1
|
Africa AJ, Setati ME, Hitzeroth AC, Blancquaert EH. Exploring the evolution of microbial communities from the phyllosphere and carposphere to the grape must of Vitis vinifera L. cv's Chardonnay and Pinot noir. Food Microbiol 2025; 130:104780. [PMID: 40210403 DOI: 10.1016/j.fm.2025.104780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 03/11/2025] [Accepted: 03/21/2025] [Indexed: 04/12/2025]
Abstract
Microbial communities associated with the grapevine phyllosphere and carposhere are a fundamental determinant of grape and wine quality. High throughput amplicon sequencing was used to profile the fungal and bacterial communities on the associated phylloplane and carposphere of Vitis vinifera L. cv's Chardonnay and Pinot noir in the Elgin and Hemel-en-Aarde wine districts of South Africa in the 2021-2022 growing season. The subsequent grape must was analysed to determine the prevalent microbiome. The most abundant bacterial and fungal genera found in both the phylloplane and carposphere of Chardonnay and Pinot noir were Pseudomonas and Filobasidium. The LEfSe (Linear discriminant analysis Effect Size) revealed significant differences in fungal and bacterial biomarkers from leaf, berry and grape must samples; however, no biomarkers were identified for cultivar nor location. Fungal β-diversity was significantly similar at different phenological stages, whereas bacterial β-diversity was significantly similar regardless of the site of colonisation. However, skin integrity of the grapes was may have influenced the microbial diversity.
Collapse
Affiliation(s)
- Amber Justine Africa
- South African Grape and Wine Research Institute (SAGWRI), Stellenbosch University, Private Bag X1, Matieland, S, 7602, South Africa
| | - Mathabatha Evodia Setati
- South African Grape and Wine Research Institute (SAGWRI), Stellenbosch University, Private Bag X1, Matieland, S, 7602, South Africa
| | - Arina Corli Hitzeroth
- Institute for Microbial Biotechnology and Metagenomics, Department of Biotechnology, The University of the Western Cape, Bellville, 7535, South Africa
| | - Erna Hailey Blancquaert
- South African Grape and Wine Research Institute (SAGWRI), Stellenbosch University, Private Bag X1, Matieland, S, 7602, South Africa.
| |
Collapse
|
2
|
Ma J, Peng Q, Chen S, Liu Z, Zhang W, Zhang C, Du X, Sun S, Peng W, Lei Z, Zhang L, Su P, Zhang D, Liu Y. Microbiome Migration from Soil to Leaves in Maize and Rice. Microorganisms 2025; 13:947. [PMID: 40284783 PMCID: PMC12029745 DOI: 10.3390/microorganisms13040947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/13/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
The interactions between plants and microbes are essential for enhancing crop productivity. However, the mechanisms underlying host-specific microbiome migration and functional assembly remain poorly understood. In this study, microbiome migration from soil to leaves in rice (Oryza sativa) and maize (Zea mays) was analyzed through 16S rRNA sequencing and phenotypic assessments. When we used the same soil microbiome source to grow rice and maize, microbiota and functional traits were specifically enriched by maize in its phyllosphere and rhizosphere. This indicated that plants can selectively assemble microbiomes from a shared microbiota source. Therefore, 22 strains were isolated from the phyllospheres of rice and maize and used to construct a synthetic microbial community (SynCom). When the soil for rice and maize growth was inoculated with the SynCom, strains belonging to Bacillus were enriched in the maize phyllosphere compared to the rice phyllosphere. Additionally, a strain belonging to Rhizobium was enriched in the maize rhizosphere compared to the rice rhizosphere. These results suggest that plant species influence the migration of microbiota within their respective compartments. Compared with mock inoculation, SynCom inoculation significantly enhanced plant growth. When we compared the microbiomes, strains belonging to Achromobacter, which were assembled by both rice and maize, played a role in enhancing plant growth. Our findings underscore the importance of microbial migration dynamics and functional assembly in leveraging plant-microbe interactions for sustainable agriculture.
Collapse
Affiliation(s)
- Jiejia Ma
- Longping Branch, College of Biology, Hunan University, Changsha 410082, China; (J.M.); (S.C.); (Z.L.); (Z.L.); (D.Z.)
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Academy of Agricultural Sciences, Changsha 410125, China; (Q.P.); (W.Z.); (W.P.); (L.Z.)
| | - Qianze Peng
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Academy of Agricultural Sciences, Changsha 410125, China; (Q.P.); (W.Z.); (W.P.); (L.Z.)
| | - Silu Chen
- Longping Branch, College of Biology, Hunan University, Changsha 410082, China; (J.M.); (S.C.); (Z.L.); (Z.L.); (D.Z.)
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Academy of Agricultural Sciences, Changsha 410125, China; (Q.P.); (W.Z.); (W.P.); (L.Z.)
| | - Zhuoxin Liu
- Longping Branch, College of Biology, Hunan University, Changsha 410082, China; (J.M.); (S.C.); (Z.L.); (Z.L.); (D.Z.)
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Academy of Agricultural Sciences, Changsha 410125, China; (Q.P.); (W.Z.); (W.P.); (L.Z.)
| | - Weixing Zhang
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Academy of Agricultural Sciences, Changsha 410125, China; (Q.P.); (W.Z.); (W.P.); (L.Z.)
| | - Chi Zhang
- Longping Branch, College of Biology, Hunan University, Changsha 410082, China; (J.M.); (S.C.); (Z.L.); (Z.L.); (D.Z.)
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Academy of Agricultural Sciences, Changsha 410125, China; (Q.P.); (W.Z.); (W.P.); (L.Z.)
| | - Xiaohua Du
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Academy of Agricultural Sciences, Changsha 410125, China; (Q.P.); (W.Z.); (W.P.); (L.Z.)
| | - Shue Sun
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Academy of Agricultural Sciences, Changsha 410125, China; (Q.P.); (W.Z.); (W.P.); (L.Z.)
| | - Weiye Peng
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Academy of Agricultural Sciences, Changsha 410125, China; (Q.P.); (W.Z.); (W.P.); (L.Z.)
| | - Ziling Lei
- Longping Branch, College of Biology, Hunan University, Changsha 410082, China; (J.M.); (S.C.); (Z.L.); (Z.L.); (D.Z.)
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Academy of Agricultural Sciences, Changsha 410125, China; (Q.P.); (W.Z.); (W.P.); (L.Z.)
| | - Limei Zhang
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Academy of Agricultural Sciences, Changsha 410125, China; (Q.P.); (W.Z.); (W.P.); (L.Z.)
| | - Pin Su
- Longping Branch, College of Biology, Hunan University, Changsha 410082, China; (J.M.); (S.C.); (Z.L.); (Z.L.); (D.Z.)
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Academy of Agricultural Sciences, Changsha 410125, China; (Q.P.); (W.Z.); (W.P.); (L.Z.)
| | - Deyong Zhang
- Longping Branch, College of Biology, Hunan University, Changsha 410082, China; (J.M.); (S.C.); (Z.L.); (Z.L.); (D.Z.)
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Academy of Agricultural Sciences, Changsha 410125, China; (Q.P.); (W.Z.); (W.P.); (L.Z.)
| | - Yong Liu
- Longping Branch, College of Biology, Hunan University, Changsha 410082, China; (J.M.); (S.C.); (Z.L.); (Z.L.); (D.Z.)
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Academy of Agricultural Sciences, Changsha 410125, China; (Q.P.); (W.Z.); (W.P.); (L.Z.)
| |
Collapse
|
3
|
Labarga D, Mairata A, Puelles M, Wallner A, Aziz A, Alícia P. Rootstocks and drought stress impact the composition and functionality of grapevine rhizosphere bacterial microbiota. Microbiol Res 2025; 293:128073. [PMID: 39864304 DOI: 10.1016/j.micres.2025.128073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/23/2024] [Accepted: 01/17/2025] [Indexed: 01/28/2025]
Abstract
The microbiota, a component of the plant holobiont, plays an active role in the response to biotic and abiotic stresses. Nowadays, with recurrent drought and global warming, a growing challenge in viticulture is being addressed by different practices, including the use of adapted rootstocks. However, the relationships between these practices, abiotic stress and the composition and functions of the rhizosphere microbiota remain to be deciphered. This study aimed to unravel the impact of five rootstocks, water management and the combination of both on the rhizosphere bacterial microbiota in grapevines using shotgun metagenomics approach. The results showed that drought impacted the diversity, composition and functionality of the rhizosphere bacterial community. The genera Mycolicibacterium, Mycobacterium and Rhodococcus, and the bacterial functions, including DNA damage repair, fatty acid synthesis, sugar and amino acid transport, oxidative stress reduction, toxin synthesis and detoxification of exogenous compounds were significantly enriched under drought conditions. Rootstocks also significantly affected the rhizosphere bacterial richness but its influence on diversity and functionality compared to water management was weaker. Some taxa and function could be linked to water managements applied. The interaction between rootstocks and water management further influenced the rhizosphere composition, especially under drought conditions, where distinct clustering was observed for specific rootstocks. The results highlight the importance of conducting multifactorial studies to better understand their impact on shaping functional rhizosphere bacterial communities. This study paves the way for future research on beneficial bacterial inoculation and genetic engineering of rootstock to cope with drought stress.
Collapse
Affiliation(s)
- David Labarga
- Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC - Gobierno de la Rioja - Universidad de La Rioja, Logroño 26007, Spain
| | - Andreu Mairata
- Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC - Gobierno de la Rioja - Universidad de La Rioja, Logroño 26007, Spain
| | - Miguel Puelles
- Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC - Gobierno de la Rioja - Universidad de La Rioja, Logroño 26007, Spain
| | - Adrian Wallner
- University of Reims Champagne-Ardenne, INRAE, RIBP, USC 1488, UFR Sciences, Reims 51100, France
| | - Aziz Aziz
- University of Reims Champagne-Ardenne, INRAE, RIBP, USC 1488, UFR Sciences, Reims 51100, France
| | - Pou Alícia
- Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC - Gobierno de la Rioja - Universidad de La Rioja, Logroño 26007, Spain.
| |
Collapse
|
4
|
Bai C, Yao Y, Wang H, Li H, Wei R. The Fungal Microbiome in the Vineyard Ecosystem Plays a Key Role in Shaping the Regional Characteristics of Wine. Foods 2025; 14:1211. [PMID: 40238343 PMCID: PMC11989012 DOI: 10.3390/foods14071211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/13/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
The regional characteristics of wine are shaped by the synergistic effects of vineyard climate conditions, soil microbial microorganisms, soil properties, and grape must microorganisms; however, their role in shaping regional wine quality is still poorly understood. In this study, soil, grape must, and fermentation samples were collected from Cabernet Sauvignon vineyards in five regions of China. High-throughput sequencing technology was used to analyze the microbiota, and Headspace-Solid Phase Microextraction-Gas Chromatography-Mass Spectrometry (HS-SPME-GC-MS) was used to determine the wine metabolite profile. The results showed that the wine metabolite profiles from different vineyards were significantly different and could be distinguished by their volatile compounds, with each vineyard possessing unique characteristic metabolites. The geographical origin of vineyards significantly influenced the microbial diversity of both soil and winery environments. Although the microbiota changed during fermentation, regional microbial signatures were preserved at the end of fermentation. The random forest model indicated that fungal diversity and weather are key predictors influencing wine regionality, with fungal diversity in grape must having the greatest impact. Partial least squares path modeling further revealed that fungal diversity in grape must had the most significant impact on wine metabolite profiles, followed by weather and then soil fungal diversity. In contrast, soil properties and soil bacterial diversity had weaker effects on these profiles and were significantly influenced by the weather. Overall, this study provides a novel perspective for understanding the mechanisms underlying wine regionality and clarifies the key role of microorganisms, particularly fungal communities, in shaping wine regionality.
Collapse
Affiliation(s)
- Chunyan Bai
- College of Food Science and Engineering, Shanxi Agricultural University, No. 1, Mingxian South Road, Jinzhong 030801, China; (C.B.); (Y.Y.)
- Beijing Hongxing Liuquxiang Co., Ltd., Liuquxiang Branch Company, Industrial Zone, Qixian, Jinzhong 030900, China
| | - Yuan Yao
- College of Food Science and Engineering, Shanxi Agricultural University, No. 1, Mingxian South Road, Jinzhong 030801, China; (C.B.); (Y.Y.)
| | - Hua Wang
- College of Enology, Northwest A&F University, No. 22, Xinong Road, Yangling 712100, China; (H.W.); (H.L.)
| | - Hua Li
- College of Enology, Northwest A&F University, No. 22, Xinong Road, Yangling 712100, China; (H.W.); (H.L.)
| | - Ruteng Wei
- College of Food Science and Engineering, Shanxi Agricultural University, No. 1, Mingxian South Road, Jinzhong 030801, China; (C.B.); (Y.Y.)
| |
Collapse
|
5
|
Kapazoglou A, Tani E, Papasotiropoulos V, Letsiou S, Gerakari M, Abraham E, Bebeli PJ. Enhancing Abiotic Stress Resilience in Mediterranean Woody Perennial Fruit Crops: Genetic, Epigenetic, and Microbial Molecular Perspectives in the Face of Climate Change. Int J Mol Sci 2025; 26:3160. [PMID: 40243927 PMCID: PMC11988844 DOI: 10.3390/ijms26073160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
Enhanced abiotic stresses such as increased drought, elevated temperatures, salinity, and extreme weather phenomena severely affect major crops in the Mediterranean area, a 'hot spot' of climate change. Plants have evolved mechanisms to face stressful conditions and adapt to increased environmental pressures. Intricate molecular processes involving genetic and epigenetic factors and plant-microbe interactions have been implicated in the response and tolerance to abiotic stress. Deciphering the molecular mechanisms whereby plants perceive and respond to stress is crucial for developing strategies to counteract climate challenges. Progress in determining genes, complex gene networks, and biochemical pathways, as well as plant-microbiota crosstalk, involved in abiotic stress tolerance has been achieved through the application of molecular tools in diverse genetic resources. This knowledge could be particularly useful for accelerating plant improvement and generating resilient varieties, especially concerning woody perennial crops, where classical breeding is a lengthy and labor-intensive process. Similarly, understanding the mechanisms of plant-microbe interactions could provide insights into innovative approaches to facing stressful conditions. In this review, we provide a comprehensive overview and discuss the recent findings concerning the genetic, epigenetic, and microbial aspects shaping abiotic stress responses, in the context of enhancing resilience in important Mediterranean woody perennial fruit crops.
Collapse
Affiliation(s)
- Aliki Kapazoglou
- Department of Grapevine, Institute of Olive Tree, Subtropical Crops and Viticulture (IOSV), Hellenic Agricultural Organization-Dimitra (ELGO-Dimitra), Lykovrysi, 14123 Athens, Greece
| | - Eleni Tani
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.T.); (V.P.); (M.G.); (P.J.B.)
| | - Vasileios Papasotiropoulos
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.T.); (V.P.); (M.G.); (P.J.B.)
| | - Sophia Letsiou
- Department of Food Science and Technology, University of West Attica, Egaleo, 12243 Athens, Greece;
| | - Maria Gerakari
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.T.); (V.P.); (M.G.); (P.J.B.)
| | - Eleni Abraham
- School of Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki, 54124 Thessaloniki, Greece;
| | - Penelope J. Bebeli
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.T.); (V.P.); (M.G.); (P.J.B.)
| |
Collapse
|
6
|
Fournier P, Pellan L, Jaswa A, Cambon MC, Chataigner A, Bonnard O, Raynal M, Debord C, Poeydebat C, Labarthe S, Delmotte F, This P, Vacher C. Revealing microbial consortia that interfere with grapevine downy mildew through microbiome epidemiology. ENVIRONMENTAL MICROBIOME 2025; 20:37. [PMID: 40149015 PMCID: PMC11948771 DOI: 10.1186/s40793-025-00691-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/26/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND Plant and soil microbiomes can interfere with pathogen life cycles, but their influence on disease epidemiology remains understudied. Here, we analyzed the relationships between plant and soil microbiomes and long-term epidemiological records of grapevine downy mildew, a major disease caused by the oomycete Plasmopara viticola. RESULTS We found that certain microbial taxa were consistently more abundant in plots with lower disease incidence and severity and that the microbial community composition could predict disease incidence and severity. Microbial diversity was not strongly linked to epidemiological records, suggesting that disease incidence and severity is more related to the abundance of specific microbial taxa. These key taxa were identified in the topsoil, where the pathogen's oospores overwinter, and in the phyllosphere, where zoospores infect leaves. By contrast, the leaf endosphere, where the pathogen's mycelium develops, contained few taxa of interest. Surprisingly, the soil microbiota was a better predictor of disease incidence and severity than the leaf microbiota, suggesting that the soil microbiome could be a key indicator of the dynamics of this primarily aerial disease. CONCLUSION Our study integrates long-term epidemiological data with microbiome profiles of healthy plants to reveal fungi and bacteria relevant for the biocontrol of grapevine downy mildew. The resulting database provides a valuable resource for designing microbial consortia with potential biocontrol activity. The framework can be applied to other crop systems to guide the development of biocontrol strategies and reduce pesticide use in agriculture.
Collapse
Affiliation(s)
- Paola Fournier
- INRAE, Bordeaux Sciences Agro, ISVV, SAVE, Villenave-d'Ornon, France
| | - Lucile Pellan
- INRAE, Bordeaux Sciences Agro, ISVV, SAVE, Villenave-d'Ornon, France
| | - Aarti Jaswa
- INRAE, Bordeaux Sciences Agro, ISVV, SAVE, Villenave-d'Ornon, France
| | - Marine C Cambon
- School of Biosciences, Birmingham Institute of Forest Research, Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | | | | | | | | | | | | | - François Delmotte
- INRAE, Bordeaux Sciences Agro, ISVV, SAVE, Villenave-d'Ornon, France
| | - Patrice This
- UMR AGAP Institut, Univ. Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Corinne Vacher
- INRAE, Bordeaux Sciences Agro, ISVV, SAVE, Villenave-d'Ornon, France.
| |
Collapse
|
7
|
Shi M, Qin T, Pu Z, Yang Z, Lim KJ, Yang M, Wang Z. Salt stress alters the selectivity of mature pecan for the rhizosphere community and its associated functional traits. FRONTIERS IN PLANT SCIENCE 2025; 16:1473473. [PMID: 40206877 PMCID: PMC11979281 DOI: 10.3389/fpls.2025.1473473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 02/24/2025] [Indexed: 04/11/2025]
Abstract
Introduction Salt stress is a major global environmental factor limiting plant growth. Rhizosphere bacteria, recruited from bulk soil, play a pivotal role in enhancing salt stress resistance in herbaceous and crop species. However, whether the rhizosphere bacterial community of a mature tree can respond to salt stress, particularly in saline-alkalitolerant trees, remains unexplored. Pecan (Carya illinoinensis), an important commercially cultivated nut tree, is considered saline-alkali tolerant. Methods Pecan trees (12 years) were subjected to different NaCl concentrations for 12 weeks. Collected samples included bulk soil, rhizosphere soil, roots, leaves, and fruit. Amplicon sequencing data and shotgun metagenomic sequencing data obtained from the samples were investigated: 1) microbial communities in various ecological niches of mature pecan trees; 2) the characteristic of the rhizosphere bacteria community and the associated functional traits when pecan suffered from salt stress. Results and discussion We characterized the mature pecan-associated microbiome (i.e., fruit, leaf, root, and rhizosphere soil) for the first time. These findings suggest that niche-based processes, such as habitat selection, drive bacterial and fungal community assembly in pecan tissues. Salt stress reduced bacterial diversity, altered community composition, and shifted pecan's selective pressure on Proteobacteria and Actinobacteria. Shotgun metagenomic sequencing further revealed functional traits of the rhizosphere microbiome in response to salt stress. This study enhances our understanding of mature tree-associated microbiomes and supports the theory that shaping the rhizosphere microbiome may be a strategy for saline-alkali-tolerant mature trees to resist salt stress. These findings provide insights into salt tolerance in mature trees and suggest potential applications, such as the development of bio-inoculants, for managing saline environments in agricultural and ecological contexts.
Collapse
Affiliation(s)
- Mengting Shi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Tao Qin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Zhenyang Pu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Zhengfu Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Kean-Jin Lim
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Menghua Yang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Key Laboratory of Applied Technology on Green-Eco Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Hangzhou, Zhejiang, China
| | - Zhengjia Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Pizzi S, Conti A, Di Canito A, Casagrande Pierantoni D, Foschino R, Setati ME, Vigentini I. Endophytic Diversity in Vitis vinifera with Different Vineyard Managements and Vitis sylvestris Populations from Northern Italy: A Comparative Study of Culture-Dependent and Amplicon Sequencing Methods. BIOLOGY 2025; 14:293. [PMID: 40136549 PMCID: PMC11940648 DOI: 10.3390/biology14030293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 02/28/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025]
Abstract
This study aimed to investigate the endophytic microbial populations associated with wild and domesticated grapevines using both culture-based and culture-independent methods. Through culture-based methods, 148 endophytes were identified. The dominant fungal species included Aureobasidium pullulans, Alternaria alternata, and Cladosporium allicinum, while predominant bacterial species were Ralstonia pikettii, Nocardia niigatensis, and Sphingomonas echinoides. Culture-independent methods employed metagenomic techniques to explore microbial biodiversity, focusing on targeted amplification of bacterial 16S rRNA as well as fungal ITS and 26S rRNA gene regions. The main bacterial species identified included Halomonas sp., Sphingomonas sp. and Massilia sp., whereas the fungal population was dominated by Cladosporium sp., Malassezia sp. and Mucor sp. The findings revealed that vineyard management practices did not lead to statistically significant variations in microbial communities. The consistent presence of these genera across all samples suggests that they are stable components of the grapevine endophytic microbiota, remaining relatively unaffected by external environmental factors.
Collapse
Affiliation(s)
- Simona Pizzi
- Department of Biomedical, Surgical and Dental Sciences (DISBIOC), University of Milan, 20122 Milan, Italy; (S.P.); (A.D.C.); (R.F.)
| | - Angela Conti
- Department of Pharmaceutical Sciences (DSF), University of Perugia, 06123 Perugia, Italy; (A.C.); (D.C.P.)
| | - Alessandra Di Canito
- Department of Biomedical, Surgical and Dental Sciences (DISBIOC), University of Milan, 20122 Milan, Italy; (S.P.); (A.D.C.); (R.F.)
| | | | - Roberto Foschino
- Department of Biomedical, Surgical and Dental Sciences (DISBIOC), University of Milan, 20122 Milan, Italy; (S.P.); (A.D.C.); (R.F.)
| | - Mathabatha Evodia Setati
- South African Grape and Wine Research Institute, Stellenbosch University, Matieland 7602, South Africa;
| | - Ileana Vigentini
- Department of Biomedical, Surgical and Dental Sciences (DISBIOC), University of Milan, 20122 Milan, Italy; (S.P.); (A.D.C.); (R.F.)
| |
Collapse
|
9
|
Minerdi D, Sabbatini P. Exploring the Grapevine Microbiome: Insights into the Microbial Ecosystem of Grape Berries. Microorganisms 2025; 13:438. [PMID: 40005803 PMCID: PMC11857911 DOI: 10.3390/microorganisms13020438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/22/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
Plant growth, health, and resilience to stress are intricately linked to their associated microbiomes. Grapevine, functioning as a holobiont, forms essential relationships with fungi and bacteria across both its belowground (roots) and aboveground (leaves and berries) compartments. The root microbiome exhibits a stable, site-specific structure, whereas the microbiomes of ephemeral tissues such as leaves and berries, which regenerate annually, display more stochastic assembly patterns across growing seasons. Among these, grape berries represent a critical component in viticulture due to their direct influence on wine quality and flavor complexity. Berries provide a unique ecological niche, hosting diverse microbial communities composed of yeasts, bacteria, and fungi that interact with the grapevine and its surrounding environment. These microorganisms are not only pivotal to berry development but also contribute significantly to the synthesis of secondary metabolites and fermentation processes, ultimately shaping the sensory and organoleptic properties of wine. This review consolidates current knowledge on the grapevine microbiome, with a particular emphasis on the microbial dynamics of grape berries.
Collapse
Affiliation(s)
- Daniela Minerdi
- Department of Agricultural, Forestry and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy;
| | - Paolo Sabbatini
- Department of Agricultural, Forestry and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy;
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
- Interdepartmental Centre for Grapevines and Wine Sciences, University of Turin, Corso Enotria 2/C, 12051 Alba, CN, Italy
| |
Collapse
|
10
|
Jumbam B, Toro M, Hu M. Comparative analysis of grape berry microbiota uncovers sour rot associates from a Maryland vineyard. PLoS One 2025; 20:e0314397. [PMID: 39913420 PMCID: PMC11801560 DOI: 10.1371/journal.pone.0314397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/08/2024] [Indexed: 02/09/2025] Open
Abstract
Grape sour rot (GSR) is a disease complex involving fungi and bacteria that can cause significant yield losses of susceptible varieties. It is widely spread in the eastern U.S. and other grape-growing regions globally. Previous studies suggest that damaged fruit skin and feeding insects like Drosophila spp. are required for the disease to occur. Current control strategies for the management of sour rot are not sustainable, and research on the implications of chemical management of the disease on microbiome diversity is scarce. Our aim was to: i) investigate the effect of insecticide application and netting treatment on the microbiota of GSR-susceptible and tolerant grape varieties; and ii) identify the core microbial assemblages potentially associated with grape sour rot development in Maryland. Using a combined analysis of culture-dependent and independent data, we found that microbiota diversity of healthy grape berries did not change with netting, insecticide application, and between varieties. There was a significant difference in bacterial diversity between healthy and sour rot-affected berries. Komagataeibacter was consistently associated with infected berries followed by Acetobacter and Gluconobacter. This is the first study to report the association of Komagataeibacter with GSR-infected berries. It is thus imperative to investigate its role alongside that of other identified core microbiomes in sour rot development. Candida and Pichia were also consistent genera in infected berries. Several unidentified Candida, Pichia, and other fungal species from infected berries formed the core mycobiomes and it would be worth investigating their involvement in GSR development in Mid-Atlantic vineyards.
Collapse
Affiliation(s)
- Blaise Jumbam
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland, United States of America
| | - Magaly Toro
- Joint Institute for Food Safety and Applied Nutrition (JIFSAN), University of Maryland, College Park, Maryland, United States of America
| | - Mengjun Hu
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland, United States of America
| |
Collapse
|
11
|
Berdeja MP, Reynolds NK, Pawlowska T, Heuvel JEV. Commercial bioinoculants improve colonization but do not alter the arbuscular mycorrhizal fungal community of greenhouse-grown grapevine roots. ENVIRONMENTAL MICROBIOME 2025; 20:15. [PMID: 39891198 PMCID: PMC11783862 DOI: 10.1186/s40793-025-00676-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
BACKGROUND Arbuscular mycorrhizal fungi (AMF) are beneficial root symbionts contributing to improved plant growth and development and resistance to abiotic and biotic stresses. Commercial bioinoculants containing AMF are widely considered as an alternative to agrochemicals in vineyards. However, their effects on grapevine plants grown in soil containing native communities of AMF are still poorly understood. In a greenhouse experiment, we evaluated the influence of five different bioinoculants on the composition of native AMF communities of young Cabernet Sauvignon vines grown in a non-sterile soil. Root colonization, leaf nitrogen concentration, plant biomass and root morphology were assessed, and AMF communities of inoculated and non-inoculated grapevine roots were profiled using high-throughput sequencing. RESULTS Contrary to our predictions, no differences in the microbiome of plants exposed to native AMF communities versus commercial AMF bioinoculants + native AMF communities were detected in roots. However, inoculation induced positive changes in root traits as well as increased AMF colonization, plant biomass, and leaf nitrogen. Most of these desirable functional traits were positively correlated with the relative abundance of operational taxonomic units identified as Glomus, Rhizophagus and Claroideoglomus genera. CONCLUSION These results suggest synergistic interactions between commercial AMF bioinoculants and native AMF communities of roots to promote grapevine growth. Long-term studies with further genomics, metabolomics and physiological research are needed to provide a deeper understanding of the symbiotic interaction among grapevine roots, bioinoculants and natural AMF communities and their role to promote plant adaptation to current environmental concerns.
Collapse
Affiliation(s)
- Mariam P Berdeja
- Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA.
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, USA.
| | - Nicole K Reynolds
- Plant Pathology and Plant Microbe-Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
- Biological Sciences Department, California State Polytechnic University, Pomona, CA, USA
| | - Teresa Pawlowska
- Plant Pathology and Plant Microbe-Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Justine E Vanden Heuvel
- Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| |
Collapse
|
12
|
Bekris F, Papadopoulou E, Vasileiadis S, Karapetsas N, Theocharis S, Alexandridis TK, Koundouras S, Karpouzas DG. Vintage and terroir are the strongest determinants of grapevine carposphere microbiome in the viticultural zone of Drama, Greece. FEMS Microbiol Ecol 2025; 101:fiaf008. [PMID: 39832807 PMCID: PMC11797032 DOI: 10.1093/femsec/fiaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/14/2024] [Accepted: 01/17/2025] [Indexed: 01/22/2025] Open
Abstract
The role of microbial terroir for enhancing the geographical origin of wines is well appreciated. Still, we lack a good understanding of the assembly mechanisms driving carposphere grapevine microbiota. We investigated the role of cultivar, vintage, terroir units (TUs), and vineyard geographic location on the composition of the carpospheric microbiota of three important cultivars in the viticultural zone of Drama, Greece using amplicon sequencing. Our strategy to define TUs based on georeferencing analysis allowed us to disentangle the effects of TU and vineyards geographic location, considered as a lumped factor in most studies to date. We hypothesized that (i) these factors contribute differently on the assembly of the carposphere microbiome and that (ii) fungal and bacterial communities follow different assembly mechanisms. Vintage and TU were the stronger determinants of the carposphere fungal and bacterial communities, although the latter showed weaker response. The stronger effect of TU over vineyard geography and cultivar reinforces the role of microbial terroir in viticulture. We identified fungi (Cladosporium, Aureobasidium, Alternaria) and bacteria (Pseudomonas, Methylobacterium, Sphingomonadaceae) as main members of the core microbiome. These microorganisms were associated with specific cultivars and TUs, a feature that could be pursued towards a new microbiome-modulated paradigm of viticulture.
Collapse
Affiliation(s)
- Fotios Bekris
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, 41500 (Viopolis) Larissa, Greece
| | - Elena Papadopoulou
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, 41500 (Viopolis) Larissa, Greece
| | - Sotirios Vasileiadis
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, 41500 (Viopolis) Larissa, Greece
| | - Nikolaos Karapetsas
- Department of Hydraulics, Soil Science and Agricultural Engineering, School of Agriculture, Laboratory of Remote Sensing, Spectroscopy and Geographic Information Systems, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Serafeim Theocharis
- Department of Horticulture, School of Agriculture, Laboratory of Viticulture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Thomas K Alexandridis
- Department of Hydraulics, Soil Science and Agricultural Engineering, School of Agriculture, Laboratory of Remote Sensing, Spectroscopy and Geographic Information Systems, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Stefanos Koundouras
- Department of Horticulture, School of Agriculture, Laboratory of Viticulture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Dimitrios G Karpouzas
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, 41500 (Viopolis) Larissa, Greece
| |
Collapse
|
13
|
Bai C, Fan B, Hao J, Yao Y, Ran S, Wang H, Li H, Wei R. Changes in Microbial Community Diversity and the Formation Mechanism of Flavor Metabolites in Industrial-Scale Spontaneous Fermentation of Cabernet Sauvignon Wines. Foods 2025; 14:235. [PMID: 39856901 PMCID: PMC11764576 DOI: 10.3390/foods14020235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/02/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
The key flavor compound formation pathways resulting from indigenous microorganisms during the spontaneous fermentation of wine have not been thoroughly described. In this study, high-throughput metagenomic sequencing and untargeted metabolomics were utilized to investigate the evolution of microbial and metabolite profiles during spontaneous fermentation in industrial-scale wine production and to elucidate the formation mechanisms of key flavor compounds. Metabolome analysis showed that the total amount of esters, fatty acids, organic acids, aldehydes, terpenes, flavonoids, and non-flavonoids increased gradually during fermentation. Enrichment analysis indicated that metabolic pathways related to the synthesis, decomposition, transformation, and utilization of sugars, amino acids, and fatty acids were involved in the formation of key flavor compounds in wine. Metagenomic analysis revealed that Saccharomyces, Hanseniaspora, Zygosaccharomyces, Wickerhamiella, Lactobacillus, and Fructobacillus were the dominant taxa during spontaneous fermentation. They were significantly positively correlated with organic acids, fatty acids, esters, phenols, aldehydes, terpenes, and phenols. In conclusion, this research provides new insights into the metabolic pathways of key flavor compounds formed by indigenous microorganisms during wine fermentation.
Collapse
Affiliation(s)
- Chunyan Bai
- College of Food Science and Engineering, Shanxi Agricultural University, No. 1, Mingxian South Road, Taigu District, Jinzhong 030801, China; (C.B.); (B.F.); (J.H.); (Y.Y.); (S.R.)
- Beijing Hongxing Liuquxiang Co., Ltd., Liuquxiang Branch Company, Industrial Zone, Qixian, Jinzhong 030900, China
| | - Boyuan Fan
- College of Food Science and Engineering, Shanxi Agricultural University, No. 1, Mingxian South Road, Taigu District, Jinzhong 030801, China; (C.B.); (B.F.); (J.H.); (Y.Y.); (S.R.)
| | - Jinmei Hao
- College of Food Science and Engineering, Shanxi Agricultural University, No. 1, Mingxian South Road, Taigu District, Jinzhong 030801, China; (C.B.); (B.F.); (J.H.); (Y.Y.); (S.R.)
| | - Yuan Yao
- College of Food Science and Engineering, Shanxi Agricultural University, No. 1, Mingxian South Road, Taigu District, Jinzhong 030801, China; (C.B.); (B.F.); (J.H.); (Y.Y.); (S.R.)
| | - Shiming Ran
- College of Food Science and Engineering, Shanxi Agricultural University, No. 1, Mingxian South Road, Taigu District, Jinzhong 030801, China; (C.B.); (B.F.); (J.H.); (Y.Y.); (S.R.)
- Xinjiang Deyun Xingtai Agriculture Co., Ltd., No. 32, Dingxin Road, Fuhai, Altay 836400, China
| | - Hua Wang
- College of Enology, Northwest A&F University, No. 22, Xinong Road, Yangling, Xianyang 712100, China; (H.W.); (H.L.)
| | - Hua Li
- College of Enology, Northwest A&F University, No. 22, Xinong Road, Yangling, Xianyang 712100, China; (H.W.); (H.L.)
| | - Ruteng Wei
- College of Food Science and Engineering, Shanxi Agricultural University, No. 1, Mingxian South Road, Taigu District, Jinzhong 030801, China; (C.B.); (B.F.); (J.H.); (Y.Y.); (S.R.)
| |
Collapse
|
14
|
Martins V, Abdallah C, Teixeira A, Moreira C, Nóbrega M, Lanoue A, Gerós H. Subregional pedoclimatic conditions with contrasted UV-radiation shape host-microbiome and metabolome phenotypes in the grape berry. Food Chem X 2025; 25:102139. [PMID: 39844957 PMCID: PMC11750517 DOI: 10.1016/j.fochx.2024.102139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/13/2024] [Accepted: 12/27/2024] [Indexed: 01/24/2025] Open
Abstract
This study used integrative omics to address the response of key elements of the grapevine holobiont to contrasted pedoclimatic conditions found in distinct subregions of Douro Valley (Portugal). A metabolic OPLS-DA model predicted with 100 % accuracy the geographic origin of berries; higher UV radiation, higher temperature and lower precipitation stimulated the accumulation of phenolic acids, flavonols and malvidin conjugates, in detriment of amino acids, organic acids, flavan-3-ols, proanthocyanidins and non-malvidin anthocyanins. Metabarcoding showed a trade-off between bacteria and fungal diversity among subregions, with Pseudomonas, Lactobacillus, Aspergillus and Penicillium acting as intraregional microbial markers. The high phenotypic plasticity of berries and the role of microbes in this process are relevant upon current projections for increased UV radiation and temperature in Southern European viticulture, in a climate change scenario, with predicted impacts on regional wine quality and on the development of adaptation strategies for resilient viticulture.
Collapse
Affiliation(s)
- Viviana Martins
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Cécile Abdallah
- EA 2106 Biomolécules et Biotechnologie Végétales, UFR des Sciences Pharmaceutiques, Université de Tours, Tours, France
| | - António Teixeira
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Carolina Moreira
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Márcio Nóbrega
- Sogevinus Quintas, S.A., Av. de Diogo Leite 344, Vila Nova de Gaia, Portugal
| | - Arnaud Lanoue
- EA 2106 Biomolécules et Biotechnologie Végétales, UFR des Sciences Pharmaceutiques, Université de Tours, Tours, France
| | - Hernâni Gerós
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal
| |
Collapse
|
15
|
Steng K, Roy F, Kellner H, Moll J, Tittmann S, Frotscher J, Döring J. Functional diversity of the above-ground fungal community under long-term integrated, organic and biodynamic Vineyard Management. ENVIRONMENTAL MICROBIOME 2024; 19:89. [PMID: 39558428 PMCID: PMC11575106 DOI: 10.1186/s40793-024-00625-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/15/2024] [Indexed: 11/20/2024]
Abstract
BACKGROUND Sustainable agriculture increasingly emphasizes the importance of microbial communities in influencing plant health and productivity. In viticulture, understanding the impact of management practices on fungal communities is critical, given their role in disease dynamics, grape and wine quality. This study investigates the effects of integrated, organic, and biodynamic management practices on the diversity and function of fungal communities in a vineyard located in Geisenheim, Germany, focusing on above-ground parts such as bark, leaves, and grapes. RESULTS Our findings indicate that while overall fungal species richness did not significantly differ among management systems across various compartments, the composition of these communities was distinctly influenced by the type of management system. In particular, leaf and grape compartments showed notable variations in fungal community structure between integrated and organic/biodynamic management. No differences were observed between organic and biodynamic management. Integrated management demonstrated a significantly higher abundance of mycoparasites in comparison to organic and biodynamic management, primarily attributed to the increased presence of Sporobolomyces roseus, Sporobolomyces ellipsoideus and Rhodotorula glutinis. CONCLUSIONS The findings highlight the importance of management practices in shaping fungal community composition and function in vineyards. Although overall species richness remained unaffected, community composition and functional diversity varied, highlighting the potential for strategic microbiome management to enhance vineyard sustainability and plant health.
Collapse
Affiliation(s)
- Katharina Steng
- Department of General and Organic Viticulture, Hochschule Geisenheim University, Von-Lade- Str. 1, 65366, Geisenheim, Germany.
| | - Friederike Roy
- Department of Bio- and Environmental Sciences, TU Dresden, International Institute Zittau, Markt 23, 02763, Zittau, Germany
| | - Harald Kellner
- Department of Bio- and Environmental Sciences, TU Dresden, International Institute Zittau, Markt 23, 02763, Zittau, Germany
| | - Julia Moll
- Department of Soil Ecology, Helmholtz Centre for Environmental Research GmbH - UFZ, Theodor-Lieser-Str. 4, 06120, Halle (Saale), Germany
| | - Susanne Tittmann
- Department of General and Organic Viticulture, Hochschule Geisenheim University, Von-Lade- Str. 1, 65366, Geisenheim, Germany
| | - Johanna Frotscher
- Department of Plant Breeding, Hochschule Geisenheim University, Von-Lade-Str. 1, 65366, Geisenheim, Germany
| | - Johanna Döring
- Department of General and Organic Viticulture, Hochschule Geisenheim University, Von-Lade- Str. 1, 65366, Geisenheim, Germany
| |
Collapse
|
16
|
Cui S, Zhou L, Fang Q, Xiao H, Jin D, Liu Y. Growth period and variety together drive the succession of phyllosphere microbial communities of grapevine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175334. [PMID: 39117232 DOI: 10.1016/j.scitotenv.2024.175334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/29/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Phyllosphere microbes play a crucial role in plant health and productivity. However, the influence of abiotic and biotic factors on these communities is poorly understood. Here, we used amplicon sequencing to investigate the microbiome variations across eight grape cultivars and three distinct leaf ages. The diversity and richness of phyllosphere microbiomes were significantly affected by cultivars and leaf age. Young leaves of most grape cultivars had a higher diversity. Beta-diversity analyses revealed notable differences in microbial communities across leaf ages, with bacterial communities varying substantially between cultivars. The main bacterial genera included Staphylococcus, Exiguobacterium, Acinetobacter, Enterococcus, and Erwinia; the principal fungal genera were Cladosporium, Moesziomyces, Alternaria, Didymella, and Coprinellus across all samples. LEfSe analysis revealed significant differences in bacterial and fungal biomarkers at different leaf ages, with no biomarkers identified among different cultivars. Fungal biomarkers were more abundant than bacterial at three leaf ages, and older leaves had more fungal biomarkers. Notably, beneficial microbial taxa with biocontrol potential were present on the phyllosphere at 45 d, whereas certain fungal groups associated with increased disease risk were first detected at 100 d. The bacterial network was more complex than the fungal network, and young leaves had a more complex network in most cultivars. Our study elucidated the dynamics of early grape phyllosphere microbes, providing valuable insights for early detection and prediction of grape diseases and a foundation for leveraging the grape leaf microbiome for agricultural purposes.
Collapse
Affiliation(s)
- Shaowei Cui
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; School of Grassland Science, Beijing Forestry University, Beijing 100083, China
| | - Lianzhu Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qiandong Fang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Haijun Xiao
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China
| | - Decai Jin
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yongqiang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
17
|
Hou M, Leng C, Zhu J, Yang M, Yin Y, Xing Y, Chen J. Alpine and subalpine plant microbiome mediated plants adapt to the cold environment: A systematic review. ENVIRONMENTAL MICROBIOME 2024; 19:82. [PMID: 39487507 PMCID: PMC11529171 DOI: 10.1186/s40793-024-00614-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/02/2024] [Indexed: 11/04/2024]
Abstract
With global climate change, ecosystems are affected, some of which are more vulnerable than others, such as alpine ecosystems. Microbes play an important role in environmental change in global ecosystems. Plants and microbes are tightly associated, and symbiotic or commensal microorganisms are crucial for plants to respond to stress, particularly for alpine plants. The current study of alpine and subalpine plant microbiome only stays at the community structure scale, but its ecological function and mechanism to help plants to adapt to the harsh environments have not received enough attention. Therefore, it is essential to systematically understand the structure, functions and mechanisms of the microbial community of alpine and subalpine plants, which will be helpful for the conservation of alpine and subalpine plants using synthetic microbial communities in the future. This review mainly summarizes the research progress of the alpine plant microbiome and its mediating mechanism of plant cold adaptation from the following three perspectives: (1) Microbiome community structure and their unique taxa of alpine and subalpine plants; (2) The role of alpine and subalpine plant microbiome in plant adaptation to cold stress; (3) Mechanisms by which the microbiome of alpine and subalpine plants promotes plant adaptation to low-temperature environments. Finally, we also discussed the future application of high-throughput technologies in the development of microbial communities for alpine and subalpine plants. The existing knowledge could improve our understanding of the important role of microbes in plant adaptation to harsh environments. In addition, perspective further studies on microbes' function confirmation and microbial manipulations in microbiome engineering were also discussed.
Collapse
Affiliation(s)
- Mengyan Hou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Chunyan Leng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Jun Zhu
- Xinjiang Institute of Chinese and Ethnic Medicine, Urumqi, 830002, People's Republic of China
| | - Mingshu Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Yifei Yin
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Yongmei Xing
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Juan Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China.
- School of Pharmacy, Shandong Second Medical University, Weifang, 261053, People's Republic of China.
| |
Collapse
|
18
|
Fracchia F, Guinet F, Engle NL, Tschaplinski TJ, Veneault-Fourrey C, Deveau A. Microbial colonisation rewires the composition and content of poplar root exudates, root and shoot metabolomes. MICROBIOME 2024; 12:173. [PMID: 39267187 PMCID: PMC11395995 DOI: 10.1186/s40168-024-01888-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 07/27/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Trees are associated with a broad range of microorganisms colonising the diverse tissues of their host. However, the early dynamics of the microbiota assembly microbiota from the root to shoot axis and how it is linked to root exudates and metabolite contents of tissues remain unclear. Here, we characterised how fungal and bacterial communities are altering root exudates as well as root and shoot metabolomes in parallel with their establishment in poplar cuttings (Populus tremula x tremuloides clone T89) over 30 days of growth. Sterile poplar cuttings were planted in natural or gamma irradiated soils. Bulk and rhizospheric soils, root and shoot tissues were collected from day 1 to day 30 to track the dynamic changes of fungal and bacterial communities in the different habitats by DNA metabarcoding. Root exudates and root and shoot metabolites were analysed in parallel by gas chromatography-mass spectrometry. RESULTS Our study reveals that microbial colonisation triggered rapid and substantial alterations in both the composition and quantity of root exudates, with over 70 metabolites exclusively identified in remarkably high abundances in the absence of microorganisms. Noteworthy among these were lipid-related metabolites and defence compounds. The microbial colonisation of both roots and shoots exhibited a similar dynamic response, initially involving saprophytic microorganisms and later transitioning to endophytes and symbionts. Key constituents of the shoot microbiota were also discernible at earlier time points in the rhizosphere and roots, indicating that the soil constituted a primary source for shoot microbiota. Furthermore, the microbial colonisation of belowground and aerial compartments induced a reconfiguration of plant metabolism. Specifically, microbial colonisation predominantly instigated alterations in primary metabolism in roots, while in shoots, it primarily influenced defence metabolism. CONCLUSIONS This study highlighted the profound impact of microbial interactions on metabolic pathways of plants, shedding light on the intricate interplay between plants and their associated microbial communities. Video Abstract.
Collapse
Affiliation(s)
- F Fracchia
- Université de Lorraine, INRAe, IAM, Nancy, France
| | - F Guinet
- Université de Lorraine, INRAe, IAM, Nancy, France
| | - N L Engle
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6341, USA
| | - T J Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6341, USA
| | | | - A Deveau
- Université de Lorraine, INRAe, IAM, Nancy, France.
| |
Collapse
|
19
|
Besze BZ, Borsodi AK, Megyes M, Zsigmond T, Horel Á. Changes in the taxonomic composition of soil bacterial communities under different inter-row tillage managements in a sloping vineyard of the Balaton Uplands (Hungary). Biol Futur 2024; 75:327-338. [PMID: 39073547 DOI: 10.1007/s42977-024-00234-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/14/2024] [Indexed: 07/30/2024]
Abstract
The common grape (Vitis vinifera L.) has been cultivated for thousands of years. Nowadays, it is cultivated using a variety of tillage practices that affect the structure of the soil microbial communities and thus the health of the vine. The aim of this study was to explore and compare the effects of tillage (shallow tillage with bare soil) and no-tillage (perennial grass cover) practices on soil physical and chemical properties and soil bacterial community diversities in a small catchment. Soil samples were taken in July and October 2020 at different slope positions of two vineyards exposed to erosion. The two sampling sites were separated by the agricultural inter-row management type: tilled and no-tilled slopes. The taxonomic diversity of bacterial communities was determined using 16S rRNA gene-based amplicon sequencing method on Illumina MiSeq platform. Based on the examined soil properties, the sampling areas were separated from each other according to the positions of the upper and lower slopes and the sampling times. Both the tilled and no-tilled soil samples were dominated by sequences assigned to phyla Pseudomonadota, Acidobacteriota, Bacteroidota, Verrucomicrobiota, Actinobacteriota, and Gemmatimonadota. The results showed that tillage had no significant effect compared to the no-tilled samples in the studied area. Water runoff and seasonally changed soil physical and chemical properties affected mainly the bacterial community structures.
Collapse
Affiliation(s)
- Balázs Zoltán Besze
- Department of Microbiology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary
| | - Andrea K Borsodi
- Department of Microbiology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary.
| | - Melinda Megyes
- Department of Microbiology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary
- Doctoral School of Environmental Sciences, ELTE Eötvös Loránd University, Egyetem tér 1-3, Budapest, 1053, Hungary
| | - Tibor Zsigmond
- Institute for Soil Sciences, HUN-REN Centre for Agricultural Research, Ruszti ut 2-4, Budapest, 1022, Hungary
- Doctoral School of Environmental Sciences, ELTE Eötvös Loránd University, Egyetem tér 1-3, Budapest, 1053, Hungary
| | - Ágota Horel
- Institute for Soil Sciences, HUN-REN Centre for Agricultural Research, Ruszti ut 2-4, Budapest, 1022, Hungary
| |
Collapse
|
20
|
Yacoub A, Renault D, Haidar R, Boulisset F, Letousey P, Guyoneaud R, Attard E, Rey P. Impact of the Biocontrol Product, Esquive ® WP, on the Indigenous Grapevine Wood Microbiome after a 6-Year Application Period. J Fungi (Basel) 2024; 10:566. [PMID: 39194892 DOI: 10.3390/jof10080566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Grapevine trunk diseases (GTDs) are currently limiting grapevine productivity in many vineyards worldwide. As no chemical treatments are registered to control GTDs, biocontrol agents are being tested against these diseases. Esquive® WP, based on the fungus Trichoderma atroviride I-1237 strain, is the first biocontrol product registered in France to control GTDs. In this study, we determine whether, following grapevine pruning wound treatments with Esquive® WP, changes occurred or not in the indigenous microbial communities that are colonizing grapevine wood. Over a 6-year period, Esquive® WP was applied annually to pruning wounds on three grapevine cultivars located in three different regions. Wood samples were collected at 2 and 10 months after the Esquive® WP treatments. Based on MiSeq high-throughput sequencing analyses, the results showed that specific microbial communities were linked to each 'region/cultivar' pairing. In certain cases, a significant modification of alpha diversity indexes and the relative abundance of some microbial taxa were observed between treated and non-treated grapevines 2 months after Esquive® WP treatment. However, these modifications disappeared over time, i.e., 10 months post-treatment. This result clearly showed that Esquive® WP pruning wood treatment did not induce significant changes in the grapevine wood's microbiome, even after 6 years of recurrent applications on the plants.
Collapse
Affiliation(s)
- Amira Yacoub
- E2S UPPA, CNRS, IPREM UMR5254, Université de Pau et des Pays de l'Adour, 64000 Pau, France
- SAVE, INRAE, Bordeaux Sciences Agro, ISVV, 33882 Villenave d'Ornon, France
| | - David Renault
- SAVE, INRAE, Bordeaux Sciences Agro, ISVV, 33882 Villenave d'Ornon, France
| | - Rana Haidar
- E2S UPPA, CNRS, IPREM UMR5254, Université de Pau et des Pays de l'Adour, 64000 Pau, France
- SAVE, INRAE, Bordeaux Sciences Agro, ISVV, 33882 Villenave d'Ornon, France
| | | | | | - Rémy Guyoneaud
- E2S UPPA, CNRS, IPREM UMR5254, Université de Pau et des Pays de l'Adour, 64000 Pau, France
| | - Eleonore Attard
- E2S UPPA, CNRS, IPREM UMR5254, Université de Pau et des Pays de l'Adour, 64000 Pau, France
| | - Patrice Rey
- E2S UPPA, CNRS, IPREM UMR5254, Université de Pau et des Pays de l'Adour, 64000 Pau, France
- SAVE, INRAE, Bordeaux Sciences Agro, ISVV, 33882 Villenave d'Ornon, France
| |
Collapse
|
21
|
Rezende G, Rocha F, Funnicelli M, Malavazi I, Crauwels S, Brandao M, Cunha A. Metabarcoding analysis reveals an interaction among distinct groups of bacteria associated with three different varietals of grapes used for wine production in Brazil. Heliyon 2024; 10:e32283. [PMID: 38933974 PMCID: PMC11200342 DOI: 10.1016/j.heliyon.2024.e32283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Grapes are globally popular with wine production being one of the most well-known uses of grapes worldwide. Brazil has a growing wine industry, and the Serra Gaúcha region is a significant contributor to the country's wine production. Nonetheless, other states are increasing their relevance in this segment. Environmental factors and the soil microbiome (bacteria and fungi) heavily influence grape quality, shaping the crucial "terroir" for wines. Here, soil quality was assessed through nutrient analysis and bacteria microbial diversity, which could significantly impact grape health and final wine attributes. Soil samples from São Paulo's vineyards, focusing on Syrah, Malbec, and Cabernet Sauvignon, underwent chemical and microbial analysis via 16S rRNA metabarcoding and highlighted significant differences in soil composition between vineyards. Statistical analyses including PCA and CAP showcased region-based separation and intricate associations between microbiota, region, and grape variety. Correlation analysis pinpointed microbial genera linked to specific soil nutrients. Random Forest analysis identified abundant bacterial genera per grape variety and the Network analysis revealed varied co-occurrence patterns, with Cabernet Sauvignon exhibiting complex microbial interactions. This study unveils complex relationships between soil microbiota, nutrients, and diverse grape varieties in distinct vineyard regions. Understanding how these specific microorganisms are associated with grapes can improve vineyard management, grape quality, and wine production. It can also potentially optimize soil health, bolster grapevine resilience against pests and diseases, and contribute to the unique character of wines known as terroir.
Collapse
Affiliation(s)
- G.S. Rezende
- Genetic and Evolution Department, Laboratory of Biochemistry and Applied Genetics (LBGA-UFSCar), SP, Brazil
| | - F.I. Rocha
- USDA, Agricultural Research Service, Water Management Research Unit, San Joaquin Valley Agricultural Sciences Center, Parlier, CA, USA
| | - M.I.G. Funnicelli
- Laboratory of Bioinformatics, Department of Agricultural, Livestock and Environmental Biotechnology, São Paulo State University (UNESP), School of Agricultural and Veterinary Sciences, Jaboticabal, SP, Brazil
| | - I. Malavazi
- Genetic and Evolution Department, Laboratory of Biochemistry and Applied Genetics (LBGA-UFSCar), SP, Brazil
| | - S. Crauwels
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
- Leuven Institute for Beer Research (LIBR), KU Leuven, Leuven, Belgium
| | - M.M. Brandao
- Universidade Estadual de Campinas. Centro de Biologia Molecular e Engenharia Genética - Laboratory of Integrative and Systemic Biology (LaBIS- UNICAMP), SP, Brazil
| | - A.F. Cunha
- Genetic and Evolution Department, Laboratory of Biochemistry and Applied Genetics (LBGA-UFSCar), SP, Brazil
| |
Collapse
|
22
|
Borghi M, Pacifico D, Crucitti D, Squartini A, Berger MMJ, Gamboni M, Carimi F, Lehad A, Costa A, Gallusci P, Fernie AR, Zottini M. Smart selection of soil microbes for resilient and sustainable viticulture. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1258-1267. [PMID: 38329213 DOI: 10.1111/tpj.16674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
The grapevine industry is of high economic importance in several countries worldwide. Its growing market demand led to an acceleration of the entire production processes, implying increasing use of water resources at the expense of environmental water balance and the hydrological cycle. Furthermore, in recent decades climate change and the consequent expansion of drought have further compromised water availability, making current agricultural systems even more fragile from ecological and economical perspectives. Consequently, farmers' income and welfare are increasingly unpredictable and unstable. Therefore, it is urgent to improve the resilience of vineyards, and of agro-ecosystems in general, by developing sustainable and environmentally friendly farming practices by more rational biological and natural resources use. The PRIMA project PROSIT addresses these challenges by characterizing and harnessing grapevine-associated microbiota to propose innovative and sustainable agronomic practices. PROSIT aims to determine the efficacy of natural microbiomes transferred from grapevines adapted to arid climate to commonly cultivated grapevine cultivars. In doing so it will test those natural microbiome effects on drought tolerance. This multidisciplinary project will utilize in vitro culture techniques, bioimaging, microbiological tests, metabolomics, metabarcoding and epigenetic analyses. These will be combined to shed light on molecular mechanisms triggered in plants by microbial associations upon water stress. To this end it is hoped that the project will serve as a blueprint not only for studies uncovering the microbiome role in drought stress in a wide range of species, but also for analyzing its effect on a wide range of stresses commonly encountered in modern agricultural systems.
Collapse
Affiliation(s)
- Monica Borghi
- Department of Biology, Utah State University, Logan, Utah, 84321-5305, USA
| | - Davide Pacifico
- IBBR CNR - Institute of Biosciences and Bioresources, via Ugo La Malfa 153, 90146, Palermo, Italy
| | - Dalila Crucitti
- IBBR CNR - Institute of Biosciences and Bioresources, via Ugo La Malfa 153, 90146, Palermo, Italy
| | - Andrea Squartini
- Department of Agronomy, Animals, Food, Natural Resources, and Environment, Università degli Studi di Padova, Viale dell'Università 16, 35020, Legnaro, Padua, Italy
| | - Margot M J Berger
- UMR Ecophysiologie et Génomique Fonctionnelle de la Vigne, University of Bordeaux, INRAE, Bordeaux Science Agro, 210 Chemin de Leyssottes, 33882, Villenave d'Ornon, France
| | - Mauro Gamboni
- IBBR CNR - Institute of Biosciences and Bioresources, via Ugo La Malfa 153, 90146, Palermo, Italy
| | - Francesco Carimi
- IBBR CNR - Institute of Biosciences and Bioresources, via Ugo La Malfa 153, 90146, Palermo, Italy
| | - Arezki Lehad
- ENSA, Rue Hassan Badi, Belfort, El Harrach, 16000, Algeria
| | - Alex Costa
- Department of Biosciences, University of Milan, via Celoria 26, 20133, Milano, Italy
| | - Philippe Gallusci
- UMR Ecophysiologie et Génomique Fonctionnelle de la Vigne, University of Bordeaux, INRAE, Bordeaux Science Agro, 210 Chemin de Leyssottes, 33882, Villenave d'Ornon, France
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Michela Zottini
- Department of Biology, Università degli Studi di Padova, via U. Bassi 58b, 35131, Padova, Italy
| |
Collapse
|
23
|
Ding Y, Wang L, Wang H, Li H. Dynamic Succession of Natural Microbes during the Ecolly Grape Growth under Extremely Simplified Eco-Cultivation. Foods 2024; 13:1580. [PMID: 38790880 PMCID: PMC11120413 DOI: 10.3390/foods13101580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/26/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
The composition and continuous succession of natural microbial communities during grape growth play important roles in grape health and flavor quality as well as in characterizing the regional wine terroir. This study explored the diversity and dynamics of fruit epidermal microbes at each growth and developmental stage of Ecolly grapes under an extremely simplified eco-cultivation model, analyzed microbial interactions and associations of weather parameters to specific communities, and emphasized metabolic functional characteristics of microecology. The results indicated that the natural microbial community changed significantly during the grape growth phase. The dominant fungal genera mainly included Gibberella, Alternaria, Filobasidium, Naganishia, Ascochyta, Apiotrichum, Comoclathris, and Aureobasidium, and the dominant bacterial genera mainly contained Sediminibacterium, Ralstonia, Pantoea, Bradyrhizobium, Brevundimonas, Mesorhizobium, Planococcus, and Planomicrobium. In summary, filamentous fungi gradually shifted to basidiomycetous yeasts along with fruit ripening, with a decline in the number of Gram-negative bacteria and a relative increase in Gram-positive bacteria. The community assembly process reflects the fact that microbial ecology may be influenced by a variety of factors, but the fungal community was more stable, and the bacterial community fluctuated more from year to year, which may reflect their response to weather conditions over the years. Overall, our study helps to comprehensively profile the ecological characteristics of the grape microbial system, highlights the natural ecological viticulture concept, and promotes the sustainable development of the grape and wine industry.
Collapse
Affiliation(s)
- Yinting Ding
- College of Enology, Northwest A&F University, Xianyang 712100, China; (Y.D.); (L.W.); (H.W.)
| | - Lin Wang
- College of Enology, Northwest A&F University, Xianyang 712100, China; (Y.D.); (L.W.); (H.W.)
| | - Hua Wang
- College of Enology, Northwest A&F University, Xianyang 712100, China; (Y.D.); (L.W.); (H.W.)
- China Wine Industry Technology Institute, Yinchuan 750021, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Xianyang 712100, China
- Engineering Research Center for Viti-Viniculture, National Forestry and Grassland Administration, Xianyang 712100, China
| | - Hua Li
- College of Enology, Northwest A&F University, Xianyang 712100, China; (Y.D.); (L.W.); (H.W.)
- China Wine Industry Technology Institute, Yinchuan 750021, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Xianyang 712100, China
- Engineering Research Center for Viti-Viniculture, National Forestry and Grassland Administration, Xianyang 712100, China
| |
Collapse
|
24
|
Lailheugue V, Darriaut R, Tran J, Morel M, Marguerit E, Lauvergeat V. Both the scion and rootstock of grafted grapevines influence the rhizosphere and root endophyte microbiomes, but rootstocks have a greater impact. ENVIRONMENTAL MICROBIOME 2024; 19:24. [PMID: 38654392 DOI: 10.1186/s40793-024-00566-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/28/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Soil microorganisms play an extensive role in the biogeochemical cycles providing the nutrients necessary for plant growth. Root-associated bacteria and fungi, originated from soil, are also known to influence host health. In response to environmental stresses, the plant roots exude specific molecules influencing the composition and functioning of the rhizospheric and root microbiomes. This response is host genotype-dependent and is affected by the soil microbiological and chemical properties. It is essential to unravel the influence of grapevine rootstock and scion genotypes on the composition of this microbiome, and to investigate this relationship with plant growth and adaptation to its environment. Here, the composition and the predicted functions of the microbiome of the root system were studied using metabarcoding on ten grapevine scion-rootstock combinations, in addition to plant growth and nutrition measurements. RESULTS The rootstock genotype significantly influenced the diversity and the structure of the bacterial and fungal microbiome, as well as its predicted functioning in rhizosphere and root compartments when grafted with the same scion cultivar. Based on β-diversity analyses, 1103P rootstock showed distinct bacterial and fungal communities compared to the five others (RGM, SO4, 41B, 3309 C and Nemadex). The influence of the scion genotype was more variable depending on the community and the investigated compartment. Its contribution was primarily observed on the β-diversity measured for bacteria and fungi in both root system compartments, as well as for the arbuscular mycorrhizal fungi (AMF) in the rhizosphere. Significant correlations were established between microbial variables and the plant phenotype, as well as with the plant mineral status measured in the petioles and the roots. CONCLUSION These results shed light on the capacity of grapevine rootstock and scion genotypes to recruit different functional communities of microorganisms, which affect host growth and adaptation to the environment. Selecting rootstocks capable of associating with positive symbiotic microorganisms is an adaptation tool that can facilitate the move towards sustainable viticulture and help cope with environmental constraints.
Collapse
Affiliation(s)
- Vincent Lailheugue
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d'Ornon, F-33882, France
| | - Romain Darriaut
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d'Ornon, F-33882, France
- Univ Rennes, CNRS, ECOBIO (Ecosystèmes, biodiversité, évolution) - UMR 6553, Rennes, F-35000, France
| | - Joseph Tran
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d'Ornon, F-33882, France
| | - Marine Morel
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d'Ornon, F-33882, France
| | - Elisa Marguerit
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d'Ornon, F-33882, France
| | - Virginie Lauvergeat
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d'Ornon, F-33882, France.
| |
Collapse
|
25
|
Darriaut R, Marzari T, Lailheugue V, Tran J, Martins G, Marguerit E, Masneuf-Pomarède I, Lauvergeat V. Microbial dysbiosis in roots and rhizosphere of grapevines experiencing decline is associated with active metabolic functions. FRONTIERS IN PLANT SCIENCE 2024; 15:1358213. [PMID: 38628369 PMCID: PMC11018932 DOI: 10.3389/fpls.2024.1358213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/11/2024] [Indexed: 04/19/2024]
Abstract
When grapevine decline, characterized by a premature decrease in vigor and yield and sometimes plant death, cannot be explained by pathological or physiological diseases, one may inquire whether the microbiological status of the soil is responsible. Previous studies have shown that the composition and structure of bacterial and fungal microbial communities in inter-row soil are affected in areas displaying vine decline, compared to areas with non-declining vines within the same plot. A more comprehensive analysis was conducted in one such plot. Although soil chemical parameters could not directly explain these differences, the declining vines presented lower vigor, yield, berry quality, and petiole mineral content than those in non-declining vines. The bacterial and fungal microbiome of the root endosphere, rhizosphere, and different horizons of the bulk soil were explored through enzymatic, metabolic diversity, and metabarcoding analysis in both areas. Despite the lower microbial diversity and richness in symptomatic roots and soil, higher microbial activity and enrichment of potentially both beneficial bacteria and pathogenic fungi were found in the declining area. Path modeling analysis linked the root microbial activity to berry quality, suggesting a determinant role of root microbiome in the berry mineral content. Furthermore, certain fungal and bacterial taxa were correlated with predicted metabolic pathways and metabolic processes assessed with Eco-Plates. These results unexpectedly revealed active microbial profiles in the belowground compartments associated with stressed vines, highlighting the interest of exploring the functional microbiota of plants, and more specifically roots and rhizosphere, under stressed conditions.
Collapse
Affiliation(s)
- Romain Darriaut
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
| | - Tania Marzari
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
| | - Vincent Lailheugue
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
| | - Joseph Tran
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
| | - Guilherme Martins
- Université de Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, UMR Œnologie 1366, ISVV, Villenave d’Ornon, France
- Bordeaux Sciences Agro, 1 cours du Général de Gaulle, Gradignan, France
| | - Elisa Marguerit
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
| | - Isabelle Masneuf-Pomarède
- Université de Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, UMR Œnologie 1366, ISVV, Villenave d’Ornon, France
- Bordeaux Sciences Agro, 1 cours du Général de Gaulle, Gradignan, France
| | - Virginie Lauvergeat
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
| |
Collapse
|
26
|
Holkar SK, Ghotgalkar PS, Markad HN, Bhanbhane VC, Saha S, Banerjee K. Current Status and Future Perspectives on Distribution of Fungal Endophytes and Their Utilization for Plant Growth Promotion and Management of Grapevine Diseases. Curr Microbiol 2024; 81:116. [PMID: 38489076 DOI: 10.1007/s00284-024-03635-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 02/02/2024] [Indexed: 03/17/2024]
Abstract
Grapevine is one of the economically most important fruit crops cultivated worldwide. Grape production is significantly affected by biotic constraints leading to heavy crop losses. Changing climatic conditions leading to widespread occurrence of different foliar diseases in grapevine. Chemical products are used for managing these diseases through preventive and curative application in the vineyard. High disease pressure and indiscriminate use of chemicals leading to residue in the final harvest and resistance development in phytopathogens. To mitigate these challenges, the adoption of potential biocontrol control agents is necessary. Moreover, multifaceted benefits of endophytes made them eco-friendly, and environmentally safe approach. The genetic composition, physiological conditions, and ecology of their host plant have an impact on their dispersion patterns and population diversity. Worldwide, a total of more than 164 fungal endophytes (FEs) have been characterized originating from different tissues, varieties, crop growth stages, and geographical regions of grapevine. These diverse FEs have been used extensively for management of different phytopathogens globally. The FEs produce secondary metabolites, lytic enzymes, and organic compounds which are known to possess antimicrobial and antifungal properties. The aim of this review was to understand diversity, distribution, host-pathogen-endophyte interaction, role of endophytes in disease management and for enhanced, and quality production.
Collapse
Affiliation(s)
| | | | | | | | - Sujoy Saha
- ICAR-National Research Centre for Grapes, Pune, Maharashtra, 412307, India
| | - Kaushik Banerjee
- ICAR-National Research Centre for Grapes, Pune, Maharashtra, 412307, India
| |
Collapse
|
27
|
Brives C, Froissart R, Perez-Sepulveda B, Le Marrec C. Thinking Phage Innovations Through Evolution and Ecology. PHAGE (NEW ROCHELLE, N.Y.) 2024; 5:5-13. [PMID: 40114809 PMCID: PMC11920705 DOI: 10.1089/phage.2023.0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
In this article, we conduct an interdisciplinary review of the potential of phage-based applications in light of current knowledge about phage evolution and ecology. Gaining an improved understanding of phages' ecology and evolutionary dynamics is crucial for recognizing both the benefits and limits of their usage, as well as potential negative downstream effects across different ecological milieus. As a reference, the history of the industrialization of antibiotics and the rise of antimicrobial resistance act as a reminder of the deep entanglement of both the evolvability capacities of micro-organisms and the history of human societies. Based on evolutionary biological parameters, we show that (1) virulent bacteriophages are best candidates for biocontrol, (2) best cocktails harbor complementary bacteriophages preventing bacterial cross-resistance, and (3) cure can also be considered with steer of bacterial bacteriophage-resistance evolution toward loss of virulence factor and/or increase in antibiotic susceptibility. A detailed review of what is known about the role of phages in vine cultivation and wine production finally serves as an example to show how it is important to consider site-specific rather than one-size-fits-all responses.
Collapse
Affiliation(s)
- Charlotte Brives
- UMR5116, CNRS, Centre Emile Durkheim, University of Bordeaux, Bordeaux, France
| | - Rémy Froissart
- MIVEGEC (Univ. Montpellier, CNRS, IRD) Montpellier, France
| | - Blanca Perez-Sepulveda
- Clinical Infection, Microbiology and Immunology Department, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Claire Le Marrec
- Univ. Bordeaux, INRAE, Bordeaux INP, UMR 1366, OENO, ISVV, F-33140 Villenave d'Ornon, France
| |
Collapse
|
28
|
Leal C, Trotel-Aziz P, Gramaje D, Armengol J, Fontaine F. Exploring Factors Conditioning the Expression of Botryosphaeria Dieback in Grapevine for Integrated Management of the Disease. PHYTOPATHOLOGY 2024; 114:21-34. [PMID: 37505093 DOI: 10.1094/phyto-04-23-0136-rvw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Species from the Botryosphaeriaceae family are the causal agents of Botryosphaeria dieback (BD), a worldwide grapevine trunk disease. Because of their lifestyle and their adaptation to a wide range of temperatures, these fungi constitute a serious threat to vineyards and viticulture, especially in the actual context of climate change. Grapevine plants from both nurseries and vineyards are very susceptible to infections by botryosphaeriaceous fungi due to several cuts and wounds made during their propagation process and their entire life cycle, respectively. When decline becomes chronic or apoplectic, it reduces the longevity of the vineyard and affects the quality of the wine, leading to huge economic losses. Given the environmental impact of fungicides, and their short period of effectiveness in protecting pruning wounds, alternative strategies are being developed to fight BD fungal pathogens and limit their propagation. Among them, biological control has been recognized as a promising and sustainable alternative. However, there is still no effective strategy for combating this complex disease, conditioned by both fungal life traits and host tolerance traits, in relationships with the whole microbiome/microbiota. To provide sound guidance for an effective and sustainable integrated management of BD, by combining the limitation of infection risk, tolerant grapevine cultivars, and biological control, this review explores some of the factors conditioning the expression of BD in grapevine. Among them, the lifestyle of BD-associated pathogens, their pathogenicity factors, the cultivar traits of tolerance or susceptibility, and the biocontrol potential of Bacillus spp. and Trichoderma spp. are discussed.
Collapse
Affiliation(s)
- Catarina Leal
- University of Reims Champagne-Ardenne, Research Unit Résistance Induite et Bioprotection des Plantes RIBP EA 4707, INRAE USC 1488, SFR Condorcet FR CNRS 3417, Reims, France
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, Camino de Vera S/N, 46022 Valencia, Spain
| | - Patricia Trotel-Aziz
- University of Reims Champagne-Ardenne, Research Unit Résistance Induite et Bioprotection des Plantes RIBP EA 4707, INRAE USC 1488, SFR Condorcet FR CNRS 3417, Reims, France
| | - David Gramaje
- Instituto de Ciencias de la Vid y del Vino (ICVV), Consejo Superior de Investigaciones Científicas-Universidad de la Rioja-Gobierno de La Rioja, Ctra. LO-20 Salida 13, Finca La Grajera, 26071 Logroño, Spain
| | - Josep Armengol
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, Camino de Vera S/N, 46022 Valencia, Spain
| | - Florence Fontaine
- University of Reims Champagne-Ardenne, Research Unit Résistance Induite et Bioprotection des Plantes RIBP EA 4707, INRAE USC 1488, SFR Condorcet FR CNRS 3417, Reims, France
| |
Collapse
|
29
|
Martins V, Szakiel A, Teixeira A, Abdallah C, Moreira C, Pączkowski C, Lanoue A, Gerós H. Combined omics approaches expose metabolite-microbiota correlations in grape berries of three cultivars of Douro wine region. Food Chem 2023; 429:136859. [PMID: 37463536 DOI: 10.1016/j.foodchem.2023.136859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/20/2023]
Abstract
This study hypothesized the existence of cultivar-associated correlations between grape berry metabolites and its microbial residents, in Douro wine region. Integrated metabolomics with metabarcoding showed that the microbial biodiversity is not associated to berry sugar concentration, but closely connected to the profile of amino acids, flavonoids and wax compounds, which drove cultivar differentiation together with the prevalence of pathogenic fungi, yeasts and bacteria, mainly Dothideomycetes and Gammaproteobacteria. Over 7000 metabolite-microbiota correlations with ρ >|0.99| exposed a core of 15 metabolites linked to 11 microbial taxa. Serine, oxalate, cyanidin-3-O-glucoside, petunidin-3-O-glucoside, gallic acid, germanicol, sitosterol and erythrodiol correlated negatively to the abundance of most taxa, including Alternaria, Aureobasidium, Pseudopithomyces, Pseudomonas and Sphingomonas. In contrast, phenylalanine, asparagine, alanine, (epi)gallocatechin and procyanidin gallate mediated positive metabolite-OTU correlations. E. necator and A. carbonarius correlated negatively with stigmasterol and amyrin. Complex fungi-bacteria relationships ruled by Dothideomycetes and Alphaproteobacteria further suggest tight host-microbe interactions at the carposphere.
Collapse
Affiliation(s)
- Viviana Martins
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal.
| | - Anna Szakiel
- Department of Plant Biochemistry, Faculty of Biology, University of Warsaw, ul. Miecznikowa 1, 02-096 Warsaw, Poland.
| | - António Teixeira
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal.
| | - Cécile Abdallah
- EA 2106 Biomolécules et Biotechnologie Végétales, UFR des Sciences Pharmaceutiques, Université de Tours, Tours, France.
| | - Carolina Moreira
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal.
| | - Cezary Pączkowski
- Department of Plant Biochemistry, Faculty of Biology, University of Warsaw, ul. Miecznikowa 1, 02-096 Warsaw, Poland.
| | - Arnaud Lanoue
- EA 2106 Biomolécules et Biotechnologie Végétales, UFR des Sciences Pharmaceutiques, Université de Tours, Tours, France.
| | - Hernâni Gerós
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal.
| |
Collapse
|
30
|
Sportes A, Hériché M, Mounier A, Durney C, van Tuinen D, Trouvelot S, Wipf D, Courty PE. Comparative RNA sequencing-based transcriptome profiling of ten grapevine rootstocks: shared and specific sets of genes respond to mycorrhizal symbiosis. MYCORRHIZA 2023; 33:369-385. [PMID: 37561219 DOI: 10.1007/s00572-023-01119-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/23/2023] [Indexed: 08/11/2023]
Abstract
Arbuscular mycorrhizal symbiosis improves water and nutrient uptake by plants and provides them other ecosystem services. Grapevine is one of the major crops in the world. Vitis vinifera scions generally are grafted onto a variety of rootstocks that confer different levels of resistance against different pests, tolerance to environmental stress, and influence the physiology of the scions. Arbuscular mycorrhizal fungi are involved in the root architecture and in the immune response to soil-borne pathogens. However, the fine-tuned regulation and the transcriptomic plasticity of rootstocks in response to mycorrhization are still unknown. We compared the responses of 10 different grapevine rootstocks to arbuscular mycorrhizal symbiosis (AMS) formed with Rhizophagus irregularis DAOM197198 using RNA sequencing-based transcriptome profiling. We have highlighted a few shared regulation mechanisms, but also specific rootstock responses to R. irregularis colonization. A set of 353 genes was regulated by AMS in all ten rootstocks. We also compared the expression level of this set of genes to more than 2000 transcriptome profiles from various grapevine varieties and tissues to identify a class of transcripts related to mycorrhizal associations in these 10 rootstocks. Then, we compared the response of the 351 genes upregulated by mycorrhiza in grapevine to their Medicago truncatula homologs in response to mycorrhizal colonization based on available transcriptomic studies. More than 97% of the 351 M. truncatula-homologous grapevine genes were expressed in at least one mycorrhizal transcriptomic study, and 64% in every single RNAseq dataset. At the intra-specific level, we described, for the first time, shared and specific grapevine rootstock genes in response to R. irregularis symbiosis. At the inter-specific level, we defined a shared subset of mycorrhiza-responsive genes.
Collapse
Affiliation(s)
- Antoine Sportes
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Mathilde Hériché
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Arnaud Mounier
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Célien Durney
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Diederik van Tuinen
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Sophie Trouvelot
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Daniel Wipf
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Pierre Emmanuel Courty
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France.
| |
Collapse
|
31
|
Adejoro DO, Jones EE, Ridgway HJ, Mundy DC, Vanga BR, Bulman SR. Grapevines escaping trunk diseases in New Zealand vineyards have a distinct microbiome structure. Front Microbiol 2023; 14:1231832. [PMID: 37680529 PMCID: PMC10482235 DOI: 10.3389/fmicb.2023.1231832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/26/2023] [Indexed: 09/09/2023] Open
Abstract
Grapevine trunk diseases (GTDs) are a substantial challenge to viticulture, especially with a lack of available control measures. The lack of approved fungicides necessitates the exploration of alternative controls. One promising approach is the investigation of disease escape plants, which remain healthy under high disease pressure, likely due to their microbiome function. This study explored the microbiome of grapevines with the disease escape phenotype. DNA metabarcoding of the ribosomal internal transcribed spacer 1 (ITS1) and 16S ribosomal RNA gene was applied to trunk tissues of GTD escape and adjacent diseased vines. Our findings showed that the GTD escape vines had a significantly different microbiome compared with diseased vines. The GTD escape vines consistently harbored a higher relative abundance of the bacterial taxa Pseudomonas and Hymenobacter. Among fungi, Aureobasidium and Rhodotorula were differentially associated with GTD escape vines, while the GTD pathogen, Eutypa, was associated with the diseased vines. This is the first report of the link between the GTD escape phenotype and the grapevine microbiome.
Collapse
Affiliation(s)
- Damola O. Adejoro
- Department of Pest-Management and Conservation, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Canterbury, New Zealand
| | - E. Eirian Jones
- Department of Pest-Management and Conservation, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Canterbury, New Zealand
| | - Hayley J. Ridgway
- Department of Pest-Management and Conservation, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Canterbury, New Zealand
- The New Zealand Institute for Plant and Food Research Limited, Lincoln, Canterbury, New Zealand
| | - Dion C. Mundy
- The New Zealand Institute for Plant and Food Research Limited, Blenheim, Marlborough, New Zealand
| | - Bhanupratap R. Vanga
- The New Zealand Institute for Plant and Food Research Limited, Lincoln, Canterbury, New Zealand
- Grapevine Improvement Laboratory, Bragato Research Institute, Lincoln, Canterbury, New Zealand
| | - Simon R. Bulman
- The New Zealand Institute for Plant and Food Research Limited, Lincoln, Canterbury, New Zealand
| |
Collapse
|
32
|
Zuzolo D, Ranauda MA, Maisto M, Tartaglia M, Prigioniero A, Falzarano A, Marotta G, Sciarrillo R, Guarino C. The rootstock shape microbial diversity and functionality in the rhizosphere of Vitis vinifera L. cultivar Falanghina. FRONTIERS IN PLANT SCIENCE 2023; 14:1205451. [PMID: 37645461 PMCID: PMC10461393 DOI: 10.3389/fpls.2023.1205451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/24/2023] [Indexed: 08/31/2023]
Abstract
The rhizosphere effect occurring at the root-soil interface has increasingly been shown to play a key role in plant fitness and soil functionality, influencing plants resilience. Here, for the first time, we investigated whether the rootstock genotype on which Vitis vinifera L. cultivar Falanghina is grafted can influence the rhizosphere microbiome. Specifically, we evaluated to which extent the 5BB and 1103P rootstocks are able to shape microbial diversity of rhizosphere environment. Moreover, we explored the potential function of microbial community and its shift under plant genotype influence. We investigated seven vineyards subjected to the same pedo-climatic conditions, similar age, training system and management and collected twelve rhizosphere soil samples for metagenomic analyses and composite soil samples for physical-chemical properties. In this study, we used 16S rRNA gene-based metagenomic analysis to investigate the rhizosphere bacterial diversity and composition. Liner discriminant analysis effect size (LEFSe) was conducted for metagenomic biomarker discovery. The functional composition of sampled communities was determined using PICRUSt, which is based on marker gene sequencing profiles. Soil analyses involved the determination of texture, pH, Cation Exchange Capacity (CSC), Organic Carbon (OC), electrical conductivity (EC), calcium (Ca), magnesium (Mg), potassium (K) content, Phosphorous (P), nitrogen (N). The latter revealed that soil features were quite homogenous. The metagenomic data showed that the bacterial alpha-diversity (Observed OTUs) significantly increased in 1103P rhizosphere microbiota. Irrespective of cultivar, Pseudomonadota was the dominant phylum, followed by Actinomycetota > Bacteroidota > Thermoproteota. However, Actinomycetota was the major marker phyla differentiating the rhizosphere microbial communities associated with the different rootstock types. At the genus level, several taxa belonging to Actinomycetota and Alphaproteobacteria classes were enriched in 1103P genotype rhizosphere. Investigating the potential functional profile, we found that most key enzyme-encoding genes involved in N cycling were significantly more abundant in 5BB rootstock rhizosphere soil. However, we found that 1103P rhizosphere was enriched in genes involved in C cycle and Plant Growth Promotion (PGP) functionality. Our results suggest that the different rootstocks not only recruit specific bacterial communities, but also specific functional traits within the same environment.
Collapse
Affiliation(s)
- Daniela Zuzolo
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | | | - Maria Maisto
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | - Maria Tartaglia
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | | | | | - Giuseppe Marotta
- Department of Law, Economics, Management and Quantitative Methods (DEMM), University of Sannio, Benevento, Italy
| | - Rosaria Sciarrillo
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | - Carmine Guarino
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| |
Collapse
|
33
|
Boiu-Sicuia OA, Toma RC, Diguță CF, Matei F, Cornea CP. In Vitro Evaluation of Some Endophytic Bacillus to Potentially Inhibit Grape and Grapevine Fungal Pathogens. PLANTS (BASEL, SWITZERLAND) 2023; 12:2553. [PMID: 37447114 DOI: 10.3390/plants12132553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
Romania has a long history of grapevine culturing and winemaking. However, like any agricultural sector, viticulture faces devastating biological threats. Fungi responsible for grapevine trunk diseases (GTDs) and grape spoilage lead to considerable yield losses and a decline in grapevine quality. In the actual context, many countries, including Romania, have reoriented their approaches to minimize chemical inputs, which have been proven to be toxic and to have negative impacts on the environment, and to replace them with sustainable biocontrol strategies for the wine-growing sector. Within biocontrol strategies, Bacillus spp. is a well-known plant-protective bacteria with antifungal properties. Within this paper, six endophytic bacteria from various plant sources were studied. The bacterial strains were identified as B. pumilus, B. subtilis, and B. velezensis by sequencing their 16S rDNA region. Regardless of the in vitro test methods (using living bacterial cells, bacterial-cell-free supernatant (CFS), and volatile active compounds (VOCs)), B. velezensis strains revealed strong and broad antifungal activity against grape and grapevine fungal pathogens such as Aspergillus spp., Botrytis cinerea, Penicillium expansum, Diplodia seriata, Eutypa lata, Fusarium spp., Clonostachys rosea, Neofusicoccum parvum, and Stereum hirsutum. The functional antifungal genes encoding for difficidin, fengycin, iturins, macrolactin, and mycosubtilin were molecularly detected, which could support the proven antifungal activity of the endophytic strains. Lytic enzymes involved in fungal growth inhibition, such as chitinase, cellulase, and proteases, were also revealed to be produced by some of these bacterial strains. Various other in vitro tests, such as phosphate and phytate solubilization, phytohormone synthesis, the production of enzymes involved in the polyamine biosynthetic pathway, and pH as well as temperature tolerance tests were carried out to reveal the plant-beneficial potential of these bacterial strains. These results revealed that the B. velezensis strains, especially BAHs1, are the most suitable endophytes for grapevine biologic control, which could lead to the future development of sustainable management strategies.
Collapse
Affiliation(s)
- Oana-Alina Boiu-Sicuia
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59, Mărăști Blvd., District 1, 011464 Bucharest, Romania
- Research-Development Institute for Plant Protection, 8 Ion Ionescu de la Brad Blvd., District 1, 013813 Bucharest, Romania
| | - Radu Cristian Toma
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59, Mărăști Blvd., District 1, 011464 Bucharest, Romania
| | - Camelia Filofteia Diguță
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59, Mărăști Blvd., District 1, 011464 Bucharest, Romania
| | - Florentina Matei
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59, Mărăști Blvd., District 1, 011464 Bucharest, Romania
| | - Călina Petruța Cornea
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59, Mărăști Blvd., District 1, 011464 Bucharest, Romania
| |
Collapse
|
34
|
Noceto PA, Durney C, van Tuinen D, de Sousa J, Wipf D, Courty PE. Arbuscular mycorrhizal fungal communities differ in neighboring vineyards of different ages. MYCORRHIZA 2023; 33:241-248. [PMID: 37450046 DOI: 10.1007/s00572-023-01117-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are key organisms in viticultural ecosystems as they provide many ecosystem services to soils and plants. Data about AMF community dynamics over time are relatively scarce and at short time scales. Many factors such as the soil, climate, and agricultural practices could modify the dynamics and functions of microbial communities. However, the effects on microbial communities of plant phenology and changes in plant physiology over time largely have been overlooked. We analyzed the diversity of AMF in three geographically close vineyards with similar soil parameters for 2 years. The plots differed in grapevine age (11, 36, and 110 years), but had the same soil management practice (horse tillage). Diversity analyses revealed a difference in the composition of AMF communities between the soil and grapevine roots and among roots of grapevines of different ages. This underlines AMF adaptation to physiological changes in the host which can explain the development of different AMF communities. The dynamics of AMF communities can highlight their resilience to environmental changes and agricultural practices.
Collapse
Affiliation(s)
- Pierre-Antoine Noceto
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, 21000, Dijon, France
| | - Célien Durney
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, 21000, Dijon, France
| | - Diederik van Tuinen
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, 21000, Dijon, France
| | | | - Daniel Wipf
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, 21000, Dijon, France
| | - Pierre-Emmanuel Courty
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, 21000, Dijon, France.
| |
Collapse
|
35
|
Langa-Lomba N, Grimplet J, Sánchez-Hernández E, Martín-Ramos P, Casanova-Gascón J, Julián-Lagunas C, González-García V. Metagenomic Study of Fungal Microbial Communities in Two PDO Somontano Vineyards (Huesca, Spain): Effects of Age, Plant Genotype, and Initial Phytosanitary Status on the Priming and Selection of their Associated Microorganisms. PLANTS (BASEL, SWITZERLAND) 2023; 12:2251. [PMID: 37375877 DOI: 10.3390/plants12122251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023]
Abstract
The study of microbial communities associated with different plants of agronomic interest has allowed, in recent years, to answer a number of questions related to the role and influence of certain microbes in key aspects of their autoecology, such as improving the adaptability of the plant host to different abiotic or biotic stresses. In this study, we present the results of the characterization, through both high-throughput sequencing and classical microbiological methods, of the fungal microbial communities associated with grapevine plants in two vineyards of different ages and plant genotypes located in the same biogeographical unit. The study is configured as an approximation to the empirical demonstration of the concept of "microbial priming" by analyzing the alpha- and beta-diversity present in plants from two plots subjected to the same bioclimatic regime to detect differences in the structure and taxonomic composition of the populations. The results were compared with the inventories of fungal diversity obtained by culture-dependent methods to establish, where appropriate, correlations between both microbial communities. Metagenomic data showed a differential enrichment of the microbial communities in the two vineyards studied, including the populations of plant pathogens. This is tentatively explained due to factors such as the different time of exposure to microbial infection, different plant genotype, and different starting phytosanitary situation. Thus, results suggest that each plant genotype recruits differential fungal communities and presents different profiles of associated potential microbial antagonists or communities of pathogenic species.
Collapse
Affiliation(s)
- Natalia Langa-Lomba
- Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), EPS, University of Zaragoza, Carretera de Cuarte s/n, 22071 Huesca, Spain
- Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, 50059 Zaragoza, Spain
| | - Jerome Grimplet
- Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50059 Zaragoza, Spain
- Departamento de Ciencia Vegetal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, 50059 Zaragoza, Spain
| | - Eva Sánchez-Hernández
- Department of Agricultural and Forestry Engineering, ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, 34004 Palencia, Spain
| | - Pablo Martín-Ramos
- Department of Agricultural and Forestry Engineering, ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, 34004 Palencia, Spain
| | - José Casanova-Gascón
- Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), EPS, University of Zaragoza, Carretera de Cuarte s/n, 22071 Huesca, Spain
| | - Carmen Julián-Lagunas
- Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, 50059 Zaragoza, Spain
- Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50059 Zaragoza, Spain
| | - Vicente González-García
- Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, 50059 Zaragoza, Spain
- Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50059 Zaragoza, Spain
| |
Collapse
|
36
|
Ding Y, Wei R, Wang L, Wang W, Wang H, Li H. Exploring the ecological characteristics of natural microbial communities along the continuum from grape berries to winemaking. Food Res Int 2023; 167:112718. [PMID: 37087276 DOI: 10.1016/j.foodres.2023.112718] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/02/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023]
Abstract
Under natural conditions, a complex and dynamic microbial ecosystem exists on the grape epidermis, which plays an important role in safeguarding grape health and facilitating the conversion of grapes into wine. However, current viticulture and vinification are flooded with excessive chemical additives and commercial ferments, leading to a reduction in microbial diversity, affecting the ecological balance of the natural microbiota and masking the wine terroir. This experiment comprehensively explored the continuous changes in the natural microbiota from the Ecolly (Vitis vinifera L.) grape epidermis to spontaneous fermentation over two years. The results suggested that microbial community structure and composition were significantly influenced by vintage and growing stage, with fungal genera being more stable than bacterial genera during the growing season. The fungal genera Alternaria, Ascochyta, Gibberella and Dissoconium and the bacterial genera Pantoea, Sediminibacterium, Ralstonia and Sphingomonas were mainly present on the grape epidermis in both years. The natural microbial diversity decreased from grape growth to spontaneous fermentation, and the fermentation environment reshapes the community structure, composition and diversity of the wine microbial consortium. These findings provide insights to promote cultivation and fermentation management strategies, advocate natural terroir attributes for grapes and wines, and promote sustainable development of the wine industry.
Collapse
|
37
|
Del Frari G, Aggerbeck MR, Gobbi A, Ingrà C, Volpi L, Nascimento T, Ferrandino A, Hansen LH, Ferreira RB. Pruning Wound Protection Products Induce Alterations in the Wood Mycobiome Profile of Grapevines. J Fungi (Basel) 2023; 9:jof9040488. [PMID: 37108942 PMCID: PMC10141712 DOI: 10.3390/jof9040488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/13/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Fungal pathogens involved in grapevine trunk diseases (GTDs) may infect grapevines throughout their lifetime, from nursery to vineyard, via open wounds in stems, canes or roots. In vineyards, pruning wound protection products (PWPPs) offer the best means to reduce the chance of infection by GTD fungi. However, PWPPs may affect non-target microorganisms that comprise the natural endophytic mycobiome residing in treated canes, disrupting microbial homeostasis and indirectly influencing grapevine health. Using DNA metabarcoding, we characterized the endophytic mycobiome of one-year-old canes of cultivars Cabernet Sauvignon and Syrah in two vineyards in Portugal and Italy and assessed the impact of established and novel PWPPs on the fungal communities of treated canes. Our results reveal a large fungal diversity (176 taxa), and we report multiple genera never detected before in grapevine wood (e.g., Symmetrospora and Akenomyces). We found differences in mycobiome beta diversity when comparing vineyards (p = 0.01) but not cultivars (p > 0.05). When examining PWPP-treated canes, we detected cultivar- and vineyard-dependent alterations in both alpha and beta diversity. In addition, numerous fungal taxa were over- or under-represented when compared to control canes. Among them, Epicoccum sp., a beneficial genus with biological control potential, was negatively affected by selected PWPPs. This study demonstrates that PWPPs induce alterations in the fungal communities of grapevines, requiring an urgent evaluation of their direct and indirect effects on plants health with consideration of factors such as climatic conditions and yearly variations, in order to better advise viticulturists and policy makers.
Collapse
Affiliation(s)
- Giovanni Del Frari
- LEAF-Linking Landscape, Environment, Agriculture and Food-Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | | | - Alex Gobbi
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Chiara Ingrà
- Department of Agricultural, Forestry, Food Sciences (DISAFA), University of Turin, Largo P. Braccini, 2, Grugliasco, 10095 Torino, Italy
| | - Lorenzo Volpi
- LEAF-Linking Landscape, Environment, Agriculture and Food-Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Teresa Nascimento
- LEAF-Linking Landscape, Environment, Agriculture and Food-Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Alessandra Ferrandino
- Department of Agricultural, Forestry, Food Sciences (DISAFA), University of Turin, Largo P. Braccini, 2, Grugliasco, 10095 Torino, Italy
| | - Lars Hestbjerg Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Ricardo Boavida Ferreira
- LEAF-Linking Landscape, Environment, Agriculture and Food-Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| |
Collapse
|
38
|
Boussageon R, van Tuinen D, Lapadatescu C, Trépanier M, Vermersch E, Wipf D, Courty PE. Effects of field inoculation of potato tubers with the arbuscular mycorrhizal fungus Rhizophagus irregularis DAOM 197,198 are cultivar dependent. Symbiosis 2023. [DOI: 10.1007/s13199-023-00908-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
39
|
Fernandez O, Lemaître-Guillier C, Songy A, Robert-Siegwald G, Lebrun MH, Schmitt-Kopplin P, Larignon P, Adrian M, Fontaine F. The Combination of Both Heat and Water Stresses May Worsen Botryosphaeria Dieback Symptoms in Grapevine. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12040753. [PMID: 36840101 PMCID: PMC9961737 DOI: 10.3390/plants12040753] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/18/2023] [Accepted: 01/31/2023] [Indexed: 06/12/2023]
Abstract
(1) Background: Grapevine trunk diseases (GTDs) have become a global threat to vineyards worldwide. These diseases share three main common features. First, they are caused by multiple pathogenic micro-organisms. Second, these pathogens often maintain a long latent phase, which makes any research in pathology and symptomatology challenging. Third, a consensus is raising to pinpoint combined abiotic stresses as a key factor contributing to disease symptom expression. (2) Methods: We analyzed the impact of combined abiotic stresses in grapevine cuttings artificially infected by two fungi involved in Botryosphaeria dieback (one of the major GTDs), Neofusicoccum parvum and Diplodia seriata. Fungal-infected and control plants were subjected to single or combined abiotic stresses (heat stress, drought stress or both). Disease intensity was monitored thanks to the measurement of necrosis area size. (3) Results and conclusions: Overall, our results suggest that combined stresses might have a stronger impact on disease intensity upon infection by the less virulent pathogen Diplodia seriata. This conclusion is discussed through the impact on plant physiology using metabolomic and transcriptomic analyses of leaves sampled for the different conditions.
Collapse
Affiliation(s)
- Olivier Fernandez
- Unité Résistance Induite et Bioprotection des Plantes EA 4707, USC INRAE 1488, SFR Condorcet FR CNRS 3417, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | | | - Aurélie Songy
- Unité Résistance Induite et Bioprotection des Plantes EA 4707, USC INRAE 1488, SFR Condorcet FR CNRS 3417, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | | | - Marc-Henri Lebrun
- Research Group Genomics of Plant-Pathogen Interactions, Research Unit Biologie et Gestion des Risques en Agriculture, UR 1290 BIOGER, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Philippe Schmitt-Kopplin
- Analytical BioGeoChemistry, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | | | - Marielle Adrian
- Agroécologie, Institut Agro Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Florence Fontaine
- Unité Résistance Induite et Bioprotection des Plantes EA 4707, USC INRAE 1488, SFR Condorcet FR CNRS 3417, Université de Reims Champagne-Ardenne, 51100 Reims, France
| |
Collapse
|
40
|
Nanetti E, Palladino G, Scicchitano D, Trapella G, Cinti N, Fabbrini M, Cozzi A, Accetta G, Tassini C, Iannaccone L, Candela M, Rampelli S. Composition and biodiversity of soil and root-associated microbiome in Vitis vinifera cultivar Lambrusco distinguish the microbial terroir of the Lambrusco DOC protected designation of origin area on a local scale. Front Microbiol 2023; 14:1108036. [PMID: 36910169 PMCID: PMC9992870 DOI: 10.3389/fmicb.2023.1108036] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/27/2023] [Indexed: 02/24/2023] Open
Abstract
Introduction Wines produced from the same grape cultivars but in different locations possess distinctive qualities leading to different consumer's appreciation, preferences, and thus purchase choices. Here, we explore the possible importance of microbiomes at the soil-plant interface as a determinant of the terroir properties in grapevine production, which confer specific growth performances and wine chemo-sensory properties at the local scale. Methods In particular, we investigated the variation in microbial communities associated with the roots of Vitis vinifera cultivar Lambrusco, as well as with surrounding bulk soils, in different vineyards across the "Consorzio Tutela Lambrusco DOC" protected designation of origin area (PDO, Emilia Romagna, Italy), considering viticultural sites located both inside and outside the consortium in two different seasons (June and November 2021). Results According to our findings, rhizospheric and soil microbiomes show significant structural differences in relation to the sampling site, regardless of seasonality, while endophytic microbiomes seem to be completely unaffected by such variables. Furthermore, a deeper insight into the microbial terroir of PDO areas highlighted the presence of some rhizospheric microorganisms enriched inside the consortium and characterizing the PDO regardless of both sampling season and farming strategy. These include Bacillus, Paenibacillus, and Azospirillum, which are all well-known plant growth-promoting bacteria. Discussion Taken together, our results suggest a connection between soil and root microbiomes of V. vinifera cultivar Lambrusco and the local designation of origin, emphasizing the potential role of PDO-enriched plant growth-promoting bacteria in vine growing and final quality of the Lambrusco DOC wine.
Collapse
Affiliation(s)
- Enrico Nanetti
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Giorgia Palladino
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum-University of Bologna, Bologna, Italy.,Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Fano, Italy
| | - Daniel Scicchitano
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum-University of Bologna, Bologna, Italy.,Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Fano, Italy
| | - Giulia Trapella
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum-University of Bologna, Bologna, Italy.,Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Fano, Italy
| | - Nicolò Cinti
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Marco Fabbrini
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum-University of Bologna, Bologna, Italy.,Microbiomics Unit, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Alice Cozzi
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | | | - Carlo Tassini
- Istituto Tecnico Statale "Ignazio Calvi", Finale Emilia, Italy
| | | | - Marco Candela
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum-University of Bologna, Bologna, Italy.,Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Fano, Italy
| | - Simone Rampelli
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| |
Collapse
|
41
|
Darriaut R, Antonielli L, Martins G, Ballestra P, Vivin P, Marguerit E, Mitter B, Masneuf-Pomarède I, Compant S, Ollat N, Lauvergeat V. Soil composition and rootstock genotype drive the root associated microbial communities in young grapevines. Front Microbiol 2022; 13:1031064. [PMID: 36439844 PMCID: PMC9685171 DOI: 10.3389/fmicb.2022.1031064] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/14/2022] [Indexed: 08/31/2023] Open
Abstract
Soil microbiota plays a significant role in plant development and health and appears to be a major component of certain forms of grapevine decline. A greenhouse experiment was conducted to study the impact of the microbiological quality of the soil and grapevine rootstock genotype on the root microbial community and development of young plants. Two rootstocks heterografted with the same scion were grown in two vineyard soils differing in microbial composition and activities. After 4 months, culture-dependent approaches and amplicon sequencing of bacterial 16S rRNA gene and fungal ITS were performed on roots, rhizosphere and bulk soil samples. The root mycorrhizal colonization and number of cultivable microorganisms in the rhizosphere compartment of both genotypes were clearly influenced by the soil status. The fungal diversity and richness were dependent on the soil status and the rootstock, whereas bacterial richness was affected by the genotype only. Fungal genera associated with grapevine diseases were more abundant in declining soil and related root samples. The rootstock affected the compartmentalization of microbial communities, underscoring its influence on microorganism selection. Fluorescence in situ hybridization (FISH) confirmed the presence of predominant root-associated bacteria. These results emphasized the importance of rootstock genotype and soil composition in shaping the microbiome of young vines.
Collapse
Affiliation(s)
- Romain Darriaut
- EGFV, Université de Bordeaux, Bordeaux Sciences Agro, Villenave d'Ornon, France
| | - Livio Antonielli
- Bioresources Unit, Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Guilherme Martins
- Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, Villenave d’Ornon, France
- Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, Gradignan, France
| | - Patricia Ballestra
- Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, Villenave d’Ornon, France
- Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, Gradignan, France
| | - Philippe Vivin
- EGFV, Université de Bordeaux, Bordeaux Sciences Agro, Villenave d'Ornon, France
| | - Elisa Marguerit
- EGFV, Université de Bordeaux, Bordeaux Sciences Agro, Villenave d'Ornon, France
| | - Birgit Mitter
- Bioresources Unit, Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Isabelle Masneuf-Pomarède
- Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, Villenave d’Ornon, France
- Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, Gradignan, France
| | - Stéphane Compant
- Bioresources Unit, Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Nathalie Ollat
- EGFV, Université de Bordeaux, Bordeaux Sciences Agro, Villenave d'Ornon, France
| | - Virginie Lauvergeat
- EGFV, Université de Bordeaux, Bordeaux Sciences Agro, Villenave d'Ornon, France
| |
Collapse
|
42
|
Chen N, Wei R, Cao X, Duan X, Li H, Wang H. Evaluation of inter-row cover crops effects on the microbial diversity during Cabernet Sauvignon (Vitis vinifera L.) maturation. Food Res Int 2022; 162:112113. [DOI: 10.1016/j.foodres.2022.112113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
|
43
|
Bustamante MI, Elfar K, Eskalen A. Evaluation of the Antifungal Activity of Endophytic and Rhizospheric Bacteria against Grapevine Trunk Pathogens. Microorganisms 2022; 10:microorganisms10102035. [PMID: 36296311 PMCID: PMC9611468 DOI: 10.3390/microorganisms10102035] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 11/08/2022] Open
Abstract
Grapevine trunk diseases (GTDs) are caused by multiple unrelated fungal pathogens, and their management remains difficult worldwide. Biocontrol is an attractive and sustainable strategy given the current need for a cleaner viticulture. In this study, twenty commercial vineyards were sampled across California to isolate endophytic and rhizospheric bacteria from different grapevine cultivars with the presence and absence of GTD symptoms. A collection of 1344 bacterial isolates were challenged in vitro against Neofusicoccum parvum and Diplodia seriata, from which a subset of 172 isolates exerted inhibition levels of mycelial growth over 40%. Bacterial isolates were identified as Bacillus velezensis (n = 154), Pseudomonas spp. (n = 12), Serratia plymuthica (n = 2) and others that were later excluded (n = 4). Representative isolates of B. velezensis, P. chlororaphis, and S. plymuthica were challenged against six other fungal pathogens responsible for GTDs. Mycelial inhibition levels were consistent across bacterial species, being slightly higher against slow-growing fungi than against Botryosphaeriaceae. Moreover, agar-diffusible metabolites of B. velezensis strongly inhibited the growth of N. parvum and Eutypa lata, at 1, 15, and 30% v/v. The agar-diffusible metabolites of P. chlororaphis and S. plymuthica, however, caused lower inhibition levels against both pathogens, but their volatile organic compounds showed antifungal activity against both pathogens. These results suggest that B. velezensis, P. chlororaphis and S. plymuthica constitute potential biocontrol agents (BCAs) against GTDs and their application in field conditions should be further evaluated.
Collapse
|
44
|
Travadon R, Lawrence DP, Moyer MM, Fujiyoshi PT, Baumgartner K. Fungal species associated with grapevine trunk diseases in Washington wine grapes and California table grapes, with novelties in the genera Cadophora, Cytospora, and Sporocadus. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:1018140. [PMID: 37746176 PMCID: PMC10512239 DOI: 10.3389/ffunb.2022.1018140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/09/2022] [Indexed: 09/26/2023]
Abstract
Grapevine trunk diseases cause serious economic losses to grape growers worldwide. The identification of the causal fungi is critical to implementing appropriate management strategies. Through a culture-based approach, we identified the fungal species composition associated with symptomatic grapevines from wine grapes in southeastern Washington and table grapes in the southern San Joaquin Valley of California, two regions with contrasting winter climates. Species were confirmed through molecular identification, sequencing two to six gene regions per isolate. Multilocus phylogenetic analyses were used to identify novel species. We identified 36 species from 112 isolates, with a combination of species that are new to science, are known causal fungi of grapevine trunk diseases, or are known causal fungi of diseases of other woody plants. The novel species Cadophora columbiana, Cytospora macropycnidia, Cytospora yakimana, and Sporocadus incarnatus are formally described and introduced, six species are newly reported from North America, and grape is reported as a new host for three species. Six species were shared between the two regions: Cytospora viticola, Diatrype stigma, Diplodia seriata, Kalmusia variispora, Phaeoacremonium minimum, and Phaeomoniella chlamydospora. Dominating the fungal community in Washington wine grape vineyards were species in the fungal families Diatrypaceae, Cytosporaceae and Sporocadaceae, whereas in California table grape vineyards, the dominant species were in the families Diatrypaceae, Togniniaceae, Phaeomoniellaceae and Hymenochaetaceae. Pathogenicity tests demonstrated that 10 isolates caused wood discoloration similar to symptomatic wood from which they were originally isolated. Growth rates at temperatures from 5 to 35°C of 10 isolates per region, suggest that adaptation to local climate might explain their distribution.
Collapse
Affiliation(s)
- Renaud Travadon
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
| | - Daniel P. Lawrence
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
| | - Michelle M. Moyer
- Department of Horticulture, Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA, United States
| | - Phillip T. Fujiyoshi
- Crops Pathology and Genetics Research Unit, United States Department of Agriculture – Agricultural Research Service, Davis, CA, United States
| | - Kendra Baumgartner
- Crops Pathology and Genetics Research Unit, United States Department of Agriculture – Agricultural Research Service, Davis, CA, United States
| |
Collapse
|
45
|
Diversity of endophytic bacterial microbiota in grapevine shoot xylems varies depending on wine grape-growing region, cultivar, and shoot growth stage. Sci Rep 2022; 12:15772. [PMID: 36130998 PMCID: PMC9492663 DOI: 10.1038/s41598-022-20221-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Next-generation sequencing technology may clarify microbiota that are as yet poorly understood in the soil, the rhizosphere, and the phyllosphere of vineyards. To provide new information on the interaction between grapevine and microorganisms, we focused on the endophytic microbiota in grapevine. We performed endophytic microbiome analysis of the shoot xylems of four cultivars, Vitis vinifera cvs. Chardonnay, Pinot Noir, Cabernet Sauvignon, and Vitis sp. cv. Koshu, grown in eleven vineyards in Japan. The number of endophytic fungal species was small in the grapevine shoot xylems and could not be analyzed further, whereas a total of 7,019,600 amplicon sequences (46,642–285,003 per shoot xylem) and 1305 bacterial operational taxonomic units were obtained by analysis of the V3–V4 region of the bacterial 16S rRNA gene. Gammaproteobacteria was predominant in the shoot xylems at the shoot elongation stage irrespective of the cultivar, whereas Alphaproteobacteria and Oxyphotobacteria were predominant at véraison. Actinobacteria, Bacteroidia, Bacilli, and Clostridia were also detected in the shoot xylems. The endophytic bacterial microbiota in Koshu and Pinot Noir shoot xylems were similar irrespective of the grapevine-growing region. In contrast, the endophytic bacterial microbiota in Chardonnay and Cabernet Sauvignon showed diversity and complexity among grapevine-growing regions. Alpha diversity analysis revealed that Koshu shoot xylems had a higher diversity of endophytic bacterial microbiota than Pinot Noir, Chardonnay, and Cabernet Sauvignon shoot xylems, and that grapevine shoot xylems at the shoot elongation stage had a higher diversity of endophytic bacterial microbiota than those at véraison. Principal coordinate analysis (PCoA) demonstrated that the profiles of the endophytic bacterial microbiota in grapevine shoot xylems at véraison were relatively uniform compared with those at the shoot elongation stage. Multidimensional scaling analysis showed that the plots of all cultivars were generally apart from each other at the shoot elongation stage and then became close to each other at véraison. The plots of all grapevine-growing regions cultivating Koshu were close to each other, whereas those of grapevine-growing regions cultivating Chardonnay and Cabernet Sauvignon were apart from each other. The findings of this study suggest that the endophytic bacterial microbiota in grapevine shoot xylems varied depending on the cultivar and the grapevine-growing region even for the same cultivars, and that the microbiota fluctuated depending on the shoot growth stage.
Collapse
|
46
|
Management of Rhizosphere Microbiota and Plant Production under Drought Stress: A Comprehensive Review. PLANTS 2022; 11:plants11182437. [PMID: 36145836 PMCID: PMC9502053 DOI: 10.3390/plants11182437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 01/10/2023]
Abstract
Drought generates a complex scenario worldwide in which agriculture should urgently be reframed from an integrative point of view. It includes the search for new water resources and the use of tolerant crops and genotypes, improved irrigation systems, and other less explored alternatives that are very important, such as biotechnological tools that may increase the water use efficiency. Currently, a large body of evidence highlights the role of specific strains in the main microbial rhizosphere groups (arbuscular mycorrhizal fungi, yeasts, and bacteria) on increasing the drought tolerance of their host plants through diverse plant growth-promoting (PGP) characteristics. With this background, it is possible to suggest that the joint use of distinct PGP microbes could produce positive interactions or additive beneficial effects on their host plants if their co-inoculation does not generate antagonistic responses. To date, such effects have only been partially analyzed by using single omics tools, such as genomics, metabolomics, or proteomics. However, there is a gap of information in the use of multi-omics approaches to detect interactions between PGP and host plants. This approach must be the next scale-jump in the study of the interaction of soil–plant–microorganism. In this review, we analyzed the constraints posed by drought in the framework of an increasing global demand for plant production, integrating the important role played by the rhizosphere biota as a PGP agent. Using multi-omics approaches to understand in depth the processes that occur in plants in the presence of microorganisms can allow us to modulate their combined use and drive it to increase crop yields, improving production processes to attend the growing global demand for food.
Collapse
|
47
|
Evaluation of the Influence of Rootstock Type on the Yield Parameters of Vines Using a Mathematical Model in Nontraditional Wine-Growing Conditions. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12147293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Great interest in viticulture in temperate climates results from the introduction of new interspecies hybrids of grapevines which are quite popular due to their high resistance to fungal diseases and lower temperature. However, the impact of rootstocks, common in vine cultivation, is little to not known, which makes setting up vineyards a challenge. This study aimed to evaluate the effect of the following six rootstock types: 101-14 Mgt, SORI, 161-49 C, 5 BB, SO4, 125 AA, and grapevines with their own roots on the yield quantity and berry quality (expressed by Brix extract) of Regent grapevines in temperate climates (southeastern Poland). A five-year experiment alongside a novel numerical model is applied to formulate precise and constructive findings about the rootstock impact in a temperate climate. Both the experimental and numerical part are supported by detailed statistical analysis. The five-year period of study indicates that the vines on rootstock 125 AA yielded the best, significantly. Shrubs grafted on rootstock 161-49 yielded the lowest, while the fruit extract content grafted on rootstock 101-14 was significantly lower among the evaluated ones. The parameters of own-rooted bushes and those grafted on SO4 rootstock did not differ significantly, except for the extract. The model leads to convergent conclusions with statistical analysis of raw experimental data. The 125 AA rootstock was the best for all nine tested case scenarios. On the other hand, 161-49 rootstock was the weakest, justified only in the most challenging conditions.
Collapse
|
48
|
Wine Microbial Consortium: Seasonal Sources and Vectors Linking Vineyard and Winery Environments. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8070324] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Winemaking involves a wide diversity of microorganisms with different roles in the process. The wine microbial consortium (WMC) includes yeasts, lactic acid bacteria and acetic acid bacteria with different implications regarding wine quality. Despite this technological importance, their origin, prevalence, and routes of dissemination from the environment into the winery have not yet been fully unraveled. Therefore, this study aimed to evaluate the WMC diversity and incidence associated with vineyard environments to understand how wine microorganisms overwinter and enter the winery during harvest. Soils, tree and vine barks, insects, vine leaves, grapes, grape musts, and winery equipment were sampled along four seasons. The isolation protocol included: (a) culture-dependent microbial recovery; (b) phenotypical screening to select fermenting yeasts, lactic acid, and acetic acid bacteria; and (c) molecular identification. The results showed that during all seasons, only 11.4% of the 1424 isolates presumably belonged to the WMC. The increase in WMC recovery along the year was mostly due to an increase in the number of sampled sources. Acetic acid bacteria (Acetobacter spp., Gluconobacter spp., Gluconoacetobacter spp.) were mostly recovered from soils during winter while spoilage lactic acid bacteria (Leuconostoc mesenteroides and Lactobacillus kunkeii) were only recovered from insects during véraison and harvest. The fermenting yeast Saccharomyces cerevisiae was only isolated from fermented juice and winery equipment. The spoilage yeast Zygosaccharomyces bailii was only recovered from fermented juice. The single species bridging both vineyard and winery environments was the yeast Hanseniaspora uvarum, isolated from insects, rot grapes and grape juice during harvest. Therefore, this species appears to be the best surrogate to study the dissemination of the WMC from vineyard into the winery. Moreover, the obtained results do not evidence the hypothesis of a perennial terroir-dependent WMC given the scarcity of their constituents in the vineyard environment along the year and the importance of insect dissemination.
Collapse
|
49
|
Marasco R, Alturkey H, Fusi M, Brandi M, Ghiglieno I, Valenti L, Daffonchio D. Rootstock-scion combination contributes to shape diversity and composition of microbial communities associated with grapevine root system. Environ Microbiol 2022; 24:3791-3808. [PMID: 35581159 PMCID: PMC9544687 DOI: 10.1111/1462-2920.16042] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/06/2022] [Indexed: 12/01/2022]
Abstract
To alleviate biotic and abiotic stresses and enhance fruit yield, many crops are cultivated in the form of grafted plants, in which the shoot (scion) and root (rootstock) systems of different species are joined together. Because (i) the plant species determines the microbial recruitment from the soil to the root and (ii) both scion and rootstock impact the physiology, morphology and biochemistry of the grafted plant, it can be expected that their different combinations should affect the recruitment and assembly of plant microbiome. To test our hypothesis, we investigated at a field scale the bacterial and fungal communities associated with the root system of seven grapevine rootstock–scion combinations cultivated across 10 different vineyards. Following the soil type, which resulted in the main determinant of the grapevine root microbial community diversity, the rootstock–scion combination resulted more important than the two components taken alone. Notably, the microbiome differences among the rootstock–scion combinations were mainly dictated by the changes in the relative abundance of microbiome members rather than by their presence/absence. These results reveal that the microbiome of grafted grapevine root systems is largely influenced by the combination of rootstock and scion, which affects the microbial diversity uptaken from soil.
Collapse
Affiliation(s)
- Ramona Marasco
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Hend Alturkey
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Marco Fusi
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Michele Brandi
- Marchesi Frescobaldi Società Agricola s.p.a. Fattoria Poggio a Remole, Sieci, Italy
| | - Isabella Ghiglieno
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, University of Milan, Milan, Italy.,Department of Civil, Environmental, Architectural Engineering and Mathematics (DICATAM), University of Brescia, Agrofood Research Hub, Brescia, Italy
| | - Leonardo Valenti
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, University of Milan, Milan, Italy
| | - Daniele Daffonchio
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| |
Collapse
|
50
|
Metagenomic Assessment Unravels Fungal Microbiota Associated to Grapevine Trunk Diseases. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8040288] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Grapevine trunk diseases (GTDs) are among the most important problems that affect the longevity and productivity of vineyards in all the major growing regions of the world. They are slow-progression diseases caused by several wood-inhabiting fungi with similar life cycles and epidemiology. The simultaneous presence of multiple trunk pathogens in a single plant together with the inconsistent GTDs symptoms expression, their isolation in asymptomatic plants, and the absence of effective treatments make these diseases extremely complex to identify and eradicate. Aiming to gain a better knowledge of GTDs and search sustainable alternatives to limit their development, the present work studied the fungal community structure associated with GTDs symptomatic and asymptomatic grapevines, following a metagenomic approach. Two important cultivars from the Alentejo region with different levels of susceptibility to GTDs were selected, namely, ‘Alicante Bouschet’ and ‘Trincadeira’. Deep sequencing of fungal-directed ITS1 amplicon led to the detection of 258 taxa, including 10 fungi previously described as responsible for GTDs. Symptomatic plants exhibited a lower abundance of GTDs-associated fungi, although with significantly higher diversity of those pathogens. Our results demonstrated that trunk diseases symptoms are intensified by a set of multiple GTDs-associated fungi on the same plant. The composition of fungal endophytic communities was significantly different according to the symptomatology and it was not affected by the cultivar. This study opens new perspectives in the study of GTDs-associated fungi and their relation to the symptomatology in grapevines.
Collapse
|