1
|
Clasen F, Yildirim S, Arıkan M, Garcia-Guevara F, Hanoğlu L, Yılmaz NH, Şen A, Celik HK, Neslihan AA, Demir TK, Temel Z, Mardinoglu A, Moyes DL, Uhlen M, Shoaie S. Microbiome signatures of virulence in the oral-gut-brain axis influence Parkinson's disease and cognitive decline pathophysiology. Gut Microbes 2025; 17:2506843. [PMID: 40420833 PMCID: PMC12118390 DOI: 10.1080/19490976.2025.2506843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 03/25/2025] [Accepted: 05/07/2025] [Indexed: 05/28/2025] Open
Abstract
The human microbiome is increasingly recognized for its crucial role in the development and progression of neurodegenerative diseases. While the gut-brain axis has been extensively studied, the contribution of the oral microbiome and gut-oral tropism in neurodegeneration has been largely overlooked. Cognitive impairment (CI) is common in neurodegenerative diseases and develops on a spectrum. In Parkinson's Disease (PD) patients, CI is one of the most common non-motor symptoms but its mechanistic development across the spectrum remains unclear, complicating early diagnosis of at-risk individuals. Here, we generated 228 shotgun metagenomics samples of the gut and oral microbiomes across PD patients with mild cognitive impairment (PD-MCI) or dementia (PDD), and a healthy cohort, to study the role of gut and oral microbiomes on CI in PD. In addition to revealing compositional and functional signatures, the role of pathobionts, and dysregulated metabolic pathways of the oral and gut microbiome in PD-MCI and PDD, we also revealed the importance of oral-gut translocation in increasing abundance of virulence factors in PD and CI. The oral-gut virulence was further integrated with saliva metaproteomics and demonstrated their potential role in dysfunction of host immunity and brain endothelial cells. Our findings highlight the significance of the oral-gut-brain axis and underscore its potential for discovering novel biomarkers for PD and CI.
Collapse
Affiliation(s)
- Frederick Clasen
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, UK
| | - Suleyman Yildirim
- Department of Medical Microbiology, Istanbul Medipol University International School of Medicine, Istanbul, Türkiye
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Tűrkiye
| | - Muzaffer Arıkan
- Department of Medical Microbiology, Istanbul Medipol University International School of Medicine, Istanbul, Türkiye
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Tűrkiye
| | - Fernando Garcia-Guevara
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, UK
| | - Lűtfű Hanoğlu
- Neuroscience Graduate Program and Department of Neurology, Istanbul Medipol University School of Medicine, Istanbul, Tűrkiye
| | - Nesrin H. Yılmaz
- Department of Neurology, Istanbul Medipol University School of Medicine, Istanbul, Tűrkiye
| | - Aysu Şen
- Department of Neurology, Bakırkoy Research and Training Hospital for Psychiatric and Neurological Diseases, Istanbul, Tűrkiye
| | - Handan Kaya Celik
- Department of Neurology, Kocaeli University Faculty of Medicine, Kocaeli, Türkiye
| | | | - Tuǧçe Kahraman Demir
- Department of Electroneurophysiology, Vocational School, Biruni University, Istanbul, Tűrkiye
| | - Zeynep Temel
- Department of Psychology, Faculty of Humanities and Social Sciences, Fatih Sultan Mehmet Vakif University, Istanbul, Tűrkiye
| | - Adil Mardinoglu
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, UK
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - David L. Moyes
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, UK
| | - Mathias Uhlen
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Saeed Shoaie
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, UK
| |
Collapse
|
2
|
Hu Q, Wang S, Zhang W, Qu J, Liu GH. Unraveling brain aging through the lens of oral microbiota. Neural Regen Res 2025; 20:1930-1943. [PMID: 38993126 PMCID: PMC11691463 DOI: 10.4103/nrr.nrr-d-23-01761] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/22/2023] [Accepted: 05/31/2024] [Indexed: 07/13/2024] Open
Abstract
The oral cavity is a complex physiological community encompassing a wide range of microorganisms. Dysbiosis of oral microbiota can lead to various oral infectious diseases, such as periodontitis and tooth decay, and even affect systemic health, including brain aging and neurodegenerative diseases. Recent studies have highlighted how oral microbes might be involved in brain aging and neurodegeneration, indicating potential avenues for intervention strategies. In this review, we summarize clinical evidence demonstrating a link between oral microbes/oral infectious diseases and brain aging/neurodegenerative diseases, and dissect potential mechanisms by which oral microbes contribute to brain aging and neurodegeneration. We also highlight advances in therapeutic development grounded in the realm of oral microbes, with the goal of advancing brain health and promoting healthy aging.
Collapse
Affiliation(s)
- Qinchao Hu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Aging Biomarker Consortium, Beijing, China
| | - Jing Qu
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Aging Biomarker Consortium, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Aging Biomarker Consortium, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| |
Collapse
|
3
|
Foroughi M, Torabinejad M, Angelov N, Ojcius DM, Parang K, Ravnan M, Lam J. Bridging oral and systemic health: exploring pathogenesis, biomarkers, and diagnostic innovations in periodontal disease. Infection 2025:10.1007/s15010-025-02568-y. [PMID: 40418274 DOI: 10.1007/s15010-025-02568-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2025] [Accepted: 05/16/2025] [Indexed: 05/27/2025]
Abstract
PURPOSE This narrative review explores the multifaceted links between periodontal diseases (gingivitis and periodontitis) and systemic health conditions, including cardiovascular disease, diabetes, adverse pregnancy outcomes, Alzheimer's disease, cancers, rheumatoid arthritis, and respiratory infections. It aims to synthesize evidence on how local oral infections exert systemic effects and evaluate the potential of diagnostic technologies to monitor these interactions. METHODS This narrative review synthesizes current scientific literature on periodontal disease pathogenesis, focusing on key pathogens (e.g., Porphyromonas gingivalis, Fusobacterium nucleatum) and their roles in driving local and systemic inflammation via virulence factors and microbial dysbiosis. It examines biomarker-based diagnostic approaches (e.g., IL-1β, TNF-α, microbial DNA) in saliva, blood, and gingival crevicular fluid (GCF) and evaluates current and emerging diagnostic tools (e.g., ELISA, PCR, lateral flow assays, biosensors, microfluidics). RESULTS The review highlights that periodontal pathogens contribute to systemic disease through complex mechanisms including persistent inflammation (driven by cytokines like IL-1β, TNF-α), endotoxemia (via LPS, noting pathogen-specific structural variations impacting immune response), molecular mimicry, and immune modulation. Current diagnostic methods provide valuable information but often face limitations in speed, portability, and multiplexing capability needed for comprehensive point-of-care assessment. Emerging technologies, particularly multiplex platforms integrating biosensors or microfluidics, demonstrate significant potential for rapid, user-friendly analysis of multiple biomarkers, facilitating earlier detection and personalized risk stratification, especially in high-risk populations. CONCLUSION Periodontal diseases significantly impact systemic health via intricate microbial and inflammatory pathways. The complexity of these interactions necessitates moving beyond conventional diagnostics towards integrated, advanced technologies. Implementing rapid, multiplex biomarker detection platforms within a multidisciplinary healthcare framework holds the potential to revolutionize early detection of linked conditions, improve personalized management strategies, and ultimately reduce the systemic burden of periodontal disease.
Collapse
Affiliation(s)
- Max Foroughi
- Department of Preventive and Restorative Dentistry, Arthur A. Dugoni School of Dentistry, University of the Pacific, 155 Fifth Street, San Francisco, CA, 94103, USA.
| | - Mahmoud Torabinejad
- Department of Endodontics, School of Dentistry, Loma Linda University School of Dentistry, Loma Linda, CA, USA
| | - Nikola Angelov
- Department of Periodontics and Dental Hygiene, The University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, USA
| | - David M Ojcius
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA, USA
| | - Keykavous Parang
- Department of Biomedical and Pharmaceutical Sciences, Center for Targeted Drug Delivery, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, USA
| | - Marcus Ravnan
- Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, CA, USA
| | - Jerika Lam
- Department of Pharmacy Practice, School of Pharmacy, Chapman University, Irvine, CA, USA
| |
Collapse
|
4
|
Chiu CJ, Chiu E, Chang ML. Interaction between Infection of Porphyromonas gingivalis, A Keystone Microbe of Oral Microbiome, and Serum Levels of Lutein/Zeaxanthin Is Associated with Risk for Age-related Macular Degeneration. RESEARCH SQUARE 2025:rs.3.rs-6188207. [PMID: 40386394 PMCID: PMC12083656 DOI: 10.21203/rs.3.rs-6188207/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/25/2025]
Abstract
Porphyromonas gingivalis (P. gingivalis) functions as a catalyst bacterium in the development of periodontitis, and the serum antibody level against P. gingivalis is considered a surrogate marker for the activity level of periodontopathic microbiome. The chronic systemic inflammation induced by P. gingivalis elevates the risk of various systemic and neurodegenerative disorders, including atherosclerosis, diabetes, and Alzheimer's disease. Although the connection between human microbiome and age-related macular degeneration (AMD) remains relatively unexplored, it is noteworthy that AMD shares risk factors and etiological mechanisms with diseases related to P. gingivalis. To investigate the potential association between periodontopathic microbiome and AMD occurrence, we conducted a candidate microbe approach case-control study. Our hypothesis was tested by examining the correlation between serum P. gingivalis immunoglobulin G (IgG) levels and AMD. Comparing the lowest IgG category (≤ 57 enzyme-linked immunosorbent assay units (EU)) with higher categories revealed escalating risks: the second higher category (58-65 EU) conferred almost a 30% increased risk (odds ratio (OR) = 1.28, 95% confidence interval (CI): 1.17 to 1.4), the third higher category (66-119 EU) conferred nearly a 60% increase (OR = 1.58, 95% CI: 1.46 to 1.72), and the highest category (> 119 EU) conveyed over a two-fold risk (OR = 2.04, 95% CI: 1.62 to 2.58) of early AMD. Aligning with the notion that the microbiome composition is significantly shaped by the host's diet, our analysis indicates that sustaining elevated serum levels of lutein/zeaxanthin (≥ 0.35 μmol/L or ≥ 20 μg/dL) might potentially mitigate the P. gingivalis-related AMD risk by as much as 35% (P for interaction < 0.0001). Although the precise mechanism requires additional exploration, these findings suggest a connection between nutrition and oral microbiome, emphasizing their collective role in maintaining eye health. SIGNIFICANCE STATEMENT While our oral microbiome may impact eye health, nutritional factors could play a modulatory role in mitigating the associated risk.
Collapse
|
5
|
Huang H, Yang N, Chen MM, Chen X, Chen W, Li X, Chen Y, Deng Z, Zhou W, Xu SX, Xie XH. Altered oral health and microbiota in drug-free patients with schizophrenia. BMC Psychiatry 2025; 25:274. [PMID: 40133801 PMCID: PMC11938765 DOI: 10.1186/s12888-025-06633-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 02/19/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND The oral microbiota is associated with neuro-psychiatric disorders. However, there is presently inadequate comprehension regarding the correlation between schizophrenia and the oral microbiota. Moreover, patients with schizophrenia frequently exhibit poor oral health, potentially influencing research outcomes. Therefore, this study aims to investigate changes in the oral microbiota and oral health status in drug-free schizophrenia patients. METHODS Oral microbiota samples were collected from 50 drug-free patients with schizophrenia and 50 healthy controls (HCs). The downstream microbiota analysis was based on Illumina sequencing of the V3-V4 hypervariable region of the 16 S rRNA gene. RESULTS The alpha diversity of SCZ group is increased, such as the Shannon index (p < 0.001) and Simpson index (p = 0.004), while the community structure also displays variance compared to the HC group (p < 0.001). Key discriminative taxa were found in LEfSe analysis, including the phyla Fusobacteriota, Firmicutes, and Actinobacteriota. The differential taxa and microbial functions showed a strong correlation with clinical oral conditions. Further analysis demonstrated that models based on the entire oral microbiota effectively distinguished SCZ patients from HC (AUC = 0.97). CONCLUSIONS The significant changes in the microbiota of Drug-free SCZ patients appear to be closely associated with the poor oral environment.
Collapse
Affiliation(s)
- Huawei Huang
- Department of Pharmacy, Second People's Hospital of Huizhou, Huizhou, China
| | - Naiyan Yang
- Department of Psychiatry, Second People's Hospital of Huizhou, Huizhou, China
| | - Mian-Mian Chen
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoting Chen
- Department of Psychiatry, Second People's Hospital of Huizhou, Huizhou, China
| | - Wei Chen
- Department of Psychiatry, Second People's Hospital of Huizhou, Huizhou, China
| | - Xiaoping Li
- Department of Psychiatry, Second People's Hospital of Huizhou, Huizhou, China
| | - Yuchun Chen
- Department of Stomatology, Third People's Hospital of Huizhou, Huizhou, China
| | - Zhengang Deng
- Department of Psychiatry, Second People's Hospital of Huizhou, Huizhou, China
| | - Wenbing Zhou
- Department of Psychiatry, Second People's Hospital of Huizhou, Huizhou, China
| | - Shu-Xian Xu
- Department of Psychiatry, Second People's Hospital of Huizhou, Huizhou, China
| | - Xin-Hui Xie
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China.
- Brain Function and Psychosomatic Medicine Institute, Second People's Hospital of Huizhou, Huizhou, Guangdong, China.
| |
Collapse
|
6
|
Jiang M, Ge Z, Yin S, Liu Y, Gao H, Lu L, Wang H, Li C, Ni J, Pan Y, Lin L. Cathepsin B Modulates Alzheimer's Disease Pathology Through SAPK/JNK Signals Following Administration of Porphyromonas gingivalis-Derived Outer Membrane Vesicles. J Clin Periodontol 2025; 52:434-456. [PMID: 39726227 DOI: 10.1111/jcpe.14109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/29/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024]
Abstract
AIM Porphyromonas gingivalis , a consensus periodontal pathogen, is thought to be involved in Alzheimer's disease (AD) progression, and P. gingivalis -derived outer membrane vesicles (PgOMVs) are a key toxic factor in inducing AD pathology. This study aimed to clarify the regulatory mechanism underlying the PgOMV-induced AD-like phenotype. MATERIALS AND METHODS We intraperitoneally injected PgOMVs into the periphery of wild-type and CatB knockout mice for 4 or 8 weeks to assess the effect of CatB on PgOMV-induced AD pathology. Mice were evaluated for cognitive change, tau phosphorylation, microglial activation, neuroinflammation and synapse loss. Microglial and primary neuron culture were prepared to verify the in vivo results. RESULTS CatB deficiency significantly alleviated PgOMV-induced cognitive dysfunction, microglia-mediated neuroinflammation, tau hyperphosphorylation and synapse loss. Subsequent transcriptomic analysis, immunofluorescence and immunoblotting suggested that CatB modulates microglia-mediated neuroinflammation through stress-activated protein kinases (SAPK)/Jun amino-terminal kinases (JNK) signals after administration of PgOMVs, which in turn regulates neuronal tau phosphorylation and synapse loss in a SAPK/JNK-dependent manner. CONCLUSION Our study unveils a previously unknown role of CatB in regulating PgOMV-induced AD pathology.
Collapse
Affiliation(s)
- Muzhou Jiang
- Department of Periodontics, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Ziming Ge
- Department of Periodontics, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Shoucheng Yin
- Department of Periodontics, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Yanqing Liu
- Department of Periodontics, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Hanyu Gao
- Department of Periodontics, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Lijie Lu
- Department of Periodontics, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Hongyan Wang
- Department of Periodontics, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Chen Li
- Department of Periodontics, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yaping Pan
- Department of Periodontics, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Li Lin
- Department of Periodontics, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
7
|
Ye W, Tao Y, Wang W, Yu Y, Li X. Periodontitis associated with brain function impairment in middle-aged and elderly individuals with normal cognition. J Periodontol 2025; 96:290-300. [PMID: 39565645 DOI: 10.1002/jper.24-0264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/18/2024] [Accepted: 09/22/2024] [Indexed: 11/21/2024]
Abstract
BACKGROUND The present study aimed to investigate changes in intranetwork functional connectivity (FC) and internetwork FC in middle-aged and elderly individuals with normal cognition (NC) and varying degrees of periodontitis to determine the effects of periodontitis on brain function. METHODS Periodontal findings and resting-state functional magnetic resonance imaging data were acquired from 51 subjects with NC. Independent component analysis and correlation analysis were used for the statistical analysis of the data. RESULTS Differences in intranetwork FC were observed among groups in the anterior default-mode network (aDMN), dorsal attention network and dorsal sensorimotor network (dSMN). Compared with the nonperiodontitis (NP) group or the mild-periodontitis group, the analysis of internetwork FC showed increased FC between the auditory network and the ventral attention network (VAN), between the aDMN and the salience network (SN), and between the SN and the VAN and decreased FC between the posterior default-mode network and the right frontoparietal network in the moderate-to-severe periodontitis group. Additionally, internetwork FC between the dSMN and the VAN was also increased in the moderate-to-severe periodontitis group compared to the NP group. The altered intra- and internetwork FC were significantly correlated with the periodontal clinical index. CONCLUSION Our results confirmed that periodontitis was associated with both intra- and internetwork FC changes even in NC. The present study indicates that periodontitis might be a potential risk factor for brain damage and provides a theoretical clue and a new treatment target for the early prevention of Alzheimer disease. PLAIN LANGUAGE SUMMARY Recent research has proposed that periodontitis is a potential risk factor for Alzheimer disease (AD). However, the relationship between periodontitis and the brain function of middle-aged and elderly individuals with normal cognition (NC) remains unclear. Analyzing the effect of periodontitis on brain function in the NC stage can provide clues to AD development and help achieve early prevention of dementia. The present study aimed to investigate changes in brain functional connectivity (FC) in NC with different severity of periodontitis to determine the effects of periodontitis on brain function. Both changed intranetwork FC and internetwork FC were found in the moderate-to-severe periodontitis group, and periodontitis was associated with brain network function impairment in NC. The present study indicates that periodontitis might be a potential risk factor for brain damage even in NC stage, and provides a theoretical clue and a new treatment target for the early prevention of AD.
Collapse
Affiliation(s)
- Wei Ye
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yufei Tao
- Department of Periodontics, Hefei Stomatological Clinic College, Anhui Medical University & Stomatological Hospital, Hefei, China
| | - Wenrui Wang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaoshu Li
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
8
|
Fujinami Y, Saito M, Ono Y, Akashi M, Inoue S, Kotani J. Malocclusion Worsens Survival Following Sepsis Due to the Disruption of Innate and Acquired Immunity. Int J Mol Sci 2025; 26:1894. [PMID: 40076520 PMCID: PMC11899844 DOI: 10.3390/ijms26051894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Sepsis is a severe condition with high mortality, in which immune dysfunction plays a critical role. Poor oral health has been linked to frailty, but its impact on sepsis outcomes remains unclear. Therefore, we used a mouse model of malocclusion and sepsis to investigate how tooth loss affects immune responses during sepsis. Adult male C57BL/6 mice were divided into four groups: Control, Malocclusion (Mal), Sepsis (CS), and Malocclusion with Sepsis (Mal + CS). Malocclusion was induced by tooth extraction, and sepsis was induced using cecal slurry injection. We assessed survival rates, immune cell counts, and biochemical markers. The Mal + CS group exhibited significantly lower survival rates and greater weight loss compared to the CS group. The flow cytometry showed reduced neutrophils, monocytes, and T cells in the Mal + CS group. Elevated ALT and AST levels indicated liver damage. No significant differences in bacterial loads were observed, but immune suppression was exacerbated in the Mal + CS group. Malocclusion worsens sepsis outcomes by impairing both innate and adaptive immune responses. These findings emphasize the importance of oral health in improving sepsis prognosis and immune function during critical illnesses.
Collapse
Affiliation(s)
- Yoshihisa Fujinami
- Department of Emergency Medicine, Kakogawa Central City Hospital, Hyogo 675-8611, Japan
- Department of Disaster and Emergency and Critical Care Medicine, Graduate School of Medicine, Kobe University, Kobe 650-0047, Japan; (Y.O.); (S.I.); (J.K.)
| | - Masafumi Saito
- Department of Immunology and Microbiology, National Defense Medical College, Saitama 359-8513, Japan;
| | - Yuko Ono
- Department of Disaster and Emergency and Critical Care Medicine, Graduate School of Medicine, Kobe University, Kobe 650-0047, Japan; (Y.O.); (S.I.); (J.K.)
| | - Masaya Akashi
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kobe University, Kobe 650-0047, Japan;
| | - Shigeaki Inoue
- Department of Disaster and Emergency and Critical Care Medicine, Graduate School of Medicine, Kobe University, Kobe 650-0047, Japan; (Y.O.); (S.I.); (J.K.)
- Department of Emergency and Critical Care Medicine, Wakayama Medical University, Wakayama 641-0012, Japan
| | - Joji Kotani
- Department of Disaster and Emergency and Critical Care Medicine, Graduate School of Medicine, Kobe University, Kobe 650-0047, Japan; (Y.O.); (S.I.); (J.K.)
| |
Collapse
|
9
|
Yassin LK, Nakhal MM, Alderei A, Almehairbi A, Mydeen AB, Akour A, Hamad MIK. Exploring the microbiota-gut-brain axis: impact on brain structure and function. Front Neuroanat 2025; 19:1504065. [PMID: 40012737 PMCID: PMC11860919 DOI: 10.3389/fnana.2025.1504065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/30/2025] [Indexed: 02/28/2025] Open
Abstract
The microbiota-gut-brain axis (MGBA) plays a significant role in the maintenance of brain structure and function. The MGBA serves as a conduit between the CNS and the ENS, facilitating communication between the emotional and cognitive centers of the brain via diverse pathways. In the initial stages of this review, we will examine the way how MGBA affects neurogenesis, neuronal dendritic morphology, axonal myelination, microglia structure, brain blood barrier (BBB) structure and permeability, and synaptic structure. Furthermore, we will review the potential mechanistic pathways of neuroplasticity through MGBA influence. The short-chain fatty acids (SCFAs) play a pivotal role in the MGBA, where they can modify the BBB. We will therefore discuss how SCFAs can influence microglia, neuronal, and astrocyte function, as well as their role in brain disorders such as Alzheimer's disease (AD), and Parkinson's disease (PD). Subsequently, we will examine the technical strategies employed to study MGBA interactions, including using germ-free (GF) animals, probiotics, fecal microbiota transplantation (FMT), and antibiotics-induced dysbiosis. Finally, we will examine how particular bacterial strains can affect brain structure and function. By gaining a deeper understanding of the MGBA, it may be possible to facilitate research into microbial-based pharmacological interventions and therapeutic strategies for neurological diseases.
Collapse
Affiliation(s)
- Lidya K. Yassin
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohammed M. Nakhal
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Alreem Alderei
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Afra Almehairbi
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ayishal B. Mydeen
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Amal Akour
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohammad I. K. Hamad
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
10
|
Ferreira da Silva A, Gomes A, Gonçalves LMD, Fernandes A, Almeida AJ. Exploring the Link Between Periodontitis and Alzheimer's Disease-Could a Nanoparticulate Vaccine Break It? Pharmaceutics 2025; 17:141. [PMID: 40006510 PMCID: PMC11858903 DOI: 10.3390/pharmaceutics17020141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 02/27/2025] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder, as approximately 55 million people worldwide are affected, with a significant tendency to increase. It reveals three main pathological features: amyloid plaques, neurofibrillary tangles, and neuroinflammation, responsible for the neurodegenerative changes that slowly lead to deterioration of personality and cognitive control. Over a century after the first case report, effective treatments remain elusive, likely due to an incomplete understanding of the precise mechanisms driving its pathogenesis. Recent studies provide growing evidence of an infectious aetiology for AD, a hypothesis reinforced by findings that amyloid beta functions as an antimicrobial peptide. Among the microorganisms already associated with AD, Porphyromonas gingivalis (Pg), the keystone pathogen of periodontitis (PeD), has received particular attention as a possible aetiological agent for AD development. Herein, we review the epidemiological and genetic evidence linking PeD and Pg to AD, highlighting the identification of periodontal bacteria in post mortem analysis of AD patients' brains and identifying putative mechanistic links relevant to the biological plausibility of the association. With the focus on AD research shifting from cure to prevention, the proposed mechanisms linking PeD to AD open the door for unravelling new prophylactic approaches able to reduce the global burden of AD. As hypothesised in this review, these could include a bionanotechnological approach involving the development of an oral nanoparticulate vaccine based on Pg-specific antigens. Such a vaccine could prevent Pg antigens from progressing to the brain and triggering AD pathology, representing a promising step toward innovative and effective AD prevention.
Collapse
Affiliation(s)
| | | | | | | | - António J. Almeida
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal; (A.F.d.S.); (A.G.); (L.M.D.G.); (A.F.)
| |
Collapse
|
11
|
Dai X, Liang R, Dai M, Li X, Zhao W. Smoking Impacts Alzheimer's Disease Progression Through Oral Microbiota Modulation. Mol Neurobiol 2025; 62:19-44. [PMID: 38795302 DOI: 10.1007/s12035-024-04241-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/13/2024] [Indexed: 05/27/2024]
Abstract
Alzheimer's disease (AD) is an important public health challenge with a limited understanding of its pathogenesis. Smoking is a significant modifiable risk factor for AD progression, and its specific mechanism is often interpreted from a toxicological perspective. However, microbial infections also contribute to AD, with oral microbiota playing a crucial role in its progression. Notably, smoking alters the ecological structure and pathogenicity of the oral microbiota. Currently, there is no systematic review or summary of the relationship between these three factors; thus, understanding this association can help in the development of new treatments. This review summarizes the connections between smoking, AD, and oral microbiota from existing research. It also explores how smoking affects the occurrence and development of AD through oral microbiota, and examines treatments for oral microbiota that delay the progression of AD. Furthermore, this review emphasizes the potential of the oral microbiota to act as a biomarker for AD. Finally, it considers the feasibility of probiotics and oral antibacterial therapy to expand treatment methods for AD.
Collapse
Affiliation(s)
- Xingzhu Dai
- Department of Stomatology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rui Liang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Manqiong Dai
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoyu Li
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wanghong Zhao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
12
|
L’Heureux JE, Corbett A, Ballard C, Vauzour D, Creese B, Winyard PG, Jones AM, Vanhatalo A. Oral microbiome and nitric oxide biomarkers in older people with mild cognitive impairment and APOE4 genotype. PNAS NEXUS 2025; 4:pgae543. [PMID: 39876877 PMCID: PMC11773611 DOI: 10.1093/pnasnexus/pgae543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/18/2024] [Indexed: 01/31/2025]
Abstract
Apolipoprotein E4 (APOE4) genotype and nitric oxide (NO) deficiency are risk factors for age-associated cognitive decline. The oral microbiome plays a critical role in maintaining NO bioavailability during aging. The aim of this study was to assess interactions between the oral microbiome, NO biomarkers, and cognitive function in 60 participants with mild cognitive impairment (MCI) and 60 healthy controls using weighted gene co-occurrence network analysis and to compare the oral microbiomes between APOE4 carriers and noncarriers in a subgroup of 35 MCI participants. Within the MCI group, a high relative abundance of Neisseria was associated with better indices of cognition relating to executive function (Switching Stroop, rs = 0.33, P = 0.03) and visual attention (Trail Making, rs = -0.30, P = 0.05), and in the healthy group, Neisseria correlated with working memory (Digit Span, rs = 0.26, P = 0.04). High abundances of Haemophilus (rs = 0.38, P = 0.01) and Haemophilus parainfluenzae (rs = 0.32, P = 0.03), that co-occurred with Neisseria correlated with better scores on executive function (Switching Stroop) in the MCI group. There were no differences in oral nitrate (P = 0.48) or nitrite concentrations (P = 0.84) between the MCI and healthy groups. Linear discriminant analysis Effect Size identified Porphyromonas as a predictor for MCI and Prevotella intermedia as a predictor of APOE4-carrier status. The principal findings of this study were that a greater prevalence of oral P. intermedia is linked to elevated genetic risk for dementia (APOE4 genotype) in individuals with MCI prior to dementia diagnosis and that interventions that promote the oral Neisseria-Haemophilus and suppress Prevotella-dominated modules have potential for delaying cognitive decline.
Collapse
Affiliation(s)
- Joanna E L’Heureux
- Faculty of Health and Life Sciences, University of Exeter Medical School, University of Exeter, St Luke's campus, Exeter EX1 2LU, United Kingdom
| | - Anne Corbett
- Faculty of Health and Life Sciences, University of Exeter Medical School, University of Exeter, St Luke's campus, Exeter EX1 2LU, United Kingdom
| | - Clive Ballard
- Faculty of Health and Life Sciences, University of Exeter Medical School, University of Exeter, St Luke's campus, Exeter EX1 2LU, United Kingdom
| | - David Vauzour
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Byron Creese
- Department of Life Sciences, University of Brunel, London UB8 3PH, United Kingdom
| | - Paul G Winyard
- Faculty of Health and Life Sciences, University of Exeter Medical School, University of Exeter, St Luke's campus, Exeter EX1 2LU, United Kingdom
| | - Andrew M Jones
- Faculty of Health and Life Sciences, University of Exeter Medical School, University of Exeter, St Luke's campus, Exeter EX1 2LU, United Kingdom
| | - Anni Vanhatalo
- Faculty of Health and Life Sciences, University of Exeter Medical School, University of Exeter, St Luke's campus, Exeter EX1 2LU, United Kingdom
| |
Collapse
|
13
|
Mayer C, Walther C, Borof K, Nägele FL, Petersen M, Schell M, Gerloff C, Kühn S, Heydecke G, Beikler T, Cheng B, Thomalla G, Aarabi G. Association between periodontal disease and microstructural brain alterations in the Hamburg City Health Study. J Clin Periodontol 2024; 51:1598-1609. [PMID: 37263624 PMCID: PMC11651723 DOI: 10.1111/jcpe.13828] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/24/2023] [Accepted: 05/07/2023] [Indexed: 06/03/2023]
Abstract
AIM The aim of the PAROBRAIN study was to examine the association of periodontal health with microstructural white matter integrity and cerebral small vessel disease (CSVD) in the Hamburg City Health Study, a large population-based cohort with dental examination and brain magnetic resonance imaging (MRI). MATERIALS AND METHODS Periodontal health was determined by measuring clinical attachment loss (CAL) and plaque index. Additionally, the decayed/missing/filled teeth (DMFT) index was quantified. 3D-FLAIR and 3D-T1-weighted images were used for white matter hyperintensity (WMH) segmentation. Diffusion-weighted MRI was used to quantify peak width of skeletonized mean diffusivity (PSMD). RESULTS Data from 2030 participants were included in the analysis. Median age was 65 years, with 43% female participants. After adjusting for age and sex, an increase in WMH load was significantly associated with more CAL, higher plaque index and higher DMFT index. PSMD was significantly associated with the plaque index and DMFT. Additional adjustment for education and cardiovascular risk factors revealed a significant association of PSMD with plaque index (p < .001) and DMFT (p < .01), whereas effects of WMH load were attenuated (p > .05). CONCLUSIONS These findings suggest an adverse effect of periodontal health on CSVD and white matter integrity. Further research is necessary to examine whether early treatment of periodontal disease can prevent microstructural brain damage.
Collapse
Affiliation(s)
- Carola Mayer
- Department of NeurologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Carolin Walther
- Department of Periodontics, Preventive and Restorative DentistryUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Department of Prosthetic Dentistry, Center for Dental and Oral MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Katrin Borof
- Department of Periodontics, Preventive and Restorative DentistryUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Felix L. Nägele
- Department of NeurologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Marvin Petersen
- Department of NeurologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Maximilian Schell
- Department of NeurologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Christian Gerloff
- Department of NeurologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Simone Kühn
- Department of PsychiatryUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Guido Heydecke
- Department of Prosthetic Dentistry, Center for Dental and Oral MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Thomas Beikler
- Department of Periodontics, Preventive and Restorative DentistryUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Bastian Cheng
- Department of NeurologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Götz Thomalla
- Department of NeurologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Ghazal Aarabi
- Department of Periodontics, Preventive and Restorative DentistryUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Department of Prosthetic Dentistry, Center for Dental and Oral MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| |
Collapse
|
14
|
Sighencea MG, Popescu RȘ, Trifu SC. From Fundamentals to Innovation in Alzheimer's Disease: Molecular Findings and Revolutionary Therapies. Int J Mol Sci 2024; 25:12311. [PMID: 39596378 PMCID: PMC11594972 DOI: 10.3390/ijms252212311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Alzheimer's disease (AD) is a global health concern and the leading cause of dementia in the elderly. The prevalence of this neurodegenerative condition is projected to increase concomitantly with increased life expectancy, resulting in a significant economic burden. With very few FDA-approved disease-modifying drugs available for AD, there is an urgent need to develop new compounds capable of impeding the progression of the disease. Given the unclear etiopathogenesis of AD, this review emphasizes the underlying mechanisms of this condition. It explores not only well-studied aspects, such as the accumulation of Aβ plaques and neurofibrillary tangles, but also novel areas, including glymphatic and lymphatic pathways, microbiota and the gut-brain axis, serotoninergic and autophagy alterations, vascular dysfunction, the metal hypothesis, the olfactory pathway, and oral health. Furthermore, the potential molecular targets arising from all these mechanisms have been reviewed, along with novel promising approaches such as nanoparticle-based therapy, neural stem cell transplantation, vaccines, and CRISPR-Cas9-mediated genome editing techniques. Taking into account the overlap of these various mechanisms, individual and combination therapies emerge as the future direction in the AD strategy.
Collapse
Affiliation(s)
| | - Ramona Ștefania Popescu
- Department of Infectious Diseases, “Carol Davila” University of Medicine and Pharmacy Bucharest, 020021 Bucharest, Romania;
| | - Simona Corina Trifu
- Department of Psychiatry, “Carol Davila” University of Medicine and Pharmacy Bucharest, 020021 Bucharest, Romania
| |
Collapse
|
15
|
Kazemi N, Khorasgani MR, Noorbakhshnia M, Razavi SM, Narimani T, Naghsh N. Protective effects of a lactobacilli mixture against Alzheimer's disease-like pathology triggered by Porphyromonas gingivalis. Sci Rep 2024; 14:27283. [PMID: 39516514 PMCID: PMC11549306 DOI: 10.1038/s41598-024-77853-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Porphyromonas gingivalis (P. gingivalis) is one of the pathogens involved in gingival inflammation, which may trigger neuroinflammatory diseases such as Alzheimer's disease (AD). This study aimed to investigate the protective (preventive and treatment) effects of a lactobacilli mixture combining Lactobacillus reuteri PTCC1655, Lactobacillus brevis CD0817, Lacticaseibacillus rhamnosus PTCC1637, and Lactobacillus plantarum PTCC1058 against P. gingivalis-induced gingival inflammation and AD-like pathology in rats. These probiotic strains exhibited cognitive enhancement effects, but this study proposed to assess their activity in a mixture. To propose a probable mechanism for P. gingivalis cognitive impairments, the TEs balance were analyzed in hippocampus and cortex tissues. Animals were divided into five groups: the control, lactobacilli, P. gingivalis, lactobacilli + P. gingivalis (prevention), and P. gingivalis + lactobacilli group (treatment) groups. The behavioral and histopathological changes were compared among them. Finally, The Trace elements (TEs) levels in the hippocampus and cortex tissues were analyzed. The palatal tissue sections of the P. gingivalis infected rats showed moderate inflammation with dense infiltration of inflammatory cells, a limited area of tissue edema, and vascular congestion. Additionally, passive avoidance learning and spatial memory were impaired. Histopathological tests revealed the presence of Aβ-positive cells in the P. gingivalis group. While the Aβ-positive cells decreased in the treatment group, their formation was inhibited in the preventive group. Administration of a mixture of lactobacilli (orally) effectively mitigated the gingival inflammation, Aβ production, and improved learning and memory functions. Moreover, Zn, Cu, and Mn levels in the hippocampus were dramatically elevated by P. gingivalis infection, whereas lactobacilli mixture mitigated these disruptive effects. The lactobacilli mixture significantly prevented the disruptive effects of P. gingivalis on gingival and brain tissues in rats. Therefore, new formulated combination of lactobacilli may be a good candidate for inhibiting the P. gingivalis infection and its subsequent cognitive effects. The current study aimed to evaluate the effects of a lactobacilli mixture to manage the disruptive effects of P. gingivalis infection on memory.
Collapse
Affiliation(s)
- Niloofar Kazemi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mohammad Rabbani Khorasgani
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Maryam Noorbakhshnia
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Seyed Mohammad Razavi
- Department of Oral and Maxillofacial Pathology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tahmineh Narimani
- Department of Bacteriology and Virology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Narges Naghsh
- Department of Periodontology, Torabinejad Dental Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
16
|
Li D, Ren T, Li H, Huang M, Chen J, He Q, Lv W, Liu H, Xu R, Zhang X. Oral Microbiota and Porphyromonas gingivalis Kgp Genotypes Altered in Parkinson's Disease with Mild Cognitive Impairment. Mol Neurobiol 2024; 61:8631-8639. [PMID: 38536604 DOI: 10.1007/s12035-024-04119-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/08/2024] [Indexed: 10/23/2024]
Abstract
Cognitive impairment (CI) is a common complication of the non-motor symptoms in Parkinson's disease (PD), including PD with mild cognitive impairment (PD-MCI) and PD dementia. Recent studies reported the oral dysbiosis in PD and CI, respectively. Porphyromonas gingivalis (P. gingivalis), a pathogen of oral dysbiosis, plays an important role in PD, whose lysine-gingipain (Kgp) could lead to AD-type pathologies. No previous study investigated the composition of oral microbiota and role of P. gingivalis in PD-MCI. This study aimed to investigate the differences of oral microbiota composition, P. gingivalis copy number, and Kgp genotypes among PD-MCI, PD with normal cognition (PD-NC) and periodontal status-matched control (PC) groups. The oral bacteria composition, the copy number of P. gingivalis, and the Kgp genotypes in gingival crevicular fluid from PD-MCI, PD-NC, and PC were analyzed using 16S ribosomal RNA sequencing, quantitative real-time PCR, and MseI restriction. We found that the structures of oral microbiota in PD-MCI group were significantly different compared to that in PD-NC and PC group. The relative abundances of Prevotella, Lactobacillus, Megasphaera, Atopobium, and Howardella were negatively correlated with cognitive score. Moreover, there was a significant difference of Kgp genotypes among the three groups. The predominant Kgp genotypes of P. gingivalis in the PD-MCI group were primarily Kgp II, whereas in the PD-NC group, it was mainly Kgp I. The Kgp II correlated with lower MMSE and MoCA scores, which suggested that Kgp genotypes II is related to cognitive impairment in PD.
Collapse
Affiliation(s)
- Dongcheng Li
- Department of Neurology, Affiliated Maoming People's Hospital, Southern Medical University, Maoming, China
| | - Tengzhu Ren
- Department of Neurology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Hao Li
- Department of Neurology, Affiliated Maoming People's Hospital, Southern Medical University, Maoming, China
| | - Mingdi Huang
- Department of Stomatology, Affiliated Maoming People's Hospital, Southern Medical University, Maoming, China
| | - Jiaxin Chen
- Department of Neurology, Affiliated Maoming People's Hospital, Southern Medical University, Maoming, China
| | - Qishan He
- Department of Neurology, Affiliated Maoming People's Hospital, Southern Medical University, Maoming, China
| | - Wei Lv
- Department of Neurology, Affiliated Maoming People's Hospital, Southern Medical University, Maoming, China
| | - Hailing Liu
- Department of Neurology, Affiliated Maoming People's Hospital, Southern Medical University, Maoming, China.
| | - Renshi Xu
- Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Clinical College of Nanchang Medical College, Nanchang, China.
| | - Xiong Zhang
- Department of Neurology, Affiliated Maoming People's Hospital, Southern Medical University, Maoming, China.
| |
Collapse
|
17
|
Kato Y, Takamura M, Wada K, Usuda H, Abe S, Mitaki S, Nagai A. Fusobacterium in oral bacterial flora relates with asymptomatic brain lesions. Heliyon 2024; 10:e39277. [PMID: 39640678 PMCID: PMC11620239 DOI: 10.1016/j.heliyon.2024.e39277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 10/02/2024] [Accepted: 10/10/2024] [Indexed: 12/07/2024] Open
Abstract
Background Specific bacterial species in the oral cavity contribute to cerebral hemorrhage and microbleeds. The relationship between oral bacterial flora and asymptomatic brain lesions (ABL) remains unclear. This study aimed to investigate this relationship in a healthy Japanese cohort. Methods This cross-sectional study included participants who underwent health examinations at our Brain Dock facility between October 2020 and March 2021. The oral microbiomes of participants with and without ABL were compared using magnetic resonance imaging. To extensively assess the oral bacterial flora, the differences in genes and species compositions between the ABL and noBL (without brain lesions) groups were statistically evaluated via extensive analysis using 16S rRNA gene-based cloning. Results Among 143 patients, 48.3 % had ABL. In the univariate analyses, Fusobacterium and Leptotrichia were associated with ABL (P = 0.017 and P < 0.001, respectively). In the adjusted models, Fusobacterium was associated with ABL (P = 0.006). In an intergroup comparison of seven Fusobacterium species, F. nucleatum, F. naviforme, and F. canifelinum were associated with ABL (P < 0.001, P = 0.002, P < 0.001). Conclusions The elevation of Fusobacterium in the ABL indicates the importance of the microbiome in the oral cavity as a factor in inducing cerebral small-vessel disease in healthy individuals, whose preventive approach might have an impact on therapeutic applications.
Collapse
Affiliation(s)
- Yoshie Kato
- Department of Neurology, Shimane University Faculty of Medicine, Japan
| | - Masahiro Takamura
- Department of Neurology, Shimane University Faculty of Medicine, Japan
| | - Koichiro Wada
- Department of Pharmacology, Shimane University Faculty of Medicine, Japan
| | - Haruki Usuda
- Department of Pharmacology, Shimane University Faculty of Medicine, Japan
| | - Satoshi Abe
- Department of Neurology, Shimane University Faculty of Medicine, Japan
| | - Shingo Mitaki
- Department of Neurology, Shimane University Faculty of Medicine, Japan
| | - Atsushi Nagai
- Department of Neurology, Shimane University Faculty of Medicine, Japan
| |
Collapse
|
18
|
Qian X, Lin X, Hu W, Zhang L, Chen W, Zhang S, Ge S, Xu X, Luo K. Intestinal homeostasis disrupted by Periodontitis exacerbates Alzheimer's Disease in APP/PS1 mice. J Neuroinflammation 2024; 21:263. [PMID: 39425119 PMCID: PMC11489998 DOI: 10.1186/s12974-024-03256-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024] Open
Abstract
Periodontitis exacerbates Alzheimer's disease (AD) through multiple pathways. Both periodontitis and AD are intricately correlated to intestinal homeostasis, yet there is still a lack of direct evidence regarding whether periodontitis can regulate the progression of AD by modulating intestinal homeostasis. The current study induced experimental periodontitis in AD mice by bilaterally ligating the maxillary second molars with silk and administering Pg-LPS injections in APPswe/PS1ΔE9 (APP/PS1) mice. Behavioral tests and histological analyses of brain tissue were conducted after 8 weeks. Gut microbiota was analyzed and colon tissue were also evaluated. Then, fecal microbiota from mice with periodontitis was transplanted into antibiotic-treated mice to confirm the effects of periodontitis on AD and the potential mechanism was explored. The results indicated periodontitis exacerbated cognitive impairment and anxious behaviour in APP/PS1 mice, with increased Aβ deposition, microglial overactivation and neuroinflammation in brain. Moreover, the intestinal homeostasis of AD mice was altered by periodontitis, including affecting gut microbiota composition, causing colon inflammation and destroyed intestinal epithelial barrier. Furthermore, AD mice that underwent fecal transplantation from mice with periodontitis exhibited worsened AD progression and disrupted intestinal homeostasis. It also impaired intestinal barrier function, elevated peripheral inflammation, damaged blood-brain barrier (BBB) and caused neuroinflammation and synapses impairment. Taken together, the current study demonstrated that periodontitis could disrupt intestinal homeostasis to exacerbate AD progression potential via causing gut microbial dysbiosis, intestinal inflammation and intestinal barrier impairment to induce peripheral inflammation and damage BBB, ultimately leading to neuroinflammation and synapse impairment. It underscores the importance of maintaining both periodontal health and intestinal homeostasis to reduce the risk of AD.
Collapse
Affiliation(s)
- Xueshen Qian
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, P.R. China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, P.R. China
| | - Xuxin Lin
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, P.R. China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, P.R. China
| | - Weiqiang Hu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, P.R. China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, P.R. China
| | - Lu Zhang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, P.R. China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, P.R. China
| | - Wenqian Chen
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, P.R. China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, P.R. China
| | - Shuang Zhang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, Jiangsu, 210008, P.R. China
| | - Song Ge
- School and Hospital of Stomatology, Zunyi Medical University, Zunyi, Guizhou, 563003, P.R. China
| | - Xiongcheng Xu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, P.R. China.
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, P.R. China.
| | - Kai Luo
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, P.R. China.
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, P.R. China.
| |
Collapse
|
19
|
Nurkolis F, Utami TW, Alatas AI, Wicaksono D, Kurniawan R, Ratmandhika SR, Sukarno KT, Pahu YGP, Kim B, Tallei TE, Tjandrawinata RR, Alhasyimi AA, Surya R, Helen H, Halim P, Muhar AM, Syahputra RA. Can salivary and skin microbiome become a biodetector for aging-associated diseases? Current insights and future perspectives. FRONTIERS IN AGING 2024; 5:1462569. [PMID: 39484071 PMCID: PMC11524912 DOI: 10.3389/fragi.2024.1462569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/02/2024] [Indexed: 11/03/2024]
Abstract
Growth and aging are fundamental elements of human development. Aging is defined by a decrease in physiological activities and higher illness vulnerability. Affected by lifestyle, environmental, and hereditary elements, aging results in disorders including cardiovascular, musculoskeletal, and neurological diseases, which accounted for 16.1 million worldwide deaths in 2019. Stress-induced cellular senescence, caused by DNA damage, can reduce tissue regeneration and repair, promoting aging. The root cause of many age-related disorders is inflammation, encouraged by the senescence-associated secretory phenotype (SASP). Aging's metabolic changes and declining immune systems raise illness risk via promoting microbiome diversity. Stable, individual-specific skin and oral microbiomes are essential for both health and disease since dysbiosis is linked with periodontitis and eczema. Present from birth to death, the human microbiome, under the influence of diet and lifestyle, interacts symbiotically with the body. Poor dental health has been linked to Alzheimer's and Parkinson's diseases since oral microorganisms and systemic diseases have important interactions. Emphasizing the importance of microbiome health across the lifetime, this study reviews the understanding of the microbiome's role in aging-related diseases that can direct novel diagnosis and treatment approaches.
Collapse
Affiliation(s)
- Fahrul Nurkolis
- Department of Biological Sciences, Faculty of Sciences and Technology, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Yogyakarta, Indonesia
| | - Trianna Wahyu Utami
- Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Aiman Idrus Alatas
- Program of Clinical Microbiology Residency, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Danar Wicaksono
- Alumnus Department of Dermatology and Venereology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Rudy Kurniawan
- Graduate School of Medicine, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | | | | | | | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado, Indonesia
| | | | - Ananto Ali Alhasyimi
- Department of Orthodontics, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Reggie Surya
- Department of Food Technology, Faculty of Engineering, Bina Nusantara University, Jakarta, Indonesia
| | - Helen Helen
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Princella Halim
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Adi Muradi Muhar
- Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Rony Abdi Syahputra
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| |
Collapse
|
20
|
Beydoun HA, Beydoun MA, Noren Hooten N, Weiss J, Li Z, Georgescu MF, Maino Vieytes CA, Meirelles O, Launer LJ, Evans MK, Zonderman AB. Mediating and moderating effects of plasma proteomic biomarkers on the association between poor oral health problems and incident dementia: The UK Biobank study. GeroScience 2024; 46:5343-5363. [PMID: 38809392 PMCID: PMC11336161 DOI: 10.1007/s11357-024-01202-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/12/2024] [Indexed: 05/30/2024] Open
Abstract
The plasma proteome can mediate poor oral health problems (POHP)'s link to incident dementia. We screened 37,269 UK Biobank participants 50-74 years old (2006-2010) for prevalent POHP, further tested against 1463 plasma proteins and incident dementia over up to 15 years of follow-up. Total effect (TE) of POHP-dementia through plasma proteomic markers was decomposed into pure indirect effect (PIE), interaction referent (INTREF), controlled direct effect (CDE), or mediated interaction (INTMED). POHP increased the risk of all-cause dementia by 17% (P < 0.05). Growth differentiation factor 15 (GDF15) exhibited the strongest mediating effects (PIE > 0, P < 0.001), explaining 28% the total effect of POHP on dementia, as a pure indirect effect. A first principal component encompassing top 4 mediators (GDF15, IL19, MMP12, and ACVRL1), explained 11% of the POHP-dementia effect as a pure indirect effect. Pathway analysis including all mediators (k = 173 plasma proteins) revealed the involvement of the immune system, signal transduction, metabolism, disease, and gene expression, while STRING analysis indicated that top mediators within the first principal component were also represented in the two largest proteomic clusters. The dominant biological GO pathway for the GDF15 cluster was GO:0007169 labeled as "transmembrane receptor protein tyrosine kinase signaling pathway." Dementia is linked to POHP mediated by GDF15 among several proteomic markers.
Collapse
Affiliation(s)
- Hind A Beydoun
- US Department of Veterans Affairs, VA National Center On Homelessness Among Veterans, Washington, DC, 20420, USA
- Department of Management, Policy, and Community Health, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - May A Beydoun
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, 251 Bayview Blvd, Suite 100, Baltimore, MD, 21224, USA.
| | - Nicole Noren Hooten
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, 251 Bayview Blvd, Suite 100, Baltimore, MD, 21224, USA
| | - Jordan Weiss
- Stanford Center on Longevity, Stanford University, Palo Alto, CA, 94305, USA
| | - Zhiguang Li
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, 251 Bayview Blvd, Suite 100, Baltimore, MD, 21224, USA
| | - Michael F Georgescu
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, 251 Bayview Blvd, Suite 100, Baltimore, MD, 21224, USA
| | - Christian A Maino Vieytes
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, 251 Bayview Blvd, Suite 100, Baltimore, MD, 21224, USA
| | - Osorio Meirelles
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, 251 Bayview Blvd, Suite 100, Baltimore, MD, 21224, USA
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, 251 Bayview Blvd, Suite 100, Baltimore, MD, 21224, USA
| | - Michele K Evans
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, 251 Bayview Blvd, Suite 100, Baltimore, MD, 21224, USA
| | - Alan B Zonderman
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, 251 Bayview Blvd, Suite 100, Baltimore, MD, 21224, USA
| |
Collapse
|
21
|
Nakhal MM, Yassin LK, Alyaqoubi R, Saeed S, Alderei A, Alhammadi A, Alshehhi M, Almehairbi A, Al Houqani S, BaniYas S, Qanadilo H, Ali BR, Shehab S, Statsenko Y, Meribout S, Sadek B, Akour A, Hamad MIK. The Microbiota-Gut-Brain Axis and Neurological Disorders: A Comprehensive Review. Life (Basel) 2024; 14:1234. [PMID: 39459534 PMCID: PMC11508655 DOI: 10.3390/life14101234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Microbes have inhabited the earth for hundreds of millions of years longer than humans. The microbiota-gut-brain axis (MGBA) represents a bidirectional communication pathway. These communications occur between the central nervous system (CNS), the enteric nervous system (ENS), and the emotional and cognitive centres of the brain. The field of research on the gut-brain axis has grown significantly during the past two decades. Signalling occurs between the gut microbiota and the brain through the neural, endocrine, immune, and humoral pathways. A substantial body of evidence indicates that the MGBA plays a pivotal role in various neurological diseases. These include Alzheimer's disease (AD), autism spectrum disorder (ASD), Rett syndrome, attention deficit hyperactivity disorder (ADHD), non-Alzheimer's neurodegeneration and dementias, fronto-temporal lobe dementia (FTLD), Wilson-Konovalov disease (WD), multisystem atrophy (MSA), Huntington's chorea (HC), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), temporal lobe epilepsy (TLE), depression, and schizophrenia (SCZ). Furthermore, the bidirectional correlation between therapeutics and the gut-brain axis will be discussed. Conversely, the mood of delivery, exercise, psychotropic agents, stress, and neurologic drugs can influence the MGBA. By understanding the MGBA, it may be possible to facilitate research into microbial-based interventions and therapeutic strategies for neurological diseases.
Collapse
Affiliation(s)
- Mohammed M. Nakhal
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Lidya K. Yassin
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Rana Alyaqoubi
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Sara Saeed
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Alreem Alderei
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Alya Alhammadi
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Mirah Alshehhi
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Afra Almehairbi
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Shaikha Al Houqani
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Shamsa BaniYas
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Haia Qanadilo
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Bassam R. Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Safa Shehab
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Yauhen Statsenko
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Neuroscience Platform, ASPIRE Precision Medicine Institute in Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Sarah Meribout
- Internal Medicine Department, Maimonides Medical Center, New York, NY 11219, USA;
| | - Bassem Sadek
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Bo Box 15551, United Arab Emirates; (B.S.); (A.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 1551, United Arab Emirates
| | - Amal Akour
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Bo Box 15551, United Arab Emirates; (B.S.); (A.A.)
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Mohammad I. K. Hamad
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| |
Collapse
|
22
|
Zhang S, Lu J, Jin Z, Xu H, Zhang D, Chen J, Wang J. Gut microbiota metabolites: potential therapeutic targets for Alzheimer's disease? Front Pharmacol 2024; 15:1459655. [PMID: 39355779 PMCID: PMC11442227 DOI: 10.3389/fphar.2024.1459655] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/05/2024] [Indexed: 10/03/2024] Open
Abstract
Background Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive decline in cognitive function, which significantly increases pain and social burden. However, few therapeutic interventions are effective in preventing or mitigating the progression of AD. An increasing number of recent studies support the hypothesis that the gut microbiome and its metabolites may be associated with upstream regulators of AD pathology. Methods In this review, we comprehensively explore the potential mechanisms and currently available interventions targeting the microbiome for the improvement of AD. Our discussion is structured around modern research advancements in AD, the bidirectional communication between the gut and brain, the multi-target regulatory effects of microbial metabolites on AD, and therapeutic strategies aimed at modulating gut microbiota to manage AD. Results The gut microbiota plays a crucial role in the pathogenesis of AD through continuous bidirectional communication via the microbiota-gut-brain axis. Among these, microbial metabolites such as lipids, amino acids, bile acids and neurotransmitters, especially sphingolipids and phospholipids, may serve as central components of the gut-brain axis, regulating AD-related pathogenic mechanisms including β-amyloid metabolism, Tau protein phosphorylation, and neuroinflammation. Additionally, interventions such as probiotic administration, fecal microbiota transplantation, and antibiotic use have also provided evidence supporting the association between gut microbiota and AD. At the same time, we propose an innovative strategy for treating AD: a healthy lifestyle combined with targeted probiotics and other potential therapeutic interventions, aiming to restore intestinal ecology and microbiota balance. Conclusion Despite previous efforts, the molecular mechanisms by which gut microbes act on AD have yet to be fully described. However, intestinal microorganisms may become an essential target for connecting the gut-brain axis and improving the symptoms of AD. At the same time, it requires joint exploration by multiple centers and multiple disciplines.
Collapse
Affiliation(s)
- Shanshan Zhang
- The School to Changchun University of Chinese Medicine, Changchun, China
| | - Jing Lu
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Ziqi Jin
- The School to Changchun University of Chinese Medicine, Changchun, China
| | - Hanying Xu
- Department of Encephalopathy, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Dongmei Zhang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Jianan Chen
- The School to Changchun University of Chinese Medicine, Changchun, China
| | - Jian Wang
- Department of Encephalopathy, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
23
|
Tian S, Ding T, Li H. Oral microbiome in human health and diseases. MLIFE 2024; 3:367-383. [PMID: 39359681 PMCID: PMC11442140 DOI: 10.1002/mlf2.12136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/13/2024] [Accepted: 05/05/2024] [Indexed: 10/04/2024]
Abstract
The oral cavity contains the second-largest microbiota in the human body. The cavity's anatomically and physiologically diverse niches facilitate a wide range of symbiotic bacteria living at distinct oral sites. Consequently, the oral microbiota exhibits site specificity, with diverse species, compositions, and structures influenced by specific aspects of their placement. Variations in oral microbiota structure caused by changes in these influencing factors can impact overall health and lead to the development of diseases-not only in the oral cavity but also in organs distal to the mouth-such as cancer, cardiovascular disease, and respiratory disease. Conversely, diseases can exacerbate the imbalance of the oral microbiota, creating a vicious cycle. Understanding the heterogeneity of both the oral microbiome and individual humans is important for investigating the causal links between the oral microbiome and diseases. Additionally, understanding the intricacies of the oral microbiome's composition and regulatory factors will help identify the potential causes of related diseases and develop interventions to prevent and treat illnesses in this domain. Therefore, turning to the extant research in this field, we systematically review the relationship between oral microbiome dynamics and human diseases.
Collapse
Affiliation(s)
- Siqi Tian
- Department of Immunology and Microbiology, Zhongshan School of Medicine Sun Yat-Sen University Guangzhou China
- Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University) Ministry of Education Guangzhou China
| | - Tao Ding
- Department of Immunology and Microbiology, Zhongshan School of Medicine Sun Yat-Sen University Guangzhou China
- Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University) Ministry of Education Guangzhou China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University) Ministry of Education, China Guangzhou China
| | - Hui Li
- Department of Immunology and Microbiology, Zhongshan School of Medicine Sun Yat-Sen University Guangzhou China
- Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University) Ministry of Education Guangzhou China
| |
Collapse
|
24
|
Beydoun MA, Beydoun HA, Hedges DW, Erickson LD, Gale SD, Weiss J, El‐Hajj ZW, Evans MK, Zonderman AB. Infection burden, periodontal pathogens, and their interactive association with incident all-cause and Alzheimer's disease dementia in a large national survey. Alzheimers Dement 2024; 20:6468-6485. [PMID: 39115027 PMCID: PMC11497652 DOI: 10.1002/alz.14141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION Relationships and interplay of an infection burden (IB) and periodontal pathogens or periodontal disease (Pd) markers with Alzheimer's disease (AD) and all-cause dementia among US adults were examined. METHODS Less than or equal to 2997 participants from the National Health and Nutrition Survey III were linked to CMS-Medicare [≥45 years (1988-1994); ≤30 years follow-up]. RESULTS Hepatitis C (hazard ratio = 3.33, p = 0.004) and herpes simplex virus 2 were strongly associated with greater all-cause dementia risk. Porphyromonas gingivalis and Streptococcus oralis were associated with greater AD risk at higher IB. The red-green periodontal pathogen cluster coupled with higher IB count increased the risk of all-cause dementia among minority racial groups. Pocket probing depth associated with dementia risk at lower IB in the overall sample. DISCUSSION Select viruses and bacteria were associated with all-cause and AD dementia, while the IB interacted with Pd markers in relation to these outcomes. HIGHLIGHTS Interplay of infection burden (IB) and periodontal disease with dementia was tested. ≤2997 participants from NHANES III were linked to Medicare. Hepatitis C and herpes simplex virus 2 strongly associated with dementia risk. Tetanus sero-positivity increased Alzheimer's disease (AD) risk. Porphyromonas gingivalis and Streptococcus oralis associated with AD at higher IB. Red-green periodontal cluster at high IB, increased dementia in racial minorities. Pocket probing depth associated with dementia risk at lower IB.
Collapse
Affiliation(s)
- May A. Beydoun
- Laboratory of Epidemiology and Population SciencesNational Institute on Aging, NIA/NIH/IRP, NIA/NIH/IRPBaltimoreMarylandUSA
| | - Hind A. Beydoun
- U.S. Department of Veterans AffairsVA National Center on Homelessness Among VeteransWashingtonDistrict of ColumbiaUSA
- Department of Management, Policy, and Community Health, School of Public HealthUniversity of Texas Health Science Center at HoustonHoustonTexasUSA
| | | | | | - Shawn D. Gale
- Department of PsychologyBrigham Young UniversityProvoUtahUSA
| | - Jordan Weiss
- Stanford Center on LongevityStanford UniversityPalo AltoCaliforniaUSA
| | | | - Michele K. Evans
- Laboratory of Epidemiology and Population SciencesNational Institute on Aging, NIA/NIH/IRP, NIA/NIH/IRPBaltimoreMarylandUSA
| | - Alan B. Zonderman
- Laboratory of Epidemiology and Population SciencesNational Institute on Aging, NIA/NIH/IRP, NIA/NIH/IRPBaltimoreMarylandUSA
| |
Collapse
|
25
|
Zhang S, Zhao Y, Lalsiamthara J, Peng Y, Qi L, Deng S, Wang Q. Current research progress on Prevotella intermedia and associated diseases. Crit Rev Microbiol 2024:1-18. [PMID: 39140115 DOI: 10.1080/1040841x.2024.2390594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 05/29/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
Prevotella intermedia is a Gram-negative anaerobic bacterium that is a common pathogen of periodontitis. Recent studies have revealed that P. intermedia is closely associated with a variety of diseases involving multiple systems. Under the action of its virulence factors such as cysteine protease and adhesins, P. intermedia has the ability to bind and invade various host cells including gingival fibroblasts. It can also copolymerize a variety of pathogenic bacteria, leading to interference with the host's immune inflammatory response and causing various diseases. In this article, we review the progress of research on P. intermedia virulence factors and bacterial pathogenesis, and the correlation between P. intermedia and various diseases.
Collapse
Affiliation(s)
- Shuyang Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Yuheng Zhao
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Jonathan Lalsiamthara
- Molecular Microbiology & Immunology, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Yan Peng
- Key Laboratory of Green Cleaning Technology& Detergent of Zhejiang Province, Hangzhou, China
| | - Linlong Qi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Shuli Deng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Qingjing Wang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| |
Collapse
|
26
|
Chen L, Li X, Liu J, Hou Z, Wei Y, Chen M, Wang B, Cao H, Qiu R, Zhang Y, Ji X, Zhang P, Xue M, Qiu L, Wang L, Li H. Distinctive subgingival microbial signatures in older adults with different levels of cognitive function. J Clin Periodontol 2024; 51:1066-1080. [PMID: 38769711 DOI: 10.1111/jcpe.13997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/22/2024]
Abstract
AIM To examine association between subgingival microbial signatures and levels of cognitive impairment in older adults. MATERIALS AND METHODS We analysed subgingival plaque samples and 16S ribosomal RNA sequences for microbiota among 165 participants (normal controls [NCs]: 40, subjective cognitive decline [SCD]: 40, mild cognitive impairment [MCI]: 49 and dementia: 36). RESULTS The bacterial richness was lower among individuals with worse cognitive function, and subgingival microbial communities differed significantly among the four groups. Declining cognitive function was associated with decreasing relative abundance of genera Capnocytophaga, Saccharibacteria_genera_incertae_sedis, Lautropia and Granulicatella, and increasing abundance of genus Porphyromonas. Moreover, there were differentially abundant genera among the groups. Random forest model based on subgingival microbiota could distinguish between cognitive impairment and NC (AUC = 0.933, 95% confidence interval 0.873-0.992). Significant correlations were observed between oral microbiota and sex, Montreal Cognitive Assessment (MoCA) score and Mini-Mental State Examination score. Partial correlation analysis showed that Leptotrichia and Burkholderia were closely negatively associated with the MoCA score after adjusting for multiple covariates. Gene function was not significantly different between SCD and NC groups, whereas three homozygous genes were altered in MCI patients and two in dementia patients. CONCLUSIONS This is the first study to demonstrate an association between the composition, function and metabolic pathways of subgingival microbiota and different levels of cognitive function among older individuals. Future cohort studies should assess its diagnostic usefulness for cognitive impairment.
Collapse
Affiliation(s)
- Lili Chen
- Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Nursing, Fujian Provincial Hospital, Fuzhou, China
| | - Xiuli Li
- The School of Nursing, Fujian Medical University, Fuzhou, China
| | - Jinxiu Liu
- The School of Nursing, Fujian Medical University, Fuzhou, China
| | - Zhaoyi Hou
- The School of Nursing, Fujian Medical University, Fuzhou, China
| | - Yongbao Wei
- Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Mingfeng Chen
- Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Bixia Wang
- The School of Nursing, Fujian Medical University, Fuzhou, China
| | - Huizhen Cao
- Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Rongyan Qiu
- Department of Surgery, Fujian Provincial Governmental Hospital, Fuzhou, China
| | - Yuping Zhang
- The School of Nursing, Fujian Medical University, Fuzhou, China
| | - Xinli Ji
- The School of Nursing, Fujian Medical University, Fuzhou, China
| | - Ping Zhang
- The School of Nursing, Fujian Medical University, Fuzhou, China
| | - Mianxiang Xue
- The School of Nursing, Fujian Medical University, Fuzhou, China
| | - Linlin Qiu
- The School of Nursing, Fujian Medical University, Fuzhou, China
| | - Linlin Wang
- The School of Nursing, Fujian Medical University, Fuzhou, China
| | - Hong Li
- The School of Nursing, Fujian Medical University, Fuzhou, China
| |
Collapse
|
27
|
Li F, Ma C, Lei S, Pan Y, Lin L, Pan C, Li Q, Geng F, Min D, Tang X. Gingipains may be one of the key virulence factors of Porphyromonas gingivalis to impair cognition and enhance blood-brain barrier permeability: An animal study. J Clin Periodontol 2024; 51:818-839. [PMID: 38414291 DOI: 10.1111/jcpe.13966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 01/24/2024] [Accepted: 02/08/2024] [Indexed: 02/29/2024]
Abstract
AIM Blood-brain barrier (BBB) disorder is one of the early findings in cognitive impairments. We have recently found that Porphyromonas gingivalis bacteraemia can cause cognitive impairment and increased BBB permeability. This study aimed to find out the possible key virulence factors of P. gingivalis contributing to the pathological process. MATERIALS AND METHODS C57/BL6 mice were infected with P. gingivalis or gingipains or P. gingivalis lipopolysaccharide (P. gingivalis LPS group) by tail vein injection for 8 weeks. The cognitive behaviour changes in mice, the histopathological changes in the hippocampus and cerebral cortex, the alternations of BBB permeability, and the changes in Mfsd2a and Cav-1 levels were measured. The mechanisms of Ddx3x-induced regulation on Mfsd2a by arginine-specific gingipain A (RgpA) in BMECs were explored. RESULTS P. gingivalis and gingipains significantly promoted mice cognitive impairment, pathological changes in the hippocampus and cerebral cortex, increased BBB permeability, inhibited Mfsd2a expression and up-regulated Cav-1 expression. After RgpA stimulation, the permeability of the BBB model in vitro increased, and the Ddx3x/Mfsd2a/Cav-1 regulatory axis was activated. CONCLUSIONS Gingipains may be one of the key virulence factors of P. gingivalis to impair cognition and enhance BBB permeability by the Ddx3x/Mfsd2a/Cav-1 axis.
Collapse
Affiliation(s)
- Fulong Li
- Department of Periodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, China
- Center of Implantology, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, China
| | - Chunliang Ma
- Department of Periodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, China
| | - Shuang Lei
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, China
| | - Yaping Pan
- Department of Periodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, China
| | - Li Lin
- Department of Periodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, China
| | - Chunling Pan
- Department of Periodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, China
| | - Qian Li
- Department of Periodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, China
| | - Fengxue Geng
- Department of Periodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, China
| | - Dongyu Min
- Traditional Chinese Medicine Experimental Center, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
- Key Laboratory of Ministry of Education for TCM Viscera State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Xiaolin Tang
- Department of Periodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, China
| |
Collapse
|
28
|
Yang J, Zhi W, Wang L. Role of Tau Protein in Neurodegenerative Diseases and Development of Its Targeted Drugs: A Literature Review. Molecules 2024; 29:2812. [PMID: 38930877 PMCID: PMC11206543 DOI: 10.3390/molecules29122812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Tau protein is a microtubule-associated protein that is widely distributed in the central nervous system and maintains and regulates neuronal morphology and function. Tau protein aggregates abnormally and forms neurofibrillary tangles in neurodegenerative diseases, disrupting the structure and function of neurons and leading to neuronal death, which triggers the initiation and progression of neurological disorders. The aggregation of tau protein in neurodegenerative diseases is associated with post-translational modifications, which may affect the hydrophilicity, spatial conformation, and stability of tau protein, promoting tau protein aggregation and the formation of neurofibrillary tangles. Therefore, studying the role of tau protein in neurodegenerative diseases and the mechanism of aberrant aggregation is important for understanding the mechanism of neurodegenerative diseases and finding therapeutic approaches. This review describes the possible mechanisms by which tau protein promotes neurodegenerative diseases, the post-translational modifications of tau protein and associated influencing factors, and the current status of drug discovery and development related to tau protein, which may contribute to the development of new therapeutic approaches to alleviate or treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Jiakai Yang
- Graduate Collaborative Training Base of Academy of Military Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China;
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| | - Weijia Zhi
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| | - Lifeng Wang
- Graduate Collaborative Training Base of Academy of Military Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China;
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| |
Collapse
|
29
|
Park H, Lee CH. The Impact of Pulmonary Disorders on Neurological Health (Lung-Brain Axis). Immune Netw 2024; 24:e20. [PMID: 38974208 PMCID: PMC11224666 DOI: 10.4110/in.2024.24.e20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/30/2024] [Accepted: 05/23/2024] [Indexed: 07/09/2024] Open
Abstract
The brain and lungs, vital organs in the body, play essential roles in maintaining overall well-being and survival. These organs interact through complex and sophisticated bi-directional pathways known as the 'lung-brain axis', facilitated by their close proximity and neural connections. Numerous studies have underscored the mediation of the lung-brain axis by inflammatory responses and hypoxia-induced damage, which are pivotal to the progression of both pulmonary and neurological diseases. This review aims to delve into how pulmonary diseases, including acute/chronic airway diseases and pulmonary conditions, can instigate neurological disorders such as stroke, Alzheimer's disease, and Parkinson's disease. Additionally, we highlight the emerging research on the lung microbiome which, drawing parallels between the gut and lungs in terms of microbiome contents, may play a significant role in modulating brain health. Ultimately, this review paves the way for exciting avenues of future research and therapeutics in addressing respiratory and neurological diseases.
Collapse
Affiliation(s)
- Hongryeol Park
- Department of Tissue Morphogenesis, Max-Planck Institute for Molecular Biomedicine, Muenster 48149, Germany
| | - Chan Hee Lee
- Department of Biomedical Science, Hallym University, Chuncheon 24252, Korea
- Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
30
|
Deng Z, Li J, Zhang Y, Zhang Y. No genetic causal associations between periodontitis and brain atrophy or cognitive impairment: evidence from a comprehensive bidirectional Mendelian randomization study. BMC Oral Health 2024; 24:571. [PMID: 38755584 PMCID: PMC11100120 DOI: 10.1186/s12903-024-04367-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Observational studies have explored the relationships of periodontitis with brain atrophy and cognitive impairment, but these findings are limited by reverse causation, confounders and have reported conflicting results. Our study aimed to investigate the causal associations of periodontitis with brain atrophy and cognitive impairment through a comprehensive bidirectional Mendelian randomization (MR) research. METHODS We incorporated two distinct genome-wide association study (GWAS) summary datasets as an exploration cohort and a replication cohort for periodontitis. Four and eight metrics were selected for the insightful evaluation of brain atrophy and cognitive impairment, respectively. The former involved cortical thickness and surface area, left and right hippocampal volumes, with the latter covering assessments of cognitive performance, fluid intelligence scores, prospective memory, and reaction time for mild cognitive impairment to Alzheimer's disease (AD), Lewy body dementia, vascular dementia and frontotemporal dementia for severe situations. Furthermore, supplementary analyses were conducted to examine the associations between the longitudinal rates of change in brain atrophy and cognitive function metrics with periodontitis. The main analysis utilized the inverse variance weighting (IVW) method and evaluated the robustness of the results through a series of sensitivity analyses. For multiple tests, associations with p-values < 0.0021 were considered statistically significant, while p-values ≥ 0.0021 and < 0.05 were regarded as suggestive of significance. RESULTS In the exploration cohort, forward and reverse MR results revealed no causal associations between periodontitis and brain atrophy or cognitive impairment, and only a potential causal association was found between AD and periodontitis (IVW: OR = 0.917, 95% CI from 0.845 to 0.995, P = 0.038). Results from the replication cohort similarly corroborated the absence of a causal relationship. In the supplementary analyses, the longitudinal rates of change in brain atrophy and cognitive function were also not found to have causal relationships with periodontitis. CONCLUSIONS The MR analyses indicated a lack of substantial evidence for a causal connection between periodontitis and both brain atrophy and cognitive impairment.
Collapse
Affiliation(s)
- Zhixing Deng
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jiaming Li
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yuhao Zhang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yinian Zhang
- Department of Neuro-Oncological Surgery, Neurosurgery Center, Zhujiang Hospital of Southern Medical University, Guangzhou, China.
| |
Collapse
|
31
|
Williams ZAP, Lang L, Nicolas S, Clarke G, Cryan J, Vauzour D, Nolan YM. Do microbes play a role in Alzheimer's disease? Microb Biotechnol 2024; 17:e14462. [PMID: 38593310 PMCID: PMC11003713 DOI: 10.1111/1751-7915.14462] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 04/11/2024] Open
Abstract
Alzheimer's disease is a complex and progressive condition that affects essential neurological functions such as memory and reasoning. In the brain, neuronal loss, synaptic dysfunction, proteinopathy, neurofibrillary tangles, and neuroinflammation are the hallmarks of Alzheimer's disease pathophysiology. In addition, recent evidence has highlighted that microbes, whether commensal or pathogenic, also have the ability to interact with their host and to regulate its immune system, therefore participating in the exchanges that lead to peripheral inflammation and neuropathology. Because of this intimate relationship, bacteria, viruses, fungi, and protozoa have been implicated in the development of Alzheimer's disease. Here, we bring together current and most recent evidence of the role of microbes in Alzheimer's disease, raising burning questions that need to be addressed to guide therapeutic approaches and potential prophylactic strategies.
Collapse
Affiliation(s)
- Zoë A. P. Williams
- Department of Anatomy and NeuroscienceUniversity College CorkCorkIreland
- APC Microbiome IrelandUniversity College CorkCorkIreland
| | - Leonie Lang
- Norwich Medical School, Faculty of Medicine and Health SciencesUniversity of East AngliaNorwichUK
| | - Sarah Nicolas
- Department of Anatomy and NeuroscienceUniversity College CorkCorkIreland
- APC Microbiome IrelandUniversity College CorkCorkIreland
| | - Gerard Clarke
- APC Microbiome IrelandUniversity College CorkCorkIreland
- Department of Psychiatry and Neurobehavioural ScienceUniversity College CorkCorkIreland
| | - John Cryan
- Department of Anatomy and NeuroscienceUniversity College CorkCorkIreland
- APC Microbiome IrelandUniversity College CorkCorkIreland
| | - David Vauzour
- Norwich Medical School, Faculty of Medicine and Health SciencesUniversity of East AngliaNorwichUK
| | - Yvonne M. Nolan
- Department of Anatomy and NeuroscienceUniversity College CorkCorkIreland
- APC Microbiome IrelandUniversity College CorkCorkIreland
| |
Collapse
|
32
|
Liu S, Butler CA, Ayton S, Reynolds EC, Dashper SG. Porphyromonas gingivalis and the pathogenesis of Alzheimer's disease. Crit Rev Microbiol 2024; 50:127-137. [PMID: 36597758 DOI: 10.1080/1040841x.2022.2163613] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/05/2023]
Abstract
The cause of Alzheimer's disease (AD), and the pathophysiological mechanisms involved, remain major unanswered questions in medical science. Oral bacteria, especially those species associated with chronic periodontitis and particularly Porphyromonas gingivalis, are being linked causally to AD pathophysiology in a subpopulation of susceptible individuals. P. gingivalis produces large amounts of proteolytic enzymes, haem and iron capture proteins, adhesins and internalins that are secreted and attached to the cell surface and concentrated onto outer membrane vesicles (OMVs). These enzymes and adhesive proteins have been shown to cause host tissue damage and stimulate inflammatory responses. The ecological and pathophysiological roles of P. gingivalis OMVs, their ability to disperse widely throughout the host and deliver functional proteins lead to the proposal that they may be the link between a P. gingivalis focal infection in the subgingivae during periodontitis and neurodegeneration in AD. P. gingivalis OMVs can cross the blood brain barrier and may accelerate AD-specific neuropathology by increasing neuroinflammation, plaque/tangle formation and dysregulation of iron homeostasis, thereby inducing ferroptosis leading to neuronal death and neurodegeneration.
Collapse
Affiliation(s)
- Sixin Liu
- School of Dentistry, University of Michigan, Ann Arbor, United States of America
| | - Catherine A Butler
- Centre for Oral Health Research, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Parkville, Australia
| | - Scott Ayton
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Eric C Reynolds
- Centre for Oral Health Research, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Parkville, Australia
| | - Stuart G Dashper
- Centre for Oral Health Research, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Parkville, Australia
| |
Collapse
|
33
|
Cichońska D, Mazuś M, Kusiak A. Recent Aspects of Periodontitis and Alzheimer's Disease-A Narrative Review. Int J Mol Sci 2024; 25:2612. [PMID: 38473858 DOI: 10.3390/ijms25052612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/13/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Periodontitis is an inflammatory condition affecting the supporting structures of the teeth. Periodontal conditions may increase the susceptibility of individuals to various systemic illnesses, including Alzheimer's disease. Alzheimer's disease is a neurodegenerative condition characterized by a gradual onset and progressive deterioration, making it the primary cause of dementia, although the exact cause of the disease remains elusive. Both Alzheimer's disease and periodontitis share risk factors and clinical studies comparing the associations and occurrence of periodontitis among individuals with Alzheimer's disease have suggested a potential correlation between these conditions. Brains of individuals with Alzheimer's disease have substantiated the existence of microorganisms related to periodontitis, especially Porphyromonas gingivalis, which produces neurotoxic gingipains and may present the capability to breach the blood-brain barrier. Treponema denticola may induce tau hyperphosphorylation and lead to neuronal apoptosis. Lipopolysaccharides-components of bacterial cell membranes and mediators of inflammation-also have an impact on brain function. Further research could unveil therapeutic approaches targeting periodontal pathogens to potentially alleviate AD progression.
Collapse
Affiliation(s)
- Dominika Cichońska
- Department of Periodontology and Oral Mucosa Diseases, Medical University of Gdańsk, Orzeszkowej 18 St. 18, 80-208 Gdańsk, Poland
| | - Magda Mazuś
- Student Research Group of the Department of Periodontology and Oral Mucosa Diseases, Medical University of Gdańsk, Orzeszkowej 18 St. 18, 80-208 Gdańsk, Poland
| | - Aida Kusiak
- Department of Periodontology and Oral Mucosa Diseases, Medical University of Gdańsk, Orzeszkowej 18 St. 18, 80-208 Gdańsk, Poland
| |
Collapse
|
34
|
Li R, Wang J, Xiong W, Luo Y, Feng H, Zhou H, Peng Y, He Y, Ye Q. The oral-brain axis: can periodontal pathogens trigger the onset and progression of Alzheimer's disease? Front Microbiol 2024; 15:1358179. [PMID: 38362505 PMCID: PMC10868393 DOI: 10.3389/fmicb.2024.1358179] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024] Open
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia, characterized by a progressive cognitive decline. Sporadic AD, accounting for more than 95% of cases, may arise due to the influence of environmental factors. It was reported that periodontitis, a common oral ailment, shares several risk factors with AD, including advanced age, smoking, diabetes, and hypertension, among others. Periodontitis is an inflammatory disease triggered by dysbiosis of oral microorganisms, whereas Alzheimer's disease is characterized by neuroinflammation. Many studies have indicated that chronic inflammation can instigate brain AD-related pathologies, including amyloid-β plaques, Tau protein hyperphosphorylation, neuroinflammation, and neurodegeneration. The potential involvement of periodontal pathogens and/or their virulence factors in the onset and progression of AD by the oral-brain axis has garnered significant attention among researchers with ongoing investigations. This review has updated the periodontal pathogens potentially associated with AD, elucidating their impact on the central nervous system, immune response, and related pathological processes in the brain to provide valuable insights for future research on the oral-brain axis.
Collapse
Affiliation(s)
- Ruohan Li
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Junnan Wang
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Wei Xiong
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yu Luo
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Huixian Feng
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Heng Zhou
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Youjian Peng
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Qingsong Ye
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
35
|
Li Z, Wang H, Yin Y. Peripheral inflammation is a potential etiological factor in Alzheimer's disease. Rev Neurosci 2024; 35:99-120. [PMID: 37602685 DOI: 10.1515/revneuro-2023-0049] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/27/2023] [Indexed: 08/22/2023]
Abstract
Peripheral inflammation could constitute a risk factor for AD. This review summarizes the research related to peripheral inflammation that appears to have a relationship with Alzheimer's disease. We find there are significant associations between AD and peripheral infection induced by various pathogens, including herpes simplex virus type 1, cytomegalovirus, Epstein-Barr virus, human immunodeficiency virus, severe acute respiratory syndrome coronavirus 2, Porphyromonas gingivalis, Helicobacter pylori, and Toxoplasma gondii. Chronic inflammatory diseases are also reported to contribute to the pathophysiology of AD. The mechanisms by which peripheral inflammation affects the pathophysiology of AD are complex. Pathogen-derived neurotoxic molecule composition, disrupted BBB, and dysfunctional neurogenesis may all play a role in peripheral inflammation, promoting the development of AD. Anti-pathogenic medications and anti-inflammatory treatments are reported to decrease the risk of AD. Studies that could improve understanding the associations between AD and peripheral inflammation are needed. If our assumption is correct, early intervention against inflammation may be a potential method of preventing and treating AD.
Collapse
Affiliation(s)
- Ziyuan Li
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Kongjiang Road 1665, Yangpu District, Shanghai 200092, China
| | - Hui Wang
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Kongjiang Road 1665, Yangpu District, Shanghai 200092, China
| | - Yafu Yin
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Kongjiang Road 1665, Yangpu District, Shanghai 200092, China
| |
Collapse
|
36
|
Sun W, Tian G, Ding M, Zou X, Hu J, Yin J. Chemical Synthesis of the Trisaccharide Repeating Unit of the O-Antigen of Fusobacterium nucleatum ATCC 51191. Org Lett 2024; 26:321-326. [PMID: 38147353 DOI: 10.1021/acs.orglett.3c03981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Herein, the trisaccharide repeating unit of Fusobacterium nucleatum ssp. animalis ATCC 51191, which is used to develop oncomicrobial vaccines, was efficiently synthesized for the first time. The synthetic approach featured the following: (i) construction of the 1,2-cis-glycosidic linkage using the large steric hindrance of a phthalimide group at C4 of fucosamine; (ii) synthesis of the trisaccharide via a linear [2 + 1] glycosylation strategy; and (iii) installation of l-alanine using hexafluorophosphate azabenzotriazole tetramethyl uronium as a promoter.
Collapse
Affiliation(s)
- Wenbin Sun
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Guangzong Tian
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Meiru Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaopeng Zou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jing Hu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology & School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
37
|
Villar A, Paladini S, Cossatis J. Periodontal Disease and Alzheimer's: Insights from a Systematic Literature Network Analysis. J Prev Alzheimers Dis 2024; 11:1148-1165. [PMID: 39044527 PMCID: PMC11266257 DOI: 10.14283/jpad.2024.79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/03/2024] [Indexed: 07/25/2024]
Abstract
This study investigated the relationship between periodontal disease (PD) and Alzheimer's Disease (AD) through a Systematic Literature Network Analysis (SLNA), combining bibliometric analysis with a Systematic Literature Review (SLR). Analyzing 328 documents from 2000 to 2023, we utilized the Bibliometrix R-package for multiple bibliometric analysis. The SLR primarily centered on the 47 most globally cited papers, highlighting influential research. Our study reveals a positive correlation between Periodontal Disease (PD) and Alzheimer's Disease (AD), grounded in both biological plausibility and a comprehensive review of the literature, yet the exact causal relationship remains a subject of ongoing scientific investigation. We conducted a detailed analysis of the two main pathways by which PD could contribute to brain inflammation: (a) the Inflammatory Cascade, and (b) Microbial Involvement. The results of our SLNA emphasize the importance of oral health in reducing Alzheimer's risk, suggesting that managing periodontal health could be an integral part of Alzheimer's prevention and treatment strategies. The insights from this SLNA pave the way for future research and clinical practices, underscoring the necessity of interdisciplinary methods in both the investigation and treatment of neurodegenerative diseases like Alzheimer's. Furthermore, our study presents a prospective research roadmap to support ongoing advancement in this field.
Collapse
Affiliation(s)
- A Villar
- Alice Villar, Faculty of Medicine, University Castelo Branco (UCB), Brazil,
| | | | | |
Collapse
|
38
|
Merchant AT, Zhao L, Bawa EM, Yi F, Vidanapathirana NP, Lohman M, Zhang J. Association between clusters of antibodies against periodontal microorganisms and Alzheimer disease mortality: Evidence from a nationally representative survey in the USA. J Periodontol 2024; 95:84-90. [PMID: 37452709 PMCID: PMC10788377 DOI: 10.1002/jper.23-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/26/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Alzheimer disease (AD) has been linked with periodontal microorganisms such as Porphyromonas gingivalis in observational and mechanistic studies. IgG antibodies against periodontal microorganisms which are markers of past and current periodontal infection have been correlated with cognitive impairment. We examined associations between empirically derived groups of 19 IgG antibodies against periodontal microorganisms and AD mortality. METHODS Individuals participating in the Third National Health and Nutrition Examination Survey (NHANES III) with complete data on IgG titers were followed up between 1988 and December 31, 2019. The outcome was AD mortality, and the main exposures were IgG antibodies against periodontal microorganisms classified into four mutually exclusive groups using cluster analysis. Survey-weighted Cox proportional hazard models were used to evaluate adjusted hazard ratios (aHR) and 95% confidence intervals (CI) for the relationship between clusters and AD mortality. RESULTS With up to 21 years of follow-up, 160 AD-related deaths were documented. In the multivariable-adjusted model, AD mortality overall was not associated with the Red-Green (aHR 1.18; 95% CI, 0.46-3.07), Yellow-Orange (aHR 1.36; 95% CI, 0.58-3.19), Orange-Blue (aHR 0.63; 95%, CI, 0.33-1.21), and the Orange-Red (aHR 0.79; 95% CI, 0.37-1.70) when the upper tertiles were compared to the bottom tertiles. However, the subgroup of middle-aged individuals in the highest tertile of the Red-Green cluster, but not older individuals, had a 13% higher risk of AD mortality (aHR 1.13; 95% CI, 1.02-1.26) compared with those in the bottom tertile. CONCLUSION Clusters of IgG antibodies against periodontal microorganisms did not predict AD mortality in this study.
Collapse
Affiliation(s)
- Anwar T Merchant
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA
| | - Longgang Zhao
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA
| | - Eric Mishio Bawa
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA
| | - Fanli Yi
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA
| | - Nadeesha P Vidanapathirana
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA
| | - Matthew Lohman
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA
| | - Jiajia Zhang
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
39
|
Pruntel SM, van Munster BC, de Vries JJ, Vissink A, Visser A. Oral Health as a Risk Factor for Alzheimer Disease. J Prev Alzheimers Dis 2024; 11:249-258. [PMID: 38230738 PMCID: PMC10994994 DOI: 10.14283/jpad.2023.82] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/05/2023] [Indexed: 01/18/2024]
Abstract
In patients with Alzheimer's disease pathophysiological changes of the brain that initiate the onset of Alzheimer's disease include accumulation of amyloid-β plaques and phosphorylation of tau-tangles. A rather recently considered risk factor for the onset of Alzheimer's disease is poor oral health. The aim of this systematic review of the literature was to assess the potential association(s) of oral health as a risk factor for the onset of Alzheimer's disease. After a systematic search of Pubmed, Embase and Web of Science. A total of 1962 studies were assessed, of which 17 studies demonstrated possible associations between oral health diseases and Alzheimer's disease. 4 theories could be distinguished that describe the possible links between oral health and the development or onset of Alzheimer's disease; 1) role of pathogens, 2) role of inflammatory mediators, 3) role of APOE alleles and 4) role of Aβ peptide. The main common denominator of all the theories is the neuroinflammation due to poor oral health. Yet, there is insufficient evidence to prove a link due to the diversity of the designs used and the quality of the study design of the included studies. Therefore, further research is needed to find causal links between oral health and neuroinflammation that possibly can lead to the onset of Alzheimer's disease with the future intention to prevent cognitive decline by better dental care.
Collapse
Affiliation(s)
- S M Pruntel
- Anita Visser, Department of Gerodontology, Center for Dentistry and Oral Hygiene, University Medical Center Groningen and University of Groningen, Antonius Deusinglaan 1, Groningen, Groningen, 9713 AV, The Netherlands, Tel: 050 361 3840, E-mail:
| | | | | | | | | |
Collapse
|
40
|
Yang Y, Liang L, Cai J, You J, Liao X. Improving oral hygiene for better cognitive health: Interrelationships of oral hygiene habits, oral health status, and cognitive function in older adults. J Adv Nurs 2024; 80:275-286. [PMID: 37403198 DOI: 10.1111/jan.15769] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 05/09/2023] [Accepted: 06/21/2023] [Indexed: 07/06/2023]
Abstract
OBJECTIVES To explore the interrelationships between oral hygiene habits, oral health status and cognitive function in older adults. DESIGN A cross-sectional study. SETTING AND PARTICIPANTS A total of 371 participants (age 76.79 [7.99] years) were enrolled from June 2020 to November 2021 in an aged care facility. METHODS Cognitive function was screened using the mini-mental state examination (MMSE) with adjusted cut-off points for age and education. Periodontal status (Biofilm-Gingival Interface index based on periodontal probing depth and bleeding on probing), dental status (plaque, calculus, and caries), and tooth loss were assessed through full-mouth examination. Oral hygiene habits were based on self- or informant-reporting. RESULTS Poor periodontal status was an associated factor for MCI (OR = 2.89, 95% CI = 1.20-6.95), while multiple tooth loss (OR = 4.90, 95% CI = 1.06 ~ 22.59), brushing teeth less than once a day (OR = 2.88, 95% CI = 1.12 ~ 7.45) and delayed dental visits (OR = 2.45, 95% CI = 1.05 ~ 5.68) were associated factors for cognitive impairment. An indirect effect of brushing teeth ≥2 daily on MMSE score through periodontal status was observed only in older adults without cognitive impairment (Bootstrap-corrected B = 0.17, 95%CI = 0.03 ~ 0.36, SE = 0.08, β = 0.08). CONCLUSIONS AND IMPLICATIONS Adequate toothbrushing might prevent cognitive decline indirectly by improving periodontal health only in older adults without cognitive impairment. Multiple tooth loss, infrequent toothbrushing, and delayed dental visits were associated factors for cognitive impairment. Nursing professionals and health care policymakers should advocate for the improvement of basic oral hygiene in older adults, and provide regular professional oral hygiene care for older adults with cognitive impairment. PATIENT OR PUBLIC CONTRIBUTION The information on oral health habits of this study was based on an interview with the participants or their caregivers during the study period.
Collapse
Affiliation(s)
- Yajie Yang
- Nursing Department, Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of Nursing, Southern Medical University, Guangzhou, China
- Dental Department, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lizhu Liang
- Nursing Department, Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of Nursing, Southern Medical University, Guangzhou, China
| | - Jinfen Cai
- Dental Department, the home of aged Guangzhou, Guangzhou, China
| | - Jie You
- Dental Department, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoyan Liao
- Nursing Department, Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of Nursing, Southern Medical University, Guangzhou, China
| |
Collapse
|
41
|
Na HS, Jung NY, Song Y, Kim SY, Kim HJ, Lee JY, Chung J. A distinctive subgingival microbiome in patients with periodontitis and Alzheimer's disease compared with cognitively unimpaired periodontitis patients. J Clin Periodontol 2024; 51:43-53. [PMID: 37853506 DOI: 10.1111/jcpe.13880] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/04/2023] [Accepted: 09/06/2023] [Indexed: 10/20/2023]
Abstract
AIM Periodontitis is caused by dysbiosis of oral microbes and is associated with increased cognitive decline in Alzheimer's disease (AD), and recently, a potential functional link was proposed between oral microbes and AD. We compared the oral microbiomes of patients with or without AD to evaluate the association between oral microbes and AD in periodontitis. MATERIALS AND METHODS Periodontitis patients with AD (n = 15) and cognitively unimpaired periodontitis patients (CU) (n = 14) were recruited for this study. Each patient underwent an oral examination and neuropsychological evaluation. Buccal, supragingival and subgingival plaque samples were collected, and microbiomes were analysed by next-generation sequencing. Alpha diversity, beta diversity, linear discriminant analysis effect size, analysis of variance-like differential expression analysis and network analysis were used to compare group oral microbiomes. RESULTS All 29 participants had moderate to severe periodontitis. Group buccal and supragingival samples were indistinguishable, but subgingival samples demonstrated significant alpha and beta diversity differences. Differential analysis showed subgingival samples of the AD group had higher prevalence of Atopobium rimae, Dialister pneumosintes, Olsenella sp. HMT 807, Saccharibacteria (TM7) sp. HMT 348 and several species of Prevotella than the CU group. Furthermore, subgingival microbiome network analysis revealed a distinct, closely connected network in the AD group comprised of various Prevotella spp. and several anaerobic bacteria. CONCLUSIONS A unique microbial composition was discovered in the subgingival region in the AD group. Specifically, potential periodontal pathogens were found to be more prevalent in the subgingival plaque samples of the AD group. These bacteria may possess a potential to worsen periodontitis and other systemic diseases. We recommend that AD patients receive regular, careful dental check-ups to ensure proper oral hygiene management.
Collapse
Affiliation(s)
- Hee Sam Na
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
- Oral Genomics Research Center, Pusan National University, Yangsan, Republic of Korea
| | - Na-Yeon Jung
- Department of Neurology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine and Research Institute for Convergence of Biomedical Science and Technology, Yangsan, Republic of Korea
| | - Yuri Song
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
- Oral Genomics Research Center, Pusan National University, Yangsan, Republic of Korea
| | - Si Yeong Kim
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
- Oral Genomics Research Center, Pusan National University, Yangsan, Republic of Korea
| | - Hyun-Joo Kim
- Department of Periodontology, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
- Dental Research Institute, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
| | - Ju Youn Lee
- Department of Periodontology, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
- Dental Research Institute, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
| | - Jin Chung
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
- Oral Genomics Research Center, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
42
|
Moghadam MT, Mojtahedi A, Bakhshayesh B, Babakhani S, Ajorloo P, Shariati A, Mirzaei M, Heidarzadeh S, Jazi FM. The Effect of Bacterial Composition Shifts in the Oral Microbiota on Alzheimer's Disease. Curr Mol Med 2024; 24:167-181. [PMID: 35986539 DOI: 10.2174/1566524023666220819140748] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/16/2022] [Accepted: 05/30/2022] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD), a neurological disorder, despite significant advances in medical science, has not yet been definitively cured, and the exact causes of the disease remain unclear. Due to the importance of AD in the clinic, large expenses are spent annually to deal with this neurological disorder, and neurologists warn of an increase in this disease in elderly in the near future. It has been believed that microbiota dysbiosis leads to Alzheimer's as a multi-step disease. In this regard, the presence of footprints of perturbations in the oral microbiome and the predominance of pathogenic bacteria and their effect on the nervous system, especially AD, is a very interesting topic that has been considered by researchers in the last decade. Some studies have looked at the mechanisms by which oral microbiota cause AD. However, many aspects of this interaction are still unclear as to how oral microbiota composition can contribute to this disease. Understanding this interaction requires extensive collaboration by interdisciplinary researchers to explore all aspects of the issue. In order to reveal the link between the composition of the oral microbiota and this disease, researchers from various domains have sought to explain the mechanisms of shift in oral microbiota in AD in this review.
Collapse
Affiliation(s)
- Majid Taati Moghadam
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Mojtahedi
- Department of Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Babak Bakhshayesh
- Department of Neurology, Neuroscience Research Center, Poursina Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Sajad Babakhani
- Department of Microbiology, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Parisa Ajorloo
- Department of Biology, Sciences and Research Branch, Islamic Azad University, Tehran, Iran
| | - Aref Shariati
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
| | - Mehrnaz Mirzaei
- Department of Microbiology, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Siamak Heidarzadeh
- Department of Microbiology and Virology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Faramarz Masjedian Jazi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
43
|
Zhang M, Mi N, Ying Z, Lin X, Jin Y. Advances in the prevention and treatment of Alzheimer's disease based on oral bacteria. Front Psychiatry 2023; 14:1291455. [PMID: 38156323 PMCID: PMC10754487 DOI: 10.3389/fpsyt.2023.1291455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/22/2023] [Indexed: 12/30/2023] Open
Abstract
With the global population undergoing demographic shift towards aging, the prevalence of Alzheimer's disease (AD), a prominent neurodegenerative disorder that primarily afflicts individuals aged 65 and above, has increased across various geographical regions. This phenomenon is accompanied by a concomitant decline in immune functionality and oral hygiene capacity among the elderly, precipitating compromised oral functionality and an augmented burden of dental plaque. Accordingly, oral afflictions, including dental caries and periodontal disease, manifest with frequency among the geriatric population worldwide. Recent scientific investigations have unveiled the potential role of oral bacteria in instigating both local and systemic chronic inflammation, thereby delineating a putative nexus between oral health and the genesis and progression of AD. They further proposed the oral microbiome as a potentially modifiable risk factor in AD development, although the precise pathological mechanisms and degree of association have yet to be fully elucidated. This review summarizes current research on the relationship between oral bacteria and AD, describing the epidemiological and pathological mechanisms that may potentially link them. The purpose is to enrich early diagnostic approaches by incorporating emerging biomarkers, offering novel insights for clinicians in the early detection of AD. Additionally, it explores the potential of vaccination strategies and guidance for clinical pharmacotherapy. It proposes the development of maintenance measures specifically targeting oral health in older adults and advocates for guiding elderly patients in adopting healthy lifestyle habits, ultimately aiming to indirectly mitigate the progression of AD while promoting oral health in the elderly.
Collapse
Affiliation(s)
| | | | | | | | - Ying Jin
- Department of Stomatology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
44
|
Chen HL, Wu DR, Chen JJ, Lin WS, Chen IC, Liu JF, Lien S, Lin CH. Association between periodontitis treatment and dementia in Taiwanese adults. BMC Oral Health 2023; 23:969. [PMID: 38057760 PMCID: PMC10701963 DOI: 10.1186/s12903-023-03551-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/19/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND The chronic systemic inflammatory response in periodontitis may be a potential risk factor for dementia, especially in adults. This study determined the association between periodontal treatment and dementia in adults and evaluated the effect of regular scaling treatment on the risk of dementia in this population. METHODS This case-control study identified 18,930 patients with a dementia-related diagnosis from the Taiwan National Health Insurance Research Database. Scaling and periodontal emergency treatments were evaluated after 1 year and 3 years. Using multivariable logistic regression analysis to evaluate the association between periodontal emergency treatment and dementia risk. RESULTS The results showed that scaling treatment rates were lower in the dementia cohort than the non-dementia cohort after 1 and 3 years. Patients who received periodontal emergency treatment within 3 years had a significantly increased risk of dementia. Furthermore, patients with periodontitis who did not receive scaling treatment within 3 years had a higher risk of dementia than patients without periodontitis (OR, 1.22; 95% CI, 1.10-1.35). CONCLUSION This study demonstrated that periodontitis and dementia are associated, and that periodontitis is a risk factor for dementia in adults. The risk of dementia was dependent on the periodontal health status of adults, and our findings suggest that regular scaling can reduce the incidence of dementia in adults. Therefore, regular and routine scaling treatment is suggested for adults.
Collapse
Affiliation(s)
- Hui-Ling Chen
- Department of Stomatology, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Dai-Rong Wu
- Department of Stomatology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Jhih-Jhen Chen
- Department of Stomatology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Wei-Szu Lin
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - I-Chieh Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Jeng-Fen Liu
- School of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Pediatric Dentistry, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Shine Lien
- Department of Stomatology, Taichung Veterans General Hospital, Taichung, Taiwan.
| | - Ching-Heng Lin
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan.
- Department of Industrial Engineering and Enterprise Information, Tunghai University, Taichung, Taiwan.
- Department of Public Health, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan.
- Institute of Public Health and Community Medicine Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
45
|
Municio C, Carro E. Implication of salivary lactoferrin and periodontal-mediated infections in Alzheimer's disease. Neural Regen Res 2023; 18:2691-2692. [PMID: 37449625 DOI: 10.4103/1673-5374.373712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Affiliation(s)
- Cristina Municio
- Group of Neurodegenerative Diseases, Hospital Universitario 12 de Octubre Research Institute (imas12), Madrid, Spain; Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Eva Carro
- Neurobiology of Alzheimer's disease Unit, Functional Unit for Research into Chronic Diseases, Instituto de Salud Carlos III, Madrid, Spain; Network Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
46
|
Tang D, Sun C, Yang J, Fan L, Wang Y. Advances in the Study of the Pathology and Treatment of Alzheimer's Disease and Its Association with Periodontitis. Life (Basel) 2023; 13:2203. [PMID: 38004343 PMCID: PMC10672606 DOI: 10.3390/life13112203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Alzheimer's disease (AD) has become one of the leading causes of health problems in the elderly, and studying its causes and treatments remains a serious challenge for researchers worldwide. The two main pathological features of Alzheimer's disease are the extracellular deposition of β-amyloid (Aβ) to form senile plaques and the intracellular aggregation of hyperphosphorylated Tau protein to form neurofibrillary tangles (NFTs). Researchers have proposed several hypotheses to elucidate the pathogenesis of AD, but due to the complexity of the pathophysiologic factors involved in the development of AD, no effective drugs have been found to stop the progression of the disease. Currently, the mainstay drugs used to treat AD can only alleviate the patient's symptoms and do not have a therapeutic effect. As researchers explore interactions among diseases, much evidence suggests that there is a close link between periodontitis and AD, and that periodontal pathogenic bacteria can exacerbate Aβ deposition and Tau protein hyperphosphorylation through neuroinflammatory mechanisms, thereby advancing the pathogenesis of AD. This article reviews recent advances in the pathogenesis of AD, available therapeutic agents, the relevance of periodontitis to AD, and mechanisms of action.
Collapse
Affiliation(s)
- Dan Tang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (C.S.); (L.F.)
| | - Chang Sun
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (C.S.); (L.F.)
| | - Jumei Yang
- Lanzhou University Second Hospital, Lanzhou 730000, China;
| | - Lili Fan
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (C.S.); (L.F.)
| | - Yonggang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (C.S.); (L.F.)
| |
Collapse
|
47
|
Zhou X, Kumar P, Bhuyan DJ, Jensen SO, Roberts TL, Münch GW. Neuroinflammation in Alzheimer's Disease: A Potential Role of Nose-Picking in Pathogen Entry via the Olfactory System? Biomolecules 2023; 13:1568. [PMID: 38002250 PMCID: PMC10669446 DOI: 10.3390/biom13111568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized by progressive cognitive decline and memory impairment. Many possible factors might contribute to the development of AD, including amyloid peptide and tau deposition, but more recent evidence suggests that neuroinflammation may also play an-at least partial-role in its pathogenesis. In recent years, emerging research has explored the possible involvement of external, invading pathogens in starting or accelerating the neuroinflammatory processes in AD. In this narrative review, we advance the hypothesis that neuroinflammation in AD might be partially caused by viral, bacterial, and fungal pathogens entering the brain through the nose and the olfactory system. The olfactory system represents a plausible route for pathogen entry, given its direct anatomical connection to the brain and its involvement in the early stages of AD. We discuss the potential mechanisms through which pathogens may exploit the olfactory pathway to initiate neuroinflammation, one of them being accidental exposure of the olfactory mucosa to hands contaminated with soil and feces when picking one's nose.
Collapse
Affiliation(s)
- Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (D.J.B.)
| | - Paayal Kumar
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia;
| | - Deep J. Bhuyan
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (D.J.B.)
| | - Slade O. Jensen
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.O.J.); (T.L.R.)
- Microbiology and Infectious Diseases Unit, School of Medicine, Western Sydney University, Liverpool, NSW 2170, Australia
| | - Tara L. Roberts
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.O.J.); (T.L.R.)
- Oncology Unit, School of Medicine, Western Sydney University, Liverpool, NSW 2170, Australia
| | - Gerald W. Münch
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (D.J.B.)
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia;
| |
Collapse
|
48
|
Franciotti R, Pignatelli P, D’Antonio DL, Mancinelli R, Fulle S, De Rosa MA, Puca V, Piattelli A, Thomas AM, Onofrj M, Sensi SL, Curia MC. The Immune System Response to Porphyromonas gingivalis in Neurological Diseases. Microorganisms 2023; 11:2555. [PMID: 37894213 PMCID: PMC10609495 DOI: 10.3390/microorganisms11102555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/03/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Previous studies have reported an association between oral microbial dysbiosis and the development and progression of pathologies in the central nervous system. Porphyromonas gingivalis (Pg), the keystone pathogen of the oral cavity, can induce a systemic antibody response measured in patients' sera using enzyme-linked immunosorbent assays. The present case-control study quantified the immune system's response to Pg abundance in the oral cavities of patients affected by different central nervous system pathologies. The study cohort included 87 participants: 23 healthy controls (HC), 17 patients with an acute neurological condition (N-AC), 19 patients with a chronic neurological condition (N-CH), and 28 patients with neurodegenerative disease (N-DEG). The results showed that the Pg abundance in the oral cavity was higher in the N-DEG patients than in the HC (p = 0.0001) and N-AC patients (p = 0.01). In addition, the Pg abundance was higher in the N-CH patients than the HCs (p = 0.005). Only the N-CH patients had more serum anti-Pg antibodies than the HC (p = 0.012). The inadequate response of the immune system of the N-DEG group in producing anti-Pg antibodies was also clearly indicated by an analysis of the ratio between the anti-Pg antibodies quantity and the Pg abundance. Indeed, this ratio was significantly lower between the N-DEG group than all other groups (p = 0.0001, p = 0.002, and p = 0.03 for HC, N-AC, and N-CH, respectively). The immune system's response to Pg abundance in the oral cavity showed a stepwise model: the response diminished progressively from the patients affected with an acute condition to the patients suffering from chronic nervous system disorders and finally to the patients affected by neurodegenerative diseases.
Collapse
Affiliation(s)
- Raffaella Franciotti
- Department of Neuroscience, Imaging and Clinical Science, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (R.M.); (S.F.); (M.A.D.R.); (A.M.T.); (M.O.); (S.L.S.)
| | - Pamela Pignatelli
- COMDINAV DUE, Nave Cavour, Italian Navy, Stazione Navale Mar Grande, Viale Jonio, 74122 Taranto, Italy;
| | - Domenica Lucia D’Antonio
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (D.L.D.); (M.C.C.)
- Fondazione Villaserena per la Ricerca, 65013 Città Sant’Angelo, Pescara, Italy
| | - Rosa Mancinelli
- Department of Neuroscience, Imaging and Clinical Science, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (R.M.); (S.F.); (M.A.D.R.); (A.M.T.); (M.O.); (S.L.S.)
| | - Stefania Fulle
- Department of Neuroscience, Imaging and Clinical Science, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (R.M.); (S.F.); (M.A.D.R.); (A.M.T.); (M.O.); (S.L.S.)
| | - Matteo Alessandro De Rosa
- Department of Neuroscience, Imaging and Clinical Science, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (R.M.); (S.F.); (M.A.D.R.); (A.M.T.); (M.O.); (S.L.S.)
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Valentina Puca
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Adriano Piattelli
- School of Dentistry, Saint Camillus International University for Health Sciences, 00131 Rome, Italy;
- Facultad de Medicina, UCAM Universidad Católica San Antonio de Murcia, Guadalupe, 30107 Murcia, Spain
| | - Astrid Maria Thomas
- Department of Neuroscience, Imaging and Clinical Science, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (R.M.); (S.F.); (M.A.D.R.); (A.M.T.); (M.O.); (S.L.S.)
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Marco Onofrj
- Department of Neuroscience, Imaging and Clinical Science, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (R.M.); (S.F.); (M.A.D.R.); (A.M.T.); (M.O.); (S.L.S.)
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Stefano Luca Sensi
- Department of Neuroscience, Imaging and Clinical Science, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (R.M.); (S.F.); (M.A.D.R.); (A.M.T.); (M.O.); (S.L.S.)
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
- Institute for Advanced Biomedical Technologies, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Maria Cristina Curia
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (D.L.D.); (M.C.C.)
| |
Collapse
|
49
|
Zhao C, Kuraji R, Ye C, Gao L, Radaic A, Kamarajan P, Taketani Y, Kapila YL. Nisin a probiotic bacteriocin mitigates brain microbiome dysbiosis and Alzheimer's disease-like neuroinflammation triggered by periodontal disease. J Neuroinflammation 2023; 20:228. [PMID: 37803465 PMCID: PMC10557354 DOI: 10.1186/s12974-023-02915-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023] Open
Abstract
INTRODUCTION Periodontitis-related oral microbial dysbiosis is thought to contribute to Alzheimer's disease (AD) neuroinflammation and brain amyloid production. Since probiotics can modulate periodontitis/oral dysbiosis, this study examined the effects of a probiotic/lantibiotic, nisin, in modulating brain pathology triggered by periodontitis. METHODS A polymicrobial mouse model of periodontal disease was used to evaluate the effects of this disease on brain microbiome dysbiosis, neuroinflammation, Alzheimer's-related changes, and nisin's therapeutic potential in this context. RESULTS 16S sequencing and real-time PCR data revealed that Nisin treatment mitigated the changes in the brain microbiome composition, diversity, and community structure, and reduced the levels of periodontal pathogen DNA in the brain induced by periodontal disease. Nisin treatment significantly decreased the mRNA expression of pro-inflammatory cytokines (Interleukin-1β/IL-1 β, Interleukin 6/IL-6, and Tumor Necrosis Factor α/TNF-α) in the brain that were elevated by periodontal infection. In addition, the concentrations of amyloid-β 42 (Aβ42), total Tau, and Tau (pS199) (445.69 ± 120.03, 1420.85 ± 331.40, 137.20 ± 36.01) were significantly higher in the infection group compared to the control group (193.01 ± 31.82, 384.27 ± 363.93, 6.09 ± 10.85), respectively. Nisin treatment markedly reduced the Aβ42 (261.80 ± 52.50), total Tau (865.37 ± 304.93), and phosphorylated Tau (82.53 ± 15.77) deposition in the brain of the infection group. DISCUSSION Nisin abrogation of brain microbiome dysbiosis induces beneficial effects on AD-like pathogenic changes and neuroinflammation, and thereby may serve as a potential therapeutic for periodontal-dysbiosis-related AD.
Collapse
Affiliation(s)
- Chuanjiang Zhao
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Periodontology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, 510050, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510050, China
| | - Ryutaro Kuraji
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, 102-8159, Japan
| | - Changchang Ye
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Periodontology, West China School of Stomatology, National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610093, China
| | - Li Gao
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Periodontology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, 510050, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510050, China
| | - Allan Radaic
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Biosystems and Function and Periodontics, School of Dentistry, University of California Los Angeles, Los Angeles, CA, 90024, USA
| | - Pachiyappan Kamarajan
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Biosystems and Function and Periodontics, School of Dentistry, University of California Los Angeles, Los Angeles, CA, 90024, USA
| | - Yoshimasa Taketani
- Department of Biosystems and Function and Periodontics, School of Dentistry, University of California Los Angeles, Los Angeles, CA, 90024, USA
- Division of Periodontology, Department of Oral Biology and Tissue Engineering, Meikai University School of Dentistry, Sakado, 350-0283, Japan
| | - Yvonne L Kapila
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, 94143, USA.
- Department of Biosystems and Function and Periodontics, School of Dentistry, University of California Los Angeles, Los Angeles, CA, 90024, USA.
- Section of Biosystems and Function, Section of Periodontology, UCLA School of Dentistry, 10833 Le Conte Ave, Box 951668, Los Angeles, CA, 90095-1668, USA.
| |
Collapse
|
50
|
Eslami S, Hosseinzadeh Shakib N, Fooladfar Z, Nasrollahian S, Baghaei S, Mosaddad SA, Motamedifar M. The role of periodontitis-associated bacteria in Alzheimer's disease: A narrative review. J Basic Microbiol 2023; 63:1059-1072. [PMID: 37311215 DOI: 10.1002/jobm.202300250] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/15/2023]
Abstract
Alzheimer's disease causes memory loss and dementia in older adults through a neurodegenerative mechanism. Despite the pathophysiological clarification of this cognitive disorder, novel molecular and cellular pathways should be identified to determine its exact mechanism. Alzheimer's disease (AD) is pathologically characterized by senile plaques comprising beta-amyloid and neurofibrillary tangles (NFTs) formed by hyperphosphorylated tau as a microtubule-associated protein with a key role in the pathogenesis of AD. Periodontitis through inflammatory pathways is a risk factor for deteriorating cognitive impairment in AD patients. Poor oral hygiene coupled with immunocompromised status in older adults causes periodontal diseases and chronic inflammations through an oral bacterial imbalance. Toxic bacterial products, including bacteria themselves, can reach the central nervous system through the bloodstream and evoke inflammatory responses. The present review was conducted to investigate relationships between AD and periodontitis-involved bacteria as a risk factor.
Collapse
Affiliation(s)
- Saba Eslami
- Research Central Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Zahra Fooladfar
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sina Nasrollahian
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saman Baghaei
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Ali Mosaddad
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Motamedifar
- HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|