1
|
Zheng Q, Wang X. Alzheimer's disease: insights into pathology, molecular mechanisms, and therapy. Protein Cell 2025; 16:83-120. [PMID: 38733347 PMCID: PMC11786724 DOI: 10.1093/procel/pwae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024] Open
Abstract
Alzheimer's disease (AD), the leading cause of dementia, is characterized by the accumulation of amyloid plaques and neurofibrillary tangles in the brain. This condition casts a significant shadow on global health due to its complex and multifactorial nature. In addition to genetic predispositions, the development of AD is influenced by a myriad of risk factors, including aging, systemic inflammation, chronic health conditions, lifestyle, and environmental exposures. Recent advancements in understanding the complex pathophysiology of AD are paving the way for enhanced diagnostic techniques, improved risk assessment, and potentially effective prevention strategies. These discoveries are crucial in the quest to unravel the complexities of AD, offering a beacon of hope for improved management and treatment options for the millions affected by this debilitating disease.
Collapse
Affiliation(s)
- Qiuyang Zheng
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Xin Wang
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| |
Collapse
|
2
|
Zhang Y, Guo X, Zhao J, Gao X, Zhang L, Huang T, Wang Y, Niu Q, Zhang Q. The downregulation of TREM2 exacerbates toxicity of development and neurobehavior induced by aluminum chloride and nano-alumina in adult zebrafish. Toxicol Appl Pharmacol 2024; 492:117107. [PMID: 39288838 DOI: 10.1016/j.taap.2024.117107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
To investigate the difference in the development and neurobehavior between aluminum chloride (AlCl3) and nano-alumina (AlNPs) in adult zebrafish and the role of triggering receptor expressed on myeloid cells (TREM2) in this process. Zebrafish embryos were randomly administered with control, negative control, TREM2 knockdown, AlCl3, TREM2 knockdown + AlCl3, AlNPs, and TREM2 knockdown + AlNPs, wherein AlCl3 and AlNPs were 50 mg/L and TREM2 knockdown was achieved by microinjecting lentiviral-containing TREM2 inhibitors into the yolk sac. We assessed development, neurobehavior, histopathology, ultrastructural structure, neurotransmitters (AChE, DA), SOD, genes of TREM2 and neurodevelopment (α1-tubulin, syn2a, mbp), and AD-related proteins and genes. AlCl3 significantly lowered the malformation rate than AlNPs, and further increased rates of malformation and mortality following TREM2 knockdown. The locomotor ability, learning and memory were similar between AlCl3 and AlNPs. TREM2 deficiency further exacerbated their impairment in panic reflex, microglia decrease, and nerve fibers thickening and tangling. AlCl3, rather than AlNPs, significantly elevated AChE activity and p-tau content while decreasing TREM2 and syn2a levels than the control. TREM2 loss further aggravated impairment in the AChE and SOD activity, and psen1 and p-tau levels. Therefore, AlCl3 induces greater developmental toxicity but equivalent neurobehavior toxicity than AlNPs, while their toxicity was intensified by TREM2 deficiency.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Toxicology, Shanxi Provincial Center for Disease Control and Prevention, Taiyuan 030012, China
| | - Xinyue Guo
- Department of Occupational Medicine, School of public health, Shanxi Medical University, Taiyuan 030001, China; Department of Business Management, Shaanxi Provincial Center for Disease Control and Prevention, Xi'an 710054, China
| | - Jinjin Zhao
- Department of Occupational Medicine, School of public health, Shanxi Medical University, Taiyuan 030001, China
| | - Xiaocheng Gao
- Department of Occupational Medicine, School of public health, Shanxi Medical University, Taiyuan 030001, China
| | - Lan Zhang
- Department of Occupational Medicine, School of public health, Shanxi Medical University, Taiyuan 030001, China
| | - Tao Huang
- Department of Occupational Medicine, School of public health, Shanxi Medical University, Taiyuan 030001, China
| | - Yanhong Wang
- Department of Occupational Medicine, School of public health, Shanxi Medical University, Taiyuan 030001, China
| | - Qiao Niu
- Department of Occupational Medicine, School of public health, Shanxi Medical University, Taiyuan 030001, China
| | - Qinli Zhang
- Department of Occupational Medicine, School of public health, Shanxi Medical University, Taiyuan 030001, China; Department of Pathology, University of Mississippi Medical Center, 2500 N State St., Jackson, MS 39216, United States of America.
| |
Collapse
|
3
|
Almalki WH, Almujri SS. Therapeutic approaches to microglial dysfunction in Alzheimer's disease: Enhancing phagocytosis and metabolic regulation. Pathol Res Pract 2024; 263:155614. [PMID: 39342887 DOI: 10.1016/j.prp.2024.155614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/04/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Microglia are essential in neurogenesis, synaptic pruning, and homeostasis. Nevertheless, aging, and cellular senescence may modify their role, causing them to shift from being shields to being players of neurodegeneration. In the aging brain, the population of microglia increases, followed by enhanced activity of genes related to neuroinflammation. This change increases their ability to cause inflammation, resulting in a long-lasting state of inflammation in the brain that harms the condition of neurons. In Alzheimer's Disease (AD), microglia are located inside amyloid plaques and exhibit an inflammatory phenotype characterized by a diminished ability to engulf and remove waste material, worsening the illness's advancement. Genetic polymorphisms in TREM2, APOE, and CD33 highlight the significant impact of microglial dysfunction in AD. This review examines therapeutic approaches that aim to address microglial dysfunction, such as enhancing the microglial capability to engulf and remove amyloid-β clumps and regulating microglial metabolism and mitochondrial activity. Microglial transplanting and reprogramming advancements show the potential to restore their ability to reduce inflammation. Although there has been notable advancement, there are still voids in our knowledge of microglial biology, including their relationships with other brain cells. Further studies should prioritize the improvement of human AD models, establish standardized methods for characterizing microglia, and explore how various factors influence microglial responses. It is essential to tackle these problems to create effective treatment plans that focus on reducing inflammation in the brain and protecting against damage in age-related neurodegenerative illnesses.
Collapse
Affiliation(s)
- Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Aseer 61421, Saudi Arabia
| |
Collapse
|
4
|
Firdous SM, Khan SA, Maity A. Oxidative stress-mediated neuroinflammation in Alzheimer's disease. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8189-8209. [PMID: 38832985 DOI: 10.1007/s00210-024-03188-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/24/2024] [Indexed: 06/06/2024]
Abstract
Reactive oxygen species (ROS) are metabolic by-products that constitute an indispensable component of physiological processes, albeit their heightened presence may proffer substantial perils to biological entities. Such a proliferation gives rise to a gradual escalation of oxidative stress within the organism, thereby compromising mitochondrial functionality and inflicting harm upon various bodily systems, with a particular predilection for the central nervous system. In its nascent stages, it is plausible that inflammation has been a facilitator in the progression of the malady. The precise role of inflammation in Alzheimer's disease (AD) remains somewhat enigmatic, although it is conceivable that activated microglia and astrocytes might be implicated in the removal of amyloid-β (Aβ) deposits. Nonetheless, prolonged microglial activation is associated with Tau phosphorylation and Aβ aggregation. Research studies have indicated that AD brains upregulate complementary molecules, inflammatory cytokines, acute phase reacting agents, and other inflammatory mediators that may cause neurodegeneration. In this review, oxidative damage products will be discussed as potential peripheral biomarkers for AD and its early stages. The disordered excretion of pro-inflammatory cytokines, chemokines, oxygen, and nitrogen-reactive species, along with the stimulation of the complement system by glial cells, has the potential to disrupt the functionality of neuronal termini. This perturbation, in turn, culminates in compromised synaptic function, a phenomenon empirically linked to the manifestation of cognitive impairments. The management of neurodegenerative conditions in the context of dementia necessitates therapeutic interventions that specifically target the excessive production of inflammatory and oxidative agents. Furthermore, we shall deliberate upon the function of microglia and oxidative injury in the etiology of AD and the ensuing neurodegenerative processes.
Collapse
Affiliation(s)
- Sayed Mohammed Firdous
- Department of Pharmacology, Calcutta Institute of Pharmaceutical Technology & AHS, Uluberia, Howrah, 711316, West Bengal, India.
| | - Sahabaj Ali Khan
- Department of Pharmacology, Calcutta Institute of Pharmaceutical Technology & AHS, Uluberia, Howrah, 711316, West Bengal, India
| | - Amritangshu Maity
- Department of Pharmacology, Calcutta Institute of Pharmaceutical Technology & AHS, Uluberia, Howrah, 711316, West Bengal, India
| |
Collapse
|
5
|
Marin-Castañeda LA, Gonzalez-Garibay G, Garcia-Quintana I, Pacheco-Aispuro G, Rubio C. Mechanisms of ozone-induced neurotoxicity in the development and progression of dementia: a brief review. Front Aging Neurosci 2024; 16:1494356. [PMID: 39529750 PMCID: PMC11552306 DOI: 10.3389/fnagi.2024.1494356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Dementia encompasses a spectrum of neurodegenerative disorders significantly impacting global health, with environmental factors increasingly recognized as crucial in their etiology. Among these, ozone, has been identified as a potential exacerbator of neurodegenerative processes, particularly in Alzheimer's disease (AD). Ozone exposure induces the production of reactive oxygen species (ROS), which penetrate the BBB, leading to oxidative damage in neuronal cells. This oxidative stress is closely linked with mitochondrial dysfunction and lipid peroxidation, processes that are foundational to the pathology observed in dementia, such as neuronal death and protein aggregation. Furthermore, ozone triggers chronic neuroinflammation, exacerbating these neurodegenerative processes and perpetuating a cycle of CNS damage. Recent studies highlight the role of peripheral biomarkers like High Mobility Group Box 1 (HMGB1) and Triggering Receptor Expressed on Myeloid cells 2 (TREM2) in mediating ozone's effects. Disruption of these and other identified proteins by ozone exposure impairs microglial function and response to amyloid plaques, suggesting a novel pathway through which ozone may influence AD pathology via immune dysregulation. This review discusses the concept of a bidirectional lung-brain axis, illustrating that systemic responses to air pollutants like ozone may reflect and contribute to neurodegenerative processes in the CNS. By delineating these mechanisms, we emphasize the critical need for integrating environmental health management into strategies for the prevention and treatment of dementia.
Collapse
Affiliation(s)
- Luis A. Marin-Castañeda
- Department of Neurophysiology, Instituto Nacional de Neurología y Neurocirugía “MVS”, Mexico City, Mexico
| | - Guillermo Gonzalez-Garibay
- Department of Neurophysiology, Instituto Nacional de Neurología y Neurocirugía “MVS”, Mexico City, Mexico
| | | | | | - Carmen Rubio
- Department of Neurophysiology, Instituto Nacional de Neurología y Neurocirugía “MVS”, Mexico City, Mexico
| |
Collapse
|
6
|
Qian M, Zhong J, Lu Z, Zhang W, Weng M, Zhang K, Jin Y. Bibliometric Analysis of TREM2 (2001-2022): Trends, Hotspots and Prospects in Human Disease. Int J Med Sci 2024; 21:1852-1865. [PMID: 39113887 PMCID: PMC11302561 DOI: 10.7150/ijms.96851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024] Open
Abstract
Background: Triggering receptor expressed in myeloid cells 2 (TREM2), a transmembrane receptor, has garnered extensive research attention due to its pivotal role in the diagnosis and treatment of various diseases. Despite the abundance of studies on its function, there is a gap in comprehensive analysis and summarization of the current state of this research field. Methods: Articles and reviews related to TREM2 were retrieved from the Web of Science Core Collection (WOSCC) on October 1, 2023. A bibliometric analysis of TREM2 was conducted using CiteSpace, VOSviewer and Bibliometrix (R package). Results: A total of 1,502 articles, spanning from 2001 to 2022, met the search criteria. The number of publications and citations has increased steadily over the years. The United States and China are the most active countries in TREM2 research, with the University of Washington as the leading research institution. The most influential journal in the field is Neurology of Aging. The predominant research areas include molecular, biology and immunology. Alzheimer's disease, microglia, variants, and inflammation are significant keywords. Emerging directions such as metabolism and tumor microenvironment have recently gained attention in numerous studies. Conclusion: The current study utilizes bibliometric analysis software and visual graphics to intuitively highlight TREM2-related hotspots, trends, and prospects in human disease. Such insights are valuable for scholars seeking a deeper understanding of TREM2-related research progress, enabling a focused approach to its application in human disease.
Collapse
Affiliation(s)
- Minyue Qian
- Department of Anesthesiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia Zhong
- Department of Anesthesiology and Intensive Care, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongteng Lu
- Department of Anesthesiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenyuan Zhang
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Hangzhou, China
| | - Mengcao Weng
- Department of Anesthesiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kai Zhang
- Department of Anesthesiology and Intensive Care, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Jin
- Department of Anesthesiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Hangzhou, China
| |
Collapse
|
7
|
Zgorzynska E. TREM2 in Alzheimer's disease: Structure, function, therapeutic prospects, and activation challenges. Mol Cell Neurosci 2024; 128:103917. [PMID: 38244651 DOI: 10.1016/j.mcn.2024.103917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/22/2024] Open
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM2) is a membrane glycoprotein that plays a crucial role in the regulation of microglial survival, activation, phagocytosis, as well as in the maintenance of brain homeostasis and the inflammatory response to injury or neurodegeneration. This review provides a comprehensive overview of TREM2 structure and functions, highlighting the role of its variants in the development and progression of Alzheimer's disease (AD), a devastating neurodegenerative disease that affects millions of people worldwide. Additionally, the article discusses the potential of TREM2 as a therapeutic target in AD, analyzing the current state of research and future prospects. Given the significant challenges associated with the activation of TREM2, particularly due to its diverse isoforms and the delicate balance required to modulate the immune response without triggering hyperactivation, this review aims to enhance our understanding of TREM2 in AD and inspire further research into this promising yet challenging therapeutic target.
Collapse
Affiliation(s)
- Emilia Zgorzynska
- Department of Cell-to-Cell Communication, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland.
| |
Collapse
|
8
|
Ling Y, Crotti A. Emerging Microglial Therapies and Targets in Clinical Trial. ADVANCES IN NEUROBIOLOGY 2024; 37:623-637. [PMID: 39207717 DOI: 10.1007/978-3-031-55529-9_35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Modulation of microglia function for treatment of neurodegenerative and neuropsychiatric disorders is an emerging field of neuroscience drug development. This is largely attributed to human genetic association studies combined with biological evidence indicating that the innate immune system acts as a causal contributor superimposed on the reactive component of neuronal loss in neurological dysfunction. The identification of disease risk gene variants that encode immune-modulatory proteins in microglia provides tools to evaluate how microglia cellular function or dysfunction affect neuronal health. The development of clinical stage therapeutic compounds that modify myeloid cell function enables us to investigate how modulating microglia function could become a transformational approach to mitigate neurological disorders. Improving our ability to boost microglia-promoting homeostatic and reparative functions hopefully will translate into achieving a better outcome for patients affected by neurological diseases. In this chapter, we aim to provide an overview of the microglial emerging therapies and targets being studied in current clinical trials.
Collapse
Affiliation(s)
- Yan Ling
- Neuroscience Translational Medicine, Takeda Pharmaceutical Co. Ltd., Tokyo, Japan
| | | |
Collapse
|
9
|
Zhang X, Chen X, Zhang L, Sun Y, Liang Y, Li H, Zhang Y. Role of trigger receptor 2 expressed on myeloid cells in neuroinflammation-neglected multidimensional regulation of microglia. Neurochem Int 2023; 171:105639. [PMID: 37926352 DOI: 10.1016/j.neuint.2023.105639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/01/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
Neuroinflammation is an inflammatory cascade involved in various neurological disorders, including Alzheimer's disease, multiple sclerosis, and other relevant diseases. The triggering receptor expressed on myeloid cells 2 (TREM2) is a transmembrane immune receptor that is primarily expressed by microglia in the central nervous system (CNS). While TREM2 is initially believed to be an anti-inflammatory factor in the CNS, increasing evidence suggests that TREM2 plays a more complex role in balancing neuroinflammation. However, the exact mechanism remains unclear. Notably, TREM2 directly regulates microglia inflammation through various signaling pathways. Additionally, studies have suggested that TREM2 mediates microglial phagocytosis, autophagy, metabolism, and microglia phenotypes, which may be involved in the modulation of neuroinflammation. In this review, we aim to discuss the critical role of TREM2 in several microglia functions and the underlying molecular mechanism the modulatory which further mediate neuroinflammation, and elaborate. Finally, we discuss the potential of TREM2 as a therapeutic target in neuroinflammatory disorders.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China; Beijing Institute of Hepatology, Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xue Chen
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China; Beijing Institute of Hepatology, Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Ling Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yuqing Sun
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Ying Liang
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Huan Li
- Department of Cardiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yulin Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China; Beijing Institute of Hepatology, Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
10
|
Litke R, Vicari J, Huang BT, Shapiro L, Roh KH, Silver A, Talreja P, Palacios N, Yoon Y, Kellner C, Kaniskan H, Vangeti S, Jin J, Ramos-Lopez I, Mobbs C. Novel small molecules inhibit proteotoxicity and inflammation: Mechanistic and therapeutic implications for Alzheimer's Disease, healthspan and lifespan- Aging as a consequence of glycolysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.12.544352. [PMID: 37398396 PMCID: PMC10312632 DOI: 10.1101/2023.06.12.544352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Inflammation drives many age-related, especially neurological, diseases, and likely mediates age-related proteotoxicity. For example, dementia due to Alzheimer's Disease (AD), cerebral vascular disease, many other neurodegenerative conditions is increasingly among the most devastating burdens on the American (and world) health system and threatens to bankrupt the American health system as the population ages unless effective treatments are developed. Dementia due to either AD or cerebral vascular disease, and plausibly many other neurodegenerative and even psychiatric conditions, is driven by increased age-related inflammation, which in turn appears to mediate Abeta and related proteotoxic processes. The functional significance of inflammation during aging is also supported by the fact that Humira, which is simply an antibody to the pro-inflammatory cytokine TNF-a, is the best-selling drug in the world by revenue. These observations led us to develop parallel high-throughput screens to discover small molecules which inhibit age-related Abeta proteotoxicity in a C. elegans model of AD AND LPS-induced microglial TNF-a. In the initial screen of 2560 compounds (Microsource Spectrum library) to delay Abeta proteotoxicity, the most protective compounds were, in order, phenylbutyrate, methicillin, and quetiapine, which belong to drug classes (HDAC inhibitors, beta lactam antibiotics, and tricyclic antipsychotics, respectably) already robustly implicated as promising to protect in neurodegenerative diseases, especially AD. RNAi and chemical screens indicated that the protective effects of HDAC inhibitors to reduce Abeta proteotoxicity are mediated by inhibition of HDAC2, also implicated in human AD, dependent on the HAT Creb binding protein (Cbp), which is also required for the protective effects of both dietary restriction and the daf-2 mutation (inactivation of IGF-1 signaling) during aging. In addition to methicillin, several other beta lactam antibiotics also delayed Abeta proteotoxicity and reduced microglial TNF-a. In addition to quetiapine, several other tricyclic antipsychotic drugs also delayed age-related Abeta proteotoxicity and increased microglial TNF-a, leading to the synthesis of a novel congener, GM310, which delays Abeta as well as Huntingtin proteotoxicity, inhibits LPS-induced mouse and human microglial and monocyte TNF-a, is highly concentrated in brain after oral delivery with no apparent toxicity, increases lifespan, and produces molecular responses highly similar to those produced by dietary restriction, including induction of Cbp inhibition of inhibitors of Cbp, and genes promoting a shift away from glycolysis and toward metabolism of alternate (e.g., lipid) substrates. GM310, as well as FDA-approved tricyclic congeners, prevented functional impairments and associated increase in TNF-a in a mouse model of stroke. Robust reduction of glycolysis by GM310 was functionally corroborated by flux analysis, and the glycolytic inhibitor 2-DG inhibited microglial TNF-a and other markers of inflammation, delayed Abeta proteotoxicity, and increased lifespan. These results support the value of phenotypic screens to discover drugs to treat age-related, especially neurological and even psychiatric diseases, including AD and stroke, and to clarify novel mechanisms driving neurodegeneration (e.g., increased microglial glycolysis drives neuroinflammation and subsequent neurotoxicity) suggesting novel treatments (selective inhibitors of microglial glycolysis).
Collapse
|
11
|
Gao C, Jiang J, Tan Y, Chen S. Microglia in neurodegenerative diseases: mechanism and potential therapeutic targets. Signal Transduct Target Ther 2023; 8:359. [PMID: 37735487 PMCID: PMC10514343 DOI: 10.1038/s41392-023-01588-0] [Citation(s) in RCA: 352] [Impact Index Per Article: 176.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/11/2023] [Accepted: 08/03/2023] [Indexed: 09/23/2023] Open
Abstract
Microglia activation is observed in various neurodegenerative diseases. Recent advances in single-cell technologies have revealed that these reactive microglia were with high spatial and temporal heterogeneity. Some identified microglia in specific states correlate with pathological hallmarks and are associated with specific functions. Microglia both exert protective function by phagocytosing and clearing pathological protein aggregates and play detrimental roles due to excessive uptake of protein aggregates, which would lead to microglial phagocytic ability impairment, neuroinflammation, and eventually neurodegeneration. In addition, peripheral immune cells infiltration shapes microglia into a pro-inflammatory phenotype and accelerates disease progression. Microglia also act as a mobile vehicle to propagate protein aggregates. Extracellular vesicles released from microglia and autophagy impairment in microglia all contribute to pathological progression and neurodegeneration. Thus, enhancing microglial phagocytosis, reducing microglial-mediated neuroinflammation, inhibiting microglial exosome synthesis and secretion, and promoting microglial conversion into a protective phenotype are considered to be promising strategies for the therapy of neurodegenerative diseases. Here we comprehensively review the biology of microglia and the roles of microglia in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, multiple system atrophy, amyotrophic lateral sclerosis, frontotemporal dementia, progressive supranuclear palsy, corticobasal degeneration, dementia with Lewy bodies and Huntington's disease. We also summarize the possible microglia-targeted interventions and treatments against neurodegenerative diseases with preclinical and clinical evidence in cell experiments, animal studies, and clinical trials.
Collapse
Affiliation(s)
- Chao Gao
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Jingwen Jiang
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Yuyan Tan
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| | - Shengdi Chen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
- Lab for Translational Research of Neurodegenerative Diseases, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), Shanghai Tech University, 201210, Shanghai, China.
| |
Collapse
|
12
|
Wang Z, Fu Y, Chen S, Huang Y, Ma Y, Wang Y, Tan L, Yu J. Association of rs2062323 in the TREM1 gene with Alzheimer's disease and cerebrospinal fluid-soluble TREM2. CNS Neurosci Ther 2023; 29:1657-1666. [PMID: 36815315 PMCID: PMC10173721 DOI: 10.1111/cns.14129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 02/24/2023] Open
Abstract
INTRODUCTION AND AIMS Genetic variations play a significant role in determining an individual's AD susceptibility. Research on the connection between AD and TREM1 gene polymorphisms (SNPs) remained lacking. We sought to examine the associations between TREM1 SNPs and AD. METHODS Based on the 1000 Genomes Project data, linkage disequilibrium (LD) analyses were utilized to screen for candidate SNPs in the TREM1 gene. AD cases (1081) and healthy control subjects (870) were collected and genotyped, and the associations between candidate SNPs and AD risk were analyzed. We explored the associations between target SNP and AD biomarkers. Moreover, 842 individuals from ADNI were selected to verify these results. Linear mixed models were used to estimate associations between the target SNP and longitudinal cognitive changes. RESULTS The rs2062323 was identified to be associated with AD risk in the Han population, and rs2062323T carriers had a lower AD risk (co-dominant model: OR, 0.67, 95% CI, 0.51-0.88, p = 0.0037; additive model: OR, 0.82, 95% CI, 0.72-0.94, p = 0.0032). Cerebrospinal fluid (CSF) sTREM2 levels were significantly increased in middle-aged rs2062323T carriers (additive model: β = 0.18, p = 0.0348). We also found significantly elevated levels of CSF sTREM2 in the ADNI. The rate of cognitive decline slowed down in rs2062323T carriers. CONCLUSIONS This study is the first to identify significant associations between TREM1 rs2062323 and AD risk. The rs2062323T may be involved in AD by regulating the expression of TREM1, TREML1, TREM2, and sTREM2. The TREM family is expected to be a potential therapeutic target for AD.
Collapse
Affiliation(s)
- Zuo‐Teng Wang
- Department of Neurology, Qingdao Municipal HospitalQingdao UniversityQingdaoChina
- Department of Neurology, Qingdao Municipal Hospital, College of Medicine and PharmaceuticsOcean University of ChinaQingdaoChina
| | - Yan Fu
- Department of Neurology, Qingdao Municipal HospitalQingdao UniversityQingdaoChina
| | - Shi‐Dong Chen
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Yu‐Yuan Huang
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Ya‐Hui Ma
- Department of Neurology, Qingdao Municipal HospitalQingdao UniversityQingdaoChina
| | - Yan‐Jiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping HospitalThird Military Medical UniversityChongqingChina
| | - Lan Tan
- Department of Neurology, Qingdao Municipal HospitalQingdao UniversityQingdaoChina
- Department of Neurology, Qingdao Municipal Hospital, College of Medicine and PharmaceuticsOcean University of ChinaQingdaoChina
| | - Jin‐Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical CollegeFudan UniversityShanghaiChina
| |
Collapse
|
13
|
Zhao K, Wu Y, Zhao D, Zhang H, Lin J, Wang Y. Six mitophagy-related hub genes as peripheral blood biomarkers of Alzheimer's disease and their immune cell infiltration correlation. Front Neurosci 2023; 17:1125281. [PMID: 37274215 PMCID: PMC10232817 DOI: 10.3389/fnins.2023.1125281] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/30/2023] [Indexed: 06/06/2023] Open
Abstract
Background Alzheimer's disease (AD), a neurodegenerative disorder with progressive symptoms, seriously endangers human health worldwide. AD diagnosis and treatment are challenging, but molecular biomarkers show diagnostic potential. This study aimed to investigate AD biomarkers in the peripheral blood. Method Utilizing three microarray datasets, we systematically analyzed the differences in expression and predictive value of mitophagy-related hub genes (MRHGs) in the peripheral blood mononuclear cells of patients with AD to identify potential diagnostic biomarkers. Subsequently, a protein-protein interaction network was constructed to identify hub genes, and functional enrichment analyses were performed. Using consistent clustering analysis, AD subtypes with significant differences were determined. Finally, infiltration patterns of immune cells in AD subtypes and the relationship between MRHGs and immune cells were investigated by two algorithms, CIBERSORT and single-sample gene set enrichment analysis (ssGSEA). Results Our study identified 53 AD- and mitophagy-related differentially expressed genes and six MRHGs, which may be potential biomarkers for diagnosing AD. Functional analysis revealed that six MRHGs significantly affected biologically relevant functions and signaling pathways such as IL-4 Signaling Pathway, RUNX3 Regulates Notch Signaling Pathway, IL-1 and Megakaryocytes in Obesity Pathway, and Overview of Leukocyteintrinsic Hippo Pathway. Furthermore, CIBERSORT and ssGSEA algorithms were used for all AD samples to analyze the abundance of infiltrating immune cells in the two disease subtypes. The results showed that these subtypes were significantly related to immune cell types such as activated mast cells, regulatory T cells, M0 macrophages, and neutrophils. Moreover, specific MRHGs were significantly correlated with immune cell levels. Conclusion Our findings suggest that MRHGs may contribute to the development and prognosis of AD. The six identified MRHGs could be used as valuable diagnostic biomarkers for further research on AD. This study may provide new promising diagnostic and therapeutic targets in the peripheral blood of patients with AD.
Collapse
Affiliation(s)
- Kun Zhao
- Department of Neurology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yinyan Wu
- Department of Neurology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Dongliang Zhao
- Department of Neurology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Hui Zhang
- Fujian Center for Safety Evaluation of New Drug, Fujian Medical University, Fuzhou, Fujian, China
| | - Jianyang Lin
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yuanwei Wang
- Department of Neurology, Shuyang Hospital Affiliated to Xuzhou Medical University, Shuyang, Jiangsu, China
| |
Collapse
|
14
|
Nwadiugwu M, Shen H, Deng HW. Potential Molecular Mechanisms of Alzheimer's Disease from Genetic Studies. BIOLOGY 2023; 12:602. [PMID: 37106802 PMCID: PMC10136191 DOI: 10.3390/biology12040602] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/09/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023]
Abstract
The devastating effects of Alzheimer's disease (AD) are yet to be ameliorated due to the absence of curative treatment options. AD is an aging-related disease that affects cognition, and molecular imbalance is one of its hallmarks. There is a need to identify common causes of molecular imbalance in AD and their potential mechanisms for continuing research. A narrative synthesis of molecular mechanisms in AD from primary studies that employed single-cell sequencing (scRNA-seq) or spatial genomics was conducted using Embase and PubMed databases. We found that differences in molecular mechanisms in AD could be grouped into four key categories: sex-specific features, early-onset features, aging, and immune system pathways. The reported causes of molecular imbalance were alterations in bile acid (BA) synthesis, PITRM1, TREM2, olfactory mucosa (OM) cells, cholesterol catabolism, NFkB, double-strand break (DSB) neuronal damage, P65KD silencing, tau and APOE expression. What changed from previous findings in contrast to results obtained were explored to find potential factors for AD-modifying investigations.
Collapse
Affiliation(s)
- Martin Nwadiugwu
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | | | | |
Collapse
|
15
|
Zhang H, Liu L, Liu J, Dang P, Hu S, Yuan W, Sun Z, Liu Y, Wang C. Roles of tumor-associated macrophages in anti-PD-1/PD-L1 immunotherapy for solid cancers. Mol Cancer 2023; 22:58. [PMID: 36941614 PMCID: PMC10029244 DOI: 10.1186/s12943-023-01725-x] [Citation(s) in RCA: 142] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/16/2023] [Indexed: 03/23/2023] Open
Abstract
In recent years, tumor immunotherapy has made significant progress. However, tumor immunotherapy, particularly immune checkpoint inhibitors (e.g., PD-1/PD-L1 inhibitors), benefits only a tiny proportion of patients in solid cancers. The tumor microenvironment (TME) acts a significant role in tumor immunotherapy. Studies reported that tumor-associated macrophages (TAMs), as one of the main components of TME, seriously affected the therapeutic effect of PD-1/PD-L1 inhibitors. In this review, we analyzed TAMs from epigenetic and single-cell perspectives and introduced the role and mechanisms of TAMs in anti-programmed death protein 1(anti-PD-1) therapy. In addition, we summarized combination regimens that enhance the efficacy of tumor PD-1/PD-L1 inhibitors and elaborated on the role of the TAMs in different solid cancers. Eventually, the clinical value of TAMs by influencing the therapeutic effect of tumor PD-1/PD-L1 inhibitors was discussed. These above are beneficial to elucidate poor therapeutic effect of PD-1/PD-L1 inhibitors in solid tumors from the point of view of TAMs and explore the strategies to improve its objective remission rate of solid cancers.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Lin Liu
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jinbo Liu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Pengyuan Dang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Shengyun Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China.
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Yang Liu
- Department of Radiotherapy, Henan Cancer Hospital, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450001, China.
| | - Chengzeng Wang
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
16
|
Kashif M, Waseem M, Vijendra PD, Pandurangan AK. Protective Effects of Cannabis in Neuroinflammation-Mediated Alzheimer's Disease. ADVANCES IN MEDICAL DIAGNOSIS, TREATMENT, AND CARE 2023:48-75. [DOI: 10.4018/978-1-6684-5652-1.ch002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
In recent years, Alzheimer's disease (AD) has been recognized as an age-related neurological disorder wherein neurons degenerate and exhibit abnormal structure and function. Aging is the primary factor in the progression of AD from mild to severe cognitive impairment. No effective targeted therapies are presently available, and treatment is limited to symptomatic management. The neuropathologic hallmarks of the disease include the accumulation of amyloid-beta (Aβ) plaques in brain tissues and the aggregation of hyperphosphorylated-tau proteins (tangles) within neurons. Associated hyperactivation of neuroinflammation results in release of inflammatory molecules from neurons, microglia, and astrocytes, which have been linked with neuronal loss and the worsening neurodegeneration. The anti-inflammatory and neuroprotective properties of cannabis-based medicines may offer benefits in delaying the progression of neurodegenerative diseases including AD. This chapter explores the role of cannabinoids in countering neuroinflammation-mediated AD pathology.
Collapse
Affiliation(s)
- Mohd Kashif
- B.S. Abdur Rahman Crescent Institute of Science and Technology, India
| | | | | | | |
Collapse
|
17
|
Hou J, Chen Y, Grajales-Reyes G, Colonna M. TREM2 dependent and independent functions of microglia in Alzheimer's disease. Mol Neurodegener 2022; 17:84. [PMID: 36564824 PMCID: PMC9783481 DOI: 10.1186/s13024-022-00588-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/02/2022] [Indexed: 12/25/2022] Open
Abstract
Microglia are central players in brain innate immunity and have been the subject of extensive research in Alzheimer's disease (AD). In this review, we aim to summarize the genetic and functional discoveries that have advanced our understanding of microglia reactivity to AD pathology. Given the heightened AD risk posed by rare variants of the microglial triggering receptor expressed on myeloid cells 2 (TREM2), we will focus on the studies addressing the impact of this receptor on microglia responses to amyloid plaques, tauopathy and demyelination pathologies in mouse and human. Finally, we will discuss the implications of recent discoveries on microglia and TREM2 biology on potential therapeutic strategies for AD.
Collapse
Affiliation(s)
- Jinchao Hou
- grid.4367.60000 0001 2355 7002Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Yun Chen
- grid.4367.60000 0001 2355 7002Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110 USA ,grid.4367.60000 0001 2355 7002Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Gary Grajales-Reyes
- grid.4367.60000 0001 2355 7002Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Marco Colonna
- grid.4367.60000 0001 2355 7002Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110 USA
| |
Collapse
|
18
|
Rikos D, Siokas V, Mentis AFA, Aloizou AM, Liampas I, Tsouris Z, Peristeri E, Stamati P, Hadjigeorgiou GM, Dardiotis E. TREM2 R47H variant and risk for Alzheimer's disease: assessment in a Greek population and updated meta-analysis. Int J Neurosci 2022:1-9. [PMID: 36408688 DOI: 10.1080/00207454.2022.2150844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 02/06/2022] [Accepted: 11/10/2022] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Rare coding variants in TREM2 and their association with the susceptibility towards Alzheimer's disease (AD) were recently studied in various ethnic groups with contradictory results. The T allele of the rs75932628 (p.R47H variant) has shown a positive risk association with AD in several studies; however, neither a study in Greece nor an updated meta-analysis have been conducted. OBJECTIVE To assess the association between TREM2 rs75932628 and late-onset (sporadic) AD in a Greek population, and perform a meta-analysis of current data. MATERIALS AND METHODS The rs75932628 was genotyped in a total of 327 patients with AD and 700 cognitively healthy controls. A systematic search and meta-analyses of studies presenting data regarding rs75932628 in AD cases and controls were also performed. RESULTS Three patients vs. none of the controls were found to carry the heterozygous risk allele of the rs75932628, yielding a significant association (p = 0.032), in the Greek sample. In the meta-analysis, the overall odds ratio (OR) under a fixed-effects model was 2.98 (Confidence Interval (CI):2.52-3.53) showing a significant association of the rs75932628-T allele with AD in the overall dataset, based on data from 27 studies (26200 AD cases and 142084controls). Caucasian population-only studies (n = 16) revealed a similar OR of 2.93 (CI:2.45-3.51), whereas Asian population-only studies (n = 5) had a non-significant OR of 0.84 (CI:0.19-3.74). CONCLUSION The rs75932628 was associated with AD in the Greek sample. Our meta-analysis, covering a total population of over 168,000 people, also showed a significant association of the allele with AD in Caucasian populations.
Collapse
Affiliation(s)
- Dimitrios Rikos
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Larissa, Greece
- Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Vasileios Siokas
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Larissa, Greece
- Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Alexios-Fotios A Mentis
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Larissa, Greece
- Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
- Public Health Laboratories, Hellenic Pasteur Institute, Athens, Greece
| | - Athina-Maria Aloizou
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Larissa, Greece
- Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Ioannis Liampas
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Larissa, Greece
- Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Zisis Tsouris
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Larissa, Greece
- Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Eleni Peristeri
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Larissa, Greece
- Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Polyxeni Stamati
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Larissa, Greece
- Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Georgios M Hadjigeorgiou
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Larissa, Greece
- Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
- Department of Neurology, Medical School, University of Cyprus, Nicosia, Cyprus
| | - Efthimios Dardiotis
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Larissa, Greece
- Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| |
Collapse
|
19
|
Bandow K, Smith A, Garlick J. Soluble triggering receptor expressed on myeloid cells 2 (sTREM2) positively regulates lipopolysaccharide-induced expression of CXC chemokine ligand 10 and 11 in mouse macrophages. Biochem Biophys Res Commun 2022; 635:227-235. [DOI: 10.1016/j.bbrc.2022.10.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 11/30/2022]
|
20
|
Kim B, Suh E, Nguyen AT, Prokop S, Mikytuck B, Olatunji OA, Robinson JL, Grossman M, Phillips JS, Irwin DJ, Mechanic-Hamilton D, Wolk DA, Trojanowski JQ, McMillan CT, Van Deerlin VM, Lee EB. TREM2 risk variants are associated with atypical Alzheimer's disease. Acta Neuropathol 2022; 144:1085-1102. [PMID: 36112222 PMCID: PMC9643636 DOI: 10.1007/s00401-022-02495-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 01/26/2023]
Abstract
Alzheimer's disease (AD) has multiple clinically and pathologically defined subtypes where the underlying causes of such heterogeneity are not well established. Rare TREM2 variants confer significantly increased risk for clinical AD in addition to other neurodegenerative disease clinical phenotypes. Whether TREM2 variants are associated with atypical clinical or pathologically defined subtypes of AD is not known. We studied here the clinical and pathological features associated with TREM2 risk variants in an autopsy-confirmed cohort. TREM2 variant cases were more frequently associated with non-amnestic clinical syndromes. Pathologically, TREM2 variant cases were associated with an atypical distribution of neurofibrillary tangle density with significantly lower hippocampal NFT burden relative to neocortical NFT accumulation. In addition, NFT density but not amyloid burden was associated with an increase of dystrophic microglia. TREM2 variant cases were not associated with an increased prevalence, extent, or severity of co-pathologies. These clinicopathological features suggest that TREM2 variants contribute to clinical and pathologic AD heterogeneity by altering the distribution of neurofibrillary degeneration and tau-dependent microglial dystrophy, resulting in hippocampal-sparing and non-amnestic AD phenotypes.
Collapse
Affiliation(s)
- Boram Kim
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, 613A Stellar Chance Laboratories, 422 Curie Blvd, Philadelphia, PA, 19104, USA
| | - EunRan Suh
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Aivi T Nguyen
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, 613A Stellar Chance Laboratories, 422 Curie Blvd, Philadelphia, PA, 19104, USA
| | - Stefan Prokop
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Bailey Mikytuck
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, 613A Stellar Chance Laboratories, 422 Curie Blvd, Philadelphia, PA, 19104, USA
| | - Olamide A Olatunji
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, 613A Stellar Chance Laboratories, 422 Curie Blvd, Philadelphia, PA, 19104, USA
| | - John L Robinson
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Murray Grossman
- Department of Neurology, Penn Frontotemporal Degeneration Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jeffrey S Phillips
- Department of Neurology, Penn Frontotemporal Degeneration Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - David J Irwin
- Department of Neurology, Penn Frontotemporal Degeneration Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Dawn Mechanic-Hamilton
- Department of Neurology, Penn Memory Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - David A Wolk
- Department of Neurology, Penn Memory Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Corey T McMillan
- Department of Neurology, Penn Frontotemporal Degeneration Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Vivianna M Van Deerlin
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Edward B Lee
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, 613A Stellar Chance Laboratories, 422 Curie Blvd, Philadelphia, PA, 19104, USA.
| |
Collapse
|
21
|
Li R, Zhang J, Wang Q, Cheng M, Lin B. TPM1 mediates inflammation downstream of TREM2 via the PKA/CREB signaling pathway. J Neuroinflammation 2022; 19:257. [PMID: 36241997 PMCID: PMC9563125 DOI: 10.1186/s12974-022-02619-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2022] Open
Abstract
Background Microglia, the innate immune cells in the central nervous system, play an essential role in brain homeostasis, neuroinflammation and brain infections. Dysregulated microglia, on the other hand, are associated with neurodegenerative diseases, yet the mechanisms underlying pro-inflammatory gene expression in microglia are incompletely understood. Methods We investigated the role of the actin-associated protein tropomyosin 1 (TPM1) in regulating pro-inflammatory phenotype of microglia in the retina by using a combination of cell culture, immunocytochemistry, Western blot, qPCR, TUNEL, RNA sequencing and electroretinogram analysis. TREM2−/− mice were used to investigate whether TPM1 regulated pro-inflammatory responses downstream of TREM2. To conditionally deplete microglia, we backcrossed CX3CR1CreER mice with Rosa26iDTR mice to generate CX3CR1CreER:Rosa26iDTR mice. Results We revealed a vital role for TPM1 in regulating pro-inflammatory phenotype of microglia. We found that TPM1 drove LPS-induced inflammation and neuronal death in the retina via the PKA/CREB pathway. TPM1 knockdown ameliorated LPS-induced inflammation in WT retinas yet exaggerated the inflammation in TREM2−/− retinas. RNA sequencing revealed that genes associated with M1 microglia and A1 astrocytes were significantly downregulated in LPS-treated WT retinas but upregulated in LPS-treated TREM2−/− retinas after TPM1 knockdown. Mechanistically, we demonstrated that CREB activated by TPM1 knockdown mediated anti-inflammatory genes in LPS-treated WT retinas but pro-inflammatory genes in LPS-treated TREM2−/− retinas, suggesting a novel role for TREM2 as a brake on TPM1-mediated inflammation. Furthermore, we identified that TPM1 regulated inflammation downstream of TREM2 and in a microglia-dependent manner. Conclusions We demonstrate that TPM1 mediates inflammation downstream of TREM2 via the PKA/CREB signaling pathway. Our findings suggest that TPM1 could be a potential target for therapeutic intervention in brain diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02619-3.
Collapse
Affiliation(s)
- Rong Li
- School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong. .,Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Shatin, Hong Kong.
| | - Jing Zhang
- School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Qiong Wang
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Shatin, Hong Kong
| | - Meng Cheng
- School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Bin Lin
- School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong. .,Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Shatin, Hong Kong. .,Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Kowloon, Hong Kong.
| |
Collapse
|
22
|
Li Q, Wang M, Zhang S, Jin M, Chen R, Luo Y, Sun X. Single-cell RNA sequencing in atherosclerosis: Mechanism and precision medicine. Front Pharmacol 2022; 13:977490. [PMID: 36267275 PMCID: PMC9576927 DOI: 10.3389/fphar.2022.977490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Atherosclerosis is the pathological basis of various vascular diseases, including those with high mortality, such as myocardial infarction and stroke. However, its pathogenesis is complex and has not been fully elucidated yet. Over the past few years, single-cell RNA sequencing (scRNA-seq) has been developed and widely used in many biological fields to reveal biological mechanisms at the cellular level and solve the problems of cellular heterogeneity that cannot be solved using bulk RNA sequencing. In this review, we briefly summarize the existing scRNA-seq technologies and focus on their application in atherosclerosis research to provide insights into the occurrence, development and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Qiaoyu Li
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
| | - Mengchen Wang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
| | - Shuxia Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
| | - Meiqi Jin
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
| | - Rongchang Chen
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
| | - Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
- *Correspondence: Yun Luo, ; Xiaobo Sun,
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
- *Correspondence: Yun Luo, ; Xiaobo Sun,
| |
Collapse
|
23
|
Zhao JF, Ren T, Li XY, Guo TL, Liu CH, Wang X. Research Progress on the Role of Microglia Membrane Proteins or Receptors in Neuroinflammation and Degeneration. Front Cell Neurosci 2022; 16:831977. [PMID: 35281298 PMCID: PMC8913711 DOI: 10.3389/fncel.2022.831977] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/26/2022] [Indexed: 01/01/2023] Open
Abstract
Microglia are intrinsic immune cells of the central nervous system and play a dual role (pro-inflammatory and anti-inflammatory) in the homeostasis of the nervous system. Neuroinflammation mediated by microglia serves as an important stage of ischemic hypoxic brain injury, cerebral hemorrhage disease, neurodegeneration and neurotumor of the nervous system and is present through the whole course of these diseases. Microglial membrane protein or receptor is the basis of mediating microglia to play the inflammatory role and they have been found to be upregulated by recognizing associated ligands or sensing changes in the nervous system microenvironment. They can then allosterically activate the downstream signal transduction and produce a series of complex cascade reactions that can activate microglia, promote microglia chemotactic migration and stimulate the release of proinflammatory factor such as TNF-α, IL-β to effectively damage the nervous system and cause apoptosis of neurons. In this paper, several representative membrane proteins or receptors present on the surface of microglia are systematically reviewed and information about their structures, functions and specific roles in one or more neurological diseases. And on this basis, some prospects for the treatment of novel coronavirus neurological complications are presented.
Collapse
Affiliation(s)
- Jun-Feng Zhao
- Department of Neurosurgery, Affiliated Dalian No. 3 People’s Hospital, Dalian Medical University, Dalian, China
| | - Tong Ren
- Department of Neurosurgery, Affiliated Dalian No. 3 People’s Hospital, Dalian Medical University, Dalian, China
| | - Xiang-Yu Li
- Department of Neurosurgery, Affiliated Dalian No. 3 People’s Hospital, Dalian Medical University, Dalian, China
| | - Tian-Lin Guo
- Department of Neurosurgery, Affiliated Dalian No. 3 People’s Hospital, Dalian Medical University, Dalian, China
| | - Chun-Hui Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Beijing, China
- Chun-Hui Liu,
| | - Xun Wang
- Department of Neurosurgery, Affiliated Dalian No. 3 People’s Hospital, Dalian Medical University, Dalian, China
- *Correspondence: Xun Wang,
| |
Collapse
|
24
|
Zhang SS, Zhu L, Peng Y, Zhang L, Chao FL, Jiang L, Xiao Q, Liang X, Tang J, Yang H, He Q, Guo YJ, Zhou CN, Tang Y. Long-term running exercise improves cognitive function and promotes microglial glucose metabolism and morphological plasticity in the hippocampus of APP/PS1 mice. J Neuroinflammation 2022; 19:34. [PMID: 35123512 PMCID: PMC8817568 DOI: 10.1186/s12974-022-02401-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 01/24/2022] [Indexed: 02/06/2023] Open
Abstract
Background The role of physical exercise in the prevention of Alzheimer’s disease (AD) has been widely studied. Microglia play an important role in AD. Triggering receptor expressed in myeloid cells 2 (TREM2) is expressed on microglia and is known to mediate microglial metabolic activity and brain glucose metabolism. However, the relationship between brain glucose metabolism and microglial metabolic activity during running exercise in APP/PS1 mice remains unclear. Methods Ten-month-old male APP/PS1 mice and wild-type mice were randomly divided into sedentary groups or running groups (AD_Sed, WT_Sed, AD_Run and WT_Run, n = 20/group). Running mice had free access to a running wheel for 3 months. Behavioral tests, [18]F-FDG-PET and hippocampal RNA-Seq were performed. The expression levels of microglial glucose transporter (GLUT5), TREM2, soluble TREM2 (sTREM2), TYRO protein tyrosine kinase binding protein (TYROBP), secreted phosphoprotein 1 (SPP1), and phosphorylated spleen tyrosine kinase (p-SYK) were estimated by western blot or ELISA. Immunohistochemistry, stereological methods and immunofluorescence were used to investigate the morphology, proliferation and activity of microglia. Results Long-term voluntary running significantly improved cognitive function in APP/PS1 mice. Although there were few differentially expressed genes (DEGs), gene set enrichment analysis (GSEA) showed enriched glycometabolic pathways in APP/PS1 running mice. Running exercise increased FDG uptake in the hippocampus of APP/PS1 mice, as well as the protein expression of GLUT5, TREM2, SPP1 and p-SYK. The level of sTREM2 decreased in the plasma of APP/PS1 running mice. The number of microglia, the length and endpoints of microglial processes, and the ratio of GLUT5+/IBA1+ microglia were increased in the dentate gyrus (DG) of APP/PS1 running mice. Running exercise did not alter the number of 5-bromo-2′-deoxyuridine (BrdU)+/IBA1+ microglia but reduced the immunoactivity of CD68 in the hippocampus of APP/PS1 mice. Conclusions Running exercise inhibited TREM2 shedding and maintained TREM2 protein levels, which were accompanied by the promotion of brain glucose metabolism, microglial glucose metabolism and morphological plasticity in the hippocampus of AD mice. Microglia might be a structural target responsible for the benefits of running exercise in AD. Promoting microglial glucose metabolism and morphological plasticity modulated by TREM2 might be a novel strategy for AD treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02401-5.
Collapse
|
25
|
Sayed FA, Kodama L, Fan L, Carling GK, Udeochu JC, Le D, Li Q, Zhou L, Wong MY, Horowitz R, Ye P, Mathys H, Wang M, Niu X, Mazutis L, Jiang X, Wang X, Gao F, Brendel M, Telpoukhovskaia M, Tracy TE, Frost G, Zhou Y, Li Y, Qiu Y, Cheng Z, Yu G, Hardy J, Coppola G, Wang F, DeTure MA, Zhang B, Xie L, Trajnowski JQ, Lee VM, Gong S, Sinha SC, Dickson DW, Luo W, Gan L. AD-linked R47H- TREM2 mutation induces disease-enhancing microglial states via AKT hyperactivation. Sci Transl Med 2021; 13:eabe3947. [PMID: 34851693 PMCID: PMC9345574 DOI: 10.1126/scitranslmed.abe3947] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The hemizygous R47H variant of triggering receptor expressed on myeloid cells 2 (TREM2), a microglia-specific gene in the brain, increases risk for late-onset Alzheimer’s disease (AD). Using transcriptomic analysis of single nuclei from brain tissues of patients with AD carrying the R47H mutation or the common variant (CV)–TREM2, we found that R47H-associated microglial subpopulations had enhanced inflammatory signatures reminiscent of previously identified disease-associated microglia (DAM) and hyperactivation of AKT, one of the signaling pathways downstream of TREM2. We established a tauopathy mouse model with heterozygous knock-in of the human TREM2 with the R47H mutation or CV and found that R47H induced and exacerbated TAU-mediated spatial memory deficits in female mice. Single-cell transcriptomic analysis of microglia from these mice also revealed transcriptomic changes induced by R47H that had substantial overlaps with R47H microglia in human AD brains, including robust increases in proinflammatory cytokines, activation of AKT signaling, and elevation of a subset of DAM signatures. Pharmacological AKT inhibition with MK-2206 largely reversed the enhanced inflammatory signatures in primary R47H microglia treated with TAU fibrils. In R47H heterozygous tauopathy mice, MK-2206 treatment abolished a tauopathy-dependent microglial subcluster and rescued tauopathy-induced synapse loss. By uncovering disease-enhancing mechanisms of the R47H mutation conserved in human and mouse, our study supports inhibitors of AKT signaling as a microglial modulating strategy to treat AD.
Collapse
Affiliation(s)
- Faten A. Sayed
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
- Gladstone Institute of Neurological Disease, San Francisco, CA 94107, USA
| | - Lay Kodama
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
- Gladstone Institute of Neurological Disease, San Francisco, CA 94107, USA
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
- Medical Scientist Training Program and Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Li Fan
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Gillian K. Carling
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Joe C. Udeochu
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - David Le
- Gladstone Institute of Neurological Disease, San Francisco, CA 94107, USA
| | - Qingyun Li
- Department of Neuroscience and Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lu Zhou
- Department of Neuroscience and Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Man Ying Wong
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Rose Horowitz
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Pearly Ye
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Hansruedi Mathys
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Minghui Wang
- Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences, NY 10029, USA
| | - Xiang Niu
- Tri-Institutional Computational Biology & Medicine Program, Weill Cornell Medical College, NY, USA
| | - Linas Mazutis
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Xueqiao Jiang
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xueting Wang
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Fuying Gao
- Departments of Psychiatry and Neurology, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Matthew Brendel
- Institute for Computational Biomedicine, Dept. of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA
| | | | - Tara E. Tracy
- Gladstone Institute of Neurological Disease, San Francisco, CA 94107, USA
| | - Georgia Frost
- Chemical Biology Program, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10065, USA
| | - Yungui Zhou
- Gladstone Institute of Neurological Disease, San Francisco, CA 94107, USA
| | - Yaqiao Li
- Gladstone Institute of Neurological Disease, San Francisco, CA 94107, USA
| | - Yue Qiu
- Department of Computer Science, Hunter College, & The Graduate Center, The City University of New York, New York, NY 10065, USA
| | - Zuolin Cheng
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 24061, USA
| | - Guoqiang Yu
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 24061, USA
| | - John Hardy
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1E 6BT, UK
| | - Giovanni Coppola
- Departments of Psychiatry and Neurology, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Fei Wang
- Department of Population Health Sciences, Weill Cornell Medical College, New York, NY 10065, USA
| | | | - Bin Zhang
- Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences, NY 10029, USA
| | - Lei Xie
- Chemical Biology Program, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10065, USA
| | - John Q. Trajnowski
- Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Virginia M.Y. Lee
- Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Shiaoching Gong
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Subhash C. Sinha
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | | | - Wenjie Luo
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Li Gan
- Gladstone Institute of Neurological Disease, San Francisco, CA 94107, USA
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
26
|
Okuzono Y, Sakuma H, Miyakawa S, Ifuku M, Lee J, Das D, Banerjee A, Zhao Y, Yamamoto K, Ando T, Sato S. Reduced TREM2 activation in microglia of patients with Alzheimer's disease. FEBS Open Bio 2021; 11:3063-3080. [PMID: 34523252 PMCID: PMC8564098 DOI: 10.1002/2211-5463.13300] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/27/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022] Open
Abstract
Loss-of-function variants of triggering receptor expressed on myeloid cells 2 (TREM2) increase the risk of developing Alzheimer's disease (AD). The mechanism through which TREM2 contributes to the disease (TREM2 activation vs inactivation) is largely unknown. Here, we analyzed changes in a gene set downstream of TREM2 to determine whether TREM2 signaling is modified by AD progression. We generated an anti-human TREM2 agonistic antibody and defined TREM2 activation in terms of the downstream expression changes induced by this antibody in microglia developed from human induced pluripotent stem cells (iPSC). Differentially expressed genes (DEGs) following TREM2 activation were compared with the gene set extracted from microglial single nuclear RNA sequencing data of patients with AD, using gene set enrichment analysis. We isolated an anti-TREM2-specific agonistic antibody, Hyb87, from anti-human TREM2 antibodies generated using binding and agonism assays, which helped us identify 300 upregulated and 251 downregulated DEGs. Pathway enrichment analysis suggested that TREM2 activation may be associated with Th2-related pathways. TREM2 activation was lower in AD microglia than in microglia from healthy subjects or patients with mild cognitive impairment. TREM2 activation also showed a significant negative correlation with disease progression. Pathway enrichment analysis of DEGs controlled by TREM2 activity indicated that TREM2 activation in AD may lead to anti-apoptotic signaling, immune response, and cytoskeletal changes in the microglia. We showed that TREM2 activation decreases with AD progression, in support of a protective role of TREM2 activation in AD. In addition, the agonistic anti-TREM2 antibody can be used to identify TREM2 activation state in AD microglia.
Collapse
Affiliation(s)
- Yuumi Okuzono
- Immune Cell Engineered TherapeuticsResearch, Takeda Pharmaceutical Company LimitedFujisawaJapan
| | - Hiroyuki Sakuma
- Neuroscience Drug Discovery UnitResearch, Takeda Pharmaceutical Company LimitedFujisawaJapan
| | - Shuuichi Miyakawa
- Immune Cell Engineered TherapeuticsResearch, Takeda Pharmaceutical Company LimitedFujisawaJapan
| | - Masataka Ifuku
- Immune Cell Engineered TherapeuticsResearch, Takeda Pharmaceutical Company LimitedFujisawaJapan
| | - Jonghun Lee
- Computational BiologyResearch, Takeda Pharmaceutical Company LimitedFujisawaJapan
| | - Debashree Das
- Early Target DiscoveryResearch, Takeda California, Inc.San DiegoCAUSA
| | - Antara Banerjee
- GI ImmunologyResearch, Takeda California, Inc.San DiegoCAUSA
| | - Yang Zhao
- Computational BiologyResearch, Takeda Pharmaceutical Company LimitedFujisawaJapan
| | - Koji Yamamoto
- Computational BiologyResearch, Takeda Pharmaceutical Company LimitedFujisawaJapan
| | - Tatsuya Ando
- Computational BiologyResearch, Takeda Pharmaceutical Company LimitedFujisawaJapan
| | - Shuji Sato
- Neuroscience Drug Discovery UnitResearch, Takeda Pharmaceutical Company LimitedFujisawaJapan
| |
Collapse
|
27
|
de Oliveira J, Kucharska E, Garcez ML, Rodrigues MS, Quevedo J, Moreno-Gonzalez I, Budni J. Inflammatory Cascade in Alzheimer's Disease Pathogenesis: A Review of Experimental Findings. Cells 2021; 10:cells10102581. [PMID: 34685563 PMCID: PMC8533897 DOI: 10.3390/cells10102581] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 12/14/2022] Open
Abstract
Alzheimer’s disease (AD) is the leading cause of dementia worldwide. Most AD patients develop the disease in late life, named late onset AD (LOAD). Currently, the most recognized explanation for AD pathology is the amyloid cascade hypothesis. It is assumed that amyloid beta (Aβ) aggregation and deposition are critical pathogenic processes in AD, leading to the formation of amyloid plaques, as well as neurofibrillary tangles, neuronal cell death, synaptic degeneration, and dementia. In LOAD, the causes of Aβ accumulation and neuronal loss are not completely clear. Importantly, the blood–brain barrier (BBB) disruption seems to present an essential role in the induction of neuroinflammation and consequent AD development. In addition, we propose that the systemic inflammation triggered by conditions like metabolic diseases or infections are causative factors of BBB disruption, coexistent inflammatory cascade and, ultimately, the neurodegeneration observed in AD. In this regard, the use of anti-inflammatory molecules could be an interesting strategy to treat, delay or even halt AD onset and progression. Herein, we review the inflammatory cascade and underlying mechanisms involved in AD pathogenesis and revise the anti-inflammatory effects of compounds as emerging therapeutic drugs against AD.
Collapse
Affiliation(s)
- Jade de Oliveira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90050-000, Brazil; (J.d.O.); (M.S.R.)
| | - Ewa Kucharska
- Faculty of Education, Institute of Educational Sciences, Jesuit University Ignatianum in Krakow, 31-501 Krakow, Poland;
| | - Michelle Lima Garcez
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis 88040-900, Santa Catarina, Brazil;
| | - Matheus Scarpatto Rodrigues
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90050-000, Brazil; (J.d.O.); (M.S.R.)
| | - João Quevedo
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA;
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA
- Neuroscience Graduate Program, Graduate School of Biomedical Sciences, MD Anderson Cancer Center, UTHealth, The University of Texas Houston, Houston, TX 77030, USA
- Graduate Program in Health Sciences, Translational Psychiatry Laboratory, University of Southern Santa Catarina (UNESC), Criciuma 88806-000, Brazil
| | - Ines Moreno-Gonzalez
- Department of Cell Biology, Faculty of Sciences, University of Malaga, IBIMA, 29010 Malaga, Spain;
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), 29010 Malaga, Spain
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA
| | - Josiane Budni
- Programa de Pós-Graduação em Ciências da Saúde, Laboratório de Neurologia Experimental, Universidade do Extremo Sul Catarinense, Criciuma 88806-000, Brazil
- Correspondence: ; Tel.: +55-48431-2539
| |
Collapse
|
28
|
Ji Z, Liu C, Zhao W, Soto C, Zhou X. Multi-scale modeling for systematically understanding the key roles of microglia in AD development. Comput Biol Med 2021; 133:104374. [PMID: 33864975 DOI: 10.1016/j.compbiomed.2021.104374] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is the leading cause of age-related dementia, affecting over 5 million people in the United States. Unfortunately, current therapies are largely palliative and several potential drug candidates have failed in late-stage clinical trials. Studies suggest that microglia-mediated neuroinflammation might be responsible for the failures of various therapies. Microglia contribute to Aβ clearance in the early stage of neurodegeneration and may contribute to AD development at the late stage by releasing pro-inflammatory cytokines. However, the activation profile and phenotypic changes of microglia during the development of AD are poorly understood. To systematically understand the key role of microglia in AD progression and predict the optimal therapeutic strategy in silico, we developed a 3D multi-scale model of AD (MSMAD) by integrating multi-level experimental data, to manipulate the neurodegeneration in a simulated system. Based on our analysis, we revealed that how TREM2-related signal transduction leads to an imbalance in the activation of different microglia phenotypes, thereby promoting AD development. Our MSMAD model also provides an optimal therapeutic strategy for improving the outcome of AD treatment.
Collapse
Affiliation(s)
- Zhiwei Ji
- College of Artificial Intelligence, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, Jiangsu, 210095, China; School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin Street, Houston, TX, 77030, USA.
| | - Changan Liu
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin Street, Houston, TX, 77030, USA
| | - Weiling Zhao
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin Street, Houston, TX, 77030, USA
| | - Claudio Soto
- Mitchell Center for Alzheimer's Disease & Brain Disorder, Department of Neurology, The University of Texas McGovern Medical School, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Xiaobo Zhou
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin Street, Houston, TX, 77030, USA.
| |
Collapse
|
29
|
Obradovic A, Chowdhury N, Haake SM, Ager C, Wang V, Vlahos L, Guo XV, Aggen DH, Rathmell WK, Jonasch E, Johnson JE, Roth M, Beckermann KE, Rini BI, McKiernan J, Califano A, Drake CG. Single-cell protein activity analysis identifies recurrence-associated renal tumor macrophages. Cell 2021; 184:2988-3005.e16. [PMID: 34019793 PMCID: PMC8479759 DOI: 10.1016/j.cell.2021.04.038] [Citation(s) in RCA: 206] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 02/10/2021] [Accepted: 04/23/2021] [Indexed: 12/11/2022]
Abstract
Clear cell renal carcinoma (ccRCC) is a heterogeneous disease with a variable post-surgical course. To assemble a comprehensive ccRCC tumor microenvironment (TME) atlas, we performed single-cell RNA sequencing (scRNA-seq) of hematopoietic and non-hematopoietic subpopulations from tumor and tumor-adjacent tissue of treatment-naive ccRCC resections. We leveraged the VIPER algorithm to quantitate single-cell protein activity and validated this approach by comparison to flow cytometry. The analysis identified key TME subpopulations, as well as their master regulators and candidate cell-cell interactions, revealing clinically relevant populations, undetectable by gene-expression analysis. Specifically, we uncovered a tumor-specific macrophage subpopulation characterized by upregulation of TREM2/APOE/C1Q, validated by spatially resolved, quantitative multispectral immunofluorescence. In a large clinical validation cohort, these markers were significantly enriched in tumors from patients who recurred following surgery. The study thus identifies TREM2/APOE/C1Q-positive macrophage infiltration as a potential prognostic biomarker for ccRCC recurrence, as well as a candidate therapeutic target.
Collapse
MESH Headings
- Adult
- Apolipoproteins E/genetics
- Apolipoproteins E/metabolism
- Biomarkers, Tumor/genetics
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/pathology
- Cohort Studies
- Female
- Gene Expression/genetics
- Gene Expression Regulation, Neoplastic/genetics
- Humans
- Kidney/metabolism
- Kidney Neoplasms/pathology
- Lymphocytes, Tumor-Infiltrating/pathology
- Macrophages/metabolism
- Male
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Middle Aged
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/metabolism
- Prognosis
- Receptors, Complement/genetics
- Receptors, Complement/metabolism
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Sequence Analysis, RNA/methods
- Single-Cell Analysis/methods
- Tumor Microenvironment
- Tumor-Associated Macrophages/metabolism
- Tumor-Associated Macrophages/physiology
Collapse
Affiliation(s)
- Aleksandar Obradovic
- Columbia Center for Translational Immunology (CCTI), Columbia University Irving Medical Center (CUMC), New York, NY 10032, USA; Department of Systems Biology, HICC, New York, NY 10032, USA
| | - Nivedita Chowdhury
- Columbia Center for Translational Immunology (CCTI), Columbia University Irving Medical Center (CUMC), New York, NY 10032, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | - Casey Ager
- Columbia Center for Translational Immunology (CCTI), Columbia University Irving Medical Center (CUMC), New York, NY 10032, USA
| | - Vinson Wang
- Department of Urology, Herbert Irving Comprehensive Cancer Center (HICC), New York, NY 10032, USA
| | - Lukas Vlahos
- Department of Systems Biology, HICC, New York, NY 10032, USA
| | - Xinzheng V Guo
- Columbia Center for Translational Immunology (CCTI), Columbia University Irving Medical Center (CUMC), New York, NY 10032, USA
| | - David H Aggen
- Columbia Center for Translational Immunology (CCTI), Columbia University Irving Medical Center (CUMC), New York, NY 10032, USA
| | | | - Eric Jonasch
- Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Marc Roth
- Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Brian I Rini
- Vanderbilt University Medical Center, Nashville, TN, USA
| | - James McKiernan
- Department of Urology, Herbert Irving Comprehensive Cancer Center (HICC), New York, NY 10032, USA; HICC, Columbia University, New York, NY, USA
| | - Andrea Califano
- Department of Systems Biology, HICC, New York, NY 10032, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; HICC, Columbia University, New York, NY, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY; Department of Biomedical Informatics, Columbia University, New York, NY, USA; Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA; J.P. Sulzberger Columbia Genome Center, New York, NY, USA.
| | - Charles G Drake
- Columbia Center for Translational Immunology (CCTI), Columbia University Irving Medical Center (CUMC), New York, NY 10032, USA; Department of Urology, Herbert Irving Comprehensive Cancer Center (HICC), New York, NY 10032, USA; HICC, Columbia University, New York, NY, USA.
| |
Collapse
|
30
|
Mentis AFA, Dardiotis E, Chrousos GP. Apolipoprotein E4 and meningeal lymphatics in Alzheimer disease: a conceptual framework. Mol Psychiatry 2021; 26:1075-1097. [PMID: 32355332 PMCID: PMC7985019 DOI: 10.1038/s41380-020-0731-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 04/01/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022]
Abstract
The potential existence and roles of the meningeal lymphatic system in normal and pathological brain function have been a long-standing enigma. Recent evidence suggests that meningeal lymphatic vessels are present in both the mouse and human brain; in mice, they seem to play a role in clearing toxic amyloid-beta peptides, which have been connected with Alzheimer disease (AD). Here, we review the evidence linking the meningeal lymphatic system with human AD. Novel findings suggest that the recently described meningeal lymphatic vessels could be linked to, and possibly drain, the efferent paravascular glial lymphatic (glymphatic) system carrying cerebrospinal fluid, after solute and immune cell exchange with brain interstitial fluid. In so doing, the glymphatic system could contribute to the export of toxic solutes and immune cells from the brain (an exported fluid we wish to describe as glymph, similarly to lymph) to the meningeal lymphatic system; the latter, by being connected with downstream anatomic regions, carries the glymph to the conventional cervical lymphatic vessels and nodes. Thus, abnormal function in the meningeal lymphatic system could, in theory, lead to the accumulation, in the brain, of amyloid-beta, cellular debris, and inflammatory mediators, as well as immune cells, resulting in damage of the brain parenchyma and, in turn, cognitive and other neurologic dysfunctions. In addition, we provide novel insights into APOE4-the leading genetic risk factor for AD-and its relation to the meningeal lymphatic system. In this regard, we have reanalyzed previously published RNA-Seq data to show that induced pluripotent stem cells (iPSCs) carrying the APOE4 allele (either as APOE4 knock-in or stemming from APOE4 patients) express lower levels of (a) genes associated with lymphatic markers, and (b) genes for which well-characterized missense mutations have been linked to peripheral lymphedema. Taking into account this evidence, we propose a new conceptual framework, according to which APOE4 could play a novel role in the premature shrinkage of meningeal lymphatic vessels (meningeal lymphosclerosis), leading to abnormal meningeal lymphatic functions (meningeal lymphedema), and, in turn, reduction in the clearance of amyloid-beta and other macromolecules and inflammatory mediators, as well as immune cells, from the brain, exacerbation of AD manifestations, and progression of the disease. Altogether, these findings and their potential interpretations may herald novel diagnostic tools and therapeutic approaches in patients with AD.
Collapse
Affiliation(s)
- Alexios-Fotios A Mentis
- Public Health Laboratories, Hellenic Pasteur Institute, Vas. Sofias Avenue 127, 115 21, Athens, Greece.
- Department of Microbiology, University of Thessaly, Panepistimiou 3, Viopolis, 41 500, Larissa, Greece.
| | - Efthimios Dardiotis
- Department of Neurology, University of Thessaly, Panepistimiou 3, Viopolis, 41 500, Larissa, Greece
| | - George P Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, Medical School, Aghia Sophia Children's Hospital, Livadias 8, 115 27, Athens, Greece
- UNESCO Chair on Adolescent Health Care, Athens, Greece
| |
Collapse
|
31
|
Li R, Wang X, He P. The most prevalent rare coding variants of TREM2 conferring risk of Alzheimer's disease: A systematic review and meta-analysis. Exp Ther Med 2021; 21:347. [PMID: 33732320 PMCID: PMC7903442 DOI: 10.3892/etm.2021.9778] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/29/2020] [Indexed: 12/25/2022] Open
Abstract
Rare variants in the coding sequence of triggering receptor expressed on myeloid cells 2 (TREM2) have been identified in Alzheimer's disease (AD). They have been reported to be causative or confer risk of AD in several populations. However, the results are not conclusive. Therefore, a meta-analysis was performed to investigate the association between rare variants of TREM2 and the susceptibility to AD. Case-control studies meeting the inclusion criteria were identified by searching the PubMed, Embase and Web of Science databases. The association between four commonly analyzed variants of TREM2, p.Arg47His (R47H), p.Arg62His (R62H), p.Asp87Asn (D87N) and p.His157Tyr (H157Y), and the risk of AD were evaluated by meta-analyses with the fixed-effects model. Finally, a total of 26 datasets comprising 28,007 cases and 45,121 controls were included. There was no or low between-study heterogeneity in all comparisons. A significantly increased risk of AD was observed in carriers of R47H compared with non-carriers [odds ratio (OR)=3.88, 95% CI: 3.17-4.76, P<0.001], R62H (OR=1.37, 95% CI: 1.11-1.70, P=0.004) and H157Y (OR=4.22, 95% CI: 1.93-9.21, P<0.001). However, R62H only conferred a mild risk compared to R47H and H157Y (OR=1.37 vs. 3.88 and 4.22, respectively). D87N was not associated with AD susceptibility. Sensitivity analysis indicated that the association identified for R62H was not significant (P=0.192) when excluding a large-sample study. Subgroup analysis according to ethnicity revealed significant associations (R47H and H157Y) in Caucasians but not in Asians. In conclusion, rare coding variants of TREM2 were associated with an elevated risk of AD, particularly in Caucasians.
Collapse
Affiliation(s)
- Rong Li
- Department of Health Management, Yuncheng Central Hospital, Shanxi Medical University, Yuncheng, Shanxi 044000, P.R. China
| | - Xia Wang
- Drug Clinical Trial Center, Yuncheng Central Hospital, Shanxi Medical University, Yuncheng, Shanxi 044000, P.R. China
| | - Pengfei He
- Department of Health Management, Yuncheng Central Hospital, Shanxi Medical University, Yuncheng, Shanxi 044000, P.R. China
| |
Collapse
|
32
|
McGrowder DA, Miller F, Vaz K, Nwokocha C, Wilson-Clarke C, Anderson-Cross M, Brown J, Anderson-Jackson L, Williams L, Latore L, Thompson R, Alexander-Lindo R. Cerebrospinal Fluid Biomarkers of Alzheimer's Disease: Current Evidence and Future Perspectives. Brain Sci 2021; 11:215. [PMID: 33578866 PMCID: PMC7916561 DOI: 10.3390/brainsci11020215] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease is a progressive, clinically heterogeneous, and particularly complex neurodegenerative disease characterized by a decline in cognition. Over the last two decades, there has been significant growth in the investigation of cerebrospinal fluid (CSF) biomarkers for Alzheimer's disease. This review presents current evidence from many clinical neurochemical studies, with findings that attest to the efficacy of existing core CSF biomarkers such as total tau, phosphorylated tau, and amyloid-β (Aβ42), which diagnose Alzheimer's disease in the early and dementia stages of the disorder. The heterogeneity of the pathophysiology of the late-onset disease warrants the growth of the Alzheimer's disease CSF biomarker toolbox; more biomarkers showing other aspects of the disease mechanism are needed. This review focuses on new biomarkers that track Alzheimer's disease pathology, such as those that assess neuronal injury (VILIP-1 and neurofilament light), neuroinflammation (sTREM2, YKL-40, osteopontin, GFAP, progranulin, and MCP-1), synaptic dysfunction (SNAP-25 and GAP-43), vascular dysregulation (hFABP), as well as CSF α-synuclein levels and TDP-43 pathology. Some of these biomarkers are promising candidates as they are specific and predict future rates of cognitive decline. Findings from the combinations of subclasses of new Alzheimer's disease biomarkers that improve their diagnostic efficacy in detecting associated pathological changes are also presented.
Collapse
Affiliation(s)
- Donovan A. McGrowder
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (J.B.); (L.A.-J.); (L.L.); (R.T.)
| | - Fabian Miller
- Department of Physical Education, Faculty of Education, The Mico University College, 1A Marescaux Road, Kingston 5, Jamaica;
- Department of Biotechnology, Faculty of Science and Technology, The University of the West Indies, Kingston 7, Jamaica;
| | - Kurt Vaz
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (J.B.); (L.A.-J.); (L.L.); (R.T.)
| | - Chukwuemeka Nwokocha
- Department of Basic Medical Sciences, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (C.N.); (C.W.-C.); (R.A.-L.)
| | - Cameil Wilson-Clarke
- Department of Basic Medical Sciences, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (C.N.); (C.W.-C.); (R.A.-L.)
| | - Melisa Anderson-Cross
- School of Allied Health and Wellness, College of Health Sciences, University of Technology, Kingston 7, Jamaica;
| | - Jabari Brown
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (J.B.); (L.A.-J.); (L.L.); (R.T.)
| | - Lennox Anderson-Jackson
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (J.B.); (L.A.-J.); (L.L.); (R.T.)
| | - Lowen Williams
- Department of Biotechnology, Faculty of Science and Technology, The University of the West Indies, Kingston 7, Jamaica;
| | - Lyndon Latore
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (J.B.); (L.A.-J.); (L.L.); (R.T.)
| | - Rory Thompson
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (J.B.); (L.A.-J.); (L.L.); (R.T.)
| | - Ruby Alexander-Lindo
- Department of Basic Medical Sciences, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (C.N.); (C.W.-C.); (R.A.-L.)
| |
Collapse
|
33
|
Molina-Martínez P, Corpas R, García-Lara E, Cosín-Tomás M, Cristòfol R, Kaliman P, Solà C, Molinuevo JL, Sánchez-Valle R, Antonell A, Lladó A, Sanfeliu C. Microglial Hyperreactivity Evolved to Immunosuppression in the Hippocampus of a Mouse Model of Accelerated Aging and Alzheimer's Disease Traits. Front Aging Neurosci 2021; 12:622360. [PMID: 33584248 PMCID: PMC7875867 DOI: 10.3389/fnagi.2020.622360] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
Neuroinflammation is a risk factor for Alzheimer's disease (AD). We sought to study the glial derangement in AD using diverse experimental models and human brain tissue. Besides classical pro-inflammatory cytokines, we analyzed chitinase 3 like 1 (CHI3L1 or YKL40) and triggering receptor expressed on myeloid cells 2 (TREM2) that are increasingly being associated with astrogliosis and microgliosis in AD, respectively. The SAMP8 mouse model of accelerated aging and AD traits showed elevated pro-inflammatory cytokines and activated microglia phenotype. Furthermore, 6-month-old SAMP8 showed an exacerbated inflammatory response to peripheral lipopolysaccharide in the hippocampus and null responsiveness at the advanced age (for this strain) of 12 months. Gene expression of TREM2 was increased in the hippocampus of transgenic 5XFAD mice and in the cingulate cortex of autosomal dominant AD patients, and to a lesser extent in aged SAMP8 mice and sporadic early-onset AD patients. However, gene expression of CHI3L1 was increased in mice but not in human AD brain samples. The results support the relevance of microglia activation in the pathways leading to neurodegeneration and suggest diverse neuroinflammatory responses according to the AD process. Therefore, the SAMP8 mouse model with marked alterations in the dynamics of microglia activation and senescence may provide a complementary approach to transgenic mouse models for the study of the neuroinflammatory mechanisms underlying AD risk and progression.
Collapse
Affiliation(s)
- Patricia Molina-Martínez
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Rubén Corpas
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Elisa García-Lara
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marta Cosín-Tomás
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Rosa Cristòfol
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Perla Kaliman
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Carme Solà
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - José Luis Molinuevo
- Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Alzheimer's Disease and Other Cognitive Disorders Unit, Department of Neurology, Hospital Clínic, Barcelona, Spain.,Fundació Clínic per a la Recerca Biomèdica, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Raquel Sánchez-Valle
- Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Alzheimer's Disease and Other Cognitive Disorders Unit, Department of Neurology, Hospital Clínic, Barcelona, Spain.,Fundació Clínic per a la Recerca Biomèdica, Universitat de Barcelona, Barcelona, Spain
| | - Anna Antonell
- Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Alzheimer's Disease and Other Cognitive Disorders Unit, Department of Neurology, Hospital Clínic, Barcelona, Spain.,Fundació Clínic per a la Recerca Biomèdica, Universitat de Barcelona, Barcelona, Spain
| | - Albert Lladó
- Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Alzheimer's Disease and Other Cognitive Disorders Unit, Department of Neurology, Hospital Clínic, Barcelona, Spain.,Fundació Clínic per a la Recerca Biomèdica, Universitat de Barcelona, Barcelona, Spain
| | - Coral Sanfeliu
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
34
|
Neuroprotection through G-CSF: recent advances and future viewpoints. Pharmacol Rep 2021; 73:372-385. [PMID: 33389706 DOI: 10.1007/s43440-020-00201-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 12/14/2022]
Abstract
Granulocyte-colony stimulating factor (G-CSF), a member of the cytokine family of hematopoietic growth factors, is 19.6 kDa glycoprotein which is responsible for the proliferation, maturation, differentiation, and survival of neutrophilic granulocyte lineage. Apart from its proven clinical application to treat chemotherapy-associated neutropenia, recent pre-clinical studies have highlighted the neuroprotective roles of G-CSF i.e., mobilization of haemopoietic stem cells, anti-apoptotic, neuronal differentiation, angiogenesis and anti-inflammatory in animal models of neurological disorders. G-CSF is expressed by numerous cell types including neuronal, immune and endothelial cells. G-CSF is released in autocrine manner and binds to its receptor G-CSF-R which further activates numerous signaling transduction pathways including PI3K/AKT, JAK/STAT and MAP kinase, and thereby promote neuronal survival, proliferation, differentiation, mobilization of hematopoietic stem and progenitor cells. The expression of G-CSF receptors (G-CSF-R) in the different brain regions and their upregulation in response to neuronal insult indicates the autocrine protective signaling mechanism of G-CSF by inhibition of apoptosis, inflammation, and stimulation of neurogenesis. These observed neuroprotective effects of G-CSF makes it an attractive target to mitigate neurodegeneration associated with neurological disorders. The objective of the review is to highlight and summarize recent updates on G-CSF as a therapeutically versatile neuroprotective agent along with mechanisms of action as well as possible clinical applications in neurodegenerative disorders including AD, PD and HD.
Collapse
|
35
|
Hashioka S, Wu Z, Klegeris A. Glia-Driven Neuroinflammation and Systemic Inflammation in Alzheimer's Disease. Curr Neuropharmacol 2021; 19:908-924. [PMID: 33176652 PMCID: PMC8686312 DOI: 10.2174/1570159x18666201111104509] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/28/2020] [Accepted: 11/06/2020] [Indexed: 11/29/2022] Open
Abstract
The neuroinflammatory hypothesis of Alzheimer's disease (AD) was proposed more than 30 years ago. The involvement of the two main types of glial cells microglia and astrocytes, in neuroinflammation, was suggested early on. In this review, we highlight that the exact contributions of reactive glia to AD pathogenesis remain difficult to define, likely due to the heterogeneity of glia populations and alterations in their activation states through the stages of AD progression. In the case of microglia, it is becoming apparent that both beneficially and adversely activated cell populations can be identified at various stages of AD, which could be selectively targeted to either limit their damaging actions or enhance beneficial functions. In the case of astrocytes, less information is available about potential subpopulations of reactive cells; it also remains elusive whether astrocytes contribute to the neuropathology of AD by mainly gaining neurotoxic functions or losing their ability to support neurons due to astrocyte damage. We identify L-type calcium channel blocker, nimodipine, as a candidate drug for AD, which potentially targets both astrocytes and microglia. It has already shown consistent beneficial effects in basic experimental and clinical studies. We also highlight the recent evidence linking peripheral inflammation and neuroinflammation. Several chronic systemic inflammatory diseases, such as obesity, type 2 diabetes mellitus, and periodontitis, can cause immune priming or adverse activation of glia, thus exacerbating neuroinflammation and increasing risk or facilitating the progression of AD. Therefore, reducing peripheral inflammation is a potentially effective strategy for lowering AD prevalence.
Collapse
Affiliation(s)
- Sadayuki Hashioka
- Address correspondence to these authors at the Department of Psychiatry, Shimane University, 89-1 Enya-cho, Izumo, Shimane 693-8501, Japan;, E-mail: and Department of Biology, Faculty of Science, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada; E-mail:
| | | | - Andis Klegeris
- Address correspondence to these authors at the Department of Psychiatry, Shimane University, 89-1 Enya-cho, Izumo, Shimane 693-8501, Japan;, E-mail: and Department of Biology, Faculty of Science, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada; E-mail:
| |
Collapse
|
36
|
Zhou SL, Tan CC, Hou XH, Cao XP, Tan L, Yu JT. TREM2 Variants and Neurodegenerative Diseases: A Systematic Review and Meta-Analysis. J Alzheimers Dis 2020; 68:1171-1184. [PMID: 30883352 DOI: 10.3233/jad-181038] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
TREM2 (triggering receptor expressed on myeloid cells 2) gene variants were reported to increase the risk of Alzheimer's disease (AD) and even other neurodegenerative diseases (frontotemporal dementia (FTD), Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS)), but so far, no definite conclusion has been drawn. The aim of our systematic review and meta-analysis was to investigate the role of TREM2 variants in neurodegenerative diseases. A total of 39 papers (including 26 case-control studies and 13 case reports) were retrieved from PubMed, MEDLINE, EMBASE, and the Cochrane library in this study. A fixed effect model was used to pool results in the analysis. Three variants in TREM2 (rs75932628 (R47H), rs2234255 (H157Y), and rs143332484 (R62H)) were significantly associated with AD risk, but the similar associations between rs104894002 (Q33X), rs2234253 (T96K), rs142232675 (D87N), rs2234256 (L211P), and AD were not proven. Rs75932628 also increased risk of PD in North Americans and FTD, but not PD in Europeans or ALS. In the systematic review, 12 biallelic TREM2 mutations (e.g., rs104894002, rs201258663 (T66M), and rs386834144, etc.) have been described to cause Polycystic Lipomembranous Osteodysplasia with Sclerosing Leukoencephalopathy (PLOSL) in 14 families. And homozygous mutations also have been reported to cause FTD without typical bone phenotypes in 7 families. This study demonstrates that multiple variants in TREM2 have association with the onset of AD, FTD, and PD in North Americans and also play a key role in the phenotypes of the rare familial genetic disorder.
Collapse
Affiliation(s)
- Sheng-Lan Zhou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Chen-Chen Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xiao-He Hou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xi-Peng Cao
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
37
|
Koronyo-Hamaoui M, Sheyn J, Hayden EY, Li S, Fuchs DT, Regis GC, Lopes DHJ, Black KL, Bernstein KE, Teplow DB, Fuchs S, Koronyo Y, Rentsendorj A. Peripherally derived angiotensin converting enzyme-enhanced macrophages alleviate Alzheimer-related disease. Brain 2020; 143:336-358. [PMID: 31794021 DOI: 10.1093/brain/awz364] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 09/17/2019] [Accepted: 10/01/2019] [Indexed: 11/13/2022] Open
Abstract
Targeted overexpression of angiotensin-converting enzyme (ACE), an amyloid-β protein degrading enzyme, to brain resident microglia and peripheral myelomonocytes (ACE10 model) substantially diminished Alzheimer's-like disease in double-transgenic APPSWE/PS1ΔE9 (AD+) mice. In this study, we explored the impact of selective and transient angiotensin-converting enzyme overexpression on macrophage behaviour and the relative contribution of bone marrow-derived ACE10 macrophages, but not microglia, in attenuating disease progression. To this end, two in vivo approaches were applied in AD+ mice: (i) ACE10/GFP+ bone marrow transplantation with head shielding; and (ii) adoptive transfer of CD115+-ACE10/GFP+ monocytes to the peripheral blood. Extensive in vitro studies were further undertaken to establish the unique ACE10-macrophage phenotype(s) in response to amyloid-β1-42 fibrils and oligomers. The combined in vivo approaches showed that increased cerebral infiltration of ACE10 as compared to wild-type monocytes (∼3-fold increase; P < 0.05) led to reductions in cerebral soluble amyloid-β1-42, vascular and parenchymal amyloid-β deposits, and astrocytosis (31%, 47-80%, and 33%, respectively; P < 0.05-0.0001). ACE10 macrophages surrounded brain and retinal amyloid-β plaques and expressed 3.2-fold higher insulin-like growth factor-1 (P < 0.01) and ∼60% lower tumour necrosis factor-α (P < 0.05). Importantly, blood enrichment with CD115+-ACE10 monocytes in symptomatic AD+ mice resulted in pronounced synaptic and cognitive preservation (P < 0.05-0.001). In vitro analysis of macrophage response to well-defined amyloid-β1-42 conformers (fibrils, prion rod-like structures, and stabilized soluble oligomers) revealed extensive resistance to amyloid-β1-42 species by ACE10 macrophages. They exhibited 2-5-fold increased surface binding to amyloid-β conformers as well as substantially more effective amyloid-β1-42 uptake, at least 8-fold higher than those of wild-type macrophages (P < 0.0001), which were associated with enhanced expression of surface scavenger receptors (i.e. CD36, scavenger receptor class A member 1, triggering receptor expressed on myeloid cells 2, CD163; P < 0.05-0.0001), endosomal processing (P < 0.05-0.0001), and ∼80% increased extracellular degradation of amyloid-β1-42 (P < 0.001). Beneficial ACE10 phenotype was reversed by the angiotensin-converting enzyme inhibitor (lisinopril) and thus was dependent on angiotensin-converting enzyme catalytic activity. Further, ACE10 macrophages presented distinct anti-inflammatory (low inducible nitric oxide synthase and lower tumour necrosis factor-α), pro-healing immune profiles (high insulin-like growth factor-1, elongated cell morphology), even following exposure to Alzheimer's-related amyloid-β1-42 oligomers. Overall, we provide the first evidence for therapeutic roles of angiotensin-converting enzyme-overexpressing macrophages in preserving synapses and cognition, attenuating neuropathology and neuroinflammation, and enhancing resistance to defined pathognomonic amyloid-β forms.
Collapse
Affiliation(s)
- Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Julia Sheyn
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Eric Y Hayden
- Department of Neurology, David Geffen School of Medicine at UCLA, Mary S. Easton Center for Alzheimer's Disease Research at UCLA, Brain Research Institute, Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Songlin Li
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Institute of Neuroscience and Chemistry, and Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, China
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Giovanna C Regis
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dahabada H J Lopes
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Keith L Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kenneth E Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - David B Teplow
- Department of Neurology, David Geffen School of Medicine at UCLA, Mary S. Easton Center for Alzheimer's Disease Research at UCLA, Brain Research Institute, Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Sebastien Fuchs
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, USA
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Altan Rentsendorj
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
38
|
Liccardo D, Marzano F, Carraturo F, Guida M, Femminella GD, Bencivenga L, Agrimi J, Addonizio A, Melino I, Valletta A, Rengo C, Ferrara N, Rengo G, Cannavo A. Potential Bidirectional Relationship Between Periodontitis and Alzheimer's Disease. Front Physiol 2020; 11:683. [PMID: 32719612 PMCID: PMC7348667 DOI: 10.3389/fphys.2020.00683] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/26/2020] [Indexed: 12/15/2022] Open
Abstract
Alzheimer’s disease (AD) is the most prevalent form of dementia in the elderly population, representing a global public health priority. Despite a large improvement in understanding the pathogenesis of AD, the etiology of this disorder remains still unclear, and no current treatment is able to prevent, slow, or stop its progression. Thus, there is a keen interest in the identification and modification of the risk factors and novel molecular mechanisms associated with the development and progression of AD. In this context, it is worth noting that several findings support the existence of a direct link between neuronal and non-neuronal inflammation/infection and AD progression. Importantly, recent studies are now supporting the existence of a direct relationship between periodontitis, a chronic inflammatory oral disease, and AD. The mechanisms underlying the association remain to be fully elucidated, however, it is generally accepted, although not confirmed, that oral pathogens can penetrate the bloodstream, inducing a low-grade systemic inflammation that negatively affects brain function. Indeed, a recent report demonstrated that oral pathogens and their toxic proteins infect the brain of AD patients. For instance, when AD progresses from the early to the more advanced stages, patients could no longer be able to adequately adhere to proper oral hygiene practices, thus leading to oral dysbiosis that, in turn, fuels infection, such as periodontitis. Therefore, in this review, we will provide an update on the emerging (preclinical and clinical) evidence that supports the relationship existing between periodontitis and AD. More in detail, we will discuss data attesting that periodontitis and AD share common risk factors and a similar hyper-inflammatory phenotype.
Collapse
Affiliation(s)
- Daniela Liccardo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Translational Medicine, Temple University, Philadelphia, PA, United States
| | - Federica Marzano
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | | | - Marco Guida
- Department of Biology, University of Naples Federico II, Naples, Italy
| | | | - Leonardo Bencivenga
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Jacopo Agrimi
- Division of Cardiology, Johns Hopkins University, Baltimore, MD, United States
| | - Armida Addonizio
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Imma Melino
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Alessandra Valletta
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| | - Carlo Rengo
- Department of Prosthodontics and Dental Materials, School of Dental Medicine, University of Siena, Siena, Italy
| | - Nicola Ferrara
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Istituti Clinici Scientifici ICS Maugeri - S.p.A.-Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Scientifico di Telese Terme, Telese, Italy
| | - Giuseppe Rengo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Istituti Clinici Scientifici ICS Maugeri - S.p.A.-Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Scientifico di Telese Terme, Telese, Italy
| | - Alessandro Cannavo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| |
Collapse
|
39
|
Zhang B, Li R, Zhang Y, Gao X. Differential role of triggering receptors expressed on myeloid cells 2 R47H in 3 neurodegenerative diseases based on a systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e18921. [PMID: 32000403 PMCID: PMC7004756 DOI: 10.1097/md.0000000000018921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Recent studies have suggested that the potential functional polymorphism R47H in triggering receptors expressed on myeloid cells 2 (TREM2) is associated with several neurodegenerative diseases, however, the results remain inconclusive. This meta-analysis aimed to investigate the association between TREM2 R47H and the risk for 3 typical neurodegenerative diseases: Alzheimer disease (AD), Parkinson disease (PD), and amyotrophic lateral sclerosis (ALS). METHODS A literature review was carried out using PubMed, Medline, and Embase. Data analysis was conducted using Stata 15.0 software. The pooled odds ratio (ORs) and 95% confidence interval (CIs) were calculated. RESULTS A total of 35 articles were identified as eligible: 22 on AD, 3 on ALS, 7 on PD, 2 on AD and ALS, and 1 on ALS and PD. The AD set included 23,092 cases and 30,920 controls, the ALS set included 7391 cases and 12,442 controls, and the PD set included 8498 patients and 9161 controls. We found that R47H was associated with an increased risk of AD in the total pooled population (P < .001, OR = 4.02, 95% CI = 3.15-5.13). However, this significant difference existed for Caucasian people (OR = 4.16, 95% CI = 3.24-5.33) but not for Asian or African people. Moreover, we did not find any significant differences in minor allele frequency distribution between the PD and control groups or between the ALS and control groups, not only for the total pooled population but also for the subgroups of different ethnicities. CONCLUSION Our study suggested that R47H in the TREM2 gene leads to an increased risk for developing AD, but not for ALS and PD, which adds evidence to the notion that diverse pathogenesis may be involved in different neurogenerative diseases.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Neurology, the First Hospital of Yulin, Yulin, Shaanxi
| | - Rui Li
- Department of Neurology, the First Hospital of Yulin, Yulin, Shaanxi
| | - Yufan Zhang
- Department of Neurology, the First Hospital of Yulin, Yulin, Shaanxi
| | - Xia Gao
- Department of Geriatrics, Dazhou Central Hospital, Dazhou, Sichuan, China
| |
Collapse
|
40
|
Peng G, Qiu J, Liu H, Zhou M, Huang S, Guo W, Lin Y, Chen X, Li Z, Li G, Zhang W, Zhang Y, Li X, Wu Z, Wei L, Yang X, Zhu X, Mo M, Xu P. Analysis of Cerebrospinal Fluid Soluble TREM2 and Polymorphisms in Sporadic Parkinson's Disease in a Chinese Population. J Mol Neurosci 2019; 70:294-301. [PMID: 31833018 DOI: 10.1007/s12031-019-01424-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 10/18/2019] [Indexed: 01/20/2023]
Abstract
BACKGROUND Triggering receptor expressed on myeloid cells 2 (TREM2) is a microglial surface receptor that mediates the degradation disorder of amyloid β (Aβ) in Alzheimer's disease. However, the role of TREM2 in Parkinson's disease (PD) and α-Synclein (α-Syn) degradation is largely unknown. METHODS In this case-control study on Chinese population, we sequenced for polymorphisms in exon 2 of the TREM2 gene in 1,292 individuals, PD cases (n = 612), healthy controls (n = 680) by Sanger sequence, and compared the distribution of allelic frequencies between the two groups by the Fisher's exact test. Additionally, we developed and used the enzyme-linked immunosorbent assay to evaluated soluble TREM2 (sTREM2) levels in the cerebrospinal fluid (CSF), and plasma in partial of sequenced groups (55 PD and 40 healthy controls) analyzed their relationship with total a-syn (t-a-Syn). RESULTS Two novel variants were detected in exon 2 of the TREM2 gene, namely, p.S81 N, p.G58D; however, these were not significantly associated with PD (612 PD and 680 healthy controls). sTREM2 in CSF was significantly upregulated in PD patients compared to healthy controls (433.1 ± 24.7 pg/mL vs. 275.2 ± 17.9 pg/mL, p < 0.0001), but not in plasma (281.7 ± 29.3 pg/mL vs. 257.8 ± 16.5 pg/mL, p = 0.805). In PD patients, sTREM2 was positively correlated with t-α-syn (r = 0.62, p = 0.0001) in CSF, but not in plasma (r = 0.02, p = 0.89). CONCLUSIONS Although it may not indicate that exon 2 polymorphisms of TREM2 play a role in the pathogenesis of PD in the Chinese population, our findings described above highlight the relevance of CSF sTREM2 as a promising biomarker and are extremely possible to the therapeutic target for PD in the future.
Collapse
Affiliation(s)
- Guoyou Peng
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 511436, China
| | - Jiewen Qiu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 511436, China
| | - Hanqun Liu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 511436, China
| | - Miaomiao Zhou
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 511436, China
| | - Shuxuan Huang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 511436, China
| | - Wenyuan Guo
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 511436, China
| | - Yuwan Lin
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiang Chen
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhe Li
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 511436, China
| | - Guihua Li
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 511436, China
| | - Wenlong Zhang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 511436, China
| | - Yunlong Zhang
- Department of Physiology, Guangzhou Medical University, Guangzhou, 511436, China.,Neuroscience Center, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xingjian Li
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhuohua Wu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 511436, China
| | - Lei Wei
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Xinling Yang
- Department of Neurology, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China
| | - Xiaoqin Zhu
- Department of Physiology, Guangzhou Medical University, Guangzhou, 511436, China. .,Neuroscience Center, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Mingshu Mo
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 511436, China.
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 511436, China. .,Neuroscience Center, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
41
|
Liu CH, Tan YZ, Li DD, Tang SS, Wen XA, Long Y, Sun HB, Hong H, Hu M. Zileuton ameliorates depressive-like behaviors, hippocampal neuroinflammation, apoptosis and synapse dysfunction in mice exposed to chronic mild stress. Int Immunopharmacol 2019; 78:105947. [PMID: 31796384 DOI: 10.1016/j.intimp.2019.105947] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/04/2019] [Accepted: 09/27/2019] [Indexed: 10/25/2022]
Abstract
Our previous study has found that zileuton, a selective 5-lipoxygenase (5LO) inhibitor, abrogated lipopolysaccharide-induced depressive-like behaviors and hippocampal neuroinflammation. Herein, we further extended our curiosity to investigate effects of zileuton on stress-induced depressive-like behaviors. Our data indicated that zileuton significantly ameliorated depressive-like behaviors in mice subjected to chronic mild stress (CMS), as shown in the tail suspension test, forced swimming test and novelty-suppressed feeding test. The further studies indicated that zileuton suppressed hippocampal neuroinflammation, evidenced by lower levels of TNF-α, IL-1β and nuclear NF-κB p65 as well as decreased number of Iba1-positive cells. It also significantly ameliorated hippocampal apoptosis, indicated by deceased number of TUNEL-positive cells, deceased ratio of cleaved caspase-3/procaspase-3 and increased ratio of Bcl-2/Bax. More importantly, zileuton increased the level of synaptic proteins PSD-95 and SYN and the number of NeuN+/BrdU+ cells in the hippocampus. Over all, zileuton alleviated CMS-induced depressive-like behaviors, neuroinflammatory and apoptotic responses, abnormalities of synapse and neurogenesis in the hippocampus, suggesting that it might has beneficial effects on depression.
Collapse
Affiliation(s)
- Cai-Hong Liu
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China
| | - Yuan-Zhi Tan
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China
| | - Dan-Dan Li
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China
| | - Su-Su Tang
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao-An Wen
- Department of Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, China
| | - Yan Long
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China
| | - Hong-Bin Sun
- Department of Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, China
| | - Hao Hong
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China.
| | - Mei Hu
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
42
|
The p.R47H Variant of TREM2 Gene is Associated With Late-onset Alzheimer Disease in Colombian Population. Alzheimer Dis Assoc Disord 2019; 32:305-308. [PMID: 30222607 DOI: 10.1097/wad.0000000000000275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE We evaluated the association of several single-nucleotide polymorphisms in the triggering receptor expressed on myeloid cells 2 (TREM2) gene in a Colombian sample of late-onset Alzheimer disease (LOAD). METHODS The p.Q33* (rs104894002), p.R47H (rs75932628), p.R62H (rs143332484), and p.D87N (rs142232675) variants of TREM2 gene were directly genotyped using KASPar technology in 358 cases and 329 healthy controls. Sanger sequencing was used to validate >10% of KASPar's results. The Fisher exact test was used to compare the distribution of allelic and genotype frequency between cases and controls, and the Bonferroni correction was set at P<0.05. RESULTS The minor allele frequency of rs75932628-T was 0.009 in cases and was not found in any healthy controls which suggests a significant association between rs75932628-T and LOAD risk in our sample (P=0.010). The rs143332484-T variant did not exhibit a significant association (P=0.160), whereas rs104894002 and rs142232675 were not found. CONCLUSIONS Our findings suggest that the rs75932628-T variant of TREM2 is an important risk factor for LOAD in the Colombian population.
Collapse
|
43
|
Spangenberg E, Severson PL, Hohsfield LA, Crapser J, Zhang J, Burton EA, Zhang Y, Spevak W, Lin J, Phan NY, Habets G, Rymar A, Tsang G, Walters J, Nespi M, Singh P, Broome S, Ibrahim P, Zhang C, Bollag G, West BL, Green KN. Sustained microglial depletion with CSF1R inhibitor impairs parenchymal plaque development in an Alzheimer's disease model. Nat Commun 2019; 10:3758. [PMID: 31434879 PMCID: PMC6704256 DOI: 10.1038/s41467-019-11674-z] [Citation(s) in RCA: 553] [Impact Index Per Article: 92.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 07/26/2019] [Indexed: 01/07/2023] Open
Abstract
Many risk genes for the development of Alzheimer's disease (AD) are exclusively or highly expressed in myeloid cells. Microglia are dependent on colony-stimulating factor 1 receptor (CSF1R) signaling for their survival. We designed and synthesized a highly selective brain-penetrant CSF1R inhibitor (PLX5622) allowing for extended and specific microglial elimination, preceding and during pathology development. We find that in the 5xFAD mouse model of AD, plaques fail to form in the parenchymal space following microglial depletion, except in areas containing surviving microglia. Instead, Aβ deposits in cortical blood vessels reminiscent of cerebral amyloid angiopathy. Altered gene expression in the 5xFAD hippocampus is also reversed by the absence of microglia. Transcriptional analyses of the residual plaque-forming microglia show they exhibit a disease-associated microglia profile. Collectively, we describe the structure, formulation, and efficacy of PLX5622, which allows for sustained microglial depletion and identify roles of microglia in initiating plaque pathogenesis.
Collapse
Affiliation(s)
- Elizabeth Spangenberg
- Department of Neurobiology and Behavior, University of California Irvine (UCI), Irvine, CA, 92697, USA
| | | | - Lindsay A Hohsfield
- Department of Neurobiology and Behavior, University of California Irvine (UCI), Irvine, CA, 92697, USA
| | - Joshua Crapser
- Department of Neurobiology and Behavior, University of California Irvine (UCI), Irvine, CA, 92697, USA
| | | | | | | | | | - Jack Lin
- Plexxikon Inc, Berkeley, CA, 94710, USA
| | - Nicole Y Phan
- Department of Neurobiology and Behavior, University of California Irvine (UCI), Irvine, CA, 92697, USA
| | | | | | | | | | | | | | | | | | | | | | | | - Kim N Green
- Department of Neurobiology and Behavior, University of California Irvine (UCI), Irvine, CA, 92697, USA.
| |
Collapse
|
44
|
Del-Aguila JL, Benitez BA, Li Z, Dube U, Mihindukulasuriya KA, Budde JP, Farias FHG, Fernández MV, Ibanez L, Jiang S, Perrin RJ, Cairns NJ, Morris JC, Harari O, Cruchaga C. TREM2 brain transcript-specific studies in AD and TREM2 mutation carriers. Mol Neurodegener 2019; 14:18. [PMID: 31068200 PMCID: PMC6505298 DOI: 10.1186/s13024-019-0319-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/26/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Low frequency coding variants in TREM2 are associated with Alzheimer disease (AD) risk and cerebrospinal fluid (CSF) TREM2 protein levels are different between AD cases and controls. Similarly, TREM2 risk variant carriers also exhibit differential CSF TREM2 levels. TREM2 has three different alternative transcripts, but most of the functional studies only model the longest transcript. No studies have analyzed TREM2 expression levels or alternative splicing in brains from AD and cognitively normal individuals. We wanted to determine whether there was differential expression of TREM2 in sporadic-AD cases versus AD-TREM2 carriers vs sex- and aged-matched normal controls; and if this differential expression was due to a particular TREM2 transcript. METHODS We analyzed RNA-Seq data from parietal lobe brain tissue from AD cases with TREM2 variants (n = 33), AD cases (n = 195) and healthy controls (n = 118), from three independent datasets using Kallisto and the R package tximport to determine the read count for each transcript and quantified transcript abundance as transcripts per million. RESULTS The three TREM2 transcripts were expressed in brain cortex in the three datasets. We demonstrate for the first time that the transcript that lacks the transmembrane domain and encodes a soluble form of TREM2 (sTREM2) has an expression level around 60% of the canonical transcript, suggesting that around 25% of the sTREM2 protein levels could be explained by this transcript. We did not observe a difference in the overall TREM2 expression level between cases and controls. However, the isoform which lacks the 5' exon, but includes the transmembrane domain, was significantly lower in TREM2- p.R62H carriers than in AD cases (p = 0.007). CONCLUSION Using bulk RNA-Seq data from three different cohorts, we were able to quantify the expression level of the three TREM2 transcripts, demonstrating: (1) all three transcripts of them are highly expressed in the human cortex, (2) that up to 25% of the sTREM2 may be due to the expression of a specific isoform and not TREM2 cleavage; and (3) that TREM2 risk variants do not affect expression levels, suggesting that the effect of the TREM2 variants on CSF levels occurs at post-transcriptional level.
Collapse
Affiliation(s)
- Jorge L. Del-Aguila
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO USA
| | - Bruno A. Benitez
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO USA
| | - Zeran Li
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO USA
| | - Umber Dube
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO USA
| | - Kathie A. Mihindukulasuriya
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO USA
| | - John P. Budde
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO USA
| | - Fabiana H. G. Farias
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO USA
| | - Maria Victoria Fernández
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO USA
| | - Laura Ibanez
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO USA
| | - Shan Jiang
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO USA
| | - Richard J. Perrin
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO USA
| | - Nigel J. Cairns
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO USA
| | - John C. Morris
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO USA
| | - Oscar Harari
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO USA
| |
Collapse
|
45
|
Hölscher C. Insulin Signaling Impairment in the Brain as a Risk Factor in Alzheimer's Disease. Front Aging Neurosci 2019; 11:88. [PMID: 31068799 PMCID: PMC6491455 DOI: 10.3389/fnagi.2019.00088] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 04/03/2019] [Indexed: 12/14/2022] Open
Abstract
Type 2 diabetes is a risk factor for developing Alzheimer’s disease (AD). The underlying mechanism that links up the two conditions seems to be the de-sensitization of insulin signaling. In patients with AD, insulin signaling was found to be de-sensitized in the brain, even if they did not have diabetes. Insulin is an important growth factor that regulates cell growth, energy utilization, mitochondrial function and replacement, autophagy, oxidative stress management, synaptic plasticity, and cognitive function. Insulin desensitization, therefore, can enhance the risk of developing neurological disorders in later life. Other risk factors, such as high blood pressure or brain injury, also enhance the likelihood of developing AD. All these risk factors have one thing in common – they induce a chronic inflammation response in the brain. Pro-inflammatory cytokines block growth factor signaling and enhance oxidative stress. The underlying molecular processes for this are described in the review. Treatments to re-sensitize insulin signaling in the brain are also described, such as nasal insulin tests in AD patients, or treatments with re-sensitizing hormones, such as leptin, ghrelin, glucagon-like peptide 1 (GLP-1),and glucose-dependent insulinotropic polypeptide (GIP). The first clinical trials show promising results and are a proof of concept that utilizing such treatments is valid.
Collapse
Affiliation(s)
- Christian Hölscher
- Research and Experimental Center, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
46
|
Imbalance of Microglial TLR4/TREM2 in LPS-Treated APP/PS1 Transgenic Mice: A Potential Link Between Alzheimer's Disease and Systemic Inflammation. Neurochem Res 2019; 44:1138-1151. [PMID: 30756214 DOI: 10.1007/s11064-019-02748-x] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/01/2019] [Accepted: 02/01/2019] [Indexed: 02/07/2023]
Abstract
Clinically, superimposed systemic inflammation generally has significant deleterious effects on the Alzheimer's disease (AD) progression. However, the related molecular mechanisms remain poorly understood. Microglial toll-like receptor 4 (TLR4) and triggering receptor expressed on myeloid cells 2 (TREM2) are two key regulators of inflammation that may play an essential role in this complex pathophysiological process. In this study, intraperitoneal injection of lipopolysaccharide (LPS) into APP/PS1 transgenic AD model was used to mimic systemic inflammation in the development of AD. Initial results from the cortex showed that compared with wild-type mice, APP/PS1 mice exhibited elevated gene and protein expression levels of both TLR4 and TREM2 with different degree. Interestingly, after LPS treatment, TLR4 expression was persistently up-regulated, while TREM2 expression was significantly down-regulated in APP/PS1 mice, suggesting that the negative regulatory effect of TREM2 on inflammation might be suppressed by LPS-induced hyperactive TLR4. This imbalance of TLR4/TREM2 contributed to microglial over-activation, followed by increased neuronal apoptosis in the cortex of APP/PS1 mice; these changes did not alter the expression level of Aβ1-42. Similar alterations were observed in our in vitro experiment with β-amyloid1-42 (Aβ1-42)-treated N9 microglia. Further, Morris water maze (MWM) testing data indicated that LPS administration acutely aggravated cognitive impairment in APP/PS1 mice, suggesting that the addition of systemic inflammation can potentially accelerate the progression of AD. Collectively, we conclude that an imbalance of TLR4/TREM2 may be a potential link between AD and systemic inflammation. TREM2 can serve as a potential therapeutic target for treating systemic inflammation in AD progression.
Collapse
|
47
|
Suárez-Calvet M, Morenas-Rodríguez E, Kleinberger G, Schlepckow K, Araque Caballero MÁ, Franzmeier N, Capell A, Fellerer K, Nuscher B, Eren E, Levin J, Deming Y, Piccio L, Karch CM, Cruchaga C, Shaw LM, Trojanowski JQ, Weiner M, Ewers M, Haass C. Early increase of CSF sTREM2 in Alzheimer's disease is associated with tau related-neurodegeneration but not with amyloid-β pathology. Mol Neurodegener 2019; 14:1. [PMID: 30630532 PMCID: PMC6327425 DOI: 10.1186/s13024-018-0301-5] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 12/04/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND TREM2 is a transmembrane receptor that is predominantly expressed by microglia in the central nervous system. Rare variants in the TREM2 gene increase the risk for late-onset Alzheimer's disease (AD). Soluble TREM2 (sTREM2) resulting from shedding of the TREM2 ectodomain can be detected in the cerebrospinal fluid (CSF) and is a surrogate measure of TREM2-mediated microglia function. CSF sTREM2 has been previously reported to increase at different clinical stages of AD, however, alterations in relation to Amyloid β-peptide (Aβ) deposition or additional pathological processes in the amyloid cascade (such as tau pathology or neurodegeneration) remain unclear. In the current cross-sectional study, we employed the biomarker-based classification framework recently proposed by the NIA-AA consensus guidelines, in combination with clinical staging, in order to examine the CSF sTREM2 alterations at early asymptomatic and symptomatic stages of AD. METHODS A cross-sectional study of 1027 participants of the Alzheimer's Disease Imaging Initiative (ADNI) cohort, including 43 subjects carrying TREM2 rare genetic variants, was conducted to measure CSF sTREM2 using a previously validated enzyme-linked immunosorbent assay (ELISA). ADNI participants were classified following the A/T/N framework, which we implemented based on the CSF levels of Aβ1-42 (A), phosphorylated tau (T) and total tau as a marker of neurodegeneration (N), at different clinical stages defined by the clinical dementia rating (CDR) score. RESULTS CSF sTREM2 differed between TREM2 variants, whereas the p.R47H variant had higher CSF sTREM2, p.L211P had lower CSF sTREM2 than non-carriers. We found that CSF sTREM2 increased in early symptomatic stages of late-onset AD but, unexpectedly, we observed decreased CSF sTREM2 levels at the earliest asymptomatic phase when only abnormal Aβ pathology (A+) but no tau pathology or neurodegeneration (TN-), is present. CONCLUSIONS Aβ pathology (A) and tau pathology/neurodegeneration (TN) have differing associations with CSF sTREM2. While tau-related neurodegeneration is associated with an increase in CSF sTREM2, Aβ pathology in the absence of downstream tau-related neurodegeneration is associated with a decrease in CSF sTREM2.
Collapse
Affiliation(s)
- Marc Suárez-Calvet
- Chair of Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany. .,German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany. .,Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Catalonia, Spain.
| | - Estrella Morenas-Rodríguez
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany.,Department of Neurology, Institut d'Investigacions Biomèdiques, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Gernot Kleinberger
- Chair of Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Kai Schlepckow
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Miguel Ángel Araque Caballero
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anja Capell
- Chair of Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Katrin Fellerer
- Chair of Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Brigitte Nuscher
- Chair of Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Erden Eren
- Chair of Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany.,Izmir International Biomedicine and Genome Institute Dokuz Eylul University, Izmir, Turkey.,Department of Neuroscience, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Johannes Levin
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany.,Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Yuetiva Deming
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
| | - Laura Piccio
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.,Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO, USA
| | - Celeste M Karch
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA.,Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO, USA.,Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA.,Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO, USA.,Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Leslie M Shaw
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Center for Neurodegenerative Disease Research, Institute on Aging, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Center for Neurodegenerative Disease Research, Institute on Aging, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Weiner
- University of California at San Francisco, San Francisco, CA, USA
| | - Michael Ewers
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christian Haass
- Chair of Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany. .,German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany. .,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| | | |
Collapse
|
48
|
Gratuze M, Leyns CEG, Holtzman DM. New insights into the role of TREM2 in Alzheimer's disease. Mol Neurodegener 2018; 13:66. [PMID: 30572908 PMCID: PMC6302500 DOI: 10.1186/s13024-018-0298-9] [Citation(s) in RCA: 310] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 11/28/2018] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia. The two histopathological markers of AD are amyloid plaques composed of the amyloid-β (Aβ) peptide, and neurofibrillary tangles of aggregated, abnormally hyperphosphorylated tau protein. The majority of AD cases are late-onset, after the age of 65, where a clear cause is still unknown. However, there are likely different multifactorial contributors including age, enviornment, biology and genetics which can increase risk for the disease. Genetic predisposition is considerable, with heritability estimates of 60-80%. Genetic factors such as rare variants of TREM2 (triggering receptor expressed on myeloid cells-2) strongly increase the risk of developing AD, confirming the role of microglia in AD pathogenesis. In the last 5 years, several studies have dissected the mechanisms by which TREM2, as well as its rare variants affect amyloid and tau pathologies and their consequences in both animal models and in human studies. In this review, we summarize increases in our understanding of the involvement of TREM2 and microglia in AD development that may open new therapeutic strategies targeting the immune system to influence AD pathogenesis.
Collapse
Affiliation(s)
- Maud Gratuze
- Department of Neurology, St. Louis, USA
- Hope Center for Neurological Disorders, St. Louis, USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Cheryl E. G. Leyns
- Department of Neurology, St. Louis, USA
- Hope Center for Neurological Disorders, St. Louis, USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - David M. Holtzman
- Department of Neurology, St. Louis, USA
- Hope Center for Neurological Disorders, St. Louis, USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
| |
Collapse
|
49
|
Molinuevo JL, Ayton S, Batrla R, Bednar MM, Bittner T, Cummings J, Fagan AM, Hampel H, Mielke MM, Mikulskis A, O'Bryant S, Scheltens P, Sevigny J, Shaw LM, Soares HD, Tong G, Trojanowski JQ, Zetterberg H, Blennow K. Current state of Alzheimer's fluid biomarkers. Acta Neuropathol 2018; 136:821-853. [PMID: 30488277 PMCID: PMC6280827 DOI: 10.1007/s00401-018-1932-x] [Citation(s) in RCA: 360] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 12/12/2022]
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease with a complex and heterogeneous pathophysiology. The number of people living with AD is predicted to increase; however, there are no disease-modifying therapies currently available and none have been successful in late-stage clinical trials. Fluid biomarkers measured in cerebrospinal fluid (CSF) or blood hold promise for enabling more effective drug development and establishing a more personalized medicine approach for AD diagnosis and treatment. Biomarkers used in drug development programmes should be qualified for a specific context of use (COU). These COUs include, but are not limited to, subject/patient selection, assessment of disease state and/or prognosis, assessment of mechanism of action, dose optimization, drug response monitoring, efficacy maximization, and toxicity/adverse reactions identification and minimization. The core AD CSF biomarkers Aβ42, t-tau, and p-tau are recognized by research guidelines for their diagnostic utility and are being considered for qualification for subject selection in clinical trials. However, there is a need to better understand their potential for other COUs, as well as identify additional fluid biomarkers reflecting other aspects of AD pathophysiology. Several novel fluid biomarkers have been proposed, but their role in AD pathology and their use as AD biomarkers have yet to be validated. In this review, we summarize some of the pathological mechanisms implicated in the sporadic AD and highlight the data for several established and novel fluid biomarkers (including BACE1, TREM2, YKL-40, IP-10, neurogranin, SNAP-25, synaptotagmin, α-synuclein, TDP-43, ferritin, VILIP-1, and NF-L) associated with each mechanism. We discuss the potential COUs for each biomarker.
Collapse
Affiliation(s)
- José Luis Molinuevo
- BarcelonaBeta Brain Research Center, Fundació Pasqual Maragall, Universitat Pompeu Fabra, Barcelona, Spain
- Unidad de Alzheimer y otros trastornos cognitivos, Hospital Clinic-IDIBAPS, Barcelona, Spain
| | - Scott Ayton
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Richard Batrla
- Roche Centralised and Point of Care Solutions, Roche Diagnostics International, Rotkreuz, Switzerland
| | - Martin M Bednar
- Neuroscience Therapeutic Area Unit, Takeda Development Centre Americas Ltd, Cambridge, MA, USA
| | - Tobias Bittner
- Genentech, A Member of the Roche Group, Basel, Switzerland
| | - Jeffrey Cummings
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - Anne M Fagan
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Harald Hampel
- AXA Research Fund and Sorbonne University Chair, Paris, France
- Sorbonne University, GRC No 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
- Brain and Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France
- Department of Neurology, Institute of Memory and Alzheimer's Disease (IM2A), Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Michelle M Mielke
- Departments of Epidemiology and Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - Sid O'Bryant
- Department of Pharmacology and Neuroscience; Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Philip Scheltens
- Department of Neurology and Alzheimer Center, VU University Medical Center, Amsterdam, The Netherlands
| | - Jeffrey Sevigny
- Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Leslie M Shaw
- Department of Pathology and Laboratory Medicine, and Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, PA, USA
| | - Holly D Soares
- Clinical Development Neurology, AbbVie, North Chicago, IL, USA
| | | | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal Campus, Sahlgrenska University Hospital, 431 80, Mölndal, Sweden
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal Campus, Sahlgrenska University Hospital, 431 80, Mölndal, Sweden.
| |
Collapse
|
50
|
Lemche E. Early Life Stress and Epigenetics in Late-onset Alzheimer's Dementia: A Systematic Review. Curr Genomics 2018; 19:522-602. [PMID: 30386171 PMCID: PMC6194433 DOI: 10.2174/1389202919666171229145156] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 07/27/2017] [Accepted: 12/12/2017] [Indexed: 11/22/2022] Open
Abstract
Involvement of life stress in Late-Onset Alzheimer's Disease (LOAD) has been evinced in longitudinal cohort epidemiological studies, and endocrinologic evidence suggests involvements of catecholamine and corticosteroid systems in LOAD. Early Life Stress (ELS) rodent models have successfully demonstrated sequelae of maternal separation resulting in LOAD-analogous pathology, thereby supporting a role of insulin receptor signalling pertaining to GSK-3beta facilitated tau hyper-phosphorylation and amyloidogenic processing. Discussed are relevant ELS studies, and findings from three mitogen-activated protein kinase pathways (JNK/SAPK pathway, ERK pathway, p38/MAPK pathway) relevant for mediating environmental stresses. Further considered were the roles of autophagy impairment, neuroinflammation, and brain insulin resistance. For the meta-analytic evaluation, 224 candidate gene loci were extracted from reviews of animal studies of LOAD pathophysiological mechanisms, of which 60 had no positive results in human LOAD association studies. These loci were combined with 89 gene loci confirmed as LOAD risk genes in previous GWAS and WES. Of the 313 risk gene loci evaluated, there were 35 human reports on epigenomic modifications in terms of methylation or histone acetylation. 64 microRNA gene regulation mechanisms were published for the compiled loci. Genomic association studies support close relations of both noradrenergic and glucocorticoid systems with LOAD. For HPA involvement, a CRHR1 haplotype with MAPT was described, but further association of only HSD11B1 with LOAD found; however, association of FKBP1 and NC3R1 polymorphisms was documented in support of stress influence to LOAD. In the brain insulin system, IGF2R, INSR, INSRR, and plasticity regulator ARC, were associated with LOAD. Pertaining to compromised myelin stability in LOAD, relevant associations were found for BIN1, RELN, SORL1, SORCS1, CNP, MAG, and MOG. Regarding epigenetic modifications, both methylation variability and de-acetylation were reported for LOAD. The majority of up-to-date epigenomic findings include reported modifications in the well-known LOAD core pathology loci MAPT, BACE1, APP (with FOS, EGR1), PSEN1, PSEN2, and highlight a central role of BDNF. Pertaining to ELS, relevant loci are FKBP5, EGR1, GSK3B; critical roles of inflammation are indicated by CRP, TNFA, NFKB1 modifications; for cholesterol biosynthesis, DHCR24; for myelin stability BIN1, SORL1, CNP; pertaining to (epi)genetic mechanisms, hTERT, MBD2, DNMT1, MTHFR2. Findings on gene regulation were accumulated for BACE1, MAPK signalling, TLR4, BDNF, insulin signalling, with most reports for miR-132 and miR-27. Unclear in epigenomic studies remains the role of noradrenergic signalling, previously demonstrated by neuropathological findings of childhood nucleus caeruleus degeneration for LOAD tauopathy.
Collapse
Affiliation(s)
- Erwin Lemche
- Section of Cognitive Neuropsychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| |
Collapse
|