1
|
Madacussengua O, Mendes AR, Almeida AM, Lordelo M. Effects of using microalgae in poultry diets on the production and quality of meat and eggs: a review. Br Poult Sci 2025; 66:374-390. [PMID: 39813074 DOI: 10.1080/00071668.2024.2420330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/09/2024] [Indexed: 01/16/2025]
Abstract
1. This review was conducted to examine the nutritional composition of microalgae and their effects as a feed ingredient in poultry diets, delving into their influence on the production and quality of meat and eggs. Data collection focused on peer-reviewed scientific articles, with no limitation on the temporal horizon.2. Regarding nutritional composition, the collected papers indicated that certain microalgae species have a rich nutritional composition, with approximately 50% of their biomass composed of proteins. They contain a high concentration of EPA and DHA, important fatty acids that are found in low concentrations in conventional feedstuffs, and the presence of carotenoids such as beta-carotene.3. Incorporating microalgae into the diet of poultry can improve performance variables, such as mortality, live weight and feed conversion rate. It promotes benefits in meat and egg quality, with reduced cholesterol, increased EPA and DHA, intensified colour and higher concentration of carotenoids.
Collapse
Affiliation(s)
| | | | - A M Almeida
- LEAF- Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisboa, Portugal
| | | |
Collapse
|
2
|
Yalçınkaya H, Yalçın S, Ramay MS, Onbaşılar EE, Bakır B, Elibol FKE, Yalçın S, Shehata AA, Basiouni S. Evaluation of Spirulina platensis as a Feed Additive in Low-Protein Diets of Broilers. Int J Mol Sci 2024; 26:24. [PMID: 39795890 PMCID: PMC11720351 DOI: 10.3390/ijms26010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/07/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025] Open
Abstract
Spirulina platensis is a natural antioxidant product that has the ability to improve the performance of poultry. Therefore, the present study aimed to evaluate the effect of using Spirulina platensis as a feed additive in broiler diets. A total of 252 daily male Ross 308 chicks were randomly assigned to six groups. There were two different protein groups: one was at the catalog protein value, and the other was reduced by 10%. Spirulina platensis at 0, 0.1, and 0.2% was added to each protein group. The trial lasted 41 days. Reducing the protein level by 10% had a negative impact on the performance of the chicks. However, Spirulina platensis supplementation had a positive effect on the feed conversion ratio, reduced the oxidative stress index in the chicks' liver and meat, increased the total antioxidant status and antioxidant enzyme activities, improved the villus height, serum IgG, and some bone parameters, and reduced the serum triglyceride concentration. The carcass yield, visceral organ weight percentages, total phenolic content, and malondialdehyde (MDA) level in the thigh meat and some serum biochemical parameters were not affected by the usage of Spirulina platensis. In conclusion, 0.1% Spirulina platensis could be a feasible feed additive in low-protein diets due to eliciting an improved performance, antioxidant status, and immune response in broilers.
Collapse
Affiliation(s)
- Hüseyin Yalçınkaya
- Department of Border Control for Animal and Animal Products, Directorate General for Food and Control, Ministry of Agriculture and Forestry, 06510 Ankara, Turkey;
| | - Sakine Yalçın
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Ankara University, 06110 Ankara, Turkey; (S.Y.); (M.S.R.)
| | - Muhammad Shazaib Ramay
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Ankara University, 06110 Ankara, Turkey; (S.Y.); (M.S.R.)
| | - Esin Ebru Onbaşılar
- Department of Animal Husbandry, Faculty of Veterinary Medicine, Ankara University, 06110 Ankara, Turkey;
| | - Buket Bakır
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Tekirdağ Namık Kemal University, 59030 Tekirdağ, Turkey;
| | - Fatma Kübra Erbay Elibol
- Department of Biomedical Engineering, Faculty of Engineering, TOBB Economics and Technology University, 06560 Ankara, Turkey;
| | - Suzan Yalçın
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Selçuk University, 42003 Konya, Turkey;
| | - Awad A. Shehata
- Department of Chemistry, TUM School of Natural Sciences, Bavarian NMR Center (BNMRZ), Structural Membrane Biochemistry, Technical University of Munich, 85748 Garching, Germany
| | - Shereen Basiouni
- Institute of Molecular Physiology, Johannes-Gutenberg University, 55128 Mainz, Germany
| |
Collapse
|
3
|
Lestingi A, Alagawany M, Di Cerbo A, Crescenzo G, Zizzadoro C. Spirulina (Arthrospira platensis) Used as Functional Feed Supplement or Alternative Protein Source: A Review of the Effects of Different Dietary Inclusion Levels on Production Performance, Health Status, and Meat Quality of Broiler Chickens. Life (Basel) 2024; 14:1537. [PMID: 39768246 PMCID: PMC11679488 DOI: 10.3390/life14121537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 01/11/2025] Open
Abstract
The broiler industry is pivotal in meeting the growing global demand for highly nutritious animal protein foods. Hence, there is a continuous interest in identifying novel, alternative, and even unconventional feed resources that could help sustainably support chicken meat production and quality. In this view, the microalga Spirulina (Arthrospira, formerly Spirulina, platensis), due to its unique chemical composition and some ecological advantages offered by its cultivation over traditional agriculture, has attracted great attention in the poultry sector for potential application in broiler diets, either as a functional supplement or a replacer of conventional protein sources such as soybean meal. The studies conducted so far seem to have confirmed many of the initial expectations regarding the advantages that may derive from dietary Spirulina supplementation, documenting its capacity to positively influence the intestinal and general health status of broiler chickens, leading to improved or preserved productive performance (under normal or challenging conditions, respectively), as well as to increased disease resistance and survivability. Furthermore, dietary Spirulina supplementation has been shown to induce positive changes in some important traits of broiler meat quality. However, at present, the inclusion of Spirulina in broiler diet, especially but not solely in relation to the use as an alternative protein source, presents several technical and economic limitations. To increase the overall awareness around the actual usefulness and practical usability of Spirulina as a novel natural component of the broiler diet, this review paper seeks to provide a comprehensive and integrated presentation of what is currently known about this topic, highlighting critical issues that are still pending and would require further research efforts.
Collapse
Affiliation(s)
- Antonia Lestingi
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy; (A.L.); (G.C.); (C.Z.)
| | - Mahmoud Alagawany
- Poultry Department, Agriculture Faculty, Zagazig University, Zagazig 44519, Egypt;
| | - Alessandro Di Cerbo
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy
| | - Giuseppe Crescenzo
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy; (A.L.); (G.C.); (C.Z.)
| | - Claudia Zizzadoro
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy; (A.L.); (G.C.); (C.Z.)
| |
Collapse
|
4
|
Zampiga M, Laghi L, Soglia F, Piscitelli R, Dayan J, Petracci M, Bonaldo A, Sirri F. Partial substitution of soybean meal with microalgae meal (Arthrospira spp. - Spirulina) in grower and finisher diets for broiler chickens: implications on performance parameters, footpad dermatitis occurrence, breast meat quality traits, amino acid digestibility and plasma metabolomics profile. Poult Sci 2024; 103:103856. [PMID: 38908124 PMCID: PMC11253657 DOI: 10.1016/j.psj.2024.103856] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 06/24/2024] Open
Abstract
This trial was conducted to evaluate the effects of replacing soybean meal with microalgae meal (MM; Arthrospira spp.) during grower and finisher phases on productive performance, footpad dermatitis (FPD) occurrence, breast meat quality, amino acid digestibility and plasma metabolomics profile of broiler chickens. One thousand day-old Ross 308 male chicks were divided into 5 experimental groups (8 replicates, 25 birds/each): CON, fed a commercial soybean-based diet throughout the trial (0-41 d); F3 and F6, fed the CON diet up to 28 d of age and then a finisher diet (29-41 d) with either 30 or 60 g MM/kg, respectively; and GF3 and GF6, receiving CON diet until 14 d and then diets containing 30 or 60 g MM/kg from 15 to 41 d, respectively. All diets were iso-energetic and with a similar amino acid profile. Growth performances were recorded on a pen basis at the end of each feeding phase and apparent ileal amino acid digestibility was determined at 41 d. Footpad dermatitis occurrence was assessed on all processed birds, while breast and plasma samples were collected for meat quality and metabolomics analysis (proton nuclear magnetic resonance - 1H-NMR). At 41 d, CON group showed higher body weight than F6 and GF6 ones (2,541 vs. 2,412 vs. 2,384 g, respectively; P < 0.05). Overall, GF6 group exhibited the highest feed conversion ratio, while F3 did not present significant differences compared to CON (1.785 vs. 1.810 vs. 1.934 g feed/g gain, respectively for CON, F3 and GF6; P < 0.01). The occurrence and the risk of developing FPD were similar among groups. MM administration increased breast meat yellowness and reduced amino acid digestibility (P < 0.001). The 1H-NMR analysis revealed variations in the levels of some circulating metabolites, including histidine, arginine and creatine, which play important metabolic roles. Overall, these findings can contribute to expand the knowledge about the use of Arthrospira spp. as protein source in broiler diets.
Collapse
Affiliation(s)
- Marco Zampiga
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| | - Luca Laghi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| | - Francesca Soglia
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| | - Raffaela Piscitelli
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| | - Jonathan Dayan
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy; Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Massimiliano Petracci
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| | - Alessio Bonaldo
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Ozzano Emilia, Bologna 40064, Italy
| | - Federico Sirri
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy.
| |
Collapse
|
5
|
Spínola MP, Costa MM, Prates JAM. Analysing the Impact of Spirulina Intake Levels on Performance Parameters, Blood Health Markers and Carcass Traits of Broiler Chickens. Animals (Basel) 2024; 14:1964. [PMID: 38998076 PMCID: PMC11240424 DOI: 10.3390/ani14131964] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/18/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
This systematic review examines the impact of varying Spirulina (Limnospira platensis) intake levels on broiler chickens, focusing on growth performance, blood health markers and carcass traits. The data revealed cumulative Spirulina intakes from 3.13 g to 521 g per bird (total feed consumed multiplied by its proportion in the diet) establish a cubic relationship between dosage and growth outcomes. Initial benefits peak and diminish with increased intake, with the optimal threshold for growth performance identified at 45 g per bird. Lower intakes between 14 g and 29 g per bird enhance blood health markers, improving lipid profiles and antioxidant capacity. Similarly, cumulative intakes of 14 g to 37 g per bird optimise meat quality, resulting in better dressing percentages, breast and thigh yields and meat tenderness while minimizing undesirable traits like abdominal fat and cooking loss. These findings underscore the importance of precisely calibrated Spirulina supplementation strategies to maximise growth, health and meat quality benefits while avoiding adverse effects at higher doses. Future research should focus on identifying optimal dosage and duration, assessing long-term implications, elucidating mechanisms of action and ensuring safety and regulatory compliance. Comparative studies with other feed additives could further establish Spirulina's effectiveness and economic viability in poultry production.
Collapse
Affiliation(s)
- Maria P Spínola
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Av. da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - Mónica M Costa
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Av. da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - José A M Prates
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Av. da Universidade Técnica, 1300-477 Lisbon, Portugal
| |
Collapse
|
6
|
Bošković Cabrol M, Huerta A, Bordignon F, Pravato M, Birolo M, Petracci M, Xiccato G, Trocino A. Dietary supplementation with Chlorella vulgaris in broiler chickens submitted to heat-stress: effects on growth performance and meat quality. Poult Sci 2024; 103:103828. [PMID: 38795513 PMCID: PMC11153230 DOI: 10.1016/j.psj.2024.103828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/28/2024] Open
Abstract
Heat stress can greatly challenge growth and meat quality of broiler chickens where research is looking for sustainable ingredients, such as microalgae, that could also alleviate its negative impacts. Thus, in the present study, 576 1-D-old chicks (Ross 308) were housed until commercial slaughtering (42 D) in 36 pens in 2 rooms of a poultry house, according to a full factorial design encompassing 2 room temperatures (standard vs. high), 2 sexes (females vs. males), and 3 dietary treatments, that is, diet C0 (control diet), diet C3, and diet C6 containing 0, 3, and 6%, respectively, of C. vulgaris meal replacing the same quantities of soybean meal. The highest inclusion level of C. vulgaris decreased feed intake (P < 0.001) and body weight (P < 0.0001) compared to the control diet; it increased yellow and red indexes (P < 0.0001) of the breast muscle, besides the proportion of n3 polyunsaturated fatty acids (PUFA) (P = 0.028). Heat stress decreased feed intake (P = 0.001), breast (P = 0.001) and p. major yields (P = 0.036), and increased meat pH (P= 0.008) and cooking losses (P < 0.001), umami (P = 0.021) and brothy flavor (P < 0.001), and the proportion of n3 PUFA rates (P = 0.027), while reducing the contents of several amino acids in the breast meat (P ≤ 0.05). Compared to females, males displayed higher feed intake and growth, and more favorable feed conversion (P < 0.001). Carcass and p. major yields were greater in females (P < 0.001) which also showed a higher occurrence of spaghetti meat compared to males (P < 0.001). In conclusion, C. vulgaris can be used to replace until 3% of soybean meal in diets for broiler chickens without negative implications, while positively affecting breast meat color according to consumers' preferences. However, the microalgae inclusion did not mitigate the negative effects of a chronic heat stress on growth performance nor reduced the occurrence of any myopathies.
Collapse
Affiliation(s)
- M Bošković Cabrol
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, Padova 35020, Italy
| | - A Huerta
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, Padova 35020, Italy
| | - F Bordignon
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, Padova 35020, Italy
| | - M Pravato
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, Padova 35020, Italy
| | - M Birolo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, Padova 35020, Italy
| | - M Petracci
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Cesena 47521, Italy
| | - G Xiccato
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, Padova 35020, Italy
| | - A Trocino
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, Padova 35020, Italy; Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Legnaro, Padova 35020, Italy.
| |
Collapse
|
7
|
Anas MA, Aprianto MA, Akit H, Muhlisin, Kurniawati A, Hanim C. Black soldier fly larvae oil (Hermetia illucens L.) calcium salt enhances intestinal morphology and barrier function in laying hens. Poult Sci 2024; 103:103777. [PMID: 38713986 PMCID: PMC11091524 DOI: 10.1016/j.psj.2024.103777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/09/2024] Open
Abstract
This study aimed to determine the influence of black soldier fly larvae oil calcium salt (BSFLO-SCa) supplementation on performance, jejunal histomorphology and gene expression of tight junctions and inflammatory cytokines in laying hens. A total of 60 ISA Brown laying hens (40 wk of age) were divided into 3 treatment groups, including a control group fed a basal diet (T0) and basal diets supplemented with 1% (T1) and 2% (T2) of BSFLO-SCa. Each treatment group consisted of 5 replicates with 4 laying hens each. Results showed that 1% and 2% BSFLO-SCa supplementation significantly reduced (P < 0.05) feed conversion ratio (FCR), while egg weight (EW) increased (P < 0.05). The inclusion with 2% increased (P < 0.05) both egg production (HDA) and mass (EM). The addition of 1% and 2% BSFLO-SCa significantly increased (P < 0.05) villus height (VH) and villus width (VW), while crypt depth (CD) significantly increased (P < 0.05) with 2% BSFLO-SCa. The tight junction and gene expression of claudin-1 (CLDN-1), junctional adhesion molecules-2 (JAM-2), and occludin (OCLN) were significantly upregulated (P < 0.05) with 2% BSFLO-SCa. The pro-inflammatory cytokines and gene expression of interleukin-6 (IL-6) was significantly downregulated (P < 0.05) with the addition of BSFLO-SCa, while gene expression of interleukin-18 (IL-18), toll-like receptor 4 (TLR-4), and tumor necrosis factor-α (TNF-α) were downregulated with 2% BSFLO-SCa. On the other hand, the anti-inflammatory cytokines and gene expression of interleukin-13 (IL-13) and interleukin-10 (IL-10) were significantly upregulated (P < 0.05) at 2% BSFLO-SCa. In conclusion, dietary supplementation with 2% BSFLO-SCa improved productivity, intestinal morphology and integrity by upregulating tight junction-related protein of gene expression of laying hens. In addition, supplementation with BSFLO-SCa enhanced intestinal immune responses by upregulating anti-inflammatory and downregulating pro-inflammatory cytokine gene expression.
Collapse
Affiliation(s)
- Muhsin Al Anas
- Department of Animal Nutrition and Feed Science, Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
| | - Muhammad Anang Aprianto
- Department of Animal Nutrition and Feed Science, Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Henny Akit
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Muhlisin
- Department of Animal Nutrition and Feed Science, Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Asih Kurniawati
- Department of Animal Nutrition and Feed Science, Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Chusnul Hanim
- Department of Animal Nutrition and Feed Science, Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| |
Collapse
|
8
|
Rajput SD, Pandey N, Sahu K. A comprehensive report on valorization of waste to single cell protein: strategies, challenges, and future prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:26378-26414. [PMID: 38536571 DOI: 10.1007/s11356-024-33004-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 03/16/2024] [Indexed: 05/04/2024]
Abstract
The food insecurity due to a vertical increase in the global population urgently demands substantial advancements in the agricultural sector and to identify sustainable affordable sources of nutrition, particularly proteins. Single-cell protein (SCP) has been revealed as the dried biomass of microorganisms such as algae, yeast, and bacteria cultivated in a controlled environment. Production of SCP is a promising alternative to conventional protein sources like soy and meat, due to quicker production, minimal land requirement, and flexibility to various climatic conditions. In addition to protein production, it also contributes to waste management by converting it into food and feed for both human and animal consumption. This article provides an overview of SCP production, including its benefits, safety, acceptability, and cost, as well as limitations that constrains its maximum use. Furthermore, this review criticizes the downstream processing of SCP, encompassing cell wall disruption, removal of nucleic acid, harvesting of biomass, drying, packaging, storage, and transportation. The potential applications of SCP, such as in food and feed as well as in the production of bioplastics, emulsifiers, and as flavoring agents for baked food, soup, and salad, are also discussed.
Collapse
Affiliation(s)
- Sharda Devi Rajput
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 492 010, India
| | - Neha Pandey
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 492 010, India
| | - Keshavkant Sahu
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 492 010, India.
| |
Collapse
|
9
|
Spínola MP, Costa MM, Prates JAM. Effect of Cumulative Spirulina Intake on Broiler Meat Quality, Nutritional and Health-Related Attributes. Foods 2024; 13:799. [PMID: 38472912 PMCID: PMC10931167 DOI: 10.3390/foods13050799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
This work aimed to assess how different cumulative levels of Spirulina (Arthrospira platensis) intake influence individual broiler meat quality parameters, nutritional value and health-related traits. The data analysed showed varying cumulative Spirulina intake levels, ranging from 3.46 to 521 g/bird, with large changes in meat traits. The key findings indicate that Spirulina intake significantly enhances meat colour, primarily due to its rich carotenoid content. However, this enhancement shows a saturation effect at higher intake levels, where additional Spirulina does not further improve the colour. Regarding the meat nutritional profile, Spirulina increases beneficial n - 3 polyunsaturated fatty acids and reduces lipid oxidation. These effects on meat, however, are not linear and become more complex at higher microalga intake levels. Regarding meat sensory attributes, moderate Spirulina levels positively influence flavour and texture. Still, higher levels may lead to changes not universally preferred by meat consumers, highlighting the need for balanced Spirulina inclusion in diets. Optimal Spirulina cumulative intake levels must be identified to balance meat's nutritional benefits with consumer preferences. Additionally, ensuring Spirulina's purity and adherence to regulatory standards is essential for consumer safety and market access. These findings provide valuable insights for poultry nutritionists and the food industry, emphasising the necessity of a balanced approach to Spirulina's incorporation in poultry diets.
Collapse
Affiliation(s)
- Maria P. Spínola
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal; (M.P.S.); (M.M.C.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Av. da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Mónica M. Costa
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal; (M.P.S.); (M.M.C.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Av. da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - José A. M. Prates
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal; (M.P.S.); (M.M.C.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Av. da Universidade Técnica, 1300-477 Lisboa, Portugal
| |
Collapse
|
10
|
Saragih HT, Fauziah IN, Saputri DA, Chasani AR. Dietary macroalgae Chaetomorpha linum supplementation improves morphology of small intestine and pectoral muscle, growth performance, and meat quality of broilers. Vet World 2024; 17:470-479. [PMID: 38595672 PMCID: PMC11000464 DOI: 10.14202/vetworld.2024.470-479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/29/2024] [Indexed: 04/11/2024] Open
Abstract
Background and Aim Over the last decades, the poultry industry has experienced steady growth. Although the industry is gradually expanding in Indonesia, poultry feed production has always been expensive. There is a need to study alternative ingredients to obtain affordable feed from natural resources. Chaetomorpha linum (CL) is an abundant macroalgae available throughout the year in Indonesia. This study aimed to determine the effect of CL on the histological structure of the small intestine, pectoralis muscle, growth performance, and meat quality of broilers. Materials and Methods This study used 300-day-old chick (DOC) male broilers that were reared until they were 21 days old. This study used a completely randomized design with four treatment groups and five replications, and each replication group contained 15 DOC individuals. The treatment groups consisted of Control (CON), CON basal feed (BF), CL1 (0.75%/kg BF), CL2 (1.5%/kg BF), and CL3 (3%/kg BF) groups. The histological structure of the small intestine, pectoralis muscle, growth performance, and meat quality of the broiler was examined. Results Small intestine and pectoral muscle histomorphology, growth performance, and meat quality were significantly improved in the CL2 (1.5%) and CL3 (3%) groups compared with the CL1 (0.75%) and CON groups. Conclusion Dietary CL supplementation ameliorates small intestine and pectoral muscle histomorphology, growth performance, and meat quality of broilers.
Collapse
Affiliation(s)
- H. T. Saragih
- Laboratory of Animal Development Structure, Faculty of Biology, Universitas Gadjah Mada, Sleman, Yogyakarta 55281, Indonesia
| | - I. N. Fauziah
- Graduate Program of Biology, Department of Tropical Biology, Universitas Gadjah Mada, Sleman, Yogyakarta 55281, Indonesia
| | - D. A. Saputri
- Graduate Program of Biology, Department of Tropical Biology, Universitas Gadjah Mada, Sleman, Yogyakarta 55281, Indonesia
| | - A. R. Chasani
- Laboratory of Plant Systematics, Faculty of Biology, Universitas Gadjah Mada, Sleman, Yogyakarta 55281, Indonesia
| |
Collapse
|
11
|
Kumar R, Hegde AS, Sharma K, Parmar P, Srivatsan V. Microalgae as a sustainable source of edible proteins and bioactive peptides – Current trends and future prospects. Food Res Int 2022; 157:111338. [DOI: 10.1016/j.foodres.2022.111338] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 12/23/2022]
|
12
|
Šefcová MA, Santacruz F, Larrea-Álvarez CM, Vinueza-Burgos C, Ortega-Paredes D, Molina-Cuasapaz G, Rodríguez J, Calero-Cáceres W, Revajová V, Fernández-Moreira E, Larrea-Álvarez M. Administration of Dietary Microalgae Ameliorates Intestinal Parameters, Improves Body Weight, and Reduces Thawing Loss of Fillets in Broiler Chickens: A Pilot Study. Animals (Basel) 2021; 11:3601. [PMID: 34944376 PMCID: PMC8698060 DOI: 10.3390/ani11123601] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/05/2021] [Accepted: 12/08/2021] [Indexed: 12/16/2022] Open
Abstract
This pilot investigation aimed at studying the feasibility of using a low dose (0.2%) of dietary microalgae as a means of improving intestinal morphometry, body weight, and selected meat quality parameters in broilers. A total of 72 one-day-old ROSS 308 male chicks were randomly separated into four groups; three experimental pens in which the birds were fed with biomass from Tysochrysis lutea, Tetraselmis chuii, and Porphyridium cruentum over 30 days and a control group. T. chuii and P. cruentum had a positive effect with regard to body weight. In treated animals, duodenal and ileal sections showed characteristic tall and thin villi, with serrated surfaces and goblet cell differentiation. In both sections, values of the villus-height-to-crypt-depth ratio were increased by microalgae ingestion. The thawing weight loss of fillets was reduced in T. chuii-fed animals. The positive effects exerted by T. chuii and P. cruentum on intestinal architecture were associated with the improved body weight. Arguably, these outcomes exhibit the potential of using these species to enhance growth performance in broiler chickens by promoting gut homeostasis and thus nutrient absorption.
Collapse
Affiliation(s)
- Miroslava Anna Šefcová
- Research Unit, Life Science Initiative (LSI), Quito 170102, Ecuador; (M.A.Š.); (C.M.L.-Á.)
| | - Francisco Santacruz
- School of Biological Science and Engineering, Yachay-Tech University, Hacienda San José, Urcuquí 100650, Ecuador;
| | | | - Christian Vinueza-Burgos
- Unidad de Investigación de Enfermedades Transmitidas por Alimentos y Resistencia a los Antimicrobianos (UNIETAR), Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Quito 170129, Ecuador; (C.V.-B.); (D.O.-P.)
| | - David Ortega-Paredes
- Unidad de Investigación de Enfermedades Transmitidas por Alimentos y Resistencia a los Antimicrobianos (UNIETAR), Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Quito 170129, Ecuador; (C.V.-B.); (D.O.-P.)
- Facultad de Ciencias Médicas Enrique Ortega Moreira, Carrera de Medicina, Universidad Espíritu Santo, Samborondón 0901952, Ecuador
| | - Gabriel Molina-Cuasapaz
- Facultad de Ciencias Agropecuarias y Recursos Naturales, Carrera de Medicina Veterinaria, Universidad Técnica de Cotopaxi, Latacunga 050101, Ecuador; (G.M.-C.); (J.R.)
| | - Jessica Rodríguez
- Facultad de Ciencias Agropecuarias y Recursos Naturales, Carrera de Medicina Veterinaria, Universidad Técnica de Cotopaxi, Latacunga 050101, Ecuador; (G.M.-C.); (J.R.)
| | - William Calero-Cáceres
- UTA-RAM-One Health, Department of Food and Biotechnology Science and Engineering, Universidad Técnica de Ambato, Ambato 180207, Ecuador;
| | - Viera Revajová
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy, 040 01 Košice, Slovakia;
| | - Esteban Fernández-Moreira
- Facultad de Ciencias Médicas Enrique Ortega Moreira, Carrera de Medicina, Universidad Espíritu Santo, Samborondón 0901952, Ecuador
| | - Marco Larrea-Álvarez
- School of Biological Science and Engineering, Yachay-Tech University, Hacienda San José, Urcuquí 100650, Ecuador;
| |
Collapse
|