differ from the response of healthy controls. CONCLUSION These results stress the importance to further discern an adequate immunological correlate of protection and the need to follow the effect of booster immunizations in this population at risk.
Collapse
Affiliation(s)
- Sophie Rosendahl
- Department of Pneumology and Critical Care Medicine, Thoraxklinik University of Heidelberg, Translational Lung Research Center Heidelberg (TLRC-H), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Franziska C Trudzinski
- Department of Pneumology and Critical Care Medicine, Thoraxklinik University of Heidelberg, Translational Lung Research Center Heidelberg (TLRC-H), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Markus Polke
- Department of Pneumology and Critical Care Medicine, Thoraxklinik University of Heidelberg, Translational Lung Research Center Heidelberg (TLRC-H), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Felix J F Herth
- Department of Pneumology and Critical Care Medicine, Thoraxklinik University of Heidelberg, Translational Lung Research Center Heidelberg (TLRC-H), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Michael Kreuter
- Mainz Center for Pulmonary Medicine, Department of Pneumology, Mainz University Medical Center and Department of Pulmonary, Critical Care and Sleep Medicine, Marienhaus Clinic Mainz, Mainz, Germany
| | - Thomas Giese
- Institute of Immunology and German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
2
|
Huang Y, Wang W, Liu Y, Wang Z, Cao B. COVID-19 vaccine updates for people under different conditions. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2323-2343. [PMID: 39083202 DOI: 10.1007/s11427-024-2643-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/06/2024] [Indexed: 10/22/2024]
Abstract
SARS-CoV-2 has caused global waves of infection since December 2019 and continues to persist today. The emergence of SARS-CoV-2 variants with strong immune evasion capabilities has compromised the effectiveness of existing vaccines against breakthrough infections. Therefore, it is important to determine the best utilization strategies for different demographic groups given the variety of vaccine options available. In this review, we will discuss the protective efficacy of vaccines during different stages of the epidemic and emphasize the importance of timely updates to target prevalent variants, which can significantly improve immune protection. While it is recognized that vaccine effectiveness may be lower in certain populations such as the elderly, individuals with chronic comorbidities (e.g., diabetes with poor blood glucose control, those on maintenance dialysis), or those who are immunocompromised compared to the general population, administering multiple doses can result in a strong protective immune response that outweighs potential risks. However, caution should be exercised when considering vaccines that might trigger an intense immune response in populations prone to inflammatory flare or other complications. In conclusion, individuals with special conditions require enhanced and more effective immunization strategies to prevent infection or reinfection, as well as to avoid the potential development of long COVID.
Collapse
Affiliation(s)
- Yijiao Huang
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, 100029, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
- School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, 100084, China
- Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Weiyang Wang
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, 100029, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yan Liu
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, 100029, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
- Department of Infectious Disease, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, 264000, China
| | - Zai Wang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Bin Cao
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, 100029, China.
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China.
- Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing, 100084, China.
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.
- Changping Laboratory, Beijing, 102200, China.
- Department of Respiratory Medicine, Capital Medical University, Beijing, 100069, China.
- New Cornerstone Science Laboratory, China-Japan Friendship Hospital, Beijing, 100029, China.
| |
Collapse
|
3
|
Gupta S, Su H, Agrawal S, Demirdag Y, Tran M, Gollapudi S. Adaptive Cellular Responses following SARS-CoV-2 Vaccination in Primary Antibody Deficiency Patients. Pathogens 2024; 13:514. [PMID: 38921811 PMCID: PMC11206773 DOI: 10.3390/pathogens13060514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/31/2024] [Accepted: 06/15/2024] [Indexed: 06/27/2024] Open
Abstract
Since the start of the COVID-19 pandemic, in a short span of 3 years, vaccination against SARS-CoV-2 has resulted in the end of the pandemic. Patients with inborn errors of immunity (IEI) are at an increased risk for SARS-CoV-2 infection; however, serious illnesses and mortality, especially in primary antibody deficiencies (PADs), have been lower than expected and lower than other high-risk groups. This suggests that PAD patients may mount a reasonable effective response to the SARS-CoV-2 vaccine. Several studies have been published regarding antibody responses, with contradictory reports. The current study is, perhaps, the most comprehensive study of phenotypically defined various lymphocyte populations in PAD patients following the SARS-CoV-2 vaccine. In this study, we examined, following two vaccinations and, in a few cases, prior to and following the 1st and 2nd vaccinations, subsets of CD4 and CD8 T cells (Naïve, TCM, TEM, TEMRA), T follicular helper cells (TFH1, TFH2, TFH17, TFH1/17), B cells (naïve, transitional, marginal zone, germinal center, IgM memory, switched memory, plasmablasts, CD21low), regulatory lymphocytes (CD4Treg, CD8Treg, TFR, Breg), and SARS-CoV-2-specific activation of CD4 T cells and CD8 T cells (CD69, CD137), SARS-CoV-2 tetramer-positive CD8 T cells, and CD8 CTL. Our data show significant alterations in various B cell subsets including Breg, whereas only a few subsets of various T cells revealed alterations. These data suggest that large proportions of PAD patients may mount significant responses to the vaccine.
Collapse
Affiliation(s)
- Sudhir Gupta
- Program in Primary Immunodeficiencies, Division of Basic and Clinical Immunology, University of California at Irvine, Irvine, CA 92697, USA; (H.S.); (S.A.); (Y.D.); (M.T.); (S.G.)
| | | | | | | | | | | |
Collapse
|
4
|
Ameratunga R, Woon ST, Leung E, Lea E, Chan L, Mehrtens J, Longhurst HJ, Steele R, Lehnert K, Lindsay K. The autoimmune rheumatological presentation of Common Variable Immunodeficiency Disorders with an overview of genetic testing. Semin Arthritis Rheum 2024; 65:152387. [PMID: 38330740 DOI: 10.1016/j.semarthrit.2024.152387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/06/2024] [Accepted: 01/16/2024] [Indexed: 02/10/2024]
Abstract
Primary immunodeficiency Disorders (PIDS) are rare, mostly monogenetic conditions which can present to a number of specialties. Although infections predominate in most PIDs, some individuals can manifest autoimmune or inflammatory sequelae as their initial clinical presentation. Identifying patients with PIDs can be challenging, as some can present later in life. This is often seen in patients with Common Variable Immunodeficiency Disorders (CVID), where symptoms can begin in the sixth or even seventh decades of life. Some patients with PIDs including CVID can initially present to rheumatologists with autoimmune musculoskeletal manifestations. It is imperative for these patients to be identified promptly as immunosuppression could lead to life-threatening opportunistic infections in these immunocompromised individuals. These risks could be mitigated by prior treatment with subcutaneous or intravenous (SCIG/IVIG) immunoglobulin replacement or prophylactic antibiotics. Importantly, many of these disorders have an underlying genetic defect. Individualized treatments may be available for the specific mutation, which may obviate or mitigate the need for hazardous broad-spectrum immunosuppression. Identification of the genetic defect has profound implications not only for the patient but also for affected family members, who may be at risk of symptomatic disease following an environmental trigger such as a viral infection. Finally, there may be clinical clues to the underlying PID, such as recurrent infections, the early presentation of severe or multiple autoimmune disorders, as well as a relevant family history. Early referral to a clinical immunologist will facilitate appropriate diagnostic evaluation and institution of treatment such as SCIG/IVIG immunoglobulin replacement. This review comprises three sections; an overview of PIDs, focusing on CVID, secondly genetic testing of PIDs and finally the clinical presentation of these disorders to rheumatologists.
Collapse
Affiliation(s)
- Rohan Ameratunga
- Department of Clinical immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand; Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand; Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, New Zealand.
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand; Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Euphemia Leung
- Maurice Wilkins Centre, School of Biological Sciences, University of Auckland, Symonds St, Auckland, New Zealand; Auckland Cancer Society Research Centre, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Edward Lea
- Department of Clinical immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand
| | - Lydia Chan
- Department of Clinical immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand
| | - James Mehrtens
- Department of Clinical immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand
| | - Hilary J Longhurst
- Department of Clinical immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand; Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand; Department of Medicine, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Richard Steele
- Department of Clinical immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand; Department of Respiratory Medicine, Wellington Hospital, Wellington, New Zealand
| | - Klaus Lehnert
- Maurice Wilkins Centre, School of Biological Sciences, University of Auckland, Symonds St, Auckland, New Zealand; Applied Translational Genetics, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Karen Lindsay
- Department of Clinical immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand
| |
Collapse
|
5
|
Ameratunga R, Mears E, Leung E, Snell R, Woon ST, Kelton W, Medlicott N, Jordan A, Abbott W, Steele R, Rolleston W, Longhurst H, Lehnert K. Soluble wild-type ACE2 molecules inhibit newer SARS-CoV-2 variants and are a potential antiviral strategy to mitigate disease severity in COVID-19. Clin Exp Immunol 2023; 214:289-295. [PMID: 37565297 PMCID: PMC10719217 DOI: 10.1093/cei/uxad096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/26/2023] [Indexed: 08/12/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for coronavirus disease of 2019 (COVID-19), has caused havoc around the world. While several COVID-19 vaccines and drugs have been authorized for use, these antiviral drugs remain beyond the reach of most low- and middle-income countries. Rapid viral evolution is reducing the efficacy of vaccines and monoclonal antibodies and contributing to the deaths of some fully vaccinated persons. Others with normal immunity may have chosen not to be vaccinated and remain at risk if they contract the infection. Vaccines may not protect some immunodeficient patients from SARS-CoV-2, who are also at increased risk of chronic COVID-19 infection, a dangerous stalemate between the virus and a suboptimal immune response. Intra-host viral evolution could rapidly lead to the selection and dominance of vaccine and monoclonal antibody-resistant clades of SARS-CoV-2. There is thus an urgent need to develop new treatments for COVID-19. The NZACE2-Pātari project, comprising modified soluble angiotensin-converting enzyme 2 (ACE2) molecules, seeks to intercept and block SARS-CoV-2 infection of the respiratory mucosa. In vitro data presented here show that soluble wild-type ACE2 molecules retain the ability to effectively block the Spike (S) glycoprotein of SARS-CoV-2 variants including the ancestral Wuhan, delta (B.1.617.2) and omicron (B.1.1.529) strains. This therapeutic strategy may prove effective if implemented early during the nasal phase of the infection and may act synergistically with other antiviral drugs such as Paxlovid to further mitigate disease severity.
Collapse
Affiliation(s)
- Rohan Ameratunga
- Department of Clinical immunology, Auckland Hospital, AucklandNew Zealand
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand
- Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Emily Mears
- Applied Translational Genetic Group, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Euphemia Leung
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Russell Snell
- Applied Translational Genetic Group, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand
| | - William Kelton
- Te Huataki Waiora School of Health, University of Waikato, Hamilton, New Zealand
- Te Aka Mātuatua School of Science, University of Waikato, Hamilton, New Zealand
| | | | - Anthony Jordan
- Department of Clinical immunology, Auckland Hospital, AucklandNew Zealand
| | - William Abbott
- Department of Surgery, Auckland Hospital, Auckland, New Zealand
| | - Richard Steele
- Department of Respiratory Medicine, Wellington Hospital, Wellington, New Zealand
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand
| | | | - Hilary Longhurst
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Klaus Lehnert
- Applied Translational Genetic Group, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
6
|
Napiórkowska-Baran K, Ziętkiewicz M, Więsik-Szewczyk E, Matyja-Bednarczyk A, Tykwińska M, Alska E, Rosada T, Szynkiewicz E, Lubański J, Schmidt O, Szymczak B, Koperska K, Bartuzi Z. Points to Consider in Health Assessment of Adult Patients with Primary Antibody Deficiencies. J Clin Med 2023; 12:6018. [PMID: 37762958 PMCID: PMC10532356 DOI: 10.3390/jcm12186018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/04/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
An improved recognition of inborn errors of immunity (IEI) is associated with an increase in life expectancy and a higher incidence of complications and related conditions. The aim of the study was to analyze factors enabling the primary prevention: BMI, smoking and selected laboratory tests (morphology with smear, creatinine, eGFR, total protein, albumin, ferritin, folic acid, vitamin B12, vitamin D3) included in the protocols of standard of care for adult patients with primary antibody deficiencies (PADs). The study included 94 participants ≥ 18 years old, diagnosed with PADs. Overweight was found in 17%, obesity in 14% and underweight in 15% of patients; 11.5% of patients smoked. Leukopenia was diagnosed in 16%, neutropenia in 8.5%, lymphopenia in 22.5% and thrombocytopenia in 14% of patients. A decreased concentration of hemoglobin was found in 32%, total protein in 19%, albumin in 17%, vitamin D3 in 52%, vitamin B12 in 6.5%, folic acid in 34% and ferritin in 26% of patients. Creatinine concentrations were elevated in 16% of patients, while in 20%, eGFR was reduced. Only a holistic assessment of comorbidities and complications of deficiency, as well as regular follow-up and lifestyle changes, can yield the best results in the long-term care of patients.
Collapse
Affiliation(s)
- Katarzyna Napiórkowska-Baran
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (M.T.); (E.A.); (T.R.); (Z.B.)
| | - Marcin Ziętkiewicz
- Department of Rheumatology, Clinical Immunology, Geriatrics and Internal Medicine, Medical University of Gdansk, 80-210 Gdansk, Poland;
| | - Ewa Więsik-Szewczyk
- Department of Internal Medicine, Pulmonology, Allergy and Clinical Immunology, Central Clinical Hospital of the Ministry of National Defense, Military Institute of Medicine, 04-141 Warsaw, Poland;
| | | | - Marta Tykwińska
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (M.T.); (E.A.); (T.R.); (Z.B.)
| | - Ewa Alska
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (M.T.); (E.A.); (T.R.); (Z.B.)
| | - Tomasz Rosada
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (M.T.); (E.A.); (T.R.); (Z.B.)
| | - Ewa Szynkiewicz
- Department of Nursing in Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland;
| | - Jakub Lubański
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (J.L.); (O.S.); (B.S.); (K.K.)
| | - Oskar Schmidt
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (J.L.); (O.S.); (B.S.); (K.K.)
| | - Bartłomiej Szymczak
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (J.L.); (O.S.); (B.S.); (K.K.)
| | - Kinga Koperska
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (J.L.); (O.S.); (B.S.); (K.K.)
| | - Zbigniew Bartuzi
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (M.T.); (E.A.); (T.R.); (Z.B.)
| |
Collapse
|
7
|
Goolam Mahomed A, Maasdorp SD, Barnes R, van Aswegen H, Lupton-Smith A, Allwood B, Calligaro G, Feldman C, Kalla IS. South African Thoracic Society position statement on the management of non-cystic fibrosis bronchiectasis in adults: 2023. Afr J Thorac Crit Care Med 2023; 29:10.7196/AJTCCM.2023.v29i2.647. [PMID: 37638142 PMCID: PMC10450449 DOI: 10.7196/ajtccm.2023.v29i2.647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/10/2023] [Indexed: 08/29/2023] Open
Abstract
Background Bronchiectasis is a chronic lung disorder that affects the lives of many South Africans. Post-tuberculosis (TB) bronchiectasis is an important complication of previous pulmonary TB and a common cause of bronchiectasis in South Africa (SA). No previous statements on the management of bronchiectasis in SA have been published. Objectives To provide a position statement that will act as a template for the management of adult patients with bronchiectasis in SA. Methods The South African Thoracic Society appointed an editorial committee to compile a position statement on the management of adult non-cystic fibrosis (CF) bronchiectasis in SA. Results A position statement addressing the management of non-CF bronchiectasis in adults in SA was compiled. This position statement covers the epidemiology, aetiology, diagnosis, investigations and various aspects of management of adult patients with non-CF bronchiectasis in SA. Conclusion Bronchiectasis has largely been a neglected lung condition, but new research has improved the outlook for patients. Collaboration between interprofessional team members in patient management is important. In SA, more research into the epidemiology of bronchiectasis, especially post-TB bronchiectasis and HIV-associated bronchiectasis, is required. Abstract The South African Thoracic Society mandated a multidisciplinary team of healthcare providers to compile a position statement on the management of non-cystic fibrosis bronchiectasis in South Africa (SA). International guidelines on the management of bronchiectasis were reviewed and used as a basis from which the current position statement was compiled. This is the first position statement on the management of adult non-cystic fibrosis bronchiectasis in SA. A description of the epidemiology and aetiology of bronchiectasis is provided, as well as guidance on its diagnosis and management. The position statement provides guidance on the management of bronchiectasis to healthcare providers, policymakers and regulatory authorities.
Collapse
Affiliation(s)
| | - S D Maasdorp
- Division of Pulmonology and Critical Care, Department of Internal Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein,
South Africa
| | - R Barnes
- Department of Physiotherapy, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - H van Aswegen
- Department of Physiotherapy, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - A Lupton-Smith
- Division of Physiotherapy, Department of Health and Rehabilitation Sciences, Stellenbosch University, Cape Town, South Africa
| | - B Allwood
- Division of Pulmonology, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - G Calligaro
- Division of Pulmonology, Department of Internal Medicine, Faculty of Health Sciences, University of Cape Town, South Africa
| | - C Feldman
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - I S Kalla
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
8
|
Farmer JR, Galbraith A, Ong MS. Association of inborn errors of immunity with severe COVID-19 and post-acute sequelae of COVID-19. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:2616-2617.e2. [PMID: 37244439 PMCID: PMC10212587 DOI: 10.1016/j.jaip.2023.05.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/10/2023] [Accepted: 05/14/2023] [Indexed: 05/29/2023]
Affiliation(s)
- Jocelyn R Farmer
- Beth Israel Lahey Health, Division of Allergy and Inflammation, Harvard Medical School, Boston, Mass
| | - Alison Galbraith
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Mass; Department of Pediatrics, Boston Medical Center and Boston University Avedisian and Chobanian School of Medicine, Boston, Mass
| | - Mei-Sing Ong
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Mass.
| |
Collapse
|
9
|
Hurme A, Jalkanen P, Marttila-Vaara M, Heroum J, Jokinen H, Vara S, Liedes O, Lempainen J, Melin M, Julkunen I, Kainulainen L. T cell immunity following COVID-19 vaccination in adult patients with primary antibody deficiency - a 22-month follow-up. Front Immunol 2023; 14:1146500. [PMID: 37234151 PMCID: PMC10206403 DOI: 10.3389/fimmu.2023.1146500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
Primary antibody deficiencies, such as common variable immunodeficiency (CVID), are heterogenous disease entities consisting of primary hypogammaglobulinemia and impaired antibody responses to vaccination and natural infection. CVID is the most common primary immunodeficiency in adults, presenting with recurrent bacterial infections, enteropathy, autoimmune disorders, interstitial lung diseases and increased risk of malignancies. Patients with CVID are recommended to be vaccinated against SARS-CoV-2, but there are relatively few studies investigating humoral and cellular responses to immunization. We studied the dynamics of humoral and cell-mediated immunity responses up to 22 months in 28 patients with primary immunodeficiency and three patients with secondary immunodeficiency receiving ChAdOx1, BNT162b2 and mRNA-1273 COVID-19 vaccines. Despite inadequate humoral response to immunization, we demonstrate a robust T cell activation likely protecting from severe COVID-19.
Collapse
Affiliation(s)
- Antti Hurme
- Department of Infectious Diseases, Turku University Hospital and University of Turku, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Internal Medicine, Lapland Central Hospital, Rovaniemi, Finland
| | - Pinja Jalkanen
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Minna Marttila-Vaara
- Department of Infectious Diseases, Turku University Hospital and University of Turku, Turku, Finland
| | - Jemna Heroum
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Heidi Jokinen
- Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Saimi Vara
- Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Oona Liedes
- Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Johanna Lempainen
- Institute of Biomedicine, University of Turku, Turku, Finland
- Clinical Microbiology, Turku University Hospital, Turku, Finland
- Department of Paediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Merit Melin
- Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Ilkka Julkunen
- Institute of Biomedicine, University of Turku, Turku, Finland
- Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Leena Kainulainen
- Department of Infectious Diseases, Turku University Hospital and University of Turku, Turku, Finland
- Department of Paediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| |
Collapse
|
10
|
Tani Y, Takita M, Kobashi Y, Wakui M, Zhao T, Yamamoto C, Saito H, Kawashima M, Sugiura S, Nishikawa Y, Omata F, Shimazu Y, Kawamura T, Sugiyama A, Nakayama A, Kaneko Y, Kodama T, Kami M, Tsubokura M. Varying Cellular Immune Response against SARS-CoV-2 after the Booster Vaccination: A Cohort Study from Fukushima Vaccination Community Survey, Japan. Vaccines (Basel) 2023; 11:vaccines11050920. [PMID: 37243024 DOI: 10.3390/vaccines11050920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Booster vaccination reduces the incidence of severe cases and mortality related to COVID-19, with cellular immunity playing an important role. However, little is known about the proportion of the population that has achieved cellular immunity after booster vaccination. Thus, we conducted a Fukushima cohort database and assessed humoral and cellular immunity in 2526 residents and healthcare workers in Fukushima Prefecture in Japan through continuous blood collection every 3 months from September 2021. We identified the proportion of people with induced cellular immunity after booster vaccination using the T-SPOT.COVID test, and analyzed their background characteristics. Among 1089 participants, 64.3% (700/1089) had reactive cellular immunity after booster vaccination. Multivariable analysis revealed the following independent predictors of reactive cellular immunity: age < 40 years (adjusted odds ratio: 1.81; 95% confidence interval: 1.19-2.75; p-value: 0.005) and adverse reactions after vaccination (1.92, 1.19-3.09, 0.007). Notably, despite IgG(S) and neutralizing antibody titers of ≥500 AU/mL, 33.9% (349/1031) and 33.5% (341/1017) of participants, respectively, did not have reactive cellular immunity. In summary, this is the first study to evaluate cellular immunity at the population level after booster vaccination using the T-SPOT.COVID test, albeit with several limitations. Future studies will need to evaluate previously infected subjects and their T-cell subsets.
Collapse
Affiliation(s)
- Yuta Tani
- Medical Governance Research Institute, Tokyo 108-0074, Japan
| | - Morihito Takita
- Medical Governance Research Institute, Tokyo 108-0074, Japan
- Department of Radiation Health Management, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Yurie Kobashi
- Department of Radiation Health Management, Fukushima Medical University, Fukushima 960-1295, Japan
- Department of General Internal Medicine, Hirata Central Hospital, Fukushima 963-8202, Japan
| | - Masatoshi Wakui
- Department of Laboratory Medicine, Keio University School of Medicine, Tokyo 160-0016, Japan
| | - Tianchen Zhao
- Department of Radiation Health Management, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Chika Yamamoto
- Department of Radiation Health Management, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Hiroaki Saito
- Department of Radiation Health Management, Fukushima Medical University, Fukushima 960-1295, Japan
- Department of Internal Medicine, Soma Central Hospital, Fukushima 976-0016, Japan
| | - Moe Kawashima
- Department of Radiation Health Management, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Sota Sugiura
- Medical Governance Research Institute, Tokyo 108-0074, Japan
| | - Yoshitaka Nishikawa
- Department of General Internal Medicine, Hirata Central Hospital, Fukushima 963-8202, Japan
| | - Fumiya Omata
- Department of General Internal Medicine, Hirata Central Hospital, Fukushima 963-8202, Japan
| | - Yuzo Shimazu
- Department of General Internal Medicine, Hirata Central Hospital, Fukushima 963-8202, Japan
| | - Takeshi Kawamura
- Proteomics Laboratory, Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan
| | - Akira Sugiyama
- Proteomics Laboratory, Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan
| | - Aya Nakayama
- Proteomics Laboratory, Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan
| | - Yudai Kaneko
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan
- Medical and Biological Laboratories Co., Ltd., Tokyo 105-0012, Japan
| | - Tetsuhiko Kodama
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan
| | - Masahiro Kami
- Medical Governance Research Institute, Tokyo 108-0074, Japan
| | - Masaharu Tsubokura
- Department of Radiation Health Management, Fukushima Medical University, Fukushima 960-1295, Japan
- Department of General Internal Medicine, Hirata Central Hospital, Fukushima 963-8202, Japan
- Department of Internal Medicine, Soma Central Hospital, Fukushima 976-0016, Japan
| |
Collapse
|
11
|
Mohamed KM, Guevara-Hoyer K, García CJ, Bravo LG, Jiménez-Huete A, de la Peña AR, Valeros BM, Velázquez CC, López EC, Cabello N, Estrada V, Corbí ÁL, Fernández-Arquero M, Ocaña A, Delgado-Iribarren A, Martínez-Novillo M, Bolaños E, Anguita E, Peña A, Benavente C, Benítez Fuentes JD, Pérez Segura P, Sánchez-Ramón S. Specific Cellular and Humoral Immune Responses to the Neoantigen RBD of SARS-CoV-2 in Patients with Primary and Secondary Immunodeficiency and Healthy Donors. Biomedicines 2023; 11:biomedicines11041042. [PMID: 37189660 DOI: 10.3390/biomedicines11041042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/14/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Patients with antibody deficiency disorders, such as primary immunodeficiency (PID) or secondary immunodeficiency (SID) to B-cell lymphoproliferative disorder (B-CLPD), are two groups vulnerable to developing the severe or chronic form of coronavirus disease caused by SARS-CoV-2 (COVID-19). The data on adaptive immune responses against SARS-CoV-2 are well described in healthy donors, but still limited in patients with antibody deficiency of a different cause. Herein, we analyzed spike-specific IFN-γ and anti-spike IgG antibody responses at 3 to 6 months after exposure to SARS-CoV-2 derived from vaccination and/or infection in two cohorts of immunodeficient patients (PID vs. SID) compared to healthy controls (HCs). Pre-vaccine anti-SARS-CoV-2 cellular responses before vaccine administration were measured in 10 PID patients. Baseline cellular responses were detectable in 4 out of 10 PID patients who had COVID-19 prior to vaccination, perceiving an increase in cellular responses after two-dose vaccination (p < 0.001). Adequate specific cellular responses were observed in 18 out of 20 (90%) PID patients, in 14 out of 20 (70%) SID patients and in 74 out of 81 (96%) HCs after vaccination (and natural infection in some cases). Specific IFN-γ response was significantly higher in HC with respect to PID (1908.5 mUI/mL vs. 1694.1 mUI/mL; p = 0.005). Whereas all SID and HC patients mounted a specific humoral immune response, only 80% of PID patients showed positive anti-SARS-CoV-2 IgG. The titer of anti-SARS-CoV-2 IgG was significantly lower in SID compared with HC patients (p = 0.040), without significant differences between PID and HC patients (p = 0.123) and between PID and SID patients (p =0.683). High proportions of PID and SID patients showed adequate specific cellular responses to receptor binding domain (RBD) neoantigen, with a divergence between the two arms of the adaptive immune response in PID and SID patients. We also focused on the correlation of protection of positive SARS-CoV-2 cellular response to omicron exposure: 27 out of 81 (33.3%) HCs referred COVID-19 detected by PCR or antigen test, 24 with a mild course, 1 with moderate symptoms and the remaining 2 with bilateral pneumonia that were treated in an outpatient basis. Our results might support the relevance of these immunological studies to determine the correlation of protection with severe disease and for deciding the need for additional boosters on a personalized basis. Follow-up studies are required to evaluate the duration and variability in the immune response to COVID-19 vaccination or infection.
Collapse
Affiliation(s)
- Kauzar Mohamed Mohamed
- Department of Immunology, Laboratory Medicine Institute (IML) and Fundación para la Investigación Biomédica del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos, Calle Profesor Martín Lagos SN, 28040 Madrid, Spain
| | - Kissy Guevara-Hoyer
- Department of Immunology, Laboratory Medicine Institute (IML) and Fundación para la Investigación Biomédica del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos, Calle Profesor Martín Lagos SN, 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, 28040 Madrid, Spain
| | - Carlos Jiménez García
- Department of Immunology, Laboratory Medicine Institute (IML) and Fundación para la Investigación Biomédica del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos, Calle Profesor Martín Lagos SN, 28040 Madrid, Spain
| | - Laura García Bravo
- Department of Immunology, Laboratory Medicine Institute (IML) and Fundación para la Investigación Biomédica del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos, Calle Profesor Martín Lagos SN, 28040 Madrid, Spain
| | | | - Antonia Rodríguez de la Peña
- Department of Immunology, Laboratory Medicine Institute (IML) and Fundación para la Investigación Biomédica del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos, Calle Profesor Martín Lagos SN, 28040 Madrid, Spain
| | - Beatriz Mediero Valeros
- Department of Immunology, Laboratory Medicine Institute (IML) and Fundación para la Investigación Biomédica del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos, Calle Profesor Martín Lagos SN, 28040 Madrid, Spain
| | - Cristina Cañizares Velázquez
- Department of Immunology, Laboratory Medicine Institute (IML) and Fundación para la Investigación Biomédica del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos, Calle Profesor Martín Lagos SN, 28040 Madrid, Spain
| | - Esther Culebras López
- Department of Microbiology, IML and IdISSC, Hospital Clínico San Carlos, 28040 Madrid, Spain
| | - Noemí Cabello
- Unit of Infectious Diseases, Department of Internal Medicine, Hospital Clínico San Carlos, Calle Profesor Martín Lagos SN, 28040 Madrid, Spain
| | - Vicente Estrada
- Unit of Infectious Diseases, Department of Internal Medicine, Hospital Clínico San Carlos, Calle Profesor Martín Lagos SN, 28040 Madrid, Spain
| | - Ángel L Corbí
- Centro de Investigaciones Biológicas (CSIC), C./Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Miguel Fernández-Arquero
- Department of Immunology, Laboratory Medicine Institute (IML) and Fundación para la Investigación Biomédica del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos, Calle Profesor Martín Lagos SN, 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, 28040 Madrid, Spain
| | - Alberto Ocaña
- Department of Microbiology, IML and IdISSC, Hospital Clínico San Carlos, 28040 Madrid, Spain
| | | | - Mercedes Martínez-Novillo
- Clinical Analysis Department, Laboratory Medicine Institute (IML) and Fundación para la Investigación Biomédica del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos, Calle Profesor Martín Lagos SN, 28040 Madrid, Spain
| | - Estefanía Bolaños
- Department of Hematology, Hospital Clínico San Carlos, IML, IdISSC, Calle Profesor Martín Lagos SN, 28040 Madrid, Spain
| | - Eduardo Anguita
- Department of Hematology, Hospital Clínico San Carlos, IML, IdISSC, Calle Profesor Martín Lagos SN, 28040 Madrid, Spain
| | - Ascensión Peña
- Department of Hematology, Hospital Clínico San Carlos, IML, IdISSC, Calle Profesor Martín Lagos SN, 28040 Madrid, Spain
| | - Celina Benavente
- Department of Hematology, Hospital Clínico San Carlos, IML, IdISSC, Calle Profesor Martín Lagos SN, 28040 Madrid, Spain
| | - Javier David Benítez Fuentes
- Department of Medical Oncology, Hospital Clínico San Carlos, Calle Profesor Martín Lagos SN, 28040 Madrid, Spain
| | - Pedro Pérez Segura
- Department of Medical Oncology, Hospital Clínico San Carlos, Calle Profesor Martín Lagos SN, 28040 Madrid, Spain
| | - Silvia Sánchez-Ramón
- Department of Immunology, Laboratory Medicine Institute (IML) and Fundación para la Investigación Biomédica del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos, Calle Profesor Martín Lagos SN, 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, 28040 Madrid, Spain
- Department of Clinical Immunology, Hospital Universitario Clínico San Carlos and IdISSC, Calle Profesor Martín Lagos SN, 28040 Madrid, Spain
| |
Collapse
|
12
|
SARS-CoV-2 reinfection or persistence among immunodeficient patients. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:972. [PMID: 36894284 PMCID: PMC9989330 DOI: 10.1016/j.jaip.2022.10.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 03/09/2023]
|
13
|
Milito C, Firinu D, Bez P, Villa A, Punziano A, Lagnese G, Costanzo G, van Leeuwen LPM, Piazza B, Deiana CM, d’Ippolito G, Del Giacco SR, Rattazzi M, Spadaro G, Quinti I, Scarpa R, Dalm VASH, Cinetto F. A beacon in the dark: COVID-19 course in CVID patients from two European countries: Different approaches, similar outcomes. Front Immunol 2023; 14:1093385. [PMID: 36845159 PMCID: PMC9944020 DOI: 10.3389/fimmu.2023.1093385] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/09/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND CVID patients present an increased risk of prolonged SARS-CoV-2 infection and re-infection and a higher COVID-19-related morbidity and mortality compared to the general population. Since 2021, different therapeutic and prophylactic strategies have been employed in vulnerable groups (vaccination, SARS-CoV-2 monoclonal antibodies and antivirals). The impact of treatments over the last 2 years has not been explored in international studies considering the emergence of viral variants and different management between countries. METHODS A multicenter retrospective/prospective real-life study comparing the prevalence and outcomes of SARS-CoV-2 infection between a CVID cohort from four Italian Centers (IT-C) and one cohort from the Netherlands (NL-C), recruiting 773 patients. RESULTS 329 of 773 CVID patients were found positive for SARS-CoV-2 infection between March 1st, 2020 and September 1st 2022. The proportion of CVID patients infected was comparable in both national sub-cohorts. During all waves, chronic lung disease, "complicated" phenotype, chronic immunosuppressive treatment and cardiovascular comorbidities impacted on hospitalization, whereas risk factors for mortality were older age, chronic lung disease, and bacterial superinfections. IT-C patients were significantly more often treated, both with antivirals and mAbs, than NL-C patients. Outpatient treatment, available only in Italy, started from the Delta wave. Despite this, no significant difference was found for COVID-19 severity between the two cohorts. However, pooling together specific SARS-CoV-2 outpatient treatments (mAbs and antivirals), we found a significant effect on the risk of hospitalization starting from Delta wave. Vaccination with ≥ 3 doses shortened RT-PCR positivity, with an additional effect only in patients receiving antivirals. CONCLUSIONS The two sub-cohorts had similar COVID-19 outcomes despite different treatment approaches. This points out that specific treatment should now be reserved for selected subgroups of CVID patients, based on pre-existing conditions.
Collapse
Affiliation(s)
- Cinzia Milito
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Davide Firinu
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Patrick Bez
- Rare Diseases Referral Center, Internal Medicine 1, Ca’ Foncello Hospital, AULSS2 Marca Trevigiana, Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - Annalisa Villa
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Alessandra Punziano
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Gianluca Lagnese
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Giulia Costanzo
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Leanne P. M. van Leeuwen
- Department of Viroscience, Travel Clinic, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Beatrice Piazza
- Rare Diseases Referral Center, Internal Medicine 1, Ca’ Foncello Hospital, AULSS2 Marca Trevigiana, Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - Carla Maria Deiana
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | | | | | - Marcello Rattazzi
- Rare Diseases Referral Center, Internal Medicine 1, Ca’ Foncello Hospital, AULSS2 Marca Trevigiana, Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Isabella Quinti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Riccardo Scarpa
- Rare Diseases Referral Center, Internal Medicine 1, Ca’ Foncello Hospital, AULSS2 Marca Trevigiana, Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - Virgil A. S. H. Dalm
- Department of Internal Medicine, Division of Allergy and Clinical Immunology, Department of Immunology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Francesco Cinetto
- Rare Diseases Referral Center, Internal Medicine 1, Ca’ Foncello Hospital, AULSS2 Marca Trevigiana, Department of Medicine (DIMED), University of Padova, Padova, Italy
| |
Collapse
|
14
|
Long-Term Immunological Memory of SARS-CoV-2 Is Present in Patients with Primary Antibody Deficiencies for up to a Year after Vaccination. Vaccines (Basel) 2023; 11:vaccines11020354. [PMID: 36851231 PMCID: PMC9959530 DOI: 10.3390/vaccines11020354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Some studies have found increased coronavirus disease-19 (COVID-19)-related morbidity and mortality in patients with primary antibody deficiencies. Immunization against COVID-19 may, therefore, be particularly important in these patients. However, the durability of the immune response remains unclear in such patients. In this study, we evaluated the cellular and humoral response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigens in a cross-sectional study of 32 patients with primary antibody deficiency (n = 17 with common variable immunodeficiency (CVID) and n = 15 with selective IgA deficiency) and 15 healthy controls. Serological and cellular responses were determined using enzyme-linked immunosorbent assay and interferon-gamma release assays. The subsets of B and T lymphocytes were measured using flow cytometry. Of the 32 patients, 28 had completed the vaccination regimen with a median time after vaccination of 173 days (IQR = 142): 27 patients showed a positive spike-peptide-specific antibody response, and 26 patients showed a positive spike-peptide-specific T-cell response. The median level of antibody response in CVID patients (5.47 ratio (IQR = 4.08)) was lower compared to healthy controls (9.43 ratio (IQR = 2.13)). No difference in anti-spike T-cell response was found between the groups. The results of this study indicate that markers of the sustained SARS-CoV-2 spike-specific immune response are detectable several months after vaccination in patients with primary antibody deficiencies comparable to controls.
Collapse
|
15
|
Zsichla L, Müller V. Risk Factors of Severe COVID-19: A Review of Host, Viral and Environmental Factors. Viruses 2023; 15:175. [PMID: 36680215 PMCID: PMC9863423 DOI: 10.3390/v15010175] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The clinical course and outcome of COVID-19 are highly variable, ranging from asymptomatic infections to severe disease and death. Understanding the risk factors of severe COVID-19 is relevant both in the clinical setting and at the epidemiological level. Here, we provide an overview of host, viral and environmental factors that have been shown or (in some cases) hypothesized to be associated with severe clinical outcomes. The factors considered in detail include the age and frailty, genetic polymorphisms, biological sex (and pregnancy), co- and superinfections, non-communicable comorbidities, immunological history, microbiota, and lifestyle of the patient; viral genetic variation and infecting dose; socioeconomic factors; and air pollution. For each category, we compile (sometimes conflicting) evidence for the association of the factor with COVID-19 outcomes (including the strength of the effect) and outline possible action mechanisms. We also discuss the complex interactions between the various risk factors.
Collapse
Affiliation(s)
- Levente Zsichla
- Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary
- National Laboratory for Health Security, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Viktor Müller
- Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary
- National Laboratory for Health Security, Eötvös Loránd University, 1117 Budapest, Hungary
| |
Collapse
|
16
|
Ameratunga R, Leung E, Woon ST, Lea E, Allan C, Chan L, Steele R, Lehnert K, Longhurst H. Selective IgA Deficiency May Be an Underrecognized Risk Factor for Severe COVID-19. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:181-186. [PMID: 36241155 PMCID: PMC9554200 DOI: 10.1016/j.jaip.2022.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/14/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
SARS-CoV-2, the agent responsible for COVID-19, has wreaked havoc around the globe. Hundreds of millions of individuals have been infected and well over six million have died from COVID-19. Many COVID-19 survivors have ongoing physical and psychiatric morbidity, which will remain for the rest of their lives. Early in the pandemic, it became apparent that older individuals and those with comorbidities including obesity, diabetes mellitus, coronary artery disease, hypertension, and renal and pulmonary disease were at increased risk of adverse outcomes. It is also clear that some immunodeficient patients, such as those with innate or T cell-immune defects, are at greater risk from COVID-19. Selective IgA deficiency (sIgAD) is generally regarded as a mild disorder in which most patients are asymptomatic because of redundancy in protective immune mechanisms. Recent data indicate that patients with sIgAD may be at high risk of severe COVID-19. SARS-CoV-2 gains entry primarily through the upper respiratory tract mucosa, where IgA has a critical protective role. This may underlie the vulnerability of sIgAD patients to adverse outcomes from COVID-19. This perspective highlights the need for ongoing research into mucosal immunity to improve COVID-19 treatments for patients with sIgAD.
Collapse
Affiliation(s)
- Rohan Ameratunga
- Department of Clinical Immunology, Auckland Hospital, Grafton, Auckland, New Zealand; Department of Virology and Immunology, Auckland Hospital, Grafton, Auckland, New Zealand; Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Euphemia Leung
- Maurice Wilkins Centre, School of Biological Sciences, University of Auckland, Auckland, New Zealand,Auckland Cancer Society Research Centre, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland Hospital, Grafton, Auckland, New Zealand,Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Edward Lea
- Department of Clinical Immunology, Auckland Hospital, Grafton, Auckland, New Zealand
| | - Caroline Allan
- Department of Clinical Immunology, Auckland Hospital, Grafton, Auckland, New Zealand
| | - Lydia Chan
- Department of Clinical Immunology, Auckland Hospital, Grafton, Auckland, New Zealand
| | - Richard Steele
- Department of Clinical Immunology, Auckland Hospital, Grafton, Auckland, New Zealand,Department of Respiratory Medicine, Wellington Hospital, Wellington, New Zealand
| | - Klaus Lehnert
- Department of Respiratory Medicine, Wellington Hospital, Wellington, New Zealand,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Hilary Longhurst
- Department of Clinical Immunology, Auckland Hospital, Grafton, Auckland, New Zealand,Department of Medicine, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
17
|
Garmendia JV, García AH, De Sanctis CV, Hajdúch M, De Sanctis JB. Autoimmunity and Immunodeficiency in Severe SARS-CoV-2 Infection and Prolonged COVID-19. Curr Issues Mol Biol 2022; 45:33-50. [PMID: 36661489 PMCID: PMC9857622 DOI: 10.3390/cimb45010003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
SARS-CoV-2 causes the complex and heterogeneous illness known as COVID-19. The disease primarily affects the respiratory system but can quickly become systemic, harming multiple organs and leading to long-lasting sequelae in some patients. Most infected individuals are asymptomatic or present mild symptoms. Antibodies, complement, and immune cells can efficiently eliminate the virus. However, 20% of individuals develop severe respiratory illness and multiple organ failure. Virus replication has been described in several organs in patients who died from COVID-19, suggesting a compromised immune response. Immunodeficiency and autoimmunity are responsible for this impairment and facilitate viral escape. Mutations in IFN signal transduction and T cell activation are responsible for the inadequate response in young individuals. Autoantibodies are accountable for secondary immunodeficiency in patients with severe infection or prolonged COVID-19. Antibodies against cytokines (interferons α, γ and ω, IL1β, IL6, IL10, IL-17, IL21), chemokines, complement, nuclear proteins and DNA, anticardiolipin, and several extracellular proteins have been reported. The type and titer of autoantibodies depend on age and gender. Organ-specific autoantibodies have been described in prolonged COVID-19. Their role in the disease is under study. Autoimmunity and immunodeficiency should be screened as risk factors for severe or prolonged COVID-19.
Collapse
Affiliation(s)
- Jenny Valentina Garmendia
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Alexis Hipólito García
- Institute of Immunology, Faculty of Medicine, Universidad Central de Venezuela, Caracas 1040, Venezuela
| | - Claudia Valentina De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
- Czech Institute of Advanced Technology in Research [Catrin], Palacky University, 779 00 Olomouc, Czech Republic
| | - Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
- Czech Institute of Advanced Technology in Research [Catrin], Palacky University, 779 00 Olomouc, Czech Republic
- Correspondence:
| |
Collapse
|
18
|
Vergidis P, Levy ER, Ristagno EH, Iyer VN, O'Horo JC, Joshi AY. COVID-19 in patients with B cell immune deficiency. J Immunol Methods 2022; 510:113351. [PMID: 36087764 PMCID: PMC9450485 DOI: 10.1016/j.jim.2022.113351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/22/2022] [Accepted: 09/02/2022] [Indexed: 12/31/2022]
Abstract
This article aims to describe the clinical manifestations and management of COVID-19 in patients with primary and secondary B cell deficient states. We describe the epidemiologic and clinical features as well as unique management paradigm including isolation precautions with COVID-19. We then focus upon primary and secondary preventive approaches including vaccination and pre- as well as post-exposure prophylaxis. Further, we elaborate upon the important disease specific risk factors in these patients and the need to conduct prospective clinical trials to develop individualized management strategies in this population.
Collapse
Affiliation(s)
- Paschalis Vergidis
- Division of Public Health, Infectious Diseases and Occupational Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Emily R. Levy
- Division of Pediatric Critical Care Medicine, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA,Division of Pediatric Infectious Diseases, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Elizabeth H. Ristagno
- Division of Pediatric Infectious Diseases, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Vivek N. Iyer
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
| | - John C. O'Horo
- Division of Public Health, Infectious Diseases and Occupational Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, USA,Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
| | - Avni Y. Joshi
- Division of Pediatric and Adult Allergy and Immunology, Mayo Clinic, Rochester, MN, USA,Corresponding author at: Mayo Clinic Childrens Center, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
19
|
Ameratunga R, Woon ST, Steele R, Lehnert K, Leung E, Brooks AES. Critical role of diagnostic SARS-CoV-2 T cell assays for immunodeficient patients. J Clin Pathol 2022; 75:793-797. [PMID: 36216482 DOI: 10.1136/jcp-2022-208305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/08/2022] [Indexed: 11/04/2022]
Abstract
After almost 3 years of intense study, the immunological basis of COVID-19 is better understood. Patients who suffer severe disease have a chaotic, destructive immune response. Many patients with severe COVID-19 produce high titres of non-neutralising antibodies, which are unable to sterilise the infection. In contrast, there is increasing evidence that a rapid, balanced cellular immune response is required to eliminate the virus and mitigate disease severity. In the longer term, memory T cell responses, following infection or vaccination, play a critical role in protection against SARS-CoV-2.Given the pivotal role of cellular immunity in the response to COVID-19, diagnostic T cell assays for SARS-CoV-2 may be of particular value for immunodeficient patients. A diagnostic SARS-CoV-2 T cell assay would be of utility for immunocompromised patients who are unable to produce antibodies or have passively acquired antibodies from subcutaneous or intravenous immunoglobulin (SCIG/IVIG) replacement. In many antibody-deficient patients, cellular responses are preserved. SARS-CoV-2 T cell assays may identify breakthrough infections if reverse transcriptase quantitative PCR (RT-qPCR) or rapid antigen tests (RATs) are not undertaken during the window of viral shedding. In addition to utility in patients with immunodeficiency, memory T cell responses could also identify chronically symptomatic patients with long COVID-19 who were infected early in the pandemic. These individuals may have been infected before the availability of reliable RT-qPCR and RAT tests and their antibodies may have waned. T cell responses to SARS-CoV-2 have greater durability than antibodies and can also distinguish patients with infection from vaccinated individuals.
Collapse
Affiliation(s)
- Rohan Ameratunga
- Department of Virology and Immunology, Auckland City Hospital, Auckland, New Zealand .,Department of Clinical Immunology, Auckland City Hospital, Auckland, New Zealand
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland City Hospital, Auckland, New Zealand
| | - Richard Steele
- Department of Clinical Immunology, Wellington Hospital, Wellington, New Zealand
| | - Klaus Lehnert
- Centre for brain Research, University of Auckland, Auckland, New Zealand
| | - Euphemia Leung
- Cancer Research, Faculty of Medical and health Sciences, School of Medicine, University of Auckland, Auckland, New Zealand
| | - Anna E S Brooks
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
20
|
Ameratunga R, Leung E, Woon ST, Chan L, Steele R, Lehnert K, Longhurst H. SARS-CoV-2 Omicron: Light at the End of the Long Pandemic Tunnel or Another False Dawn for Immunodeficient Patients? THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:2267-2273. [PMID: 35752434 PMCID: PMC9220855 DOI: 10.1016/j.jaip.2022.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 12/30/2022]
Abstract
COVID-19 has had a disastrous impact on the world. Apart from at least 6 million deaths, countless COVID-19 survivors are suffering long-term physical and psychiatric morbidity. Hundreds of millions have been plunged into poverty caused by economic misery, particularly in developing nations. Early in the pandemic, it became apparent certain groups of individuals such as the elderly and those with comorbidities were more likely to suffer severe disease. In addition, patients with some forms of immunodeficiency, including those with T-cell and innate immune defects, were at risk of poor outcomes. Patients with immunodeficiencies are also disadvantaged as they may not respond optimally to COVID-19 vaccines and often have pre-existing lung damage. SARS-CoV-2 Omicron (B.1.529) and its subvariants (BA.1, BA.2, etc) have emerged recently and are dominating COVID-19 infections globally. Omicron is associated with a reduced risk of hospitalization and appears to have a lower case fatality rate compared with previous SARS-CoV-2 variants. Omicron has offered hope the pandemic may finally be coming to an end, particularly for vaccinated, healthy individuals. The situation is less clear for individuals with vulnerabilities, particularly immunodeficient patients. This perspective offers insight into potential implications of the SARS-CoV-2 Omicron variant for patients with immunodeficiencies.
Collapse
Affiliation(s)
- Rohan Ameratunga
- Department of Clinical immunology, Auckland Hospital, Auckland, New Zealand; Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand; Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand. E%
| | - Euphemia Leung
- Maurice Wilkins Centre, School of Biological Sciences, University of Auckland, Auckland, New Zealand; Auckland Cancer Society Research Centre, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand; Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Lydia Chan
- Department of Clinical immunology, Auckland Hospital, Auckland, New Zealand
| | - Richard Steele
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand; Department of Respiratory Medicine, Wellington Hospital, Wellington, New Zealand
| | - Klaus Lehnert
- Maurice Wilkins Centre, School of Biological Sciences, University of Auckland, Auckland, New Zealand; School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Hilary Longhurst
- Department of Clinical immunology, Auckland Hospital, Auckland, New Zealand; Department of Medicine, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
21
|
Shin JJ, Par-Young J, Unlu S, McNamara A, Park HJ, Shin MS, Gee RJ, Doyle H, Afinogenova Y, Zidan E, Kwah J, Russo A, Mamula M, Hsu FI, Catanzaro J, Racke M, Bucala R, Wilen C, Kang I. Defining Clinical and Immunological Predictors of Poor Immune Responses to COVID-19 mRNA Vaccines in Patients with Primary Antibody Deficiency. J Clin Immunol 2022; 42:1137-1150. [PMID: 35713752 PMCID: PMC9203263 DOI: 10.1007/s10875-022-01296-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/25/2022] [Indexed: 11/30/2022]
Abstract
Immune responses to coronavirus disease 2019 (COVID-19) mRNA vaccines in primary antibody deficiencies (PADs) are largely unknown. We investigated antibody and CD4+ T-cell responses specific for SARS-CoV-2 spike protein (S) before and after vaccination and associations between vaccine response and patients' clinical and immunological characteristics in PADs. The PAD cohort consisted of common variable immune deficiency (CVID) and other PADs, not meeting the criteria for CVID diagnosis (oPADs). Anti-S IgG, IgA, and IgG subclasses 1 and 3 increased after vaccination and correlated with neutralization activity in HCs and patients with oPADs. However, 42% of CVID patients developed such responses after the 2nd dose. A similar pattern was also observed with S-specific CD4+ T-cells as determined by OX40 and 4-1BB expression. Patients with poor anti-S IgG response had significantly lower levels of baseline IgG, IgA, CD19+ B-cells, switched memory B-cells, naïve CD8+ T-cells, and a higher frequency of EM CD8+ T-cells and autoimmunity compared to patients with adequate anti-S IgG responses. Patients with oPADs can develop humoral and cellular immune responses to vaccines similar to HCs. However, a subset of CVID patients exhibit impairment in developing such responses, which can be predicted by the baseline immune profile and history of autoimmunity.
Collapse
Affiliation(s)
- Junghee Jenny Shin
- Section of Rheumatology, Allergy & Immunology, Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street, New Haven, Connecticut, 06520, USA
| | - Jennefer Par-Young
- Section of Rheumatology, Allergy & Immunology, Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street, New Haven, Connecticut, 06520, USA
| | - Serhan Unlu
- Section of Rheumatology, Allergy & Immunology, Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street, New Haven, Connecticut, 06520, USA
| | - Andrew McNamara
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, 06516, USA
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, 06516, USA
| | - Hong-Jai Park
- Section of Rheumatology, Allergy & Immunology, Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street, New Haven, Connecticut, 06520, USA
| | - Min Sun Shin
- Section of Rheumatology, Allergy & Immunology, Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street, New Haven, Connecticut, 06520, USA
| | - Renelle J Gee
- Section of Rheumatology, Allergy & Immunology, Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street, New Haven, Connecticut, 06520, USA
| | - Hester Doyle
- Section of Rheumatology, Allergy & Immunology, Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street, New Haven, Connecticut, 06520, USA
| | - Yuliya Afinogenova
- Section of Rheumatology, Allergy & Immunology, Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street, New Haven, Connecticut, 06520, USA
| | - Elena Zidan
- Department of Internal Medicine, Bridgeport Hospital - Yale New Haven Health, Bridgeport, CT, 06610, USA
| | - Jason Kwah
- Section of Rheumatology, Allergy & Immunology, Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street, New Haven, Connecticut, 06520, USA
| | - Armand Russo
- Section of Hematology and Oncology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, 06520, USA
| | - Mark Mamula
- Section of Rheumatology, Allergy & Immunology, Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street, New Haven, Connecticut, 06520, USA
| | - Florence Ida Hsu
- Section of Rheumatology, Allergy & Immunology, Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street, New Haven, Connecticut, 06520, USA
| | - Jason Catanzaro
- Section of Pulmonary, Allergy, Immunology and Sleep Medicine, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, 06520, USA
| | - Michael Racke
- Quest Diagnostics, 500 Plaza Dr, Secaucus, NJ, 07094, USA
| | - Richard Bucala
- Section of Rheumatology, Allergy & Immunology, Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street, New Haven, Connecticut, 06520, USA
| | - Craig Wilen
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, 06516, USA
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, 06516, USA
| | - Insoo Kang
- Section of Rheumatology, Allergy & Immunology, Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street, New Haven, Connecticut, 06520, USA.
| |
Collapse
|
22
|
Rossi CM, Lenti MV, Merli S, Di Sabatino A. Role of IgM Memory B Cells and Spleen Function in COVID-19. Front Immunol 2022; 13:889876. [PMID: 35844543 PMCID: PMC9280616 DOI: 10.3389/fimmu.2022.889876] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
IgM memory B cells, are a peculiar subset of memory B cells, which probably originates in the spleen and outside germinal centers and provide a rapid line of defence against mucosal infections. Their role in counteracting COVID-19 is still elusive but, recent evidence, mainly boosted by studies on spleen function/involvement in COVID-19, seems to support the notion that this subset of memory B cells could exert a protective role against this virus, along with other coronaviruses, particularly in the acute setting of the infection, as outlined by worst clinical outcomes observed in unvaccinated patients with impaired IgM B memory response and spleen function. Herein we critically summarise the current landscape of studies on IgM memory B cells, focusing on the clinical impact of their depletion, by comparing the COVID-19-related splenic dysfunction with other hypo- and asplenic conditions and by adding recent data on follow-up studies and postulate a mechanistic explanation for their reduced numbers. The early detection of an impaired IgM memory B cell response in patients with COVID-19 may contribute to their improved care through different strategies, such as through tailored vaccine strategies, prompt hospital admission and/or administration of anti-infective treatments, thus resulting in an better prognosis, although at present management algorithms are still unavailable. Moreover, further studies with longer follow-up are needed to assess the evolution of COVID-19-associated/exacerbated immune deficit.
Collapse
|
23
|
Rivalta B, Amodio D, Giancotta C, Santilli V, Pacillo L, Zangari P, Cotugno N, Manno EC, Finocchi A, Bernardi S, Colagrossi L, Gentile L, Russo C, Perno CF, Rossi P, Cancrini C, Palma P. Case Report: Successful Treatment With Monoclonal Antibodies in One APDS Patient With Prolonged SARS-CoV-2 Infection Not Responsive to Previous Lines of Treatment. Front Immunol 2022; 13:891274. [PMID: 35799775 PMCID: PMC9253383 DOI: 10.3389/fimmu.2022.891274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/18/2022] [Indexed: 11/15/2022] Open
Abstract
We described the case of a patient affected by activated PI3K-kinase delta syndrome (APDS) and a long-lasting and pauci-symptomatic SARS-CoV-2 infection, treated with multiple therapeutic agents including remdesivir and SARS-CoV-2-neutralizing monoclonal antibodies. We detected the clearance of the virus 105 days from the first positive swab and 7 days after monoclonal antibody administration. At genotyping, the SARS-CoV-2 virus resulted as wild type on all samples tested. This case shows the monoclonal antibodies’ good tolerability and efficacy in reducing viral shedding in long-lasting infections refractory to other treatments.
Collapse
Affiliation(s)
- Beatrice Rivalta
- Research Unit of Primary Immunodeficiencies, Immune and Infectious Diseases Division, Academic Department of Pediatrics (DPUO), Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Donato Amodio
- Research Unit of Clinical Immunology and Vaccinology, Academic Department of Pediatrics (DPUO), Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Carmela Giancotta
- Research Unit of Clinical Immunology and Vaccinology, Academic Department of Pediatrics (DPUO), Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Veronica Santilli
- Research Unit of Clinical Immunology and Vaccinology, Academic Department of Pediatrics (DPUO), Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Lucia Pacillo
- Research Unit of Primary Immunodeficiencies, Immune and Infectious Diseases Division, Academic Department of Pediatrics (DPUO), Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Paola Zangari
- Research Unit of Clinical Immunology and Vaccinology, Academic Department of Pediatrics (DPUO), Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Nicola Cotugno
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
- Research Unit of Clinical Immunology and Vaccinology, Academic Department of Pediatrics (DPUO), Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Emma Concetta Manno
- Research Unit of Clinical Immunology and Vaccinology, Academic Department of Pediatrics (DPUO), Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Andrea Finocchi
- Research Unit of Primary Immunodeficiencies, Immune and Infectious Diseases Division, Academic Department of Pediatrics (DPUO), Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Stefania Bernardi
- Research Unit of Primary Immunodeficiencies, Immune and Infectious Diseases Division, Academic Department of Pediatrics (DPUO), Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Luna Colagrossi
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Multimodal Medicine Research Area, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Leonarda Gentile
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Multimodal Medicine Research Area, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Cristina Russo
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Multimodal Medicine Research Area, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Carlo Federico Perno
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Multimodal Medicine Research Area, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Paolo Rossi
- Research Unit of Primary Immunodeficiencies, Immune and Infectious Diseases Division, Academic Department of Pediatrics (DPUO), Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Caterina Cancrini
- Research Unit of Primary Immunodeficiencies, Immune and Infectious Diseases Division, Academic Department of Pediatrics (DPUO), Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Paolo Palma
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
- Research Unit of Clinical Immunology and Vaccinology, Academic Department of Pediatrics (DPUO), Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- *Correspondence: Paolo Palma,
| |
Collapse
|
24
|
Goda V, Kriván G, Kulcsár A, Gönczi M, Tasnády S, Matula Z, Nagy G, Bekő G, Horváth M, Uher F, Szekanecz Z, Vályi-Nagy I. Specific Antibody and the T-Cell Response Elicited by BNT162b2 Boosting After Two ChAdOx1 nCoV-19 in Common Variable Immunodeficiency. Front Immunol 2022; 13:907125. [PMID: 35784359 PMCID: PMC9247171 DOI: 10.3389/fimmu.2022.907125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Common variable immunodeficiency (CVID) patients have markedly decreased immune response to vaccinations. In this study we evaluated humoral and T cell-mediated responses against severe acute respiratory syndrome coronavirus-2 (SARS-Cov-2) with additional flow cytometric changes in CVID patients receiving booster vaccination with BNT162b2 after two ChAdOx1 nCoV-19. The BNT162b2 vaccine raised the anti-spike protein S immunoglobulin G over the cut-off value from 70% to 83% in CVID, anti-neutralizing antibody had been raised over a cut-off value from 70% to 80% but levels after boosting were significantly less in both tests than in healthy controls (*p=0.02; **p=0.009 respectively). Anti-SARS-CoV-2 immunoglobulin A became less positive in CVID after boosting, but the difference was not significant. The cumulative interferon-γ positive T cell response by ELISpot was over the cut-off value in 53% of the tested individuals and raised to 83% after boosting. This and flow cytometric control of cumulative CD4+ and CD8+ virus-specific T cell absolute counts in CVID were also statistically not different from healthy individuals after boosting. Additional flow cytometric measures for CD45+ lymphocytes, CD3+, and CD19+ cells have not shown significant differences from controls except for lower CD4+T cell counts at both time points (**p=0.003; **p=0.002), in parallel CD4+ virus-specific T-cell ratio was significantly lower in CVID patients at the first time point (*p: 0.03). After boosting, in more than 33% of both CVID patients and also in their healthy controls we detected a decrease in absolute CD45+, CD3+, CD3+CD4+, and CD3+CD8+, CD19+, and CD16+56+ cell counts. CD16+CD56+ cell counts were significantly lower compared to controls before and after boosting (*p=0.02, *p=0.02). CVID patients receiving immunosuppressive therapy throughout the previous year or autologous stem cell transplantation two years before vaccination had worse responses in anti-spike, anti-neutralizing antibody, CD3+CD4+T, CD19+ B, and natural killer cell counts than the whole CVID group. Vaccinations had few side effects. Based on these data, CVID patients receiving booster vaccination with BNT162b2 after two ChadOx1 can effectively elevate the levels of protection against COVID-19 infection, but the duration of the immune response together with COVID-19 morbidity data needs further investigation among these patients.
Collapse
Affiliation(s)
- Vera Goda
- Pediatric Hematology and Stem Cell Transplantation Department, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
- *Correspondence: Vera Goda,
| | - Gergely Kriván
- Pediatric Hematology and Stem Cell Transplantation Department, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Andrea Kulcsár
- Department of Special Immunization Services, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Márton Gönczi
- Central Laboratory of Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Szabolcs Tasnády
- Central Laboratory of Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Zsolt Matula
- Laboratory for Experimental Cell Therapy, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Ginette Nagy
- Central Laboratory of Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Gabriella Bekő
- Central Laboratory of Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Máté Horváth
- Departmental Group of Infectious Diseases, Semmelweis University Doctoral School of Clinical Medicine, Budapest, Hungary
| | - Ferenc Uher
- Laboratory for Experimental Cell Therapy, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Zoltán Szekanecz
- Department of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - István Vályi-Nagy
- Department of Hematology and Stem Cell Transplantation, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| |
Collapse
|
25
|
Pulvirenti F, Di Cecca S, Sinibaldi M, Piano Mortari E, Terreri S, Albano C, Guercio M, Sculco E, Milito C, Ferrari S, Locatelli F, Quintarelli C, Carsetti R, Quinti I. T-Cell Defects Associated to Lack of Spike-Specific Antibodies after BNT162b2 Full Immunization Followed by a Booster Dose in Patients with Common Variable Immune Deficiencies. Cells 2022; 11:1918. [PMID: 35741048 PMCID: PMC9221747 DOI: 10.3390/cells11121918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/03/2022] [Accepted: 06/09/2022] [Indexed: 02/07/2023] Open
Abstract
Following the third booster dose of the mRNA vaccine, Common Variable Immune Deficiencies (CVID) patients may not produce specific antibodies against the virus spike protein. The T-cell abnormalities associated with the absence of antibodies are still a matter of investigation. Spike-specific IgG and IgA, peripheral T cell subsets, CD40L and cytokine expression, and Spike-specific specific T-cells responses were evaluated in 47 CVID and 26 healthy donors after three doses of BNT162b2 vaccine. Testing was performed two weeks after the third vaccine dose. Thirty-six percent of the patients did not produce anti-SARS-CoV-2 IgG or IgA antibodies. Non responder patients had lower peripheral blood lymphocyte counts, circulating naïve and central memory T-cells, low CD40L expression on the CD4+CD45+RO+ and CD8+CD45+RO+ T-cells, high frequencies of TNFα and IFNγ expressing CD8+ T-cells, and defective release of IFNγ and TNFα following stimulation with Spike peptides. Non responders had a more complex disease phenotype, with higher frequencies of structural lung damage and autoimmunity, especially autoimmune cytopenia. Thirty-five percent of them developed a SARS-CoV-2 infection after immunization in comparison to twenty percent of CVID who responded to immunization with antibodies production. CVID-associated T cell abnormalities contributed to the absence of SARS-CoV-2 specific antibodies after full immunization.
Collapse
Affiliation(s)
- Federica Pulvirenti
- Reference Centre for Primary Immune Deficiencies, Azienda Ospedaliera Universitaria Policlinico Umberto I, 00185 Rome, Italy;
| | - Stefano Di Cecca
- Department Onco-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, 00116 Rome, Italy; (S.D.C.); (M.S.); (M.G.); (F.L.); (C.Q.)
| | - Matilde Sinibaldi
- Department Onco-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, 00116 Rome, Italy; (S.D.C.); (M.S.); (M.G.); (F.L.); (C.Q.)
| | - Eva Piano Mortari
- B Cell Unit, Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, Viale di San Paolo, 00146 Rome, Italy; (E.P.M.); (S.T.); (C.A.); (R.C.)
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (E.S.); (C.M.)
| | - Sara Terreri
- B Cell Unit, Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, Viale di San Paolo, 00146 Rome, Italy; (E.P.M.); (S.T.); (C.A.); (R.C.)
| | - Christian Albano
- B Cell Unit, Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, Viale di San Paolo, 00146 Rome, Italy; (E.P.M.); (S.T.); (C.A.); (R.C.)
| | - Marika Guercio
- Department Onco-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, 00116 Rome, Italy; (S.D.C.); (M.S.); (M.G.); (F.L.); (C.Q.)
| | - Eleonora Sculco
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (E.S.); (C.M.)
| | - Cinzia Milito
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (E.S.); (C.M.)
| | - Simona Ferrari
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Franco Locatelli
- Department Onco-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, 00116 Rome, Italy; (S.D.C.); (M.S.); (M.G.); (F.L.); (C.Q.)
| | - Concetta Quintarelli
- Department Onco-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, 00116 Rome, Italy; (S.D.C.); (M.S.); (M.G.); (F.L.); (C.Q.)
| | - Rita Carsetti
- B Cell Unit, Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, Viale di San Paolo, 00146 Rome, Italy; (E.P.M.); (S.T.); (C.A.); (R.C.)
| | - Isabella Quinti
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (E.S.); (C.M.)
| |
Collapse
|
26
|
Ameratunga R, Woon ST, Steele R, Lehnert K, Leung E, Brooks AES. Severe COVID-19 is a T cell immune dysregulatory disorder triggered by SARS-CoV-2. Expert Rev Clin Immunol 2022; 18:557-565. [PMID: 35510369 DOI: 10.1080/1744666x.2022.2074403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION COVID-19 has had a calamitous impact on the global community. Apart from at least 6M deaths, hundreds of millions have been infected and a much greater number have been plunged into poverty. Vaccines have been effective but financial and logistical challenges have hampered their rapid global deployment. Vaccine disparities have allowed the emergence of new SARS-CoV-2 variants including delta and omicron, perpetuating the pandemic. AREAS COVERED The immunological response to SARS-CoV-2 has been the subject of intense study and is now better understood. Many of the clinical manifestations of severe disease are a consequence of immune dysregulation triggered by the virus. This may explain the lack of efficacy of antiviral treatments such as convalescent plasma infusions, given later in the disease. EXPERT OPINION T cells play a crucial role in both the outcome of COVID-19 as well as the protective response to vaccines. Vaccines do not prevent infection but reduce the risk of a chaotic and destructive cellular immune response to the virus. Severe COVID-19 should be considered a virus-induced secondary immune dysregulatory disorder of cellular immunity, with broad host susceptibility. This perspective of COVID-19 will lead to better diagnostic tests, vaccines and therapeutic strategies in the future.
Collapse
Affiliation(s)
- Rohan Ameratunga
- Department of Clinical immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland New Zealand.,Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand.,Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand.,Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland
| | - Richard Steele
- Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand.,Department of Respiratory Medicine, Wellington Hospital, Wellington, New Zealand
| | - Klaus Lehnert
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre, School of Biological Sciences, University of Auckland, Symonds St, Auckland, New Zealand Wilkins Centre, University of Auckland
| | - Euphemia Leung
- Maurice Wilkins Centre, School of Biological Sciences, University of Auckland, Symonds St, Auckland, New Zealand Wilkins Centre, University of Auckland.,Auckland Cancer Society Research Centre, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Anna E S Brooks
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre, School of Biological Sciences, University of Auckland, Symonds St, Auckland, New Zealand Wilkins Centre, University of Auckland
| |
Collapse
|
27
|
Mortality in Severe Antibody Deficiencies Patients during the First Two Years of the COVID-19 Pandemic: Vaccination and Monoclonal Antibodies Efficacy. Biomedicines 2022; 10:biomedicines10051026. [PMID: 35625763 PMCID: PMC9138935 DOI: 10.3390/biomedicines10051026] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/20/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Patients with severely impaired antibody responses represent a group at-risk in the SARS-CoV-2 pandemic due to the lack of Spike-specific neutralizing antibodies. The main objective of this paper was to assess, by a longitudinal prospective study, COVID-19 infection and mortality rates, and disease severity in the first two years of the pandemic in a cohort of 471 Primary Antibody Defects adult patients. As secondary endpoints, we compared SARS-CoV-2 annual mortality rate to that observed over a 10-year follow-up in the same cohort, and we assessed the impact of interventions done in the second year, vaccination and anti-SARS-CoV-2 monoclonal antibodies administration on the disease outcome. Forty-one and 84 patients were infected during the first and the second year, respectively. Despite a higher infection and reinfection rate, and a higher COVID-19-related mortality rate compared to the Italian population, the pandemic did not modify the annual mortality rate for any cause in our cohort compared to that registered over the last ten years in the same cohort. PADs patients who died from COVID-19 had an underlying end-stage lung disease. We showed a beneficial effect of MoAbs administration on the likelihood of hospitalization and development of severe disease. In conclusion, COVID-19 did not cause excess mortality in Severe Antibody Deficiencies.
Collapse
|
28
|
Díaz-Alberola I, Espuch-Oliver A, García-Aznar JM, Ganoza-Gallardo C, Aguilera-Franco M, Sampedro A, Jiménez P, López-Nevot MÁ. Common Variable Immunodeficiency Associated with a De Novo IKZF1 Variant and a Low Humoral Immune Response to the SARS-CoV-2 Vaccine. J Clin Med 2022; 11:2303. [PMID: 35566429 PMCID: PMC9101713 DOI: 10.3390/jcm11092303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND AND AIMS Common variable immunodeficiency (CVID) comprises a group of diseases with heterogeneous clinical and immunological manifestations. Several mutations have been identified in genes encoding proteins essential for immune function. Our aim was to phenotypically and genotypically characterize a patient diagnosed with CVID and study his response to the SARS-CoV-2 vaccine. METHODS We performed a next-generation sequencing analysis, a CMIA, and an ELISA to analyze the humoral and cellular response to the SARS-CoV-2 vaccine, respectively. We also employed flow cytometry and immunoturbidimetry to assess the patient's global immune status. RESULTS We found a low humoral but positive cellular response to the SARS-CoV-2 vaccine. NGS screening revealed a transition from guanine to adenine at position c.485 of the IKZF1 gene in heterozygosity, giving rise to the R162Q variant, which was not present in his parents. CONCLUSIONS The R162Q variant of the IKZF1 gene has been associated with CVID type 13, but always with an autosomal dominant inheritance with high penetrance. Therefore, we present for the first time a case of CVID associated with a de novo heterozygous R162Q variant in the IKZF1 gene in a patient with a low humoral immune response to the complete COVID-19 vaccination program.
Collapse
Affiliation(s)
- Irene Díaz-Alberola
- Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain; (P.J.); (M.Á.L.-N.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Programa de Doctorado en Biomedicina, Universidad de Granada, 18016 Granada, Spain
| | - Andrea Espuch-Oliver
- Hospital General Nuestra Señora del Prado, Talavera de la Reina, 45600 Toledo, Spain;
| | | | | | - María Aguilera-Franco
- Servicio de Microbiología, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain; (M.A.-F.); (A.S.)
| | - Antonio Sampedro
- Servicio de Microbiología, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain; (M.A.-F.); (A.S.)
| | - Pilar Jiménez
- Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain; (P.J.); (M.Á.L.-N.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Miguel Ángel López-Nevot
- Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain; (P.J.); (M.Á.L.-N.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Departamento de Bioquímica, Biología Molecular e Inmunología III, Universidad de Granada, 18016 Granada, Spain
| |
Collapse
|
29
|
Tehrani S, Ziaie S, Kashefizadeh A, Fadaei M, Najafiarab H, Keyvanfar A. Case Report: Pneumonia in a Patient With Combined Variable Immunodeficiency: COVID-19 or Pneumocystis Pneumonia? Front Med (Lausanne) 2022; 9:814300. [PMID: 35280884 PMCID: PMC8904891 DOI: 10.3389/fmed.2022.814300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/28/2022] [Indexed: 12/24/2022] Open
Abstract
Combined variable immunodeficiency (CVID) is a primary immunodeficiency, characterized by impairment in immune system function. These patients are susceptible to opportunistic infections, which may mimic COVID-19 manifestations. Also, misdiagnosis or delayed diagnosis of opportunistic infections can lead to perilous consequences. We report a 28-year-old woman with a history of combined variable immunodeficiency disorder (CVID) and ulcerative colitis (UC) complained of fever, cough, and dyspnea. According to the clinical and radiological manifestations and the COVID-19 epidemic, she was admitted with a primary diagnosis of COVID-19 pneumonia. After a week, the patient did not respond to treatment, so she underwent bronchoscopy. Using polymerase chain reaction (PCR) methodology, we detected DNA of Pneumocystis jirovecii, the causative agent of a life-threatening pneumonia (PCP), in respiratory specimens. The patient was hypersensitive to common PCP treatments, so she was treated with high-dose clindamycin. However, the patient's clinical condition aggravated. Besides, we found evidence of pneumothorax, pneumomediastinum, and pneumopericardium in chest CT scan. We inserted a catheter for the patient to evacuate the air inside the mediastinum. Also, we added caspofungin to the treatment. The patient eventually recovered and was discharged from the hospital about a week later. Thus, during the COVID-19 epidemic, in febrile patients with respiratory symptoms, physicians should not think only of COVID-19. They must consider opportunistic infections such as PCP, especially in immunocompromised patients.
Collapse
Affiliation(s)
- Shabnam Tehrani
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shadi Ziaie
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Kashefizadeh
- Shahid Dr. Labbafinejad Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahta Fadaei
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hanieh Najafiarab
- Preventative Gynecology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirreza Keyvanfar
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Romani L, Calò Carducci FI, Chiurchiù S, Cursi L, De Luca M, Di Giuseppe M, Krzysztofiak A, Lancella L, Palma P, Vallesi L, Corsetti T, Campana A, Nicastri E, Rossi P, Bernardi S. Safety of Monoclonal Antibodies in Children Affected by SARS-CoV-2 Infection. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9030369. [PMID: 35327741 PMCID: PMC8947030 DOI: 10.3390/children9030369] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/15/2022] [Accepted: 02/24/2022] [Indexed: 12/24/2022]
Abstract
Monoclonal antibody therapies for COVID-19 have been frequently used in adults, whereas there are little data regarding the safety or efficacy of monoclonal antibody treatments in pediatric patients affected by COVID-19. We report our experience in the administration of mAb as a treatment for SARS-CoV-2 infection in children aged from 24 days to 18 years old.
Collapse
Affiliation(s)
- Lorenza Romani
- Immunology and Infectious Disease Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (F.I.C.C.); (S.C.); (L.C.); (M.D.L.); (M.D.G.); (A.K.); (L.L.); (S.B.)
- Correspondence:
| | - Francesca Ippolita Calò Carducci
- Immunology and Infectious Disease Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (F.I.C.C.); (S.C.); (L.C.); (M.D.L.); (M.D.G.); (A.K.); (L.L.); (S.B.)
| | - Sara Chiurchiù
- Immunology and Infectious Disease Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (F.I.C.C.); (S.C.); (L.C.); (M.D.L.); (M.D.G.); (A.K.); (L.L.); (S.B.)
| | - Laura Cursi
- Immunology and Infectious Disease Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (F.I.C.C.); (S.C.); (L.C.); (M.D.L.); (M.D.G.); (A.K.); (L.L.); (S.B.)
| | - Maia De Luca
- Immunology and Infectious Disease Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (F.I.C.C.); (S.C.); (L.C.); (M.D.L.); (M.D.G.); (A.K.); (L.L.); (S.B.)
| | - Martina Di Giuseppe
- Immunology and Infectious Disease Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (F.I.C.C.); (S.C.); (L.C.); (M.D.L.); (M.D.G.); (A.K.); (L.L.); (S.B.)
| | - Andrzej Krzysztofiak
- Immunology and Infectious Disease Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (F.I.C.C.); (S.C.); (L.C.); (M.D.L.); (M.D.G.); (A.K.); (L.L.); (S.B.)
| | - Laura Lancella
- Immunology and Infectious Disease Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (F.I.C.C.); (S.C.); (L.C.); (M.D.L.); (M.D.G.); (A.K.); (L.L.); (S.B.)
| | - Paolo Palma
- Research Unit of Congenital and Perinatal Infections, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
- Chair of Pediatrics, Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Leonardo Vallesi
- Hospital Pharmacy Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (L.V.); (T.C.)
| | - Tiziana Corsetti
- Hospital Pharmacy Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (L.V.); (T.C.)
| | - Andrea Campana
- Department of Pediatrics, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Emanuele Nicastri
- National Institute for Infectious Diseases, Lazzaro Spallanzani, IRCCS, 00149 Rome, Italy;
| | - Paolo Rossi
- Chair of Pediatrics, Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
- Academic Department of Pediatrics, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Stefania Bernardi
- Immunology and Infectious Disease Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (F.I.C.C.); (S.C.); (L.C.); (M.D.L.); (M.D.G.); (A.K.); (L.L.); (S.B.)
| |
Collapse
|
31
|
Ameratunga R, Woon ST, Lea E, Steele R, Lehnert K, Leung E, Brooks AES. The (apparent) antibody paradox in COVID-19. Expert Rev Clin Immunol 2022; 18:335-345. [PMID: 35184669 PMCID: PMC8935454 DOI: 10.1080/1744666x.2022.2044797] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Rohan Ameratunga
- Department of Clinical immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland New Zealand
- Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand
- Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand
- Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland
| | - Edward Lea
- Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand
| | - Richard Steele
- Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand
- Department of Respiratory Medicine, Wellington Hospital, Wellington, New Zealand
| | - Klaus Lehnert
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre, School of Biological Sciences, University of Auckland, Symonds St, Auckland, New Zealand Wilkins Centre, University of Auckland
| | - Euphemia Leung
- Auckland Cancer Society Research Centre, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Anna E. S. Brooks
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre, School of Biological Sciences, University of Auckland, Symonds St, Auckland, New Zealand Wilkins Centre, University of Auckland
| |
Collapse
|
32
|
Quinti I, Locatelli F, Carsetti R. The Immune Response to SARS-CoV-2 Vaccination: Insights Learned From Adult Patients With Common Variable Immune Deficiency. Front Immunol 2022; 12:815404. [PMID: 35126372 PMCID: PMC8807657 DOI: 10.3389/fimmu.2021.815404] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/21/2021] [Indexed: 12/23/2022] Open
Abstract
CVID patients have an increased susceptibility to vaccine-preventable infections. The question on the potential benefits of immunization of CVID patients against SARS-CoV-2 offered the possibility to analyze the defective mechanisms of immune responses to a novel antigen. In CVID, as in immunocompetent subjects, the role of B and T cells is different between infected and vaccinated individuals. Upon vaccination, variable anti-Spike IgG responses have been found in different CVID cohorts. Immunization with two doses of mRNA vaccine did not generate Spike-specific classical memory B cells (MBCs) but atypical memory B cells (ATM) with low binding capacity to Spike protein. Spike-specific T-cells responses were also induced in CVID patients with a variable frequency, differently from specific T cells produced after multiple exposures to viral antigens following influenza virus immunization and infection. The immune response elicited by SARS-CoV-2 infection was enhanced by subsequent immunization underlying the need to immunize convalescent COVID-19 CVID patients after recovery. In particular, immunization after SARS-Cov-2 infection generated Spike-specific classical memory B cells (MBCs) with low binding capacity to Spike protein and Spike-specific antibodies in a high percentage of CVID patients. The search for a strategy to elicit an adequate immune response post-vaccination in CVID patients is necessary. Since reinfection with SARS-CoV-2 has been documented, at present SARS-CoV-2 positive CVID patients might benefit from new preventing strategy based on administration of anti-SARS-CoV-2 monoclonal antibodies.
Collapse
Affiliation(s)
- Isabella Quinti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- *Correspondence: Isabella Quinti,
| | - Franco Locatelli
- Department Onco-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Dipartimento Materno-Infantile e Scienze Urologiche, Sapienza University of Rome, Rome, Italy
| | - Rita Carsetti
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Diagnostic Immunology Clinical Unit, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
33
|
Ameratunga R, Woon ST, Steele R, Lehnert K, Leung E, Edwards ESJ, Brooks AES. Common Variable Immunodeficiency Disorders as a Model for Assessing COVID-19 Vaccine Responses in Immunocompromised Patients. Front Immunol 2022; 12:798389. [PMID: 35116031 PMCID: PMC8805700 DOI: 10.3389/fimmu.2021.798389] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/22/2021] [Indexed: 01/27/2023] Open
Affiliation(s)
- Rohan Ameratunga
- Department of Clinical Immunology, Auckland Hospital, Auckland, New Zealand
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand
- Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand
- Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Richard Steele
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand
- Department of Respiratory Medicine, Wellington Hospital, Wellington, New Zealand
| | - Klaus Lehnert
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Euphemia Leung
- Maurice Wilkins Centre, School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Auckland Cancer Society Research Centre, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Emily S. J. Edwards
- Allergy and Clinical Immunology Laboratory, Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Anna E. S. Brooks
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
34
|
Mild to moderate clinical course of COVID-19 infection in patients with common variable immune deficiency. Cent Eur J Immunol 2022; 47:357-361. [PMID: 36817399 PMCID: PMC9901260 DOI: 10.5114/ceji.2022.124079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 09/28/2022] [Indexed: 02/04/2023] Open
Abstract
The association of immunocompromised patients and severity of COVID-19 infection is not well established. According to the Centers for Disease Control and Prevention (CDC), primary immune deficiencies (PIDs) are among the conditions that can predispose to a more severe course of COVID-19. We report the clinical course and immunological evaluation of five patients with common variable immune deficiency (CVID) who have experienced SARS-CoV-2 virus. Here we assess the severity of the infection, the immunophenotypic profile of the major lymphocyte subgroups, the nonspecific T-cell functional capacity and the SARS-CoV-2 specific effector T-cell immune response. Our results showed that the course of COVID-19 infection in CVID patients was mild to moderate and none of them developed a critical form of the disease. All patients developed a specific SARS-CoV-2 T cell immune response. Lymphopenia as well as impaired T-cell response prior to COVID-19 appeared to be related to a more severe course of the infection. Data on a good specific T cell response against SARS-CoV-2 in CVID patients will help to make the right vaccination decision and establish its efficacy. Clinical outcome even in these individual cases was in agreement with the therapeutic recommendations underlining that regular maintenance with subcutaneous immunoglobulins can be beneficial against immune system overreaction and a severe disease course and convalescent plasma is a treatment option in patients with CVID and COVID-19.
Collapse
|
35
|
Khanolkar A. Elucidating T Cell and B Cell Responses to SARS-CoV-2 in Humans: Gaining Insights into Protective Immunity and Immunopathology. Cells 2021; 11:cells11010067. [PMID: 35011627 PMCID: PMC8750814 DOI: 10.3390/cells11010067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
The SARS-CoV-2 pandemic is an unprecedented epochal event on at least two fronts. Firstly, in terms of the rapid spread and the magnitude of the outbreak, and secondly, on account of the equally swift response of the scientific community that has galvanized itself into action and has successfully developed, tested and deployed highly effective and novel vaccines in record time to combat the virus. The sophistication and diversification of the scientific toolbox we now have at our disposal has enabled us to interrogate both the breadth and the depth of the immune response to a degree that is unparalleled in recent memory. In terms of our understanding of what is critical to contain the virus and mitigate the effects the pandemic, neutralizing antibodies to SARS-CoV-2 garner most of the attention, however, it is essential to recognize that it is the quality and the fitness of the virus-specific T cell and B cell response that lays the foundation and the backdrop for an effective neutralizing antibody response. In this report, we will review some of the key findings that have helped define and delineate some of the essential attributes of T and B cell responses in the setting of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Aaruni Khanolkar
- Department of Pathology, Ann and Robert H. Lurie Children’s Hospital of Chicago, 225 East Chicago Avenue, Box 82, Chicago, IL 60611, USA; ; Tel.: +1-312-227-8073
- Department of Pathology, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
36
|
Schulz E, Hodl I, Forstner P, Hatzl S, Sareban N, Moritz M, Fessler J, Dreo B, Uhl B, Url C, Grisold AJ, Khalil M, Kleinhappl B, Enzinger C, Stradner MH, Greinix HT, Schlenke P, Steinmetz I. CD19+IgD+CD27- Naïve B Cells as Predictors of Humoral Response to COVID 19 mRNA Vaccination in Immunocompromised Patients. Front Immunol 2021; 12:803742. [PMID: 34950155 PMCID: PMC8688243 DOI: 10.3389/fimmu.2021.803742] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/19/2021] [Indexed: 01/04/2023] Open
Abstract
Immunocompromised patients are considered high-risk and prioritized for vaccination against COVID-19. We aimed to analyze B-cell subsets in these patients to identify potential predictors of humoral vaccination response. Patients (n=120) suffering from hematologic malignancies or other causes of immunodeficiency and healthy controls (n=79) received a full vaccination series with an mRNA vaccine. B-cell subsets were analyzed prior to vaccination. Two independent anti-SARS-CoV-2 immunoassays targeting the receptor-binding domain (RBD) or trimeric S protein (TSP) were performed three to four weeks after the second vaccination. Seroconversion occurred in 100% of healthy controls, in contrast to 67% (RBD) and 82% (TSP) of immunocompromised patients, while only 32% (RBD) and 22% (TSP) achieved antibody levels comparable to those of healthy controls. The number of circulating CD19+IgD+CD27- naïve B cells was strongly associated with antibody levels (ρ=0.761, P<0.001) and the only independent predictor for achieving antibody levels comparable to healthy controls (OR 1.07 per 10-µL increase, 95%CI 1.02-1.12, P=0.009). Receiver operating characteristic analysis identified a cut-off at ≥61 naïve B cells per µl to discriminate between patients with and without an optimal antibody response. Consequently, measuring of naïve B cells in immunocompromised hematologic patients could be useful in predicting their humoral vaccination response.
Collapse
Affiliation(s)
- Eduard Schulz
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Isabel Hodl
- Division of Rheumatology and Immunology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Patrick Forstner
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Stefan Hatzl
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Nazanin Sareban
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, Graz, Austria
| | - Martina Moritz
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, Graz, Austria
| | - Johannes Fessler
- Institute of Immunology and Pathophysiology, Medical University of Graz, Graz, Austria
| | - Barbara Dreo
- Division of Rheumatology and Immunology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Barbara Uhl
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Claudia Url
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, Graz, Austria
| | - Andrea J. Grisold
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Michael Khalil
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Barbara Kleinhappl
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | | | - Martin H. Stradner
- Division of Rheumatology and Immunology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Hildegard T. Greinix
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Peter Schlenke
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, Graz, Austria
| | - Ivo Steinmetz
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
37
|
Pulvirenti F, Fernandez Salinas A, Milito C, Terreri S, Piano Mortari E, Quintarelli C, Di Cecca S, Lagnese G, Punziano A, Guercio M, Bonanni L, Auria S, Villani F, Albano C, Locatelli F, Spadaro G, Carsetti R, Quinti I. B Cell Response Induced by SARS-CoV-2 Infection Is Boosted by the BNT162b2 Vaccine in Primary Antibody Deficiencies. Cells 2021; 10:cells10112915. [PMID: 34831138 PMCID: PMC8616496 DOI: 10.3390/cells10112915] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/19/2021] [Accepted: 10/24/2021] [Indexed: 12/23/2022] Open
Abstract
Background: Patients with primary antibody deficiencies are at risk in the current COVID-19 pandemic due to their impaired response to infection and vaccination. Specifically, patients with common variable immunodeficiency (CVID) generated poor spike-specific antibody and T cell responses after immunization. Methods: Thirty-four CVID convalescent patients after SARS-CoV-2 infection, 38 CVID patients immunized with two doses of the BNT162b2 vaccine, and 20 SARS-CoV-2 CVID convalescents later and immunized with BNT162b2 were analyzed for the anti-spike IgG production and the generation of spike-specific memory B cells and T cells. Results: Spike-specific IgG was induced more frequently after infection than after vaccination (82% vs. 34%). The antibody response was boosted in convalescents by vaccination. Although immunized patients generated atypical memory B cells possibly by extra-follicular or incomplete germinal center reactions, convalescents responded to infection by generating spike-specific memory B cells that were improved by the subsequent immunization. Poor spike-specific T cell responses were measured independently from the immunological challenge. Conclusions: SARS-CoV-2 infection primed a more efficient classical memory B cell response, whereas the BNT162b2 vaccine induced non-canonical B cell responses in CVID. Natural infection responses were boosted by subsequent immunization, suggesting the possibility to further stimulate the immune response by additional vaccine doses in CVID.
Collapse
Affiliation(s)
- Federica Pulvirenti
- Regional Reference Centre for Primary Immune Deficiencies, Azienda Ospedaliera Universitaria Policlinico Umberto I, 00185 Rome, Italy; (F.P.); (L.B.); (S.A.); (F.V.)
| | - Ane Fernandez Salinas
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (A.F.S.); (C.M.)
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children’s Hospital, IRCCS, Viale di San Paolo, 00146 Rome, Italy; (S.T.); (E.P.M.); (C.A.); (R.C.)
| | - Cinzia Milito
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (A.F.S.); (C.M.)
| | - Sara Terreri
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children’s Hospital, IRCCS, Viale di San Paolo, 00146 Rome, Italy; (S.T.); (E.P.M.); (C.A.); (R.C.)
| | - Eva Piano Mortari
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children’s Hospital, IRCCS, Viale di San Paolo, 00146 Rome, Italy; (S.T.); (E.P.M.); (C.A.); (R.C.)
| | - Concetta Quintarelli
- Department Onco-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, 00116 Rome, Italy; (C.Q.); (S.D.C.); (M.G.); (F.L.)
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Stefano Di Cecca
- Department Onco-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, 00116 Rome, Italy; (C.Q.); (S.D.C.); (M.G.); (F.L.)
| | - Gianluca Lagnese
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (G.L.); (A.P.); (G.S.)
| | - Alessandra Punziano
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (G.L.); (A.P.); (G.S.)
| | - Marika Guercio
- Department Onco-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, 00116 Rome, Italy; (C.Q.); (S.D.C.); (M.G.); (F.L.)
| | - Livia Bonanni
- Regional Reference Centre for Primary Immune Deficiencies, Azienda Ospedaliera Universitaria Policlinico Umberto I, 00185 Rome, Italy; (F.P.); (L.B.); (S.A.); (F.V.)
| | - Stefania Auria
- Regional Reference Centre for Primary Immune Deficiencies, Azienda Ospedaliera Universitaria Policlinico Umberto I, 00185 Rome, Italy; (F.P.); (L.B.); (S.A.); (F.V.)
| | - Francesca Villani
- Regional Reference Centre for Primary Immune Deficiencies, Azienda Ospedaliera Universitaria Policlinico Umberto I, 00185 Rome, Italy; (F.P.); (L.B.); (S.A.); (F.V.)
| | - Christian Albano
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children’s Hospital, IRCCS, Viale di San Paolo, 00146 Rome, Italy; (S.T.); (E.P.M.); (C.A.); (R.C.)
| | - Franco Locatelli
- Department Onco-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, 00116 Rome, Italy; (C.Q.); (S.D.C.); (M.G.); (F.L.)
- Dipartimento Materno-Infantile e Scienze Urologiche, Sapienza University of Rome, 00185 Rome, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (G.L.); (A.P.); (G.S.)
| | - Rita Carsetti
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children’s Hospital, IRCCS, Viale di San Paolo, 00146 Rome, Italy; (S.T.); (E.P.M.); (C.A.); (R.C.)
| | - Isabella Quinti
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (A.F.S.); (C.M.)
- Correspondence: ; Tel.: +39-0649972007
| |
Collapse
|
38
|
A flow cytometry-based proliferation assay for clinical evaluation of T-cell memory against SARS-CoV-2. J Immunol Methods 2021; 499:113159. [PMID: 34597619 PMCID: PMC8484816 DOI: 10.1016/j.jim.2021.113159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/20/2022]
Abstract
In general, the method of choice for evaluating immunity against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is detection of antibodies against the virus in patient sera. However, this is not feasible in patients who do not produce antibodies, either due to a primary immunodeficiency or secondary to treatment with immunosuppressive drugs. Assessment of the antiviral T cell response is an alternative to serological tests, but most T cell assays are labor-intensive and unsuitable for a clinical routine laboratory. We developed a flow cytometry-based assay for T cell proliferative responses against SARS-CoV-2, based on the detection of blast transformation of activated cells. The assay was validated on previously SARS-CoV-2 infected individuals and healthy seronegative blood donors, displaying 74% sensitivity and 96% specificity for previous infection with SARS-CoV-2. The usefulness of the assay was demonstrated in a patient with common variable immunodeficiency with a history of COVID-19. The described T-cell assay is a clinically relevant complement to serology in the evaluation of cellular immunity against SARS-CoV-2, which can be emulated by any routine lab with flow cytometric competence.
Collapse
|
39
|
Ameratunga R, Woon ST, Jordan A, Longhurst H, Leung E, Steele R, Lehnert K, Snell R, Brooks AES. Response to letter to the editor: the clinical utility of diagnostic T cell assays for COVID-19. Expert Rev Clin Immunol 2021; 17:1159-1161. [PMID: 34530670 PMCID: PMC8544663 DOI: 10.1080/1744666x.2021.1982386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Rohan Ameratunga
- Department of Clinical Immunology, Auckland Hospital, Auckland, New Zealand.,Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand.,Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand
| | - Anthony Jordan
- Department of Clinical Immunology, Auckland Hospital, Auckland, New Zealand
| | - Hilary Longhurst
- Department of Clinical Immunology, Auckland Hospital, Auckland, New Zealand.,Department of Medicine, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Euphemia Leung
- Auckland Cancer Society Research Centre, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand
| | - Richard Steele
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand.,Department of Respiratory Medicine, Wellington Hospital, Wellington, New Zealand
| | - Klaus Lehnert
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand
| | - Russell Snell
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Anna E S Brooks
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand
| |
Collapse
|