1
|
Yao ZW, Zhu H. Pharmacological mechanisms and drug delivery systems of Ginsenoside Rg3: a comprehensive review. Pharmacol Res 2025; 216:107799. [PMID: 40414584 DOI: 10.1016/j.phrs.2025.107799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 05/21/2025] [Accepted: 05/22/2025] [Indexed: 05/27/2025]
Abstract
Ginsenoside Rg3, as one of the major active components of Panax ginseng, exhibits significant anti-tumor, anti-inflammatory, antioxidant, antidiabetic, hepatoprotective, wound healing and immunomodulatory pharmacological effects and has been developed as an adjuvant therapy in clinical practice. However, its poor water solubility and low permeability result in limited bioavailability, restricting its clinical application. This review systematically summarizes the pharmacological mechanisms of ginsenoside Rg3, including its anti-tumor effects through multiple signaling pathways that inhibit cancer cell proliferation, induce apoptosis, and suppress tumor angiogenesis; anti-inflammatory properties via the inhibition of NF-κB and related factors; antioxidant effects by increasing antioxidant enzyme levels and regulating the Nrf2 pathway; antidiabetic effects via the promotion of insulin secretion by inhibiting the MAPK pathway; hepatoprotective effects via the attenuation of hepatic inflammation through suppressing NF-κB phosphorylation; wound-healing-promoting effects via modulating the TGF-β/SMAD signaling pathway, and immunomodulatory activities through immune cell regulation and inhibition of PD-L1 glycosylation. Additionally, this review discusses the pharmacokinetic properties of Rg3, such as rapid oral absorption but low plasma concentration and bioavailability. Furthermore, this review highlights various drug delivery systems, including liposomes, solid dispersions, cyclodextrin inclusion complexes, microspheres, electrospun nanofiber membranes, hydrogels, nanoparticles, micelles, and microneedles, which have been developed to improve its physicochemical properties and enhance its therapeutic efficacy. By systematically summarizing the pharmacological mechanisms and formulation optimization strategies of Rg3, this review provides theoretical insights and technical support for future research and clinical translation.
Collapse
Affiliation(s)
- Zhong-Wei Yao
- Drug Clinical Trial Center, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou 225300, China
| | - He Zhu
- Drug Clinical Trial Center, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou 225300, China; Phase I Clinical Research Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China.
| |
Collapse
|
2
|
Li Y, Wang F. Research Progress on Traditional Chinese Medicines Reversing Multidrug Resistance and Mechanisms in Lung Cancer. Cancer Biother Radiopharm 2025. [PMID: 40402865 DOI: 10.1089/cbr.2025.0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2025] Open
Abstract
Lung cancer continues to be a primary contributor to cancer-related deaths globally, and multidrug resistance (MDR) poses a significant obstacle in its management. Traditional Chinese medicines (TCMs), recognized for their comprehensive therapeutic strategies and low incidence of adverse effects, have garnered attention due to their capacity to mitigate MDR in cancer cells. Nevertheless, deciphering the precise mechanisms through which TCMs reverse MDR in lung cancer presents a substantial scientific challenge. The objective of this review is to examine prevalent manifestations of MDR in lung cancer and underscore recent advancements in understanding how TCMs might surmount this form of resistance. The review begins by investigating the unique characteristics of TCMs and their pivotal function in reversing MDR in lung cancer. Subsequently, it explores various forms of MDR in lung cancer, such as aberrant expression of cell membrane transport proteins, dysregulation of intracellular enzyme systems, disrupted apoptosis, and heightened cellular repair mechanisms, emphasizing their detrimental impact on lung cancer treatment outcomes. Central to this review is a thorough analysis of the intricate mechanisms by which TCMs counteract MDR, along with an assessment of their efficacy in lung cancer therapy. Based on this analysis, the review offers insights into potential future research directions for utilizing TCMs to overcome MDR. This review seeks to provide a thorough examination of the role of TCMs in reversing MDR in lung cancer and to stimulate additional research into their clinical applications.
Collapse
Affiliation(s)
- Yuying Li
- School of Clinic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chengdu Shuangliu District Hospital of Traditional Chinese Medicine, Chengdu, China
| | - Fei Wang
- School of Clinic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Zheng H, Chen Y, Luo W, Han S, Sun M, Lin M, Wu C, Gao L, Xie T, Kong N. Integration of active ingredients from traditional Chinese medicine with nano-delivery systems for tumor immunotherapy. J Nanobiotechnology 2025; 23:357. [PMID: 40382641 PMCID: PMC12085060 DOI: 10.1186/s12951-025-03378-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 04/07/2025] [Indexed: 05/20/2025] Open
Abstract
Tumor immune escape presents a significant challenge in cancer treatment, characterized by the upregulation of immune inhibitory molecules and dysfunction of immune cells. Tumor immunotherapy seeks to restore normal anti-tumor immune responses to control and eliminate tumors effectively. The active ingredients of traditional Chinese medicine (TCM) demonstrate a variety of anti-tumor activities and mechanisms, including the modulation of immune cell functions and inhibiting tumor-related suppressive factors, thereby potentially enhancing anti-tumor immune responses. Furthermore, nano-delivery systems function as efficient carriers to enhance the bioavailability and targeted delivery of TCM active ingredients, augmenting therapeutic efficacy. This review comprehensively analyzes the impact of TCM active ingredients on the immune system and explores the synergistic application of nano-delivery systems in combination with TCM active ingredients for enhancing tumor immunotherapy.
Collapse
Affiliation(s)
- Hao Zheng
- Department of Neurology, The Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Fuzhou, Fujian, China
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Yiquan Chen
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 311121, Zhejiang, China
| | - Wei Luo
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Shiqi Han
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 311121, Zhejiang, China
| | - Mengjuan Sun
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 311121, Zhejiang, China
| | - Min Lin
- Department of Neurology, The Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Fuzhou, Fujian, China
| | - Chenghan Wu
- Department of Neurology, The Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Fuzhou, Fujian, China
| | - Lili Gao
- Department of Neurology, The Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Fuzhou, Fujian, China.
| | - Tian Xie
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| | - Na Kong
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 311121, Zhejiang, China.
| |
Collapse
|
4
|
Hu C, Nong S, Ke Q, Wu Z, Jiang Y, Wang Y, Chen Y, Wu Z, Zhang Q, Liao C, Wu M. Simultaneous co-delivery of Ginsenoside Rg3 and imiquimod from PLGA nanoparticles for effective breast cancer immunotherapy. iScience 2025; 28:112274. [PMID: 40256328 PMCID: PMC12008673 DOI: 10.1016/j.isci.2025.112274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/11/2024] [Accepted: 03/18/2025] [Indexed: 04/22/2025] Open
Abstract
Breast cancer is a fatal malignancy facing human health, with most patients experiencing recurrence and resistance to chemotherapy. The immunosuppressive tumor microenvironment (TME) greatly limits the actual outcome of immunotherapy. This study aimed to develop a modality of theranostics nanoparticles for breast cancer based on a near-infrared light-triggered nanoparticle for the targeted delivery of ginsenoside Rg3 and immune adjuvants imiquimod (R837) for effective breast cancer immunotherapy. Folate-receptor (FA) targeting IR780-R837/ginsenoside Rg3-perfluorohexane (PFH) @ polyethylene glycol (PEG)-poly (lactide-co-glycolic acid) (PLGA) nanoparticles (FA-NPs) can be activated by near-infrared laser irradiation in tumors, which leads to rapid release of ginsenoside Rg3 and R837 in the regions with high expression of folate receptors and glucose transporter 1 (GLUT1). Meanwhile, the nanoparticles can be used as dual-mode contrast agents for photoacoustic and ultrasound imaging. This strategy provides a strong immune memory effect, which can prevent tumor recurrence after eliminating the initial tumor.
Collapse
Affiliation(s)
- Cong Hu
- Department of Ultrasound, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Shuxiong Nong
- Department of Cardiology, Baise People’s Hospital. Affiliated Southwest Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Qianqian Ke
- Department of Ultrasound, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Ziming Wu
- School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Yuancheng Jiang
- Department of Ultrasound, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Ying Wang
- Department of Ultrasound, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Yixin Chen
- Department of Ultrasound, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Ziling Wu
- Department of Ultrasound, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Qi Zhang
- Department of Ultrasound, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Chilin Liao
- Department of Cardiology, Baise People’s Hospital. Affiliated Southwest Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Meng Wu
- Department of Ultrasound, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| |
Collapse
|
5
|
Zeng M, Hu C, Chen T, Zhao T, Dai X. Advancements in Cell Membrane-Derived Biomimetic Nanotherapeutics for Breast Cancer. Int J Nanomedicine 2025; 20:6059-6083. [PMID: 40385497 PMCID: PMC12083498 DOI: 10.2147/ijn.s502144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 04/11/2025] [Indexed: 05/20/2025] Open
Abstract
Breast cancer remains the leading cause of female mortality worldwide, necessitating innovative and multifaceted approaches to address its various subtypes. Nanotechnology has attracted considerable attention due to its nanoscale dimensions, diverse carrier types, suitability for hydrophobic drug delivery, and capacity for controlled and targeted administration. Nano-sized particles have become prevalent carriers for therapeutic agents targeting breast cancer, thanks to their reproducible synthesis and adjustable properties, including size, shape, and surface characteristics. In addition, certain nanoparticles can enhance therapeutic effects synergistically. However, the immune system often detects and removes these nanoparticles, limiting their efficacy. As a promising alternative, cell membrane-based delivery systems have gained attention due to their biocompatibility and targeting specificity. These membrane-coated drug delivery systems are derived from various cell sources, including blood cells, cancer cells, and stem cells. Leveraging the unique properties of these cell membranes enables precise targeting of breast cancer tumors and associated biomarkers. Inspired by natural structures, cell membranes disguise nanoparticles in the bloodstream, enhancing their retention time in vivo and improving tumor targeting. Consequently, cell membrane-derived nanoparticles (CMDNPs) have been investigated for their potential applications in breast cancer diagnostics, photothermal therapy (PTT), and vaccine development. This review comprehensively explores the potential and limitations of cell membrane-derived drug delivery systems in clinical applications against breast cancer.
Collapse
Affiliation(s)
- Mingtang Zeng
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Chenji Hu
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Tao Chen
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, People’s Republic of China
| | - Tingrui Zhao
- Department of Pharmacy, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, 621000, People’s Republic of China
| | - Xinhua Dai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| |
Collapse
|
6
|
Xun Y, Chen G, Tang G, Zhang C, Zhou S, Fong TL, Chen Y, Xiong R, Wang N, Feng Y. Traditional Chinese medicine and natural products in management of hepatocellular carcinoma: Biological mechanisms and therapeutic potential. Pharmacol Res 2025; 215:107733. [PMID: 40209965 DOI: 10.1016/j.phrs.2025.107733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 03/27/2025] [Accepted: 04/06/2025] [Indexed: 04/12/2025]
Abstract
Hepatocellular carcinoma (HCC), originating from hepatocytes, is the most common type of primary liver cancer. HCC imposes a significant global health burden with high morbidity and mortality, making it a critical public concern. Surgical interventions, including hepatectomy and liver transplantation, are pivotal in achieving long-term survival for patients with HCC. Additionally, ablation therapy, endovascular interventional therapy, radiotherapy, and systemic anti-tumor therapies are commonly employed. However, these treatment modalities are often associated with considerable challenges, including high postoperative recurrence rates and adverse effects. Traditional Chinese medicine (TCM) and natural products have been utilized for centuries as a complementary approach in managing HCC and its complications, demonstrating favorable clinical outcomes. Various bioactive compounds derived from TCM and natural products have been identified and purified, and their mechanisms of action have been extensively investigated. This review aims to provide a comprehensive and up-to-date evaluation of the clinical efficacy of TCM, natural products and their active constituents in the treatment and management of HCC. Particular emphasis is placed on elucidating the potential molecular mechanisms and therapeutic targets of these agents, including their roles in inhibiting HCC cell proliferation, inducing apoptosis and pyroptosis, suppressing tumor invasion and metastasis, and restraining angiogenesis within HCC tissues.
Collapse
Affiliation(s)
- Yunqing Xun
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong
| | - Guang Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong
| | - Guoyi Tang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong
| | - Cheng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong
| | - Shichen Zhou
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong
| | - Tung-Leong Fong
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong
| | - Yue Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong
| | - Ruogu Xiong
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong.
| |
Collapse
|
7
|
Sabir S, Thani ASB, Abbas Q. Nanotechnology in cancer treatment: revolutionizing strategies against drug resistance. Front Bioeng Biotechnol 2025; 13:1548588. [PMID: 40370595 PMCID: PMC12075138 DOI: 10.3389/fbioe.2025.1548588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 04/15/2025] [Indexed: 05/16/2025] Open
Abstract
A notable increase in cancer-related fatalities and morbidity worldwide is attributed to drug resistance. The factors contributing to drug resistance include drug efflux via ABC transporters, apoptosis evasion, epigenetic alterations, DNA repair mechanisms, and the tumor microenvironment, among others. Systemic toxicities and resistance associated with conventional cancer diagnostics and therapies have led to the development of alternative approaches, such as nanotechnology, to enhance diagnostic precision and improve therapeutic outcomes. Nanomaterial, including carbon nanotubes, dendrimers, polymeric micelles, and liposomes, have shown significant benefits in cancer diagnosis and treatment due to their unique physicochemical properties, such as biocompatibility, stability, enhanced permeability, retention characteristics, and targeted delivery. Building on these advantages, this review is conducted through comprehensive analysis of recent literature to explore the principal mechanisms of drug resistance, the potential of nanomaterials to revolutionize selective drug delivery and cancer treatment. Additionally, the strategies employed by nanomaterials to overcome drug resistance in tumors, such as efflux pump inhibition, multidrug loading, targeted delivery to the tumor microenvironment, and gene silencing therapies are discussed in detail. Furthermore, we examine the challenges associated with nanomaterials that limit their application and impede their transition to clinical use.
Collapse
Affiliation(s)
- Shazia Sabir
- Department of Biology, College of Science, Sakhir Campus, University of Bahrain, Sakhir, Bahrain
| | | | - Qamar Abbas
- Department of Biology, College of Science, Sakhir Campus, University of Bahrain, Sakhir, Bahrain
| |
Collapse
|
8
|
Wu Z, Hu Y, Hao R, Li R, Lu X, Itale MW, Yuan Y, Zhu X, Zhang J, Wang L, Sun M, Hou X. Research Progress of Genomics Applications in Secondary Metabolites of Medicinal Plants: A Case Study in Safflower. Int J Mol Sci 2025; 26:3867. [PMID: 40332590 PMCID: PMC12027854 DOI: 10.3390/ijms26083867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/17/2025] [Accepted: 04/13/2025] [Indexed: 05/08/2025] Open
Abstract
Medicinal plants, recognized as significant natural resources, have gained prominence in response to the increasing global demand for herbal medicines, necessitating the large-scale production of these plants and their derivatives. Medicinal plants are exposed to a variety of internal and external factors that interact to influence the biosynthesis and accumulation of secondary metabolites. With the rapid development of omics technologies such as genomics, transcriptomics, proteomics, and metabolomics, multi-omics technologies have become important tools for revealing the complexity and functionality of organisms. They are conducive to further uncovering the biological activities of secondary metabolites in medicinal plants and clarifying the molecular mechanisms underlying the production of secondary metabolites. Also, artificial intelligence (AI) technology accelerates the comprehensive utilization of high-dimensional datasets and offers transformative potential for multi-omics analysis. However, there is currently no systematic review summarizing the genomic mechanisms of secondary metabolite biosynthesis in medicinal plants. Safflower (Carthamus tinctorius L.) has rich and diverse bioactive flavonoids, among of which Hydroxysafflor yellow A (HSYA) is specific to safflower and emerging as a potential medication for treating a wide range of diseases. Hence, significant progress has been made in the study of safflower as an excellent example for the regulation of secondary metabolites in medicinal plants in recent years. Here, we review the progress on the understanding of the regulation of main secondary metabolites at the multi-omics level, and summarize the influence of various factors on their types and contents, with a particular focus on safflower flavonoids. This review aims to provide a comprehensive insight into the regulatory mechanisms of secondary metabolite biosynthesis from the perspective of genomics.
Collapse
Affiliation(s)
- Zhihua Wu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Y.H.); (R.H.); (R.L.); (X.L.); (M.W.I.); (X.Z.); (L.W.); (M.S.)
| | - Yan Hu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Y.H.); (R.H.); (R.L.); (X.L.); (M.W.I.); (X.Z.); (L.W.); (M.S.)
| | - Ruru Hao
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Y.H.); (R.H.); (R.L.); (X.L.); (M.W.I.); (X.Z.); (L.W.); (M.S.)
| | - Ruting Li
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Y.H.); (R.H.); (R.L.); (X.L.); (M.W.I.); (X.Z.); (L.W.); (M.S.)
| | - Xiaona Lu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Y.H.); (R.H.); (R.L.); (X.L.); (M.W.I.); (X.Z.); (L.W.); (M.S.)
| | - Mdachi Winfrida Itale
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Y.H.); (R.H.); (R.L.); (X.L.); (M.W.I.); (X.Z.); (L.W.); (M.S.)
| | - Yang Yuan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China;
| | - Xiaoxian Zhu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Y.H.); (R.H.); (R.L.); (X.L.); (M.W.I.); (X.Z.); (L.W.); (M.S.)
| | - Jiaqiang Zhang
- Zhejiang Institute of Landscape Plants and Flowers, Hangzhou 310053, China;
| | - Longxiang Wang
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Y.H.); (R.H.); (R.L.); (X.L.); (M.W.I.); (X.Z.); (L.W.); (M.S.)
| | - Meihao Sun
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Y.H.); (R.H.); (R.L.); (X.L.); (M.W.I.); (X.Z.); (L.W.); (M.S.)
| | - Xianfei Hou
- Crop Research Institute, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| |
Collapse
|
9
|
Gu Y, Li Z, Zhou S, Han G. Recent advances in delivery systems of ginsenosides for oral diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156422. [PMID: 39951968 DOI: 10.1016/j.phymed.2025.156422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/14/2025] [Accepted: 01/22/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Ginsenosides, the principal active ingredients in ginseng, have anti-bacterial, anti-inflammatory, antioxidant, anticancer, osteogenic, cardioprotective, and neuroprotective properties. Oral diseases afflict about half of the world's population. Ginsenosides' multifunctional properties have led to substantial investigation into their potential to prevent and treat oral disorders. However, their low absorption and poor targeting limit their effectiveness. PURPOSE This review summarizes the latest research progress on ginsenoside-based drug delivery systems and the potential of ginsenosides in preventing and treating oral diseases to provide a theoretical basis for clinical applications. METHODS Using "ginsenoside", "drug delivery", "nanoparticles", "liposomes", "hydrogel", "oral disease", "toxicology", "pharmacology", "clinical translation" and combinations of these keywords in PubMed, Web of Science, and Science Direct. The search was conducted until December 2024. RESULTS The limitations of natural ginsenosides can be overcome by utilizing drug delivery systems to improve pharmacological activity, bioavailability and targeting. The multifunctional pharmacological activities of ginsenosides offer promising avenues for treating oral diseases. In addition, the susceptibility of the oral cavity to infection by pathogenic bacteria and the diluting effect of saliva pose significant challenges to treatment. The emergence of drug delivery marks a breakthrough in addressing these issues. CONCLUSION Ginsenoside-based drug delivery methods improve bioactivity, targeting, and reduce costs. This review emphasizes current advancements in ginsenosides within novel drug delivery systems, specifically on its potential in preventing and treating oral disorders. However, multiple well-designed clinical trials are needed to further evaluate the efficacy and safety of these drugs.
Collapse
Affiliation(s)
- Yuqing Gu
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, 1500# Qinghua Road, Chaoyang District, Changchun, 130021, PR China
| | - Ze Li
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, 1500# Qinghua Road, Chaoyang District, Changchun, 130021, PR China
| | - Shu Zhou
- Department of Anesthesiology, Jilin Cancer Hospital, Changchun, 130021, PR China
| | - Guanghong Han
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, 1500# Qinghua Road, Chaoyang District, Changchun, 130021, PR China.
| |
Collapse
|
10
|
Chen O, Fu L, Wang Y, Li J, Liu J, Wen Y. Targeting HSP90AA1 to overcome multiple drug resistance in breast cancer using magnetic nanoparticles loaded with salicylic acid. Int J Biol Macromol 2025; 298:139443. [PMID: 39756742 DOI: 10.1016/j.ijbiomac.2024.139443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/31/2024] [Accepted: 12/31/2024] [Indexed: 01/07/2025]
Abstract
Multiple drug resistance (MDR) remains a major obstacle in effective breast cancer chemotherapy. This study explores the role of HSP90AA1 in driving MDR and evaluates the potential of magnetic nanoparticles (Fe3O4@SA) loaded with salicylic acid (SA) to counteract drug resistance. A comprehensive screening of 200 SA-related target genes identified nine core genes, including HSP90AA1. Pharmacophore analysis revealed that SA interacts with HSP90AA1, a key regulator of mitochondrial K+ channels. Fe3O4@SA nanoparticles demonstrated efficient cellular uptake and lysosomal escape, markedly improving the chemosensitivity of resistant breast cancer cells and promoting apoptosis. In vivo experiments further confirmed the anticancer efficacy of Fe3O4@SA, highlighting its potential as a promising therapeutic strategy to overcome MDR in breast cancer.
Collapse
Affiliation(s)
- Ou Chen
- Department of clinical laboratory, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Linlin Fu
- Neurosurgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yu Wang
- Department of Pharmacy, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jinggui Li
- Liaoning Jiahe Hospital of Traditional Chinese Medicine, Medical Imaging Center, Shenyang, China
| | - Jun Liu
- Department of cardiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| | - Yanqing Wen
- Department of Pharmacy, The Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
11
|
Tu SN, Hu F, Zhang J, Cai H, Yang J. Research progress on the signaling pathway mechanism of terpenoids against breast cancer. Discov Oncol 2025; 16:433. [PMID: 40163255 PMCID: PMC11958888 DOI: 10.1007/s12672-025-01881-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/03/2025] [Indexed: 04/02/2025] Open
Abstract
Breast cancer is the most common malignant tumor in women worldwide. Current treatments include chemotherapy, hormone therapy, radiotherapy and surgery. Terpenoids have great anti-cancer potential due to their anti-inflammatory, antioxidant, anti-tumor, antiviral and other biological activities. They have become the central drug for the prevention and treatment of breast cancer. However, their low bioavailability and stability are urgent issues that need to be addressed. This article aims to sort out the mechanism of action of terpenoids in the treatment of breast cancer. By reviewing different signal transduction pathways, it is hoped that new ideas for the joint action of multiple pathways and multiple targets will be provided, and a theoretical basis will be provided for improving basic research and clinical treatment of breast cancer.
Collapse
Affiliation(s)
- Sheng-Nan Tu
- School of Clinical Medicine, North China University of Science and Technology, Tangshan, 063210, China
| | - Fen Hu
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063210, China
| | - Juan Zhang
- Second Department of Mammary Gland, Tangshan People's Hospital, Tangshan, 063000, China
| | - Haifeng Cai
- Second Department of Mammary Gland, Tangshan People's Hospital, Tangshan, 063000, China.
| | - Junquan Yang
- School of Clinical Medicine, North China University of Science and Technology, Tangshan, 063210, China.
| |
Collapse
|
12
|
Li Q, Xu J, Hua R, Xu H, Wu Y, Cheng X. Nano-strategies for Targeting Tumor-Associated Macrophages in Cancer immunotherapy. J Cancer 2025; 16:2261-2274. [PMID: 40302816 PMCID: PMC12036086 DOI: 10.7150/jca.108194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/12/2025] [Indexed: 05/02/2025] Open
Abstract
Tumor-associated macrophages (TAMs) are one type of the most abundant immune cells within tumor, resulting in immunosuppresive tumor microenvironment and tumor resistance to immunotherapy. Thus, targeting TAMs is a promising therapeutic strategy for boosting cancer immunotherapy. This study provides an overview of current therapeutic strategies targeting TAMs, which focus on blocking the recruitment of TAMs by tumors, regulating the polarization of TAMs, and directly eliminating TAMs using various nanodrugs, especially with a new categorization based on the specific signaling pathways, such as NF-κB, HIF-1α, ROS, STAT, JNK, PI3K, and Notch involved in their regulatory mechanism. The latest developments of nanodrugs modulating these pathways are discussed in determining the polarization of TAMs and their role in the tumor microenvironment. Despite the challenges in clinical translation and the complexity of nanodrug synthesis, the potential of nanodrugs in enhancing the effectiveness of cancer immunotherapy is worthy of expecting.
Collapse
Affiliation(s)
- Qian Li
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, P. R. China
| | - Jingwei Xu
- Department of Thoralic Surgery, Suzhou Municipal Hospital Institution, Suzhou 215000, P. R. China
- Department of Thoralic Surgery, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, 215123, P. R. China
| | - Runjia Hua
- Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Hanye Xu
- Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Yongyou Wu
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, P. R. China
| | - Xiaju Cheng
- Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
13
|
Zheng H, Tian Y, Li D, Liang Y. Single-cell multi-omics analysis reveals the mechanism of action of a novel antioxidant polyphenol nanoparticle loaded with STAT3 agonist in mediating cardiomyocyte ferroptosis to ameliorate age-related heart failure. J Nanobiotechnology 2025; 23:258. [PMID: 40158134 PMCID: PMC11955111 DOI: 10.1186/s12951-025-03317-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/11/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Heart failure (HF) is a prevalent and critical cardiac condition that leads to profound structural and functional changes in the heart. Although traditional treatments have shown partial efficacy, the long-term outcomes remain suboptimal. Emerging research has highlighted the pivotal role of oxidative stress and ferroptosis in HF progression. This study investigates a new therapeutic approach utilizing antioxidant polyphenol nanoparticles loaded with a STAT3 agonist (PN@Col) to target these pathways and improve age-related HF. RESULTS Key cells and genes contributing to HF progression were identified via analysis of the GEO database, with single-cell RNA sequencing (scRNA-seq) and AUCell analysis used to evaluate differential gene expression. The STAT3 gene was highlighted as essential, and its functionality was further validated in vitro through cell experiments, confirming its impact on cardiomyocytes (CMs) in HF. Following the development of PN@Col, in vitro experiments showed that PN@Col effectively reduced oxidative stress and ferroptosis in CMs. In vivo studies in elderly HF mice demonstrated significant improvements in cardiac function following PN@Col treatment. CONCLUSIONS PN@Col offers a promising therapeutic approach to age-related HF by mitigating oxidative stress and ferroptosis in cardiomyocytes. These findings provide a solid scientific foundation for PN@Col as a potential novel treatment strategy for HF, supporting further exploration toward clinical application.
Collapse
Affiliation(s)
- Haoyuan Zheng
- Department of Cardiac Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Yuan Tian
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Dongyu Li
- Department of Cardiac Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Yanxiao Liang
- Department of Cardiac Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, China.
| |
Collapse
|
14
|
Liu X, Ye Q, Hao M, Li H, Yuan D, Huang W, Li W, Ding L. Exploring mechanisms of britannin against colorectal cancer based on experimentally validated network pharmacology. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03995-2. [PMID: 40080155 DOI: 10.1007/s00210-025-03995-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 02/27/2025] [Indexed: 03/15/2025]
Abstract
Britannin is an active compound derived from Inula japonica Thunb. that possess a wide range of pharmacological activities. However, the mechanism underlying its influence on colorectal cancer (CRC) is not clear. This study aimed to explore the mechanism of britannin in treating colorectal cancer. We employed network pharmacology and single-cell RNA sequencing to assess the potential mechanism of britannin in CRC therapy. In vivo and in vitro experiments were conducted to confirm the effect of britannin on CRC cells and tumor environment. Network pharmacology analysis identified 36 britannin-related genes associated with CRC. Key signaling pathways, including the PI3K-Akt pathway, PD-L1 expression, and HIF-1 signaling, were implicated in britannin's anti-CRC effects. CIBERSORT and scRNA-seq analyses revealed that britannin affects tumor cells, macrophages, and endothelial cells, with a particular impact on macrophage polarization. In vitro assays confirmed that britannin suppressed CRC cell proliferation, promoted apoptosis, and inhibited AKT phosphorylation. In vivo, britannin significantly suppressed tumor growth and modulated the tumor microenvironment by inhibiting M1 macrophage polarization. Britannin may inhibit colorectal by directly inhibiting colon cancer cells and modulating macrophage polarization.
Collapse
Affiliation(s)
- Xiaoli Liu
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Qiuxia Ye
- Department of Liver Vascular Disease Diagnosis and Treatment Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Mengdi Hao
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Huimin Li
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Dajin Yuan
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Wenbin Huang
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Wenjie Li
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Lei Ding
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
15
|
Liao T, Chen X, Qiu F, Zhang X, Wu F, Zhao Z, Xu M, Chen M, Shen JW, Shen Q, Ji J. Regulation of cancer-associated fibroblasts for enhanced cancer immunotherapy using advanced functional nanomedicines: an updated review. J Nanobiotechnology 2025; 23:166. [PMID: 40038745 PMCID: PMC11877876 DOI: 10.1186/s12951-025-03217-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 02/10/2025] [Indexed: 03/06/2025] Open
Abstract
The tumor microenvironment (TME) is a complex and dynamic ecosystem that plays a critical role in cancer progression. It comprises various cell types, including immune cells, tumor cells, and stromal cells. Among these, cancer-associated fibroblasts (CAFs) represent a heterogeneous population with diverse origins, phenotypes, and functions. Activated CAFs secrete multiple factors that promote tumor growth, migration, angiogenesis, and contribute to chemoresistance. Additionally, CAFs secrete extracellular matrix (ECM) components, such as collagen, which form a physical barrier that hinders the penetration of chemotherapeutic and immunotherapeutic agents. This ECM also influences immune cell infiltration, impeding their ability to effectively target tumor cells. As a result, modulating the activity of CAFs has emerged as a promising strategy to enhance the efficacy of tumor immunotherapy. Nano-delivery systems, constructed from various nanomaterials with high targeting specificity and biocompatibility, offer a compelling approach to deliver therapeutic agents or immunomodulatory factors directly to CAFs. This modulation can alter CAF function, reduce their tumor-promoting effects, and thereby improve the outcomes of immunotherapy. This review provides an in-depth exploration of the origins, functions, and interactions of CAFs within the TME, particularly in the context of immune suppression. Furthermore, it discusses the potential applications of functional nanocarrifers in modulating CAFs and enhancing the effectiveness of tumor immunotherapy, highlighting the significant progress and potential of nanotechnology in this area.
Collapse
Affiliation(s)
- Tingting Liao
- School of Pharmacy, College of Pharmacy, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, 310015, Zhejiang, China
| | - Xiaoxiao Chen
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, 289 Kuocang Road, Lishui, 323000, China
- Department of Radiology, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Fengkai Qiu
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, 289 Kuocang Road, Lishui, 323000, China
- Department of Radiology, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Xinyu Zhang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, 289 Kuocang Road, Lishui, 323000, China
- Department of Radiology, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, China
| | - Fazong Wu
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, 289 Kuocang Road, Lishui, 323000, China
- Department of Radiology, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Zhongwei Zhao
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, 289 Kuocang Road, Lishui, 323000, China
- Department of Radiology, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Ming Xu
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, 289 Kuocang Road, Lishui, 323000, China
- Department of Radiology, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Minjiang Chen
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, 289 Kuocang Road, Lishui, 323000, China
- Department of Radiology, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, China
| | - Jia-Wei Shen
- School of Pharmacy, College of Pharmacy, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, 310015, Zhejiang, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Qiying Shen
- School of Pharmacy, College of Pharmacy, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, 310015, Zhejiang, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Jiansong Ji
- School of Pharmacy, College of Pharmacy, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, 310015, Zhejiang, China.
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, 289 Kuocang Road, Lishui, 323000, China.
- Department of Radiology, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China.
| |
Collapse
|
16
|
Chen M, Song L, Zhou Y, Xu T, Sun T, Liu Z, Xu Z, Zhao Y, Du P, Ma Y, Huang L, Chen X, Yang G, Jing J, Shi H. Promotion of triple negative breast cancer immunotherapy by combining bioactive radicals with immune checkpoint blockade. Acta Biomater 2025; 194:305-322. [PMID: 39805523 DOI: 10.1016/j.actbio.2025.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/30/2024] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
Although immunotherapy has revolutionized clinical cancer treatment, the efficacy is limited due to the lack of tumor-associated antigens (TAAs) and the presence of compensatory immune checkpoints. To overcome the deficiency, a nano-system loaded with ozone and CD47 inhibitor RRx-001 is designed and synthesized. Upon irradiation, reactive oxygen species (ROS) generated from ozone reacts with nitric oxide (NO) metabolized from RRx-001 to form reactive nitrogen species (RNS), which presents a much stronger cell-killing ability than ROS. Molecular mechanism studies further reveal that RNS induce extensive immunogenic cell death (ICD). The released TAAs promote infiltration of cytotoxic T lymphocytes, which provides the basis for immune checkpoint blockade (ICB) therapy. Meanwhile, RRx-001 carried by the nanoparticles and the produced radicals repolarize M2-type tumor-associated macrophages (TAMs) into the anti-tumor M1-type, consequently reversing the immunosuppressive tumor microenvironment (TME). In a xenograft triple-negative breast cancer (TNBC) animal model, O3-001@lipo (liposome enwrapping O3 and RRx-001) plus irradiation shows a significant anti-tumor efficacy by improving cytotoxic lymphocyte infiltration and regulating immunosuppressive TME. In summary, the O3-001@lipo nano-system triggered by irradiation potently improves the efficacy of immunotherapy by introducing strong cytotoxic RNS, which not only enriches the toolbox of ICD inducer but also provides a strategy of treatment for immune deficient tumor. STATEMENT OF SIGNIFICANCE: This study introduces a nano-system that leverages ozone and RRx-001 in the presence of X-ray irradiation to generate reactive nitrogen species, enhancing immunogenic cell death and promoting T-lymphocyte infiltration in triple-negative breast cancer, addressing a significant unmet need in the field. The scientific contribution is the development of a clinically translatable nano-system that not only induces ICD but also reshapes the tumor microenvironment, which is expected to have a profound impact on the readership in pharmaceutics, material science, and nano-bio interaction, particularly for those interested in advanced immune therapy approaches.
Collapse
Affiliation(s)
- Meixu Chen
- Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, China
| | - Linlin Song
- Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, China; Department of Ultrasound & Laboratory of Ultrasound Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yao Zhou
- Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, China
| | - Tianyue Xu
- Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, China
| | - Ting Sun
- Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, China; Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhihui Liu
- Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, China
| | - Zihan Xu
- Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, China
| | - Yujie Zhao
- Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, China
| | - Peixin Du
- Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, China
| | - Yingying Ma
- Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, China
| | - Liwen Huang
- Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, China
| | - Xiaoting Chen
- Animal Experimental Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Guang Yang
- Animal Experimental Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Jing
- Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, China.
| | - Hubing Shi
- Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
17
|
Liu H, Wang H, Lin X, Xu M, Lan W, Wang J. Harnessing natural saponins: Advancements in mitochondrial dysfunction and therapeutic applications. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 138:156383. [PMID: 39848019 DOI: 10.1016/j.phymed.2025.156383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/26/2024] [Accepted: 01/09/2025] [Indexed: 01/25/2025]
Abstract
BACKGROUND Mitochondrial dysfunction plays a crucial role in the development of a variety of diseases, notably neurodegenerative disorders, cardiovascular diseases, metabolic syndrome, and cancer. Natural saponins, which are intricate glycosides characterized by steroidal or triterpenoid structures, have attracted interest due to their diverse pharmacological benefits, including anti-inflammatory, antiviral, and anti-aging effects. PURPOSE This review synthesizes recent advancements in understanding mitochondrial dysfunction and explores how saponins can modulate mitochondrial function. It focuses on their potential applications in neuroprotection, cardiovascular health, and oncology. STUDY DESIGN The review incorporates a comprehensive literature analysis, highlighting the interplay between saponins and mitochondrial signaling pathways. Specific attention is given to the effects of saponins like ginsenoside Rg2 and 20(S)-protopanaxatriol on mitophagy and their neuroprotective, anti-aging, and synergistic therapeutic effects when combined. METHODS We conducted a comprehensive review of current research and clinical trials using PubMed, Google Scholar, and SciFinder databases. The search focused on saponins' role in mitochondrial function and their therapeutic effects, including "saponins", "mitochondria" and "mitochondrial function". The analysis primarily focused on articles published between 2011 and 2024. RESULTS The findings indicate that certain saponins can enhance mitophagy and modulate mitochondrial signaling pathways, showing promise in neuroprotection and anti-aging. Additionally, combinations of saponins have demonstrated synergistic effects in myocardial protection and cancer therapy, potentially improving therapeutic outcomes. CONCLUSION Although saponins exhibit significant potential in modulating mitochondrial functions and developing innovative therapeutic strategies, their clinical applications are constrained by low bioavailability. Rigorous clinical trials are essential to translate these findings into effective clinical therapies, ultimately improving patient outcomes through a deeper understanding of saponins' impact on mitochondrial function.
Collapse
Affiliation(s)
- Hongmei Liu
- Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China; Department of pharmacy, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan 610000, China
| | - Huan Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xinyu Lin
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Min Xu
- Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China; Department of pharmacy, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan 610000, China
| | - Wenying Lan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jinlian Wang
- Traditional Chinese Medicine Hospital of Meishan, Meishan 620010, China.
| |
Collapse
|
18
|
Zhang Y, Lu Z, Guo J, Wang Q, Zhang X, Yang H, Li X. Advanced Carriers for Precise Delivery and Therapeutic Mechanisms of Traditional Chinese Medicines: Integrating Spatial Multi-Omics and Delivery Visualization. Adv Healthc Mater 2025; 14:e2403698. [PMID: 39828637 DOI: 10.1002/adhm.202403698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/01/2024] [Indexed: 01/22/2025]
Abstract
The complex composition of traditional Chinese medicines (TCMs) has posed challenges for in-depth study and global application, despite their abundance of bioactive compounds that make them valuable resources for disease treatment. To overcome these obstacles, it is essential to modernize TCMs by focusing on precise disease treatment. This involves elucidating the structure-activity relationships within their complex compositions, ensuring accurate in vivo delivery, and monitoring the delivery process. This review discusses the research progress of TCMs in precision disease treatment from three perspectives: spatial multi-omics technology for precision therapeutic activity, carrier systems for precise in vivo delivery, and medical imaging technology for visualizing the delivery process. The aim is to establish a novel research paradigm that advances the precision therapy of TCMs.
Collapse
Affiliation(s)
- Yusheng Zhang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, P. R. China
| | - Zhiguo Lu
- State Key Laboratory of Biochemical Engineering, Institute of Process, Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jing Guo
- State Key Laboratory of Biochemical Engineering, Institute of Process, Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Qing Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, P. R. China
| | - Xin Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process, Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hongjun Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, China Academy of Chinese Medical Sciences, Beijing, 100029, P. R. China
| | - Xianyu Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, P. R. China
| |
Collapse
|
19
|
Xu W, Wang M, Liu X, Ding Y, Fu J, Zhang P. Recent advances in chemodynamic nanotherapeutics to overcome multidrug resistance in cancers. Biomed Pharmacother 2025; 184:117901. [PMID: 39933445 DOI: 10.1016/j.biopha.2025.117901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/27/2025] [Accepted: 02/05/2025] [Indexed: 02/13/2025] Open
Abstract
Multidrug resistance (MDR) has become a major challenge in cancer therapy, it results in the failure of chemotherapy and anticancer drug development. Chemodynamic therapy (CDT), an emerging cancer treatment strategy, has been reported as a novel approach for cancer treatment characterized by low toxicity and minimal side effects. By generating robust cytotoxic hydroxyl radicals (·OH) via Fenton/Fenton-like reaction, CDT may cause cellular damage and oxidative stress-induced cell death. In recent years, many therapies based on CDT and/or combined with other treatment modalities are reported and exhibit exciting treatment efficacy in cancer treatment, such as photothermal therapy, photodynamic therapy, sonodynamic therapy, chemotherapy, starvation therapy and gas therapy etc. These combination therapies exhibit synergistic effects, significantly improving anticancer outcomes compared to CDT alone. Herein, we provide a comprehensive overview of CDT-based strategies in cancer treatment, highlighting developments of CDT and CDT-based combination strategies in tumor therapy, especially in overcoming MDR challenges. Finally, the opportunities and challenges of CDT and CDT-combination therapy in the clinical application are also addressed.
Collapse
Affiliation(s)
- Wenjia Xu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Min Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Xinyu Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Yucui Ding
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Jianlong Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Peng Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| |
Collapse
|
20
|
Lei K, Zhou L, Dan M, Yang F, Jian T, Xin J, Yu Z, Wang Y. Trojan Horse Delivery Strategies of Natural Medicine Monomers: Challenges and Limitations in Improving Brain Targeting. Pharmaceutics 2025; 17:280. [PMID: 40142943 PMCID: PMC11945504 DOI: 10.3390/pharmaceutics17030280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 03/28/2025] Open
Abstract
Central nervous system (CNS) diseases, such as brain tumors, Alzheimer's disease, and Parkinson's disease, significantly impact patients' quality of life and impose substantial economic burdens on society. The blood-brain barrier (BBB) limits the effective delivery of most therapeutic drugs, especially natural products, despite their potential therapeutic effects. The Trojan Horse strategy, using nanotechnology to disguise drugs as "cargo", enables them to bypass the BBB, enhancing targeting and therapeutic efficacy. This review explores the applications of natural products in the treatment of CNS diseases, discusses the challenges posed by the BBB, and analyzes the advantages and limitations of the Trojan Horse strategy. Despite the existing technical challenges, future research is expected to enhance the application of natural drugs in CNS treatment by integrating nanotechnology, improving delivery mechanisms, and optimizing targeting characteristics.
Collapse
Affiliation(s)
- Kelu Lei
- Department of Pharmacy, Ya’an People’s Hospital-West China Ya’an Hospital, Sichuan University, Ya’an 625000, China; (K.L.); (M.D.); (F.Y.); (T.J.); (J.X.)
| | - Lanyu Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Min Dan
- Department of Pharmacy, Ya’an People’s Hospital-West China Ya’an Hospital, Sichuan University, Ya’an 625000, China; (K.L.); (M.D.); (F.Y.); (T.J.); (J.X.)
| | - Fei Yang
- Department of Pharmacy, Ya’an People’s Hospital-West China Ya’an Hospital, Sichuan University, Ya’an 625000, China; (K.L.); (M.D.); (F.Y.); (T.J.); (J.X.)
| | - Tiantian Jian
- Department of Pharmacy, Ya’an People’s Hospital-West China Ya’an Hospital, Sichuan University, Ya’an 625000, China; (K.L.); (M.D.); (F.Y.); (T.J.); (J.X.)
| | - Juan Xin
- Department of Pharmacy, Ya’an People’s Hospital-West China Ya’an Hospital, Sichuan University, Ya’an 625000, China; (K.L.); (M.D.); (F.Y.); (T.J.); (J.X.)
| | - Zhigang Yu
- Department of Pharmacy, Ya’an People’s Hospital-West China Ya’an Hospital, Sichuan University, Ya’an 625000, China; (K.L.); (M.D.); (F.Y.); (T.J.); (J.X.)
| | - Yue Wang
- Department of Pharmacy, Ya’an People’s Hospital-West China Ya’an Hospital, Sichuan University, Ya’an 625000, China; (K.L.); (M.D.); (F.Y.); (T.J.); (J.X.)
| |
Collapse
|
21
|
Wang R, Liu Y, Liu M, Zhang M, Li C, Xu S, Tang S, Ma Y, Wu X, Fei W. Combating tumor PARP inhibitor resistance: Combination treatments, nanotechnology, and other potential strategies. Int J Pharm 2025; 669:125028. [PMID: 39638266 DOI: 10.1016/j.ijpharm.2024.125028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/14/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
PARP (poly (ADP-ribose) polymerase) inhibitors (PARPi) have demonstrated significant potential in cancer treatment, particularly in tumors with breast cancer susceptibility gene (BRCA) mutations and other DNA repair deficiencies. However, the development of resistance to PARPi has become a major challenge in their clinical application. The emergence of drug resistance leads to reduced efficacy of the PARPi over time, impacting long-term treatment outcomes and survival rates. PARPi resistance in tumors often arises as cells activate alternative DNA repair pathways or evade the effect of PARPi, diminishing therapeutic effectiveness. Consequently, overcoming resistance is crucial for maintaining treatment efficacy and improving patient prognosis. This paper reviews the strategies to overcome PARPi resistance through combination treatment and nanotechnology therapy. We first review the current combination therapies with PARPi, including anti-angiogenic therapies, radiotherapies, immunotherapies, and chemotherapies, and elucidate their mechanisms for overcoming PARPi resistance. Additionally, this paper focuses on the application of nanotechnology in improving the effectiveness of PARPi and overcoming drug resistance. Subsequently, this paper presents several promising strategies to tackle PARPi resistance, including but not limited to: structural modifications of PARPi, deployment of gene editing systems, implementation of "membrane lipid therapy," and modulation of cellular metabolism in tumors. By integrating these strategies, this research will provide comprehensive approaches to overcome the resistance of PARPi in cancer treatment and offer guidance for future research and clinical practice.
Collapse
Affiliation(s)
- Rong Wang
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yunxi Liu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Mingqi Liu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Meng Zhang
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Chaoqun Li
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Shanshan Xu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Sangsang Tang
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yidan Ma
- YiPeng Subdistrict Community Healthcare Center, Hangzhou 311225, China
| | - Xiaodong Wu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Weidong Fei
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| |
Collapse
|
22
|
Xie Y, Zhu M, Bao H, Chen K, Wang S, Dai J, Chen H, Li H, Song Q, Wang X, Yu L, Pei J. Enhanced Antitumor Efficacy and Reduced Toxicity in Colorectal Cancer Using a Novel Multifunctional Rg3- Targeting Nanosystem Encapsulated with Oxaliplatin and Calcium Peroxide. Int J Nanomedicine 2025; 20:1021-1046. [PMID: 39877588 PMCID: PMC11774109 DOI: 10.2147/ijn.s502076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/10/2025] [Indexed: 01/31/2025] Open
Abstract
Purpose Colorectal cancer (CRC) is the second leading cause of cancer-related deaths worldwide. Oxaliplatin (OXA) is currently the primary chemotherapeutic agent for CRC, but its efficacy is limited by the tumor microenvironment (TME). Here, we present a combined approach of chemotherapy and TME modulation for CRC treatment. A multifunctional nanosystem (Rg3-Lip-OXA/CaO2) was established using Ginsenoside Rg3 liposomes targeting glucose transporter 1 overexpressed on the surface of CRC cells to co-deliver OXA and calcium peroxide (CaO2). Methods The CaO2 nanoparticles were synthesized via the CaCl2-H2O2 reaction under alkaline conditions and characterized using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Rg3-Lip-OXA/CaO2 was prepared through a thin-film hydration approach and characterized; additionally, its stability and release behavior were studied. The O2, H2O2, and Ca2+ generation ability of Rg3-Lip-OXA/CaO2 in solution and HCT116 cells were measured. The in vitro cellular uptake was observed via fluorescence microscope and flow cytometry. In vitro cytotoxicity was evaluated using the CCK-8 assay, flow cytometry, and live/dead cell staining. The in vivo targeting effect as well as antitumor efficacy were determined in HCT116 tumor-bearing mice. Finally, the acute toxicity of Rg3-Lip-OXA/CaO2 was investigated in ICR mice to explore its safety. Results The XRD and XPS analyses confirmed the successful synthesis of CaO2 nanoparticles. The Rg3-Lip-OXA/CaO2 exhibited an average particle size of approximately 92.98 nm with good stability and sustained release behavior. In vitro and in vivo studies confirmed optimal targeting by Rg3-Lip and demonstrated that the nanosystem effectively produced O2, H2O2 and Ca2+, resulting in significant cytotoxicity. Additionally, in vivo studies revealed substantial tumor growth suppression and reduced tumor-associated fibroblasts (TAFs) and collagen. Acute toxicity studies indicated that Rg3-Lip-OXA/CaO2 markedly reduced the toxicity of chemotherapeutic drugs. Conclusion This multifunctional nanosystem enhances chemotherapy efficacy and reduces toxicity, offering a promising approach for optimizing CRC treatment and potential clinical application.
Collapse
Affiliation(s)
- Yizhuo Xie
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People’s Republic of China
| | - Ming Zhu
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People’s Republic of China
| | - Han Bao
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People’s Republic of China
| | - Kejia Chen
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People’s Republic of China
| | - Shanshan Wang
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People’s Republic of China
| | - Jingwen Dai
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People’s Republic of China
| | - Hongzhu Chen
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People’s Republic of China
| | - He Li
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People’s Republic of China
| | - Qi Song
- Department of Clinical Pharmacy, the First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Xinlu Wang
- Department of Clinical Pharmacy, the First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Liangping Yu
- Department of Clinical Pharmacy, the First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Jin Pei
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
23
|
Wang H, Zhou F, Qin W, Yang Y, Li X, Liu R. Metabolic regulation of myeloid-derived suppressor cells in tumor immune microenvironment: targets and therapeutic strategies. Theranostics 2025; 15:2159-2184. [PMID: 39990210 PMCID: PMC11840731 DOI: 10.7150/thno.105276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/11/2024] [Indexed: 02/25/2025] Open
Abstract
Cancer remains a major challenge to global public health, with rising incidence and high mortality rates. The tumor microenvironment (TME) is a complex system of immune cells, fibroblasts, extracellular matrix (ECM), and blood vessels that form a space conducive to cancer cell proliferation. Myeloid-derived suppressor cells (MDSCs) are abundant in tumors, and they drive immunosuppression through metabolic reprogramming in the TME. This review describes how metabolic pathways such as glucose metabolism, lipid metabolism, amino acid metabolism, and adenosine metabolism have a significant impact on the function of MDSCs by regulating their immunosuppressive activity and promoting their survival and expansion in tumors. The review also explores key metabolic targets in MDSCs and strategies to modulate MDSC metabolism to improve the tumor immune microenvironment and enhance anti-tumor immune responses. Understanding these pathways can provide insight into potential therapeutic targets for modulating MDSC activity and improving outcomes of cancer immunotherapies.
Collapse
Affiliation(s)
- Hong Wang
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Fei Zhou
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Wenqing Qin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Yun Yang
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| |
Collapse
|
24
|
Zhang Z, Wang R, Chen L. Drug Delivery System Targeting Cancer-Associated Fibroblast for Improving Immunotherapy. Int J Nanomedicine 2025; 20:483-503. [PMID: 39816375 PMCID: PMC11734509 DOI: 10.2147/ijn.s500591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/16/2024] [Indexed: 01/18/2025] Open
Abstract
Cancer-associated fibroblasts (CAFs) are a heterogeneous population of non-malignant cells that play a crucial role in the tumor microenvironment, increasingly recognized as key contributors to cancer progression, metastasis, and treatment resistance. So, targeting CAFs has always been considered an important part of cancer immunotherapy. However, targeting CAFs to improve the efficacy of tumor therapy is currently a major challenge. Nanomaterials show their unique advantages in the whole process. At present, nanomaterials have achieved significant accomplishments in medical applications, particularly in the field of cancer-targeted therapy, showing enormous potential. It has been confirmed that nanomaterials can not only directly target CAFs, but also interact with the tumor microenvironment (TME) and immune cells to affect tumorigenesis. As for the cancer treatment, nanomaterials could enhance the therapeutic effect in many ways. Therefore, in this review, we first summarized the current understanding of the complex interactions between CAFs and TME, immune cells, and tumor cells. Next, we discussed common nanomaterials in modern medicine and their respective impacts on the TME, CAFs, and interactions with tumors. Finally, we focus on the application of nano drug delivery system targeting CAFs in cancer therapy.
Collapse
Affiliation(s)
- Zhongsong Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610550, People’s Republic of China
| | - Rong Wang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610550, People’s Republic of China
| | - Long Chen
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, 610550, People’s Republic of China
| |
Collapse
|
25
|
Zhao H, Bao S, Chen S, Yang Q, Lou K, Gai Y, Lin J, Liu C, Liu H, Zhang C, Yang R. Phytosomes Loaded with Mastoparan-M Represent a Novel Strategy for Breast Cancer Treatment. Int J Nanomedicine 2025; 20:109-124. [PMID: 39816377 PMCID: PMC11733207 DOI: 10.2147/ijn.s481871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 12/05/2024] [Indexed: 01/18/2025] Open
Abstract
Purpose Mastoparan-M (Mast-M) has cytotoxic effects on various tumor cells in vitro, including liver cancer and colorectal cancer. However, the anti-tumor mechanism of Mast-M remains unclear and its potential for anti-tumor therapy has not been investigated. Herein, we aimed to develop a novel phytosome formulation loaded with Mast-M and evaluate its efficacy against breast cancer both in vitro and in vivo. Furthermore, we investigated the underlying anti-tumor mechanisms of Mast-M. Methods The synthesis of Phy-Mast-M involved a co-solvent technique, followed by solvent evaporation. Its anti-tumor mechanism was investigated using CCK-8, clone formation, and apoptosis assays. Subsequently, the biodistribution and anti-tumor efficacy of Phy-Mast-M were assessed in vivo using the 4T1 tumor-bearing mouse model. Finally, the safety of Phy-Mast-M was evaluated in vivo. Results The prepared Phy-Mast-M demonstrated an exceptional monodisperse size distribution (125.67 ± 45.79 nm), and exhibited excellent stability under different physiological conditions. Phy-Mast-M could inhibit 4T1 cells growth through multiple channels, including arresting cell growth cycle and disturbing mitochondrial membrane integrity. Phy-Mast-M proved significantly higher accumulation at tumor sites in a tumor-bearing mouse model as compared to free Mast-M. Moreover, in vivo anti-tumor studies demonstrated that Phy-Mast-M exhibited superior curative inhibitory effects on tumor growth and favorable biocompatibility. Conclusion Phy-Mast-M demonstrates significant anti-tumor activity both in vitro and in vivo. Moreover, its potential for clinical translation suggests promising prospects for cancer therapy, offering more drug options for breast cancer patients.
Collapse
Affiliation(s)
- Hairong Zhao
- Department of Breast Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, People’s Republic of China
| | - Shuangyan Bao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, People’s Republic of China
| | - Shuanglong Chen
- Department of Breast Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| | - Qingmo Yang
- Department of Breast Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| | - Kangliang Lou
- School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| | - Yating Gai
- Xiamen Research Institute of Food and Drug Quality Inspection, Xiamen, People’s Republic of China
| | - Jinyan Lin
- School of Public Health, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Chaojie Liu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, People’s Republic of China
| | - Heng Liu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, People’s Republic of China
| | - Chenggui Zhang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, People’s Republic of China
| | - Ruiqin Yang
- Department of Breast Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| |
Collapse
|
26
|
Qiao B, Yao J, Fan Y, Zhang N, Feng M, Zhao J, Song X, Luan Y, Zhuang B, Zhang N, Xie X, Xu M. Intrinsic anti-inflammatory nanomedicines for enhanced pain management. Front Bioeng Biotechnol 2024; 12:1514245. [PMID: 39737056 PMCID: PMC11683077 DOI: 10.3389/fbioe.2024.1514245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 11/29/2024] [Indexed: 01/01/2025] Open
Abstract
Introduction Effective postoperative pain management remains a significant challenge due to the severe side effects of opioids and the limitations of existing analgesic delivery systems. Inflammation plays a critical role in pain exacerbation, highlighting the need for therapies that combine analgesic effects with intrinsic anti-inflammatory properties. Methods Herein, we develop an intrinsic anti-inflammatory nanomedicine designed to enhance pain management by integrating controlled anesthetic release with inherent anti-inflammatory activity. Our nanoplatform utilizes dendritic mesoporous silica nanoparticles (MSNs) loaded with levobupivacaine and coated with Rg3-based liposomes derived from ginsenoside Rg3, termed LMSN-bupi. Results The MSNs enable sustained and controlled release of the local anesthetic, while the Rg3-liposome coating provides intrinsic anti-inflammatory effects by inhibiting macrophage activation. In animal models, LMSN-bupi demonstrates significantly prolonged analgesic effects and attenuated inflammatory responses compared to traditional liposome-decorated nanoparticles (TMSN-bupi) (n = 5). Discussion These findings underscore the potential of intrinsic anti-inflammatory nanomedicines in enhancing pain management, offering a promising strategy to overcome the limitations of current therapies and improve patient outcomes in postoperative care.
Collapse
Affiliation(s)
- Bin Qiao
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiaqian Yao
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yu’ang Fan
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Na Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Miao Feng
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jiaju Zhao
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xinye Song
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yong Luan
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Bowen Zhuang
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Nan Zhang
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoyan Xie
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ming Xu
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
27
|
Alkhathami AG, Pallathadka H, Shah S, Ganesan S, Sharma A, Devi S, Mustafa YF, Alasheqi MQ, Kadhim AJ, Zwamel AH. LncRNAs in modulating cancer cell resistance to paclitaxel (PTX) therapy. Med Oncol 2024; 42:28. [PMID: 39671022 DOI: 10.1007/s12032-024-02577-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/27/2024] [Indexed: 12/14/2024]
Abstract
Paclitaxel (PTX) is widely used for treating several cancers, including breast, ovarian, lung, esophageal, gastric, pancreatic, and neck cancers. Despite its clinical utility, cancer recurrence frequently occurs in patients due to the development of resistance to PTX. Resistance mechanisms in cancer cells treated with PTX include alterations in β-tubulin, the target molecule involved in mitosis, activation of molecular pathways enabling drug efflux, and dysregulation of apoptosis-related proteins. Long non-coding RNAs (lncRNAs), which are RNA molecules longer than 200 nucleotides without protein-coding potential, serve diverse regulatory roles in cellular processes. Increasing evidence highlights the involvement of lncRNAs in cancer progression and their contribution to PTX resistance across various cancers. Consequently, lncRNAs have emerged as potential therapeutic targets for addressing drug resistance in cancer treatment. This review focuses on the current understanding of lncRNAs and their role in drug resistance mechanisms, aiming to encourage further investigation in this area. Key lncRNAs and their associated pathways linked to PTX resistance will be summarized.
Collapse
Affiliation(s)
- Ali G Alkhathami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | - Sejal Shah
- Department of Bioinformatics, Faculty of Engineering and Technology, Marwadi University Research Center, Marwadi University, Rajkot, Gujarat, 360003, India
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Abhishek Sharma
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Seema Devi
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, Punjab, 140307, India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | | | - Abed J Kadhim
- Department of Medical Engineering, Al-Nisour University College, Baghdad, Iraq
| | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
28
|
Huang Z, Meng H, Xu L, Pei X, Xiong J, Wang Y, Zhan X, Li S, He Y. Liposomes in the cosmetics: present and outlook. J Liposome Res 2024; 34:715-727. [PMID: 38712581 DOI: 10.1080/08982104.2024.2341139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/29/2024] [Accepted: 04/04/2024] [Indexed: 05/08/2024]
Abstract
Liposomes are small spherical vesicles composed of phospholipid bilayers capable of encapsulating a variety of ingredients, including water- and oil-soluble compound, which are one of the most commonly used piggybacking and delivery techniques for many active ingredients and different compounds in biology, medicine and cosmetics. With the increasing number of active cosmetic ingredients, the concomitant challenge is to effectively protect, transport, and utilize these substances in a judicious manner. Many cosmetic ingredients are ineffective both topically and systemically when applied to the skin, thus changing the method of delivery and interaction with the skin of the active ingredients is a crucial step toward improving their effectiveness. Liposomes can improve the delivery of active ingredients to the skin, enhance their stability, and ultimately, improve the efficacy of cosmetics and and pharmaceuticals. In this review, we summarized the basic properties of liposomes and their recent advances of functionalities in cosmetics and and pharmaceuticals. Also, the current state of the art in the field is discussed and the prospects for future research areas are highlighted. We hope that this review will provide ideas and inspiration on the application and development of cosmetics and pharmaceuticals.
Collapse
Affiliation(s)
- Zhaohe Huang
- College of Chemistry and Materials Engineering and Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, P. R. China
| | - Hong Meng
- College of Chemistry and Materials Engineering and Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, P. R. China
| | - Li Xu
- College of Chemistry and Materials Engineering and Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, P. R. China
| | - Xiaojing Pei
- College of Chemistry and Materials Engineering and Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, P. R. China
| | - Jie Xiong
- College of Chemistry and Materials Engineering and Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, P. R. China
| | - Yanan Wang
- College of Chemistry and Materials Engineering and Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, P. R. China
| | - Xin Zhan
- College of Chemistry and Materials Engineering and Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, P. R. China
| | - Shujing Li
- College of Chemistry and Materials Engineering and Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, P. R. China
| | - Yifan He
- College of Chemistry and Materials Engineering and Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, P. R. China
| |
Collapse
|
29
|
Yi J, Ye Z, Xu H, Zhang H, Cao H, Li X, Wang T, Dong C, Du Y, Dong S, Zhou W. EGCG targeting STAT3 transcriptionally represses PLXNC1 to inhibit M2 polarization mediated by gastric cancer cell-derived exosomal miR-92b-5p. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156137. [PMID: 39566403 DOI: 10.1016/j.phymed.2024.156137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/07/2024] [Accepted: 10/07/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND M2-polarized tumor-associated macrophages (TAMs) predominate in tumor microenvironment (TME) and serve primary functions in tumor progression, including growth, angiogenesis, metastasis, immunosuppression, chemoresistance, and poor prognosis. The reversal of M2 polarization provides a new treatment strategy for cancer. Presently, the molecular mechanisms of M2 polarization have yet to be fully characterized, and there is a lack of effective therapeutic targets and drugs. Cancer cells initiate an immunosuppressive TME by recruiting macrophages and promoting M2 polarization through the secretion of inflammatory factors. Accordingly, blocking cancer cell-induced TAM M2 polarization may present a more effective strategy from the perspective of cancer cells. Hedyotis diffusa Willd (HDW) possesses immunomodulatory and antitumor properties, and is a precious and direct source of small molecule natural products with a dual function of inhibition of tumor growth and tumor cell-mediated M2 polarization. OBJECTIVE To identify a new target promoting gastric cancer (GC) cell growth and GC cell-mediated M2 polarization from mRNA profiles of GC cells treated with HDW injection (HDI) and to excavate a natural product from HDI that can regulate related mRNA and inhibit the aforementioned effects. METHODS RNA sequencing (RNA-seq) was used to analyze HDI-regulated differentially expressed mRNAs (HRmRNAs) in MKN45 cells. Weighted gene co-expression network analysis (WGCNA), univariate and multivariate Cox regression analysis, KM survival curves, and association analysis between HRmRNA and clinical characteristics/tumor infiltrating immune cells (TIICs) individually were utilized to screen out the target HRmRNA associated with prognosis and M2 macrophage infiltration in GC. shRNA lentiviral vectors were used for stably silencing, and transient overexpressing plasmids were constructed for overexpression. CCK8, EdU, colony formation, migration and invasion assays were used to validate the function of drugs and molecules in GC. HDI constituent analysis was performed using UHPLC-QE-MS. A network of HDI constituent-hub transcription factor (TF)-HRmRNA was constructed based on RNA-Seq, network pharmacology and TFs prediction. Exosome isolation and identification were performed using ultracentrifugation, NTA, TEM and western blot. Apoptosis and macrophage phenotypes were determined by flow cytometric analysis. Small RNA-Seq made exosomal miRNA identification. Small molecule interaction with targets were analyzed using molecular docking, SPR and CETSA. The direct relationship between transcription factors and promoters was verified using ChIP-QPCR and dual-luciferase reporter gene assay. A nude mice xenograft tumor model was established for vivo validation. RESULTS HDI inhibited MKN45 cell proliferation, migration, invasion and promoted apoptosis. RNA-Seq identified 2583 HRmRNAs. PLXNC1 was screened out as the target HRmRNA associated with prognosis and M2 macrophage infiltration in GC. PLXNC1 promoted GC cell proliferation and facilitated TAMs M2 polarization by transferring GC cell-derived exosomal miR-92b-5p, inhibiting SOCS7-STAT3 interactions and subsequently activating STAT3 in macrophages. M2 TAMs induced by PLXNC1-mediated GC cell-derived exosomes promoted GC cell migration and invasion. PLXNC1 regulated exosomal miR-92b-5p through the MEK1/MSK1/CREB1 pathway. STAT3 could transcriptionally regulate PLXNC1 expression in GC cells. The network of HDI constituent-hub TF-HRmRNA showed epigallocatechin gallate (EGCG) from HDI targeted STAT3 to transcriptionally regulate PLXNC1 expression. EGCG as a natural product directly bound to STAT3 to diminish its nuclear localization, resulting in the transcriptional repression of PLXNC1 and the reversal of M2 polarization induced by PLXNC1-mediated GC cell-derived exosomes. CONCLUSION PLXNC1 is a novel target exerting dual effects on GC cell proliferation and GC cell-mediated M2 polarization. EGCG derived from HDI inhibits GC cell proliferation and targets STAT3 to inhibit M2 polarization induced by PLXNC1-mediated exosomes derived from GC cells, which may be a multi-target therapeutic agent for GC cell proliferation and immune microenvironment.
Collapse
Affiliation(s)
- Jianfeng Yi
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu, PR China; The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, PR China
| | - Zhenzhen Ye
- The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, PR China; Gansu Provincial Key Laboratory for Mining and Innovation Transformation of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, PR China; Research Center of Traditional Chinese Medicine of Gansu Province, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, PR China
| | - Hao Xu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou 310006, Zhejiang, PR China; The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, Zhejiang, PR China
| | - Hui Zhang
- Department of General Surgery, The Second Hospital of Lanzhou University & The Second Clinical Medical School, Lanzhou University, Lanzhou 730000, Gansu, China; Gansu Province Key Laboratory of Environmental Oncology, Lanzhou 730000, Gansu, PR China
| | - Hongtai Cao
- Department of General Surgery, The Second Hospital of Lanzhou University & The Second Clinical Medical School, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Xin Li
- Department of General Surgery, The Second Hospital of Lanzhou University & The Second Clinical Medical School, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Tianming Wang
- The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, PR China
| | - Chunlu Dong
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu, PR China; Department of General Surgery, the First Hospital of Lanzhou University, Lanzhou 730000, Gansu, PR China
| | - Yan Du
- Department of General Surgery, The Second Hospital of Lanzhou University & The Second Clinical Medical School, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Shi Dong
- Department of General Surgery, The Second Hospital of Lanzhou University & The Second Clinical Medical School, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Wence Zhou
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu, PR China; Department of General Surgery, The Second Hospital of Lanzhou University & The Second Clinical Medical School, Lanzhou University, Lanzhou 730000, Gansu, China; Gansu Province Key Laboratory of Environmental Oncology, Lanzhou 730000, Gansu, PR China.
| |
Collapse
|
30
|
Han J, Shen Y, Cao R, Wang W, Duan J, Duan J, Bao C. Active herbal ingredients and drug delivery design for tumor therapy: a review. Chin J Nat Med 2024; 22:1134-1162. [PMID: 39725513 DOI: 10.1016/s1875-5364(24)60741-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Indexed: 12/28/2024]
Abstract
Active herbal ingredients are gaining recognition for their potent anti-tumor efficacy, attributable to various mechanisms including tumor cell inhibition, immune system activation, and tumor angiogenesis inhibition. Recent studies have revealed that numerous anti-tumor herbal ingredients, such as ginsenosides, ursolic acid, oleanolic acid, and Angelica sinensis polysaccharides, can be utilized to develop smart drug carriers like liposomes, micelles, and nanoparticles. These carriers can deliver active herbal ingredients and co-deliver anti-tumor drugs to enhance drug accumulation at tumor sites, thereby improving anti-tumor efficacy. This study provides a comprehensive analysis of the mechanisms by which these active herbal ingredients-derived carriers enhance therapeutic outcomes. Additionally, it highlights the structural properties of these active herbal ingredients, demonstrating how their unique features can be strategically employed to design smart drug carriers with improved anti-tumor efficacy. The insights presented aim to serve as a reference and guide future innovations in the design and application of smart drug carriers for cancer therapy that leverage active herbal ingredients.
Collapse
Affiliation(s)
- Jing Han
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yanxi Shen
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ruiying Cao
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weiren Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jinao Duan
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jialun Duan
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Chunjie Bao
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
31
|
Shen Y, Zhong B, Zheng W, Wang D, Chen L, Song H, Pan X, Mo S, Jin B, Cui H, Zhan H, Luo F, Liu J. Rg3-lipo biomimetic delivery of paclitaxel enhances targeting of tumors and myeloid-derived suppressor cells. J Clin Invest 2024; 134:e178617. [PMID: 39545407 PMCID: PMC11563678 DOI: 10.1172/jci178617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 09/25/2024] [Indexed: 11/17/2024] Open
Abstract
Liposomal drug delivery systems have revolutionized traditional cytotoxic drugs. However, the relative instability and toxicity of the existing liposomal drug delivery systems compromised their efficacy. Herein, we present Rg3-lipo, an innovative drug delivery system using a glycosyl moiety-enriched ginsenoside (Rg3). This system is distinguished by its glycosyl moieties exposed on the liposomal surface. These moieties imitate human cell membranes to stabilize and evade phagocytic clearance. The Rg3-lipo system loaded with paclitaxel (PTX-Rg3-lipo) demonstrated favorable bioavailability and safety in Sprague-Dawley rats, beagle dogs, and cynomolgus monkeys. With its glycosyl moieties recognizing tumor cells via the glucose transporter Glut1, PTX-Rg3-lipo inhibited gastric, breast, and esophageal cancers in human cancer cell lines, tumor-bearing mice, and patient-derived xenograft models. These glycosyl moieties selectively targeted myeloid-derived suppressor cells (MDSCs) through the glucose transporter Glut3 to attenuate their immunosuppressive effect. The mechanism study revealed that Rg3-lipo suppressed glycolysis and downregulated the transcription factors c-Maf and Mafb overcoming the MDSC-mediated immunosuppressive microenvironment and enhancing PTX-Rg3-lipo's antitumor effect. Taken together, we supply substantial evidence for its advantageous bioavailability and safety in multiple animal models, including nonhuman primates, and Rg3-lipo's dual targeting of cancer cells and MDSCs. Further investigation regarding Rg3-lipo's druggability will be conducted in clinical trials.
Collapse
Affiliation(s)
- Yuru Shen
- Department of Digestive Diseases and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Bin Zhong
- Department of Digestive Diseases and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Biotherapy Research Center, Fudan University, Shanghai, China
| | - Wanwei Zheng
- Department of Digestive Diseases and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Dan Wang
- Xiamen Ginposome Pharmaceutical Co. Ltd., Xiamen, China
| | - Lin Chen
- Department of Digestive Diseases and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Huan Song
- Department of Digestive Diseases and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xuanxuan Pan
- Department of Digestive Diseases and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Shaocong Mo
- Department of Digestive Diseases and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Bryan Jin
- Department of Digestive Diseases and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Haoshu Cui
- Department of Digestive Diseases and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Huaxing Zhan
- Xiamen Ginposome Pharmaceutical Co. Ltd., Xiamen, China
| | - Feifei Luo
- Department of Digestive Diseases and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Liu
- Department of Digestive Diseases and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
32
|
Liu Y, Liang J, Zhang Y, Guo Q. Drug resistance and tumor immune microenvironment: An overview of current understandings (Review). Int J Oncol 2024; 65:96. [PMID: 39219258 PMCID: PMC11387120 DOI: 10.3892/ijo.2024.5684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
The use of antitumor drugs represents a reliable strategy for cancer therapy. Unfortunately, drug resistance has become increasingly common and contributes to tumor metastasis and local recurrence. The tumor immune microenvironment (TME) consists of immune cells, cytokines and immunomodulators, and collectively they influence the response to treatment. Epigenetic changes including DNA methylation and histone modification, as well as increased drug exportation have been reported to contribute to the development of drug resistance in cancers. In the past few years, the majority of studies on tumors have only focused on the development and progression of a tumor from a mechanistic standpoint; few studies have examined whether the changes in the TME can also affect tumor growth and drug resistance. Recently, emerging evidence have raised more concerns regarding the role of TME in the development of drug resistance. In the present review, it was discussed how the suppressive TME adapts to drug resistance characterized by the cooperation of immune cells, cytokines, immunomodulators, stromal cells and extracellular matrix. Furthermore, it was reviewed how these immunological or metabolic changes alter immuno‑surveillance and thus facilitate tumor drug resistance. In addition, potential targets present in the TME for developing novel therapeutic strategies to improve individualized therapy for cancer treatment were revealed.
Collapse
Affiliation(s)
- Yan Liu
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Jun Liang
- Department of Radiology, Qingdao Haici Hospital, Qingdao, Shandong 266000, P.R. China
| | - Yanping Zhang
- Department of Radiology, Qingdao Haici Hospital, Qingdao, Shandong 266000, P.R. China
| | - Qie Guo
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
33
|
Li S, Xiong Q, Shen Y, Lin J, Zhang L, Wu Y, Jin J, Luan X. Toosendanin: upgrade of an old agent in cancer treatment. Chin J Nat Med 2024; 22:887-899. [PMID: 39428181 DOI: 10.1016/s1875-5364(24)60693-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Indexed: 10/22/2024]
Abstract
Toosendanin (TSN), a tetracyclic triterpenoid derived from Melia toosendan and M. azedarach, demonstrates broad application prospects in cancer treatment. Although previously employed as a pesticide, recent studies have revealed its potential therapeutic value in treating various types of cancer. TSN exerts an anticancer effect via mechanisms including proliferation inhibition, apoptosis induction, migration suppression, and angiogenesis inhibition. However, TSN's toxicity, particularly its hepatotoxicity, significantly limits its therapeutic application. This review explored the dual nature of TSN, evaluating both its anticancer potential and toxicological risks, emphasizing the importance of balancing these aspects in therapeutic applications. Furthermore, we investigated the incorporation of TSN into novel therapeutic strategies, such as Proteolysis-targeting chimeras (PROTAC) technology and nanotechnology-based drug delivery systems (DDS), which enhance treatment efficacy while mitigating toxicity in normal tissues.
Collapse
Affiliation(s)
- Shuwei Li
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qingyi Xiong
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yiwen Shen
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiayi Lin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lijun Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ye Wu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jinmei Jin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Xin Luan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
34
|
Hu J, Hu Y, Xu L, Chen J, Shi M, Wu W, Yang J, Han Y. P-glycoprotein-mediated herb-drug interaction evaluation between Tenacissoside G and paclitaxel. Biomed Chromatogr 2024; 38:e5984. [PMID: 39152775 DOI: 10.1002/bmc.5984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/06/2024] [Accepted: 07/30/2024] [Indexed: 08/19/2024]
Abstract
P-glycoprotein (P-gp)-mediated herb-drug interactions (HDIs) may impact drug efficacy and safety. Tenacissoside G (Tsd-G), a major active component of Marsdenia tenacissima, exhibits anticancer activity. To analyze the effect of Tsd-G on the pharmacokinetics of paclitaxel (PTX), researchers selected 30 Sprague-Dawley (SD) rats, randomized into a solvent control group, a verapamil positive control group, and 20, 40, and 60 mg/kg Tsd-G groups. After seven consecutive days of intraperitoneal injection of verapamil or Tsd-G, a single dose of 6 mg/kg PTX was injected intravenously. Plasma samples were collected at different time points, and proteins were precipitated using a methanol-acetonitrile solution. An ultrahigh-performance liquid chromatography-tandem mass spectrometry method was developed, with docetaxel as an internal standard, and quantified using positive ion multiple reaction monitoring (MRM) mode. This analytical method's specificity, accuracy, precision, recovery, matrix effect, and sample stability meet the requirements for biological sample determination. After Tsd-G administration in rats, the mean residence time of PTX was significantly prolonged. And Tsd-G can stably bind to P-gp by forming hydrogen bonds and inhibiting the expression of P-gp in rat liver. Although the metabolites of PTX were not detected in this study, the above results still indicate the existence of HDIs between Tsd-G and PTX, and P-gp may be the main target to mediate HDIs.
Collapse
Affiliation(s)
- Jiudong Hu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yujie Hu
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingyan Xu
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junjun Chen
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meizhi Shi
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenhui Wu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jiao Yang
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yonglong Han
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
35
|
Wu J, Tang G, Cheng CS, Yeerken R, Chan YT, Fu Z, Zheng YC, Feng Y, Wang N. Traditional Chinese medicine for the treatment of cancers of hepatobiliary system: from clinical evidence to drug discovery. Mol Cancer 2024; 23:218. [PMID: 39354529 PMCID: PMC11443773 DOI: 10.1186/s12943-024-02136-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/20/2024] [Indexed: 10/03/2024] Open
Abstract
Hepatic, biliary, and pancreatic cancer pose significant challenges in the field of digestive system diseases due to their highly malignant nature. Traditional Chinese medicine (TCM) has gained attention as a potential therapeutic approach with long-standing use in China and well-recognized clinical benefits. In this review, we systematically summarized the clinical applications of TCM that have shown promising results in clinical trials in treating hepatic, biliary, and pancreatic cancer. We highlighted several commonly used TCM therapeutics with validated efficacy through rigorous clinical trials, including Huaier Granule, Huachansu, and Icaritin. The active compounds and their potential targets have been thoroughly elucidated to offer valuable insights into the potential of TCM for anti-cancer drug discovery. We emphasized the importance of further research to bridge the gap between TCM and modern oncology, facilitating the development of evidence-based TCM treatment for these challenging malignancies.
Collapse
Affiliation(s)
- Junyu Wu
- School of Chinese Medicine, the University of Hong Kong, 3, Sasson Road, Pokfulam, Hong Kong
| | - Guoyi Tang
- School of Chinese Medicine, the University of Hong Kong, 3, Sasson Road, Pokfulam, Hong Kong
| | - Chien-Shan Cheng
- Department of Digestive Endoscopy Center & Gastroenterology, Shuguang Hospital Affiliated With Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai, China
| | - Ranna Yeerken
- School of Chinese Medicine, the University of Hong Kong, 3, Sasson Road, Pokfulam, Hong Kong
| | - Yau-Tuen Chan
- School of Chinese Medicine, the University of Hong Kong, 3, Sasson Road, Pokfulam, Hong Kong
| | - Zhiwen Fu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi-Chao Zheng
- State Key Laboratory of Esophageal Cancer Prevention &, Treatment Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Yibin Feng
- School of Chinese Medicine, the University of Hong Kong, 3, Sasson Road, Pokfulam, Hong Kong.
| | - Ning Wang
- School of Chinese Medicine, the University of Hong Kong, 3, Sasson Road, Pokfulam, Hong Kong.
| |
Collapse
|
36
|
Lan J, Chen L, Li Z, Liu L, Zeng R, He Y, Shen Y, Zhang T, Ding Y. Multifunctional Biomimetic Liposomes with Improved Tumor-Targeting for TNBC Treatment by Combination of Chemotherapy, Antiangiogenesis and Immunotherapy. Adv Healthc Mater 2024; 13:e2400046. [PMID: 38767575 DOI: 10.1002/adhm.202400046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/11/2024] [Indexed: 05/22/2024]
Abstract
Triple negative breast cancer (TNBC) featuring high relapses and metastasis shows limited clinical therapeutic efficiency with chemotherapy for the extremely complex tumor microenvironment, especially angiogenesis and immunosuppression. Combination of antiangiogenesis and immunotherapy holds promise for effective inhibition of tumor proliferation and invasion, while it remains challenging for specific targeting drug delivery to tumors and metastatic lesions. Here, a multifunctional biomimetic liposome loading Gambogic acid (G/R-MLP) is developed using Ginsenoside Rg3 (Rg3) to substitute cholesterol and cancer cell membrane coating, which is designed to increase long-circulating action by a low immunogenicity and specifically deliver gambogic acid (GA) to tumor site and metastatic lesions by homologous targeting and glucose transporter targeting. After G/R-MLP accumulates in the primary tumors and metastatic nodules, it synergistically enhances the antitumor efficacy of GA, effectively suppressing the tumor growth and lung metastasis by killing tumor cells, inhibiting tumor cell migration and invasion, achieving antiangiogenesis and improving the antitumor immunity. All in all, the strategy combining chemotherapy, antiangiogenesis, and immunotherapy improves therapeutic efficiency and prolonged survival, providing a new perspective for the clinical treatment of TNBC.
Collapse
Affiliation(s)
- Jinshuai Lan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lixia Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhe Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Li Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ruifeng Zeng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yitian He
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yi Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yue Ding
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
37
|
Wang H, Zhuang H, Wu C, Wang B, Zhang S, Wang Y, Liu L, Yu L, Zhang L, Jing S, Fan Z. Colorectal cancer treatment strategy: Targeting O-GlcNAcylation of Yes-associated protein utilizing diselenide-bridged nanovesicles. CHEMICAL ENGINEERING JOURNAL 2024; 497:154750. [DOI: 10.1016/j.cej.2024.154750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
|
38
|
Zhang B, Liu J, Mo Y, Zhang K, Huang B, Shang D. CD8 + T cell exhaustion and its regulatory mechanisms in the tumor microenvironment: key to the success of immunotherapy. Front Immunol 2024; 15:1476904. [PMID: 39372416 PMCID: PMC11452849 DOI: 10.3389/fimmu.2024.1476904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/04/2024] [Indexed: 10/08/2024] Open
Abstract
A steady dysfunctional state caused by chronic antigen stimulation in the tumor microenvironment (TME) is known as CD8+ T cell exhaustion. Exhausted-like CD8+ T cells (CD8+ Tex) displayed decreased effector and proliferative capabilities, elevated co-inhibitory receptor generation, decreased cytotoxicity, and changes in metabolism and transcription. TME induces T cell exhaustion through long-term antigen stimulation, upregulation of immune checkpoints, recruitment of immunosuppressive cells, and secretion of immunosuppressive cytokines. CD8+ Tex may be both the reflection of cancer progression and the reason for poor cancer control. The successful outcome of the current cancer immunotherapies, which include immune checkpoint blockade and adoptive cell treatment, depends on CD8+ Tex. In this review, we are interested in the intercellular signaling network of immune cells interacting with CD8+ Tex. These findings provide a unique and detailed perspective, which is helpful in changing this completely unpopular state of hypofunction and intensifying the effect of immunotherapy.
Collapse
Affiliation(s)
- Biao Zhang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jinming Liu
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yuying Mo
- Department of Oncology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Kexin Zhang
- Central Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Bingqian Huang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Department of Clinical Pharmacy, Affiliated Hangzhou First People’s Hospital, Westlake University, Hangzhou, China
| | - Dong Shang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
39
|
Chang Y, Fu Q, Lu Z, Jin Q, Jin T, Zhang M. Ginsenoside Rg3 combined with near-infrared photothermal reversal of multidrug resistance in breast cancer MCF-7/ADR cells. Food Sci Nutr 2024; 12:5750-5761. [PMID: 39139957 PMCID: PMC11317707 DOI: 10.1002/fsn3.4205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/05/2024] [Accepted: 04/24/2024] [Indexed: 08/15/2024] Open
Abstract
Adriamycin (ADR) is a frequently employed chemotherapeutic agent for the management of breast cancer. Nevertheless, multidrug resistance (MDR) can impair its therapeutic efficacy in breast cancer. MDR is characterized by increased expression of the P-glycoprotein (P-gp) efflux pump, up-regulation of anti-apoptotic proteins, and downregulation of pro-apoptotic proteins. Consequently, inhibition of ATP-binding cassette (ABC) transporter proteins has been deemed the most efficacious approach to overcome MDR. In this study, we used MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide), Western blots, flow cytometry, immunofluorescence, and constructed xenograft tumors to investigate whether ginsenoside Rg3-near-infrared photothermal (Rg3-NIR) combination reversed multidrug resistance in MCF-7/ADR breast cancer. In vivo and in vitro experiments, the results showed that Rg3-NIR co-treatment was effective in inducing the apoptosis of MCF-7/ADR breast cancer cells. This was achieved by reversing the expression of drug resistance-associated proteins, while also inhibiting cell proliferation, migration, and epithelial-mesenchymal transition (EMT) processes via attenuation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway transduction. Ginsenoside Rg3 combined with near-infrared photothermal therapy (NIR) effectively reverses multidrug resistance in breast cancer MCF-7/ADR cells, providing a new therapeutic strategy for breast cancer drug resistance.
Collapse
Affiliation(s)
- Ying Chang
- Department of Ultrasound MedicineAffiliated Hospital of Yanbian UniversityYanjiChina
- Department of Pathology and Cancer Research CenterYanbian University Medical CollegeYanjiChina
- Key Laboratory of the Science and Technology, Department of Jilin ProvinceYanjiChina
| | - Qiang Fu
- Department of Ultrasound MedicineAffiliated Hospital of Yanbian UniversityYanjiChina
- Department of Pathology and Cancer Research CenterYanbian University Medical CollegeYanjiChina
- Key Laboratory of the Science and Technology, Department of Jilin ProvinceYanjiChina
| | - Zhongqi Lu
- Department of Ultrasound MedicineAffiliated Hospital of Yanbian UniversityYanjiChina
- Department of Pathology and Cancer Research CenterYanbian University Medical CollegeYanjiChina
- Key Laboratory of the Science and Technology, Department of Jilin ProvinceYanjiChina
| | - Quanxin Jin
- Department of Immunology and Pathogenic BiologyYanbian University Medical CollegeYanjiChina
| | - Tiefeng Jin
- Department of Pathology and Cancer Research CenterYanbian University Medical CollegeYanjiChina
- Key Laboratory of the Science and Technology, Department of Jilin ProvinceYanjiChina
| | - Meihua Zhang
- Department of Ultrasound MedicineAffiliated Hospital of Yanbian UniversityYanjiChina
- Department of Pathology and Cancer Research CenterYanbian University Medical CollegeYanjiChina
- Key Laboratory of the Science and Technology, Department of Jilin ProvinceYanjiChina
| |
Collapse
|
40
|
Yang Y, Nan Y, Du Y, Liu W, Ning N, Chen G, Gu Q, Yuan L. Ginsenosides in cancer: Proliferation, metastasis, and drug resistance. Biomed Pharmacother 2024; 177:117049. [PMID: 38945081 DOI: 10.1016/j.biopha.2024.117049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024] Open
Abstract
Ginseng, the dried root of Panax ginseng C.A. Mey., is widely used in Chinese herbal medicine. Ginsenosides, the primary active components of ginseng, exhibit diverse anticancer functions through various mechanisms, such as inhibiting tumor cell proliferation, promoting apoptosis, and suppressing cell invasion and migration. In this article, the mechanism of action of 20 ginsenoside subtypes in tumor therapy and the research progress of multifunctional nanosystems are reviewed, in order to provide reference for clinical prevention and treatment of cancer.
Collapse
Affiliation(s)
- Yi Yang
- School of Basic Medical, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China
| | - Yi Nan
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China
| | - Yuhua Du
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China
| | - Wenjing Liu
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China
| | - Na Ning
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China
| | - Guoqing Chen
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China
| | - Qian Gu
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China
| | - Ling Yuan
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China.
| |
Collapse
|
41
|
Zheng W, Huang Y, Wu Q, Cheng P, Song Y, Wang B, Huang Q, Hu S. Poly(lactic acid hydroxyacetic acid)-poly(ethylene glycol)-modified ginsenoside Rg3 nanomedicine enhances anti-tumor effect in hepatocellular carcinoma. Drug Dev Ind Pharm 2024; 50:763-775. [PMID: 39259031 DOI: 10.1080/03639045.2024.2402769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/12/2024]
Abstract
OBJECTIVE This research aims to improve the bioavailability and anti-hepatocellular carcinoma (HCC) efficacy of Ginsenoside Rg3 by modification with poly (lactic acid hydroxyacetic acid)-poly(ethylene glycol) (PLGA-PEG). METHODS PLGA-PEG-Rg3 was obtained by emulsification and evaluated it physiochemical characterization by FTIR, SEM, laser particle-size analyzer and HPLC. The effect of the PLGA-PEG-Rg3 and Rg3 on HepG2 cells was compared in vitro studies, including cell proliferation, transwell and a series of apoptosis detection, and in-situ HCC model. RESULTS The PLGA-PEG-Rg3 were 122 nm in size and 0.112 in polydispersity index with sustained release profile in vitro. Compared to Rg3, PLGA-PEG-Rg3 was more effective in suppressing HepG2 growth and inducing apoptosis by the mitochondrial apoptosis pathway in vitro. And PLGA-PEG modification enhanced the liver-targeting ability and drug circulation time of Rg3 in vivo, resulting in PLGA-PEG-Rg3 possessing superior performance in inhibiting tumor growth and prolonging the survival time of tumor-bearing mice than Rg3. CONCLUSIONS Overall, these results showed PLGA-PEG-Rg3 enhanced the anti-tumor effect of Rg3 in HCC.
Collapse
Affiliation(s)
- Wei Zheng
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuqiao Huang
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Qiong Wu
- Center for Modern Physics Technology, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, China
| | - Pu Cheng
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yujun Song
- Center for Modern Physics Technology, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, China
| | - Ben Wang
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Qi Huang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shen Hu
- Department of Obstetrics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, China
| |
Collapse
|
42
|
Chen X, Huang L, Zhang M, Lin S, Xie J, Li H, Wang X, Lu Y, Zheng D. Comparison of nanovesicles derived from Panax notoginseng at different size: physical properties, composition, and bioactivity. Front Pharmacol 2024; 15:1423115. [PMID: 39104384 PMCID: PMC11298367 DOI: 10.3389/fphar.2024.1423115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/03/2024] [Indexed: 08/07/2024] Open
Abstract
Aim Plant-derived nanovesicles have emerged as potential agents for combating tumors. In this study, we investigated the inhibitory effects of Panax notoginseng-derived nanovesicles (PnNVs) on the proliferation and migration of squamous cell carcinoma. Additionally, we explored the relationship between plant tuber size and the physical properties, composition and bioactivity of these nanovesicles. Methods We isolated PnNVs from Panax notoginseng tubers of varying sizes: small-sized (s_PnNVs), medium-sized (m_PnNVs) and large-sized (l_PnNVs), and evaluated for size, potential, and morphology. Cellular uptake efficiency was assessed using confocal microscopy and flow cytometry. The ability of different PnNVs to inhibit oral squamous cell carcinoma cells was evaluated using plate cloning, CCK8 assay, and scratch healing assay. Off-target metabolomics was used to compare metabolic compounds of different PnNVs. Results Our findings revealed that s_PnNVs exhibited lower potential but had the highest cellular uptake efficiency, whereas m_PnNVs were characterized by the smallest size and lowest cellular uptake efficiency. Notably, m_PnNVs demonstrated the most effective inhibition of squamous cell carcinoma growth and migration. Compositional analyses showed that PnNVs were rich in proteins and contained lower levels of RNA, with l_PnNVs having the highest protein content. Furthermore, untargeted metabolomics analysis revealed a significant increase in the expression of specific antitumour-related metabolites in m_PnNVs compared to s_PnNVs and l_PnNVs. Conclusion Overall, our results underscore the influence of plant tuber size on the bioactivity of the nanovesicles from which they are derived, emphasizing its importance for experimental design and study reproducibility.
Collapse
Affiliation(s)
- Xiaohang Chen
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Liyu Huang
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Human Anatomy and Histology, and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Mengyuan Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Shuoqi Lin
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Jing Xie
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Hengyi Li
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Xing Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Youguang Lu
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Dali Zheng
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
43
|
Zou F, Zhang G, Mei G, Zhang H, Xie M, Dan M. CTEN-induced TGF-β1 expression facilitates EMT and enhances paclitaxel resistance in bladder cancer cells. Am J Transl Res 2024; 16:3248-3258. [PMID: 39114729 PMCID: PMC11301497 DOI: 10.62347/qwak3951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/14/2024] [Indexed: 08/10/2024]
Abstract
OBJECTIVES To investigate the role of C-terminal tensin-like (CTEN) in mediating chemotherapy resistance via epithelial-mesenchymal transition (EMT) in bladder cancer (BC) cells, through the regulation of transforming growth factor-β1 (TGF-β1) expression. METHODS Lentiviral vectors were used to create CTEN overexpression and knockdown constructs, which were then introduced into paclitaxel-resistant BC cell lines. The effects of CTEN manipulation on cell proliferation and drug sensitivity was assessed using the CCK-8 assay, and apoptosis was evaluated by flow cytometry. The expression levels of CTEN, TGF-β1, and EMT markers were quantified by RT-qPCR and Western blot analysis. The interaction between CTEN and TGF-β1 and its effect on TGF-β1 methylation were studied using bisulfite sequencing PCR and co-immunoprecipitation. RESULTS Overexpression of CTEN in BC cells was associated with decreased paclitaxel efficacy, reduced apoptosis, and elevated levels of TGF-β1 and EMT-related proteins. CTEN was found to bind TGF-β1, inhibiting its methylation and thereby promoting TGF-β1 upregulation. This increase in TGF-β1 expression facilitated the EMT process and enhanced drug resistance in BC cells. CONCLUSIONS The induction of TGF-β1 expression by CTEN promotes EMT and increases chemotherapy resistance in BC cells. Targeting CTEN or the EMT pathway could improve chemosensitivity in treatment-resistant BC, suggesting a novel therapeutic strategy to enhance chemotherapy effectiveness.
Collapse
Affiliation(s)
- Feng Zou
- Department of Urology, The Seventh Affiliated Hospital, Southern Medical UniversityFoshan 528000, Guangdong, China
| | - Guofei Zhang
- Department of Urology, The Seventh Affiliated Hospital, Southern Medical UniversityFoshan 528000, Guangdong, China
| | - Gang Mei
- Department of Orthopedics, The Seventh Affiliated Hospital, Southern Medical UniversityFoshan 528000, Guangdong, China
| | - Huantao Zhang
- Department of Urology Surgery, Hui Ya Hospital of The First Affiliated Hospital, Sun Yat-sen UniversityHuizhou 516200, Guangdong, China
| | - Mengliang Xie
- Department of Urology Surgery, Hui Ya Hospital of The First Affiliated Hospital, Sun Yat-sen UniversityHuizhou 516200, Guangdong, China
| | - Mingjiang Dan
- Department of Urology Surgery, Hui Ya Hospital of The First Affiliated Hospital, Sun Yat-sen UniversityHuizhou 516200, Guangdong, China
| |
Collapse
|
44
|
Oehler JB, Rajapaksha W, Albrecht H. Emerging Applications of Nanoparticles in the Diagnosis and Treatment of Breast Cancer. J Pers Med 2024; 14:723. [PMID: 39063977 PMCID: PMC11278299 DOI: 10.3390/jpm14070723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Breast cancer remains the most prevalent cancer among women worldwide, driving the urgent need for innovative approaches to diagnosis and treatment. This review highlights the pivotal role of nanoparticles in revolutionizing breast cancer management through advancements of interconnected approaches including targeted therapy, imaging, and personalized medicine. Nanoparticles, with their unique physicochemical properties, have shown significant promise in addressing current treatment limitations such as drug resistance and nonspecific systemic distribution. Applications range from enhancing drug delivery systems for targeted and sustained release to developing innovative diagnostic tools for early and precise detection of metastases. Moreover, the integration of nanoparticles into photothermal therapy and their synergistic use with existing treatments, such as immunotherapy, illustrate their transformative potential in cancer care. However, the journey towards clinical adoption is fraught with challenges, including the chemical feasibility, biodistribution, efficacy, safety concerns, scalability, and regulatory hurdles. This review delves into the current state of nanoparticle research, their applications in breast cancer therapy and diagnosis, and the obstacles that must be overcome for clinical integration.
Collapse
Affiliation(s)
- Josephine B. Oehler
- College of Medicine and Dentistry, James Cook University, Townsville, QLD 4810, Australia
- Biomedical Sciences and Molecular Biology, College of Public Health, Medical & Vet Sciences, James Cook University, Townsville, QLD 4810, Australia
| | - Weranga Rajapaksha
- Centre for Pharmaceutical Innovation (CPI), Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Hugo Albrecht
- Centre for Pharmaceutical Innovation (CPI), Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| |
Collapse
|
45
|
Hughes KJ, Cheng J, Iyer KA, Ralhan K, Ganesan M, Hsu CW, Zhan Y, Wang X, Zhu B, Gao M, Wang H, Zhang Y, Huang J, Zhou QA. Unveiling Trends: Nanoscale Materials Shaping Emerging Biomedical Applications. ACS NANO 2024; 18:16325-16342. [PMID: 38888229 DOI: 10.1021/acsnano.4c04514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The realm of biomedical materials continues to evolve rapidly, driven by innovative research across interdisciplinary domains. Leveraging big data from the CAS Content Collection, this study employs quantitative analysis through natural language processing (NLP) to identify six emerging areas within nanoscale materials for biomedical applications. These areas encompass self-healing, bioelectronic, programmable, lipid-based, protein-based, and antibacterial materials. Our Nano Focus delves into the multifaceted utilization of nanoscale materials in these domains, spanning from augmenting physical and electronic properties for interfacing with human tissue to facilitating intricate functionalities like programmable drug delivery.
Collapse
Affiliation(s)
- Kevin J Hughes
- CAS, a division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Jianjun Cheng
- Westlake University, 600 Dunyu Rd., Xihu District, Hangzhou, Zhejiang 310030. PR China
| | - Kavita A Iyer
- ACS International India Pvt. Ltd., Pune 411044, India
| | | | | | - Chia-Wei Hsu
- CAS, a division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Yutao Zhan
- Westlake University, 600 Dunyu Rd., Xihu District, Hangzhou, Zhejiang 310030. PR China
| | - Xinning Wang
- Westlake University, 600 Dunyu Rd., Xihu District, Hangzhou, Zhejiang 310030. PR China
| | - Bowen Zhu
- Westlake University, 600 Dunyu Rd., Xihu District, Hangzhou, Zhejiang 310030. PR China
| | - Menghua Gao
- Westlake University, 600 Dunyu Rd., Xihu District, Hangzhou, Zhejiang 310030. PR China
| | - Huaimin Wang
- Westlake University, 600 Dunyu Rd., Xihu District, Hangzhou, Zhejiang 310030. PR China
| | - Yue Zhang
- Westlake University, 600 Dunyu Rd., Xihu District, Hangzhou, Zhejiang 310030. PR China
| | - Jiaxing Huang
- Westlake University, 600 Dunyu Rd., Xihu District, Hangzhou, Zhejiang 310030. PR China
| | | |
Collapse
|
46
|
Samaei SS, Daryab M, Gholami S, Rezaee A, Fatehi N, Roshannia R, Hashemi S, Javani N, Rahmanian P, Amani-Beni R, Zandieh MA, Nabavi N, Rashidi M, Malgard N, Hashemi M, Taheriazam A. Multifunctional and stimuli-responsive liposomes in hepatocellular carcinoma diagnosis and therapy. Transl Oncol 2024; 45:101975. [PMID: 38692195 PMCID: PMC11070928 DOI: 10.1016/j.tranon.2024.101975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/11/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent type of liver cancer, mainly occurring in Asian countries with an increased incidence rate globally. Currently, several kinds of therapies have been deployed for HCC therapy including surgical resection, chemotherapy, radiotherapy and immunotherapy. However, this tumor is still incurable, requiring novel strategies for its treatment. The nanomedicine has provided the new insights regarding the treatment of cancer that liposomes as lipid-based nanoparticles, have been widely applied in cancer therapy due to their biocompaitiblity, high drug loading and ease of synthesis and modification. The current review evaluates the application of liposomes for the HCC therapy. The drugs and genes lack targeting ability into tumor tissues and cells. Therefore, loading drugs or genes on liposomes can increase their accumulation in tumor site for HCC suppression. Moreover, the stimuli-responsive liposomes including pH-, redox- and light-sensitive liposomes are able to deliver drug into tumor microenvironment to improve therapeutic index. Since a number of receptors upregulate on HCC cells, the functionalization of liposomes with lactoferrin and peptides can promote the targeting ability towards HCC cells. Moreover, phototherapy can be induced by liposomes through loading phtoosensitizers to stimulate photothermal- and photodynamic-driven ablation of HCC cells. Overall, the findings are in line with the fact that liposomes are promising nanocarriers for the treatment of HCC.
Collapse
Affiliation(s)
- Seyedeh Setareh Samaei
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mahshid Daryab
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sarah Gholami
- Young Researcher and Elite Club, Babol Branch, Islamic Azad University, Babol, Iran
| | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Navid Fatehi
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Romina Roshannia
- Faculty of Life Science and Bio-technology, Shahid Beheshti University, Tehran, Iran
| | - Saeed Hashemi
- Faculty of Veterinary Medicine, Department of Clinical Sciences, University of Shahrekord, Shahrekord, Iran
| | - Nazanin Javani
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Reza Amani-Beni
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Neda Malgard
- Department of Internal medicine, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
47
|
Wang Y, Wang Z, Sun Y, Zhu M, Jiang Y, Bai H, Yang B, Kuang H. Isovaleryl Sucrose Esters from Atractylodes japonica and Their Cytotoxic Activity. Molecules 2024; 29:3069. [PMID: 38999021 PMCID: PMC11243297 DOI: 10.3390/molecules29133069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/16/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Cancer represents one of the most significant health challenges currently facing humanity, and plant-derived antitumour drugs represent a prominent class of anticancer medications in clinical practice. Isovaleryl sucrose esters, which are natural constituents, have been identified as having potential antitumour effects. However, the mechanism of action remains unclear. In this study, 12 isovaleryl sucrose ester components, including five new (1-5) and seven known compounds (6-12), were isolated from the roots of Atractylodes japonica. The structures of the compounds were elucidated using 1D and 2D-NMR spectroscopy, complemented by HR-ESI-MS mass spectrometry. The cytotoxic activities of all the compounds against human colon cancer cells (HCT-116) and human lung adenocarcinoma cells (A549) were also evaluated using the CCK8 assay. The results demonstrated that compounds 2, 4, and 6 were moderately inhibitory to HCT-116 cells, with IC50 values of 7.49 ± 0.48, 9.03 ± 0.21, and 13.49 ± 1.45 μM, respectively. Compounds 1 and 6 were moderately inhibitory to A549, with IC50 values of 8.36 ± 0.77 and 7.10 ± 0.52 μM, respectively. Molecular docking revealed that compounds 1-9 exhibited a stronger affinity for FGFR3 and BRAF, with binding energies below -7 kcal/mol. Compound 2 exhibited the lowest binding energy of -10.63 kcal/mol to FGFR3. We screened the compounds with lower binding energies, and the protein-ligand complexes already obtained after molecular docking were subjected to exhaustive molecular dynamics simulation experiments, which simulated the dynamic behaviour of the molecules in close proximity to the actual biological environment, thus providing a deeper understanding of their functions and interaction mechanisms. The present study provides a reference for the development and use of iso-valeryl sucrose esters in the antitumour field.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (Y.W.); (Z.W.); (Y.S.); (M.Z.); (Y.J.); (H.B.); (B.Y.)
| |
Collapse
|
48
|
Dechbumroong P, Hu R, Keaswejjareansuk W, Namdee K, Liang XJ. Recent advanced lipid-based nanomedicines for overcoming cancer resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:24. [PMID: 39050885 PMCID: PMC11267154 DOI: 10.20517/cdr.2024.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/09/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024]
Abstract
The increasing prevalence of cancer drug resistance not only critically limits the efficiency of traditional therapies but also causes relapses or recurrences of cancer. Consequently, there remains an urgent need to address the intricate landscape of drug resistance beyond traditional cancer therapies. Recently, nanotechnology has played an important role in the field of various drug delivery systems for the treatment of cancer, especially therapy-resistant cancer. Among advanced nanomedicine technologies, lipid-based nanomaterials have emerged as effective drug carriers for cancer treatment, significantly improving therapeutic effects. Due to their biocompatibility, simplicity of preparation, and potential for functionalization, lipid-based nanomaterials are considered powerful competitors for resistant cancer. In this review, an overview of lipid-based nanomaterials for addressing cancer resistance is discussed. We summarize the recent progress in overcoming drug resistance in cancer by these lipid-based nanomaterials, and highlight their potential in future applications to reverse cancer resistance.
Collapse
Affiliation(s)
- Piroonrat Dechbumroong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100049, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
- Authors contributed equally
| | - Runjing Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100049, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Authors contributed equally
| | - Wisawat Keaswejjareansuk
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Katawut Namdee
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100049, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
49
|
Qian J, Jiang Y, Hu H. Ginsenosides: an immunomodulator for the treatment of colorectal cancer. Front Pharmacol 2024; 15:1408993. [PMID: 38939839 PMCID: PMC11208871 DOI: 10.3389/fphar.2024.1408993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/23/2024] [Indexed: 06/29/2024] Open
Abstract
Ginsenosides, the primary bioactive ingredients derived from the root of Panax ginseng, are eagerly in demand for tumor patients as a complementary and alternative drug. Ginsenosides have increasingly become a "hot topic" in recent years due to their multifunctional role in treating colorectal cancer (CRC) and regulating tumor microenvironment (TME). Emerging experimental research on ginsenosides in the treatment and immune regulation of CRC has been published, while no review sums up its specific role in the CRC microenvironment. Therefore, this paper systematically introduces how ginsenosides affect the TME, specifically by enhancing immune response, inhibiting the activation of stromal cells, and altering the hallmarks of CRC cells. In addition, we discuss their impact on the physicochemical properties of the tumor microenvironment. Furthermore, we discuss the application of ginsenosides in clinical treatment as their efficacy in enhancing tumor patient immunity and prolonging survival. The future perspectives of ginsenoside as a complementary and alternative drug of CRC are also provided. This review hopes to open up a new horizon for the cancer treatment of Traditional Chinese Medicine monomers.
Collapse
Affiliation(s)
- Jianan Qian
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanyu Jiang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongyi Hu
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
50
|
Pan W, Gu F, Yan X, Huang J, Liao H, Niu F. Biomacromolecular carriers based hydrophobic natural products for potential cancer therapy. Int J Biol Macromol 2024; 269:132274. [PMID: 38734357 DOI: 10.1016/j.ijbiomac.2024.132274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/25/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Cancer is the second leading cause of death worldwide. It was estimated that 90 % of cancer-related deaths were attributable to the development of multi-drug resistance (MDR) during chemotherapy, which results in ineffective chemotherapy. Hydrophobic natural products plays a pivotal role in the field of cancer therapy, with the potential to reverse MDR in tumor cells, thereby enhancing the efficacy of tumor therapy. However, their targeted delivery is considered a major hurdle in their application. The advent of numerous approaches for encapsulating bioactive ingredients in the nanodelivery systems has improved the stability and targeted delivery of these biomolecules. The manuscript comprehensively analyses the nanodelivery systems of bioactive compounds with potential cancer therapy applications, including liposomes, emulsions, solid lipid nanoparticles (NPs), and polymeric NPs. Then, the advantages and disadvantages of various nanoagents in the treatment of various cancer types are critically discussed. Further, the application of multiple-compbine delivery methods to overcome the limitations of single-delivery have need critically analyzed, which thus could help in the designing nanodrug delivery systems for bioactive compounds in clinical settings. Therefore, the review is timely and important for development of efficient nanodelivery systems involving hydrophobic natural products to improve pharmacokinetic properties for effective cancer treatment.
Collapse
Affiliation(s)
- Weichun Pan
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Feina Gu
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Xinyu Yan
- College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Jianghui Huang
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Huabin Liao
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Fuge Niu
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|