1
|
Hubbard EE, Shoff TA, Hur M, Lambeth TR, Chen C, Kung E, Pan BD, Lui MK, Linares JR, Cantrell LS, Schey KL, Julian RR. Deep Characterization of Isomerization in the Human Eye Lens Proteome by Crystallin-Depleted Data-Independent Acquisition. Aging Cell 2025:e70028. [PMID: 40312820 DOI: 10.1111/acel.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/23/2025] [Accepted: 02/15/2025] [Indexed: 05/03/2025] Open
Abstract
The eye lens is a unique tissue optimized for light transmission and refraction, necessitating dissolution of all organelles in mature fiber cells. This absence of organelles prevents protein turnover and leads to the accumulation of many spontaneous modifications over time. One modification that is oft overlooked is isomerization, despite its known impact on protein structure, interference with enzymatic activity, and association with disease. Prior analysis of isomerization in the lens has been limited to a small number of targets, consisting primarily of the highly abundant crystallin proteins. Proteomic coverage can be greatly increased by first depleting the crystallins and then employing state-of-the-art data-independent acquisition (DIA) mass spectrometry (MS). However, this approach has not been combined with data analysis methods capable of identifying isomers. By so doing, we identified hundreds of previously unreported, noncrystallin Asp isomer sites. To a lesser extent, isomerization was also detected at serine and glutamic acid, consistent with previous reports of relative isomerization propensities. Interestingly, we also identify histidine isomerization sites in a select number of peptides associated with metal adduction. We further analyzed our results according to primary sequence and secondary structure to explore factors potentially influencing isomerization. Finally, we found that while isomerization percents for individual proteins are modestly accurate predictor of age, inclusion of multiple isomerized sites affords a more accurate prediction of age, which may be useful for applications in forensics.
Collapse
Affiliation(s)
- Evan E Hubbard
- Department of Chemistry, University of California, California, USA
| | - Thomas A Shoff
- Department of Chemistry, University of California, California, USA
| | - Manhoi Hur
- Department of Botany and Plant Sciences, University of California, Riverside, California, USA
- Institute of Integrative Genome Biology, University of California, California, USA
| | - Tyler R Lambeth
- Department of Chemistry, University of California, California, USA
| | - Chengwei Chen
- Department of Chemistry, University of California, California, USA
| | - Ethan Kung
- Department of Chemistry, University of California, California, USA
| | - Bruce D Pan
- Department of Chemistry, University of California, California, USA
| | - Matthew K Lui
- Department of Chemistry, University of California, California, USA
| | - Javian R Linares
- Department of Chemistry, University of California, California, USA
| | - Lee S Cantrell
- Chemical and Physical Biology Program, Vanderbilt University, Nashville, Tennessee, USA
| | - Kevin L Schey
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, USA
| | - Ryan R Julian
- Department of Chemistry, University of California, California, USA
| |
Collapse
|
2
|
Kretschmer K, Stichel J, Bellmann-Sickert K, Baumann L, Bierer D, Riedl B, Beck-Sickinger AG. Pinpointing the interaction site between semaphorin-3A and its inhibitory peptide. J Pept Sci 2023; 29:e3460. [PMID: 36285908 DOI: 10.1002/psc.3460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022]
Abstract
Semaphorin-3A (Sema-3A) is a chemorepellant protein with various biological functions, including kidney development. It interacts with a protein complex consisting of the receptors neuropilin-1 (NRP-1) and plexin-A1. After acute kidney injury, Sema-3A is overexpressed and secreted, leading to a loss of kidney function. The development of peptide inhibitors is a promising approach to modulate the interaction of Sema-3A with its receptor NRP-1. Few interaction points between these binding partners are known. However, an immunoglobulin-like domain-derived peptide of Sema-3A has shown a positive effect on cell proliferation. To specify these interactions between the peptide inhibitor and the Sema-3A-NRP-1 system, the peptides were modified with the photoactivatable amino acids 4-benzoyl-l-phenylalanine or photo-l-leucine by solid-phase peptide synthesis. Activity was tested by an enzyme-linked immunosorbent-based binding assay, and crosslinking experiments were analyzed by Western blot and mass spectrometry, demonstrating a specific binding site of the peptide at Sema-3A. The observed signals for Sema-3A-peptide interaction were found in a defined area of the Sema domain, which was also demonstrated to be involved in NRP-1 binding. The presented data identified the interaction site for further development of therapeutic peptides to treat acute kidney injury by blocking the Sema-3A-NRP-1 interaction.
Collapse
Affiliation(s)
- Kevin Kretschmer
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
| | - Jan Stichel
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
3
|
Geddes da Filicaia E, Evershed RP, Peggie DA. Review of recent advances on the use of mass spectrometry techniques for the study of organic materials in painted artworks. Anal Chim Acta 2023; 1246:340575. [PMID: 36764767 DOI: 10.1016/j.aca.2022.340575] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
Abstract
The study of painted artworks using scientific methods is fundamental for understanding the techniques used in their creation and their appropriate conservation. The ethical constraints involved in the handling of, and sampling from, these objects has steered recent developments in the field of Heritage science towards a range of new non-invasive/non-destructive spectroscopic techniques capable of providing important insights into their elemental or bulk chemical compositions. Due to the inherent complexities of heritage artefacts, however, their organic components are especially difficult to study in this way and their identification and degradation pathways are thus often best investigated using mass spectrometric (MS) techniques. The versatility, sensitivity and specificity of MS techniques are constantly increasing, with technological advances pushing the boundaries of their use in this field. The progress in the past ten years in the use of MS techniques for the analysis of paint media are described in the present review. While some historical context is included, the body of the review is structured around the five most widely used or emerging capabilities offered by MS. The first pertains to the use of spatially resolved MS to obtain chemical maps of components in cross-sections, which may yield information on both inorganic and organic materials, while the second area describes the development of novel sample preparation approaches for gas chromatography (GC)-MS to allow simultaneous analysis of a variety of components. The third focuses on thermally assisted analysis (either with direct MS or coupled with GC-MS), a powerful tool for studying macromolecules requiring zero (or minimal) sample pre-treatment. Subsequently, the use of soft ionisation techniques often combined with high-resolution MS for the study of peptides (proteomics) and other macromolecules (such as oligosaccharides and triglycerides) is outlined. The fifth area covers the advances in radiocarbon dating of painting components with accelerator MS (AMS). Lastly, future applications of other MS techniques to the study of paintings are mentioned; such as direct analysis in real time MS (DART-MS) and stable isotope ratio MS (IRMS). The latter, having proven its efficiency for the study of lipids in archaeological artefacts, is envisioned to become a valuable tool for this area, whereas DART-MS is already being utilised to study the surface composition of various museum objects. Rapid technological advances, resulting in increased sensitivity and selectivity of MS techniques, are opening up new approaches for paintings analysis, overcoming the fundamental hurdle of sample size available for destructive analysis. Importantly, while the last decade has seen proteomics applications come to the fore, this review aims to emphasise the wider potential of advanced MS techniques for the study of painting materials and their conservation.
Collapse
Affiliation(s)
- Eugenia Geddes da Filicaia
- Scientific Department, National Gallery, Trafalgar Square, London, WC2N 5DN, UK; Organic Geochemistry Unit, Bristol Biogeochemistry Research Centre, School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1T, UK.
| | - Richard P Evershed
- Organic Geochemistry Unit, Bristol Biogeochemistry Research Centre, School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1T, UK
| | - David A Peggie
- Scientific Department, National Gallery, Trafalgar Square, London, WC2N 5DN, UK
| |
Collapse
|
4
|
Tolpina MD, Vasileva ID, Samgina TY. Modern Approaches in de novo Sequencing of Nontryptic Peptides of Ranid and Hylid Frogs by Means of Mass Spectrometry: A Review. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822130081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Analysis of Monoclonal Antibodies by Capillary Electrophoresis: Sample Preparation, Separation, and Detection. SEPARATIONS 2021. [DOI: 10.3390/separations8010004] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Therapeutic monoclonal antibodies (mAbs) are dominating the biopharmaceutical field due to the fact of their high specificity in the treatment of diverse diseases. Nevertheless, mAbs are very complex glycoproteins exhibiting several macro- and microheterogeneities that may affect their safety, quality, and efficacy. This complexity is very challenging for mAbs development, formulation, and quality control. To tackle the quality issue, a combination of multiple analytical approaches is necessary. In this perspective, capillary electrophoresis has gained considerable interest over the last decade due to the fact of its complementary features to chromatographic approaches. This review provides an overview of the strategies of mAbs and derivatives analysis by capillary electrophoresis hyphenated to ultraviolet, fluorescence, and mass spectrometry detection. The main sample preparation approaches used for mAb analytical characterization (i.e., intact, middle-up/down, and bottom-up) are detailed. The different electrophoretic modes used as well as integrated analysis approaches (sample preparation and separation) are critically discussed.
Collapse
|
6
|
Wang S, Liu AP, Li N. An 18O-Labeling Assisted LC-MS Method for Accurate Quantitation of Unprocessed C-Terminal Lysine in Therapeutic Monoclonal Antibodies. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1587-1592. [PMID: 32515589 DOI: 10.1021/jasms.0c00149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Unprocessed C-terminal lysine (C-term Lys) is one of the most common causes for the formation of basic variants in therapeutic monoclonal antibodies (mAbs). Although the C-term Lys variants are routinely quantified by a LC-MS-based peptide mapping method using the relative MS responses from both C-terminal peptides (with and without Lys), this approach often leads to overestimation of Lys-containing peptide due to the intrinsic difference in ionization efficiency. Herein, we report an 18O-labeling assisted LC-MS method, which takes advantage of the carboxypeptidase B-catalyzed Lys removal and 18O-labeling to achieve improved accuracy of C-term Lys quantitation. The fidelity of this method was first demonstrated using synthetic peptide mixture standards that mimic a wide range of C-term Lys levels. Finally, the newly developed method was applied in a case study where C-term Lys variants in mAb samples manufactured from different processes were accurately quantified and compared. This new method provides a valuable solution for studies where accurate C-term Lys levels are needed to assist decision-making and root-cause investigation.
Collapse
Affiliation(s)
- Shunhai Wang
- Analytical Chemistry Group, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Anita P Liu
- Analytical Chemistry Group, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Ning Li
- Analytical Chemistry Group, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| |
Collapse
|
7
|
Sze SK, JebaMercy G, Ngan SC. Profiling the 'deamidome' of complex biosamples using mixed-mode chromatography-coupled tandem mass spectrometry. Methods 2020; 200:31-41. [PMID: 32418626 DOI: 10.1016/j.ymeth.2020.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 04/26/2020] [Accepted: 05/06/2020] [Indexed: 12/14/2022] Open
Abstract
Deamidation is a spontaneous degenerative protein modification (DPM) that disrupts the structure and function of both endogenous proteins and various therapeutic agents. While deamidation has long been recognized as a critical event in human aging and multiple degenerative diseases, research progress in this field has been restricted by the technical challenges associated with studying this DPM in complex biological samples. Asparagine (Asn) deamidation generates L-aspartic acid (L-Asp), D-aspartic acid (D-Asp), L-isoaspartic acid (L-isoAsp) or D-isoaspartic acid (D-isoAsp) residues at the same position of Asn in the affected protein, but each of these amino acids displays similar hydrophobicity and cannot be effectively separated by reverse phase liquid chromatography. The Asp and isoAsp isoforms are also difficult to resolve using mass spectrometry since they have the same mass and fragmentation pattern in MS/MS. Moreover, the 13C peaks of the amidated peptide are often misassigned as monoisotopic peaks of the corresponding deamidated peptides in protein database searches. Furthermore, typical protein isolation and proteomic sample preparation methods induce artificial deamidation that cannot be distinguished from the physiological forms. To better understand the role of deamidation in biological aging and degenerative pathologies, new technologies are now being developed to address these analytical challenges, including mixed mode electrostatic-interaction modified hydrophilic interaction liquid chromatography (emHILIC). When coupled to high resolution, high accuracy tandem mass spectrometry this technology enables unprecedented, proteome-wide study of the 'deamidome' of complex samples. The current article therefore reviews recent advances in sample preparation methods, emHILIC-MS/MS technology, and MS instrumentation / data processing approaches to achieving accurate and reliable characterization of protein deamidation in complex biological and clinical samples.
Collapse
Affiliation(s)
- Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Gnanasekaran JebaMercy
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - SoFong Cam Ngan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
8
|
Kawasue S, Sakaguchi Y, Koga R, Yoshida H, Nohta H. Assessment method for deamidation in proteins using carboxylic acid derivatization-liquid chromatography-tandem mass spectrometry. J Pharm Biomed Anal 2020; 181:113095. [PMID: 31962249 DOI: 10.1016/j.jpba.2020.113095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/01/2020] [Accepted: 01/02/2020] [Indexed: 12/28/2022]
Abstract
An analytical method for the degree of protein deamidation has been developed by using carboxy group derivatization and liquid chromatography-tandem mass spectrometry (LCMS/MS). The fragment peptides (LGEYGFQNALIVR and YNGVFQECCQAEDK) obtained by digesting bovine serum albumin (BSA) with trypsin and their asparagine deamidated peptides (LGEYGFQDALIVR and YDGVFQECCQAEDK) were selected as model peptides, and their carboxy groups were derivatized with ethylamine. This derivatization enabled a clear distinction between natural peptides and deamidated peptides by mass, allowing for facile distinction by LCMS/MS before and after deamidation. Good linearity was confirmed for four peptides used in this study via isotope dilution mass spectrometry, showing that protein deamidation can be evaluated by the present method. To confirm the validity of this method for the evaluation of deamidation, natural peptides and deamidated peptides were mixed in arbitrary ratios, and degree of deamidation in these solution was analyzed. This confirmed that accurate evaluation was possible at deamidation degree values of ca. 10 %, 5 %, 2.5 %, and 1 %. Additionally, an accelerated storage test of BSA demonstrated that the deamidation of asparagine at position 404 of BSA progressed by 4 % in 9 weeks at 40 °C and pH 8 in the dark, and that the deamidation process can be traced over time.
Collapse
Affiliation(s)
- Shimba Kawasue
- Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Johnan, Fukuoka, 814-0180, Japan
| | - Yohei Sakaguchi
- Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Johnan, Fukuoka, 814-0180, Japan
| | - Reiko Koga
- Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Johnan, Fukuoka, 814-0180, Japan
| | - Hideyuki Yoshida
- Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Johnan, Fukuoka, 814-0180, Japan
| | - Hitoshi Nohta
- Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Johnan, Fukuoka, 814-0180, Japan.
| |
Collapse
|
9
|
Burkhardt M, Reiter K, Nguyen V, Suzuki M, Herrera R, Duffy PE, Shimp R, MacDonald NJ, Olano LR, Narum DL. Assessment of the impact of manufacturing changes on the physicochemical properties of the recombinant vaccine carrier ExoProtein A. Vaccine 2019; 37:5762-5769. [PMID: 30262247 PMCID: PMC6525083 DOI: 10.1016/j.vaccine.2018.09.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/06/2018] [Accepted: 09/16/2018] [Indexed: 01/24/2023]
Abstract
Efforts to develop a vaccine for the elimination of malaria include the use of carrier proteins to assemble monomeric antigens into nanoparticles to maximize immunogenicity. Recombinant ExoProtein A (EPA) is a detoxified form of Pseudomonas aeruginosa Exotoxin A which has been used as a carrier in the conjugate vaccine field. A pilot-scale process developed for purification of EPA yielded product that consistently approached a preset upper limit for host cell protein (HCP) content per human dose. To minimize the risk of bulk material exceeding the specification, the purification process was redeveloped using mixed-mode chromatography resins. Purified EPA derived from the primary and redeveloped processes were comparable following full biochemical and biophysical characterization. However, using a process specific immunoassay, the HCP content was shown to decrease from a range of 0.14-0.24% w/w of total protein to below the level of detection with the revised process. The improved process reproducibly yields EPA with highly similar quality characteristics as the original process but with an improved profile for the HCP content.
Collapse
Affiliation(s)
- Martin Burkhardt
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5640 Fishers Lane, Rockville, MD 20852, United States
| | - Karine Reiter
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5640 Fishers Lane, Rockville, MD 20852, United States
| | - Vu Nguyen
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5640 Fishers Lane, Rockville, MD 20852, United States
| | - Motoshi Suzuki
- Research Technology Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5640 Fishers Lane, Rockville, MD 20852, United States
| | - Raul Herrera
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5640 Fishers Lane, Rockville, MD 20852, United States
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5640 Fishers Lane, Rockville, MD 20852, United States
| | - Richard Shimp
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5640 Fishers Lane, Rockville, MD 20852, United States
| | - Nicholas J MacDonald
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5640 Fishers Lane, Rockville, MD 20852, United States
| | - L Renee Olano
- Research Technology Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5640 Fishers Lane, Rockville, MD 20852, United States
| | - David L Narum
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5640 Fishers Lane, Rockville, MD 20852, United States.
| |
Collapse
|
10
|
Pekov SI, Ivanov DG, Bugrova AE, Indeykina MI, Zakharova NV, Popov IA, Kononikhin AS, Kozin SA, Makarov AA, Nikolaev EN. Evaluation of MALDI-TOF/TOF Mass Spectrometry Approach for Quantitative Determination of Aspartate Residue Isomerization in the Amyloid-β Peptide. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1325-1329. [PMID: 31073890 DOI: 10.1007/s13361-019-02199-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 03/11/2019] [Accepted: 03/29/2019] [Indexed: 06/09/2023]
Abstract
Immunoprecipitation (IP) combined with MALDI-TOF mass spectrometry is a powerful instrument for peptide and protein identification in biological samples. In this study, the analytical capabilities of MALDI-TOF/TOF mass spectrometry for relative quantitation of isoAsp7 in Aβ(1-42) and Aβ(1-16) were investigated. The possibility of quantitative determination of isoAsp7 in Aβ(1-42) with the detection limit as low as 2 pmol has been demonstrated. The same approach was applied for a shorter peptide Aβ(1-16) and resulted in enhanced accuracy (± 3.2%), and lower detection limit (50 fmol). Pilot experiments with artificial cerebrospinal fluid and mouse brain tissue were performed and showed that the proposed IP-MALDI-TOF/TOF approach could be applied for measuring isoAβ content in biological fluids and tissues. Additionally, it was shown that 6E10 anti-amyloid antibodies might affect the accuracy of the amyloid-β quantitation in the presence of the isomerized peptide.
Collapse
Affiliation(s)
- Stanislav I Pekov
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow region, Russia
- V.L. Talrose Institute for Energy Problems of Chemical Physics RAS, Moscow, Russia
| | - Daniil G Ivanov
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow region, Russia
- Emanuel Institute of Biochemical Physics RAS, Moscow, Russia
| | - Anna E Bugrova
- Emanuel Institute of Biochemical Physics RAS, Moscow, Russia
| | - Maria I Indeykina
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow region, Russia
- Emanuel Institute of Biochemical Physics RAS, Moscow, Russia
| | - Natalia V Zakharova
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow region, Russia
- Emanuel Institute of Biochemical Physics RAS, Moscow, Russia
| | - Igor A Popov
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow region, Russia.
| | - Alexey S Kononikhin
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow region, Russia.
- V.L. Talrose Institute for Energy Problems of Chemical Physics RAS, Moscow, Russia.
| | - Sergey A Kozin
- Engelhardt Institute of Molecular Biology RAS, Moscow, Russia
| | | | | |
Collapse
|
11
|
Simpson JP, Fascione M, Bergström E, Wilson J, Collins MJ, Penkman KE, Thomas‐Oates J. Ionisation bias undermines the use of matrix-assisted laser desorption/ionisation for estimating peptide deamidation: Synthetic peptide studies demonstrate electrospray ionisation gives more reliable response ratios. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:1049-1057. [PMID: 30908787 PMCID: PMC6594239 DOI: 10.1002/rcm.8441] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 03/11/2019] [Accepted: 03/17/2019] [Indexed: 06/09/2023]
Abstract
RATIONALE Although mass spectrometry (MS) is routinely used to determine deamination in peptide mixtures, the effects of the choice of ionisation source have not yet been investigated. In particular, matrix-assisted laser desorption/ionisation (MALDI) has become a popular tool with which to measure levels of glutamine deamidation in ancient proteins. Here we use model synthetic peptides to rigorously compare MALDI and electrospray ionisation (ESI). METHODS We used two synthetic peptides, with glutamine (Q) in one substituted for glutamic acid (E) in the other, to investigate the suitability of MALDI and ESI sources for the assessment of deamidation in peptides using MS. We also compared measurements of the same Q- and E-containing peptide mixtures using two different mass analysers (time-of-flight (TOF) and Fourier transform ion cyclotron resonance (FT-ICR)). RESULTS When standard mixtures of the Q- and E-containing peptides were analysed using MALDI, under-representation of the E-containing peptide was observed. This observation was consistent between analyses carried out using either TOF or FT-ICR-MS. When the same mixtures were analysed using ESI FT-ICR-MS, no ionisation bias was observed. CONCLUSIONS MALDI may not be a suitable ionisation method for the determination of deamidation in peptide mixtures. However, ESI was successfully used to determine the ratio in known mixtures of Q- and E-containing peptides. These preliminary observations warrant further investigation into ionisation bias when measuring deamidation in other peptide sequences.
Collapse
Affiliation(s)
| | | | - Ed Bergström
- Department of ChemistryUniversity of YorkYorkUK
- Centre of Excellence in Mass SpectrometryUniversity of YorkYorkUK
| | - Julie Wilson
- Department of ChemistryUniversity of YorkYorkUK
- Department of MathematicsUniversity of YorkYorkUK
| | | | | | - Jane Thomas‐Oates
- Department of ChemistryUniversity of YorkYorkUK
- Centre of Excellence in Mass SpectrometryUniversity of YorkYorkUK
| |
Collapse
|
12
|
Riggs DL, Gomez SV, Julian RR. Sequence and Solution Effects on the Prevalence of d-Isomers Produced by Deamidation. ACS Chem Biol 2017; 12:2875-2882. [PMID: 28984444 PMCID: PMC5696650 DOI: 10.1021/acschembio.7b00686] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Deamidation of asparagine is a spontaneous and irreversible post-translational modification associated with a growing list of human diseases. While pervasive, deamidation is often overlooked because it represents a relatively minor chemical change. Structural and functional characterization of this modification is complicated because deamidation of asparagine yields four isomeric forms of Asp. Herein, radical directed dissociation (RDD), in conjunction with mass spectrometry, is used to identify and quantify all four isomers in a series of model peptides that were subjected to various deamidation conditions. Although primary sequence significantly influences the rate of deamidation, it has little impact on the relative proportions of the product isomers. Furthermore, the addition of ammonia can be used to increase the rate of deamidation without significantly perturbing isomer populations. Conversely, external factors such as buffer conditions and temperature alter product distributions but exhibit less dramatic effects on the deamidation rate. Strikingly, the common laboratory and biologically significant bicarbonate buffer is found to strongly promote racemization, yielding increased amounts of d-Asp and d-isoAsp. These outcomes following deamidation have broad implications in human aging and should be considered during the development of protein-based therapeutics.
Collapse
Affiliation(s)
- Dylan L. Riggs
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Sonia V. Gomez
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Ryan R. Julian
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
13
|
Hao P, Adav SS, Gallart-Palau X, Sze SK. Recent advances in mass spectrometric analysis of protein deamidation. MASS SPECTROMETRY REVIEWS 2017; 36:677-692. [PMID: 26763661 DOI: 10.1002/mas.21491] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 12/28/2015] [Accepted: 12/28/2015] [Indexed: 06/05/2023]
Abstract
Protein deamidation has been proposed to represent a "molecular clock" that progressively disrupts protein structure and function in human degenerative diseases and natural aging. Importantly, this spontaneous process can also modify therapeutic proteins by altering their purity, stability, bioactivity, and antigenicity during drug synthesis and storage. Deamidation occurs non-enzymatically in vivo, but can also take place spontaneously in vitro, hence artificial deamidation during proteomic sample preparation can hamper efforts to identify and quantify endogenous deamidation of complex proteomes. To overcome this, mass spectrometry (MS) can be used to conduct rigorous site-specific characterization of protein deamidation due to the high sensitivity, speed, and specificity offered by this technique. This article reviews recent progress in MS analysis of protein deamidation and discusses the strengths and limitations of common "top-down" and "bottom-up" approaches. Recent advances in sample preparation methods, chromatographic separation, MS technology, and data processing have for the first time enabled the accurate and reliable characterization of protein modifications in complex biological samples, yielding important new data on how deamidation occurs across the entire proteome of human cells and tissues. These technological advances will lead to a better understanding of how deamidation contributes to the pathology of biological aging and major degenerative diseases. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 36:677-692, 2017.
Collapse
Affiliation(s)
- Piliang Hao
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
- Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Sunil S Adav
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Xavier Gallart-Palau
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| |
Collapse
|
14
|
Jansson ET. Strategies for analysis of isomeric peptides. J Sep Sci 2017; 41:385-397. [PMID: 28922569 DOI: 10.1002/jssc.201700852] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/06/2017] [Accepted: 09/06/2017] [Indexed: 01/09/2023]
Abstract
This review presents an overview and recent progress of strategies for detecting isomerism in peptides, with focus on d/l epimerization and the various isomers that the presence of an aspartic acid residue may yield in a protein or peptide. While mass spectrometry has become a majorly used method of choice within proteomics, isomerism is inherently difficult to analyze because it is a modification that does not yield any change in mass of the analyte. Here, several techniques used for analysis of peptide isomerism are discussed, including enzymatic assays, liquid chromatography, and capillary electrophoresis. Recent progress in method development using mass spectrometry is also discussed, including labeling strategies, fragmentation techniques, and ion-mobility spectrometry.
Collapse
Affiliation(s)
- Erik T Jansson
- Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden
| |
Collapse
|
15
|
Xu S, Kaltashov IA. Overcoming the Hydrolytic Lability of a Reaction Intermediate in Production of Protein/Drug Conjugates: Conjugation of an Acyclic Nucleoside Phosphonate to a Model Carrier Protein. Mol Pharm 2017; 14:2843-2851. [DOI: 10.1021/acs.molpharmaceut.7b00410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shengsheng Xu
- Department of Chemistry, University of Massachusetts−Amherst, Amherst, Massachusetts 01003, United States
| | - Igor A. Kaltashov
- Department of Chemistry, University of Massachusetts−Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
16
|
Dambrun M, Dechavanne C, Emmanuel A, Aussenac F, Leduc M, Giangrande C, Vinh J, Dugoujon JM, Lefranc MP, Guillonneau F, Migot-Nabias F. Human Immunoglobulin Heavy Gamma Chain Polymorphisms: Molecular Confirmation Of Proteomic Assessment. Mol Cell Proteomics 2017; 16:824-839. [PMID: 28265047 DOI: 10.1074/mcp.m116.064733] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 02/01/2017] [Indexed: 11/06/2022] Open
Abstract
Immunoglobulin G (IgG) proteins are known for the huge diversity of the variable domains of their heavy and light chains, aimed at protecting each individual against foreign antigens. The IgG also harbor specific polymorphism concentrated in the CH2 and CH3-CHS constant regions located on the Fc fragment of their heavy chains. But this individual particularity relies only on a few amino acids among which some could make accurate sequence determination a challenge for mass spectrometry-based techniques.The purpose of the study was to bring a molecular validation of proteomic results by the sequencing of encoding DNA fragments. It was performed using ten individual samples (DNA and sera) selected on the basis of their Gm (gamma marker) allotype polymorphism in order to cover the main immunoglobulin heavy gamma (IGHG) gene diversity. Gm allotypes, reflecting part of this diversity, were determined by a serological method. On its side, the IGH locus comprises four functional IGHG genes totalizing 34 alleles and encoding the four IgG subclasses. The genomic study focused on the nucleotide polymorphism of the CH2 and CH3-CHS exons and of the intron. Despite strong sequence identity, four pairs of specific gene amplification primers could be designed. Additional primers were identified to perform the subsequent sequencing. The nucleotide sequences obtained were first assigned to a specific IGHG gene, and then IGHG alleles were deduced using a home-made decision tree reading of the nucleotide sequences. IGHG amino acid (AA) alleles were determined by mass spectrometry. Identical results were found at 95% between alleles identified by proteomics and those deduced from genomics. These results validate the proteomic approach which could be used for diagnostic purposes, namely for a mother-and-child differential IGHG detection in a context of suspicion of congenital infection.
Collapse
Affiliation(s)
- Magalie Dambrun
- From the ‡Institut de Recherche pour le Développement, UMR 216 Mère et enfant face aux infections tropicales, Paris, France.,§COMUE Sorbonne Paris Cité, Faculté de Pharmacie, Université Paris Descartes, Paris, France.,¶¶Magalie Dambrun, Célia Dechavanne and Alexandra Emmanuel contributed equally to this work
| | - Célia Dechavanne
- From the ‡Institut de Recherche pour le Développement, UMR 216 Mère et enfant face aux infections tropicales, Paris, France.,§COMUE Sorbonne Paris Cité, Faculté de Pharmacie, Université Paris Descartes, Paris, France.,¶¶Magalie Dambrun, Célia Dechavanne and Alexandra Emmanuel contributed equally to this work
| | - Alexandra Emmanuel
- From the ‡Institut de Recherche pour le Développement, UMR 216 Mère et enfant face aux infections tropicales, Paris, France.,§COMUE Sorbonne Paris Cité, Faculté de Pharmacie, Université Paris Descartes, Paris, France.,¶ESPCI Paris, PSL Research University, Spectrométrie de Masse Biologique et Protéomique (SMBP), CNRS USR 3149, Paris, France.,¶¶Magalie Dambrun, Célia Dechavanne and Alexandra Emmanuel contributed equally to this work
| | - Florentin Aussenac
- From the ‡Institut de Recherche pour le Développement, UMR 216 Mère et enfant face aux infections tropicales, Paris, France.,§COMUE Sorbonne Paris Cité, Faculté de Pharmacie, Université Paris Descartes, Paris, France
| | - Marjorie Leduc
- ‖Plate-forme protéomique de l'Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Chiara Giangrande
- ¶ESPCI Paris, PSL Research University, Spectrométrie de Masse Biologique et Protéomique (SMBP), CNRS USR 3149, Paris, France
| | - Joëlle Vinh
- ¶ESPCI Paris, PSL Research University, Spectrométrie de Masse Biologique et Protéomique (SMBP), CNRS USR 3149, Paris, France
| | - Jean-Michel Dugoujon
- **Laboratoire d'Anthropologie Moléculaire et Imagerie de Synthèse, UMR 5288, CNRS et Université Paul Sabatier Toulouse III, Toulouse, France
| | - Marie-Paule Lefranc
- ‡‡IMGT®, the international ImMunoGeneTics information system®, Laboratoire d'ImmunoGénétique Moléculaire, LIGM, Institut de Génétique Humaine, IGH, UMR 9002, CNRS et Université de Montpellier, Montpellier, France.,§§Institut Universitaire de France, Paris, France
| | - François Guillonneau
- ‖Plate-forme protéomique de l'Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,‖‖François Guillonneau and Florence Migot-Nabias contributed equally to this work
| | - Florence Migot-Nabias
- From the ‡Institut de Recherche pour le Développement, UMR 216 Mère et enfant face aux infections tropicales, Paris, France; .,§COMUE Sorbonne Paris Cité, Faculté de Pharmacie, Université Paris Descartes, Paris, France.,‖‖François Guillonneau and Florence Migot-Nabias contributed equally to this work
| |
Collapse
|
17
|
|
18
|
Zhang C, Ye Z, Xue P, Shu Q, Zhou Y, Ji Y, Fu Y, Wang J, Yang F. Evaluation of Different N-Glycopeptide Enrichment Methods for N-Glycosylation Sites Mapping in Mouse Brain. J Proteome Res 2016; 15:2960-8. [PMID: 27480293 DOI: 10.1021/acs.jproteome.6b00098] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
N-Glycosylation of proteins plays a critical role in many biological pathways. Because highly heterogeneous N-glycopeptides are present in biological sources, the enrichment procedure is a crucial step for mass spectrometry analysis. Five enrichment methods, including IP-ZIC-HILIC, hydrazide chemistry, lectin affinity, ZIC-HILIC-FA, and TiO2 affinity were evaluated and compared in the study of mapping N-glycosylation sites in mouse brain. On the basis of our results, the identified N-glycosylation sites were 1891, 1241, 891, 869, and 710 and the FDR values were 3.29, 5.62, 9.54, 9.54, and 20.02%, respectively. Therefore, IP-ZIC-HILIC enrichment method displayed the highest sensitivity and specificity. In this work, we identified a total of 3446 unique glycosylation sites conforming to the N-glycosylation consensus motif (N-X-T/S/C; X ≠ P) with (18)O labeling in 1597 N-glycoproteins. N-glycosylation site information was used to confirm or correct the transmembrane topology of the 57 novel transmembrane N-glycoproteins.
Collapse
Affiliation(s)
- Chengqian Zhang
- Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences , Beijing 100101, China.,University of Chinese Academy of Sciences , Beijing100049, China
| | - Zilu Ye
- Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences , Beijing 100101, China.,University of Chinese Academy of Sciences , Beijing100049, China
| | - Peng Xue
- Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences , Beijing 100101, China
| | - Qingbo Shu
- Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences , Beijing 100101, China.,University of Chinese Academy of Sciences , Beijing100049, China
| | - Yue Zhou
- Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences , Beijing 100101, China.,University of Chinese Academy of Sciences , Beijing100049, China
| | - Yanlong Ji
- Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences , Beijing 100101, China.,University of Chinese Academy of Sciences , Beijing100049, China
| | - Ying Fu
- Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences , Beijing 100101, China.,University of Chinese Academy of Sciences , Beijing100049, China
| | - Jifeng Wang
- Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences , Beijing 100101, China
| | - Fuquan Yang
- Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences , Beijing 100101, China.,University of Chinese Academy of Sciences , Beijing100049, China
| |
Collapse
|
19
|
Mildly acidic conditions eliminate deamidation artifact during proteolysis: digestion with endoprotease Glu-C at pH 4.5. Amino Acids 2016; 48:1059-1067. [PMID: 26748652 DOI: 10.1007/s00726-015-2166-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 12/25/2015] [Indexed: 10/22/2022]
Abstract
Common yet often overlooked, deamidation of peptidyl asparagine (Asn or N) generates aspartic acid (Asp or D) or isoaspartic acid (isoAsp or isoD). Being a spontaneous, non-enzymatic protein post-translational modification, deamidation artifact can be easily introduced during sample preparation, especially proteolysis where higher-order structures are removed. This artifact not only complicates the analysis of bona fide deamidation but also affects a wide range of chemical and enzymatic processes; for instance, the newly generated Asp and isoAsp residues may block or introduce new proteolytic sites, and also convert one Asn peptide into multiple species that affect quantification. While the neutral to mildly basic conditions for common proteolysis favor deamidation, mildly acidic conditions markedly slow down the process. Unlike other commonly used endoproteases, Glu-C remains active under mildly acid conditions. As such, as demonstrated herein, deamidation artifact during proteolysis was effectively eliminated by simply performing Glu-C digestion at pH 4.5 in ammonium acetate, a volatile buffer that is compatible with mass spectrometry. Moreover, nearly identical sequence specificity was observed at both pH's (8.0 for ammonium bicarbonate), rendering Glu-C as effective at pH 4.5. In summary, this method is generally applicable for protein analysis as it requires minimal sample preparation and uses the readily available Glu-C protease.
Collapse
|
20
|
Kori Y, Patel R, Neill A, Liu H. A conventional procedure to reduce Asn deamidation artifacts during trypsin peptide mapping. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1009-1010:107-13. [DOI: 10.1016/j.jchromb.2015.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 12/04/2015] [Accepted: 12/07/2015] [Indexed: 12/12/2022]
|
21
|
Dallongeville S, Garnier N, Rolando C, Tokarski C. Proteins in Art, Archaeology, and Paleontology: From Detection to Identification. Chem Rev 2015; 116:2-79. [PMID: 26709533 DOI: 10.1021/acs.chemrev.5b00037] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sophie Dallongeville
- Miniaturisation pour la Synthèse, l'Analyse & la Protéomique (MSAP), USR CNRS 3290, Université de Lille 1 Sciences et Technologies , 59655 Villeneuve d'Ascq Cedex, France
| | - Nicolas Garnier
- SARL Laboratoire Nicolas Garnier , 63270 Vic le Comte, France
| | - Christian Rolando
- Miniaturisation pour la Synthèse, l'Analyse & la Protéomique (MSAP), USR CNRS 3290, Université de Lille 1 Sciences et Technologies , 59655 Villeneuve d'Ascq Cedex, France
| | - Caroline Tokarski
- Miniaturisation pour la Synthèse, l'Analyse & la Protéomique (MSAP), USR CNRS 3290, Université de Lille 1 Sciences et Technologies , 59655 Villeneuve d'Ascq Cedex, France
| |
Collapse
|
22
|
Lluch-Senar M, Mancuso FM, Climente-González H, Peña-Paz MI, Sabido E, Serrano L. Rescuing discarded spectra: Full comprehensive analysis of a minimal proteome. Proteomics 2015; 16:554-63. [PMID: 26702875 DOI: 10.1002/pmic.201500187] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 11/06/2015] [Accepted: 12/21/2015] [Indexed: 02/05/2023]
Abstract
A common problem encountered when performing large-scale MS proteome analysis is the loss of information due to the high percentage of unassigned spectra. To determine the causes behind this loss we have analyzed the proteome of one of the smallest living bacteria that can be grown axenically, Mycoplasma pneumoniae (729 ORFs). The proteome of M. pneumoniae cells, grown in defined media, was analyzed by MS. An initial search with both Mascot and a species-specific NCBInr database with common contaminants (NCBImpn), resulted in around 79% of the acquired spectra not having an assignment. The percentage of non-assigned spectra was reduced to 27% after re-analysis of the data with the PEAKS software, thereby increasing the proteome coverage of M. pneumoniae from the initial 60% to over 76%. Nonetheless, 33,413 spectra with assigned amino acid sequences could not be mapped to any NCBInr database protein sequence. Approximately, 1% of these unassigned peptides corresponded to PTMs and 4% to M. pneumoniae protein variants (deamidation and translation inaccuracies). The most abundant peptide sequence variants (Phe-Tyr and Ala-Ser) could be explained by alterations in the editing capacity of the corresponding tRNA synthases. About another 1% of the peptides not associated to any protein had repetitions of the same aromatic/hydrophobic amino acid at the N-terminus, or had Arg/Lys at the C-terminus. Thus, in a model system, we have maximized the number of assigned spectra to 73% (51,453 out of the 70,040 initial acquired spectra). All MS data have been deposited in the ProteomeXchange with identifier PXD002779 (http://proteomecentral.proteomexchange.org/dataset/PXD002779).
Collapse
Affiliation(s)
- Maria Lluch-Senar
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Francesco M Mancuso
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Proteomics Unit, Centre for Genomic Regulation (CRG), Barcelona, Spain
| | - Héctor Climente-González
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Marcia I Peña-Paz
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Proteomics Unit, Centre for Genomic Regulation (CRG), Barcelona, Spain
| | - Eduard Sabido
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Proteomics Unit, Centre for Genomic Regulation (CRG), Barcelona, Spain
| | - Luis Serrano
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
23
|
Bush DR, Zang L, Belov AM, Ivanov AR, Karger BL. High Resolution CZE-MS Quantitative Characterization of Intact Biopharmaceutical Proteins: Proteoforms of Interferon-β1. Anal Chem 2015; 88:1138-46. [DOI: 10.1021/acs.analchem.5b03218] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- David R. Bush
- Barnett
Institute, Northeastern University, 360 Huntington Ave, Boston, Massachusetts 02115, United States
| | - Li Zang
- Analytical
Development Department, Biogen, Cambridge, Massachusetts 02142, United States
| | - Arseniy M. Belov
- Barnett
Institute, Northeastern University, 360 Huntington Ave, Boston, Massachusetts 02115, United States
| | - Alexander R. Ivanov
- Barnett
Institute, Northeastern University, 360 Huntington Ave, Boston, Massachusetts 02115, United States
| | - Barry L. Karger
- Barnett
Institute, Northeastern University, 360 Huntington Ave, Boston, Massachusetts 02115, United States
| |
Collapse
|
24
|
Yu X, Sargaeva NP, Thompson CJ, Costello CE, Lin C. In-Source Decay Characterization of Isoaspartate and β-Peptides. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2015; 390:101-109. [PMID: 26644780 PMCID: PMC4669973 DOI: 10.1016/j.ijms.2015.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Deamidation and the subsequent formation of isoaspartic acid (isoAsp) are common modifications of asparagine (Asn) residues in proteins. Differentiation of isoAsp and Asp residues is a challenging task owing to their similar chemical properties and identical molecular mass. Recent studies showed that they can be differentiated using electron capture dissociation (ECD) which generates diagnostic fragments c'+57 and z•-57 specific to the isoAsp residue. However, the ECD approach is only applicable towards multiply charged precursor ions and generally does not work for β-amino acids other than isoAsp. In this study, the potential of in-source decay (ISD) in characterization of isoAsp and other β-amino acids was explored. For isoAsp-containing peptides, ISD with a conventional hydrogen-donating matrix produced ECD-like, c'+57 and z•-57 diagnostic ions, even for singly charged precursor ions. For other β-amino acids, a hydrogen-accepting matrix was used to induce formation of site-specific a-14 ions from a synthetic β-analogue of substance P. These results indicated that ISD can be broadly applied for β-peptide characterization.
Collapse
Affiliation(s)
- Xiang Yu
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine, 670 Albany Street, Suite 504, Boston, MA 02118
| | - Nadezda P. Sargaeva
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine, 670 Albany Street, Suite 504, Boston, MA 02118
| | | | - Catherine E. Costello
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine, 670 Albany Street, Suite 504, Boston, MA 02118
| | - Cheng Lin
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine, 670 Albany Street, Suite 504, Boston, MA 02118
| |
Collapse
|
25
|
Si Ahmed Zennia S, Mati A, Saulnier F, Verdier Y, Chiappetta G, Mulliert G, Miclo L, Vinh J, Girardet JM. Identification by FT-ICR-MS of Camelus dromedarius α-lactalbumin variants as the result of nonenzymatic deamidation of Asn-16 and Asn-45. Food Chem 2015; 187:305-13. [DOI: 10.1016/j.foodchem.2015.04.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 04/10/2015] [Accepted: 04/15/2015] [Indexed: 01/29/2023]
|
26
|
Loke I, Packer NH, Thaysen-Andersen M. Complementary LC-MS/MS-Based N-Glycan, N-Glycopeptide, and Intact N-Glycoprotein Profiling Reveals Unconventional Asn71-Glycosylation of Human Neutrophil Cathepsin G. Biomolecules 2015; 5:1832-54. [PMID: 26274980 PMCID: PMC4598777 DOI: 10.3390/biom5031832] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/20/2015] [Accepted: 08/06/2015] [Indexed: 01/24/2023] Open
Abstract
Neutrophil cathepsin G (nCG) is a central serine protease in the human innate immune system, but the importance of its N-glycosylation remains largely undescribed. To facilitate such investigations, we here use complementary LC-MS/MS-based N-glycan, N-glycopeptide, and intact glycoprotein profiling to accurately establish the micro- and macro-heterogeneity of nCG from healthy individuals. The fully occupied Asn71 carried unconventional N-glycosylation consisting of truncated chitobiose core (GlcNAcβ: 55.2%; Fucα1,6GlcNAcβ: 22.7%), paucimannosidic N-glycans (Manβ1,4GlcNAcβ1,4GlcNAcβ: 10.6%; Manβ1,4GlcNAcβ1,4(Fucα1,6)GlcNAcβ: 7.9%; Manα1,6Manβ1,4GlcNAcβ1,4GlcNAcβ: 3.7%, trace level of Manα1,6Manβ1,4GlcNAcβ1,4(Fucα1,6)GlcNAcβ), and trace levels of monoantennary α2,6- and α2,3-sialylated complex N-glycans. High-resolution/mass accuracy LC-MS profiling of intact nCG confirmed the Asn71-glycoprofile and identified two C-terminal truncation variants at Arg243 (57.8%) and Ser244 (42.2%), both displaying oxidation of solvent-accessible Met152. Asn71 appeared proximal (~19 Å) to the active site of nCG, but due to the truncated nature of Asn71-glycans (~5-17 Å) we questioned their direct modulation of the proteolytic activity of the protein. This work highlights the continued requirement of using complementary technologies to accurately profile even relatively simple glycoproteins and illustrates important challenges associated with the analysis of unconventional protein N-glycosylation. Importantly, this study now facilitates investigation of the functional role of nCG Asn71-glycosylation.
Collapse
Affiliation(s)
- Ian Loke
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, Sydney 2109, Australia.
| | - Nicolle H Packer
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, Sydney 2109, Australia.
| | - Morten Thaysen-Andersen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, Sydney 2109, Australia.
| |
Collapse
|
27
|
Soulby AJ, Heal JW, Barrow MP, Roemer RA, O'Connor PB. Does deamidation cause protein unfolding? A top-down tandem mass spectrometry study. Protein Sci 2015; 24:850-60. [PMID: 25653127 DOI: 10.1002/pro.2659] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/30/2015] [Accepted: 02/02/2015] [Indexed: 01/25/2023]
Abstract
Deamidation is a nonenzymatic post-translational modification of asparagine to aspartic acid or glutamine to glutamic acid, converting an uncharged amino acid to a negatively charged residue. It is plausible that deamidation of asparagine and glutamine residues would result in disruption of a proteins' hydrogen bonding network and thus lead to protein unfolding. To test this hypothesis Calmodulin and B2M were deamidated and analyzed using tandem mass spectrometry on a Fourier transform ion cyclotron resonance mass spectrometer (FTICR-MS). The gas phase hydrogen bonding networks of deamidated and nondeamidated protein isoforms were probed by varying the infra-red multi-photon dissociation laser power in a linear fashion and plotting the resulting electron capture dissociation fragment intensities as a melting curve at each amino acid residue. Analysis of the unfolding maps highlighted increased fragmentation at lower laser powers localized around heavily deamidated regions of the proteins. In addition fragment intensities were decreased across the rest of the proteins which we propose is because of the formation of salt-bridges strengthening the intramolecular interactions of the central regions. These results were supported by a computational flexibility analysis of the mutant and unmodified proteins, which would suggest that deamidation can affect the global structure of a protein via modification of the hydrogen bonding network near the deamidation site and that top down FTICR-MS is an appropriate technique for studying protein folding.
Collapse
Affiliation(s)
- Andrew J Soulby
- Department of Chemistry, University of Warwick, Coventry, United Kingdom
| | | | | | | | | |
Collapse
|
28
|
Li W, Kerwin JL, Schiel J, Formolo T, Davis D, Mahan A, Benchaar SA. Structural Elucidation of Post-Translational Modifications in Monoclonal Antibodies. ACS SYMPOSIUM SERIES 2015. [DOI: 10.1021/bk-2015-1201.ch003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Wenzhou Li
- Amgen Inc., Thousand Oaks, California 91320, United States
- Sanovas Inc., Sausalito, California 94965, United States
- Analytical Chemistry Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19477, United States
| | - James L. Kerwin
- Amgen Inc., Thousand Oaks, California 91320, United States
- Sanovas Inc., Sausalito, California 94965, United States
- Analytical Chemistry Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19477, United States
| | - John Schiel
- Amgen Inc., Thousand Oaks, California 91320, United States
- Sanovas Inc., Sausalito, California 94965, United States
- Analytical Chemistry Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19477, United States
| | - Trina Formolo
- Amgen Inc., Thousand Oaks, California 91320, United States
- Sanovas Inc., Sausalito, California 94965, United States
- Analytical Chemistry Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19477, United States
| | - Darryl Davis
- Amgen Inc., Thousand Oaks, California 91320, United States
- Sanovas Inc., Sausalito, California 94965, United States
- Analytical Chemistry Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19477, United States
| | - Andrew Mahan
- Amgen Inc., Thousand Oaks, California 91320, United States
- Sanovas Inc., Sausalito, California 94965, United States
- Analytical Chemistry Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19477, United States
| | - Sabrina A. Benchaar
- Amgen Inc., Thousand Oaks, California 91320, United States
- Sanovas Inc., Sausalito, California 94965, United States
- Analytical Chemistry Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19477, United States
| |
Collapse
|
29
|
Klaene JJ, Ni W, Alfaro JF, Zhou ZS. Detection and quantitation of succinimide in intact protein via hydrazine trapping and chemical derivatization. J Pharm Sci 2014; 103:3033-42. [PMID: 25043726 DOI: 10.1002/jps.24074] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 06/01/2014] [Accepted: 06/04/2014] [Indexed: 12/19/2022]
Abstract
The formation of aspartyl succinimide is a common post-translational modification of protein pharmaceuticals under acidic conditions. We present a method to detect and quantitate succinimide in intact protein via hydrazine trapping and chemical derivatization. Succinimide, which is labile under typical analytical conditions, is first trapped with hydrazine to form stable hydrazide and can be directly analyzed by mass spectrometry. The resulting aspartyl hydrazide can be selectively derivatized by various tags, such as fluorescent rhodamine sulfonyl chloride that absorbs strongly in the visible region (570 nm). Our tagging strategy allows the labeled protein to be analyzed by orthogonal methods, including HPLC-UV-Vis, liquid chromatography mass spectrometry (LC-MS), and SDS-PAGE coupled with fluorescence imaging. A unique advantage of our method is that variants containing succinimide, after derivatization, can be readily resolved via either affinity enrichment or chromatographic separation. This allows further investigation of individual factors in a complex protein mixture that affect succinimide formation. Some additional advantages are imparted by fluorescence labeling including the facile detection of the intact protein without proteolytic digestion to peptides; and high sensitivity, for example, without optimization, 0.41% succinimide was readily detected. As such, our method should be useful for rapid screening, optimization of formulation conditions, and related processes relevant to protein pharmaceuticals.
Collapse
Affiliation(s)
- Joshua J Klaene
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, 02115
| | | | | | | |
Collapse
|
30
|
Schweitzer MH, Schroeter ER, Goshe MB. Protein Molecular Data from Ancient (>1 million years old) Fossil Material: Pitfalls, Possibilities and Grand Challenges. Anal Chem 2014; 86:6731-40. [DOI: 10.1021/ac500803w] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Mary Higby Schweitzer
- North
Carolina Museum of Natural Sciences, Raleigh, North Carolina 27601, United States
| | | | | |
Collapse
|
31
|
Ishii Y, Murakami J, Sasaki K, Tsukahara M, Wakamatsu K. Efficient folding/assembly in Chinese hamster ovary cells is critical for high quality (low aggregate content) of secreted trastuzumab as well as for high production: stepwise multivariate regression analyses. J Biosci Bioeng 2014; 118:223-30. [PMID: 24635945 DOI: 10.1016/j.jbiosc.2014.01.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 01/27/2014] [Accepted: 01/27/2014] [Indexed: 01/05/2023]
Abstract
When developing cell culture processes for therapeutic antibodies, the low content of aggregated proteins is the most critical because administering aggregated antibody molecules might result in adverse effects such as immunogenicity. To characterize cells with high productivity and quality, we determined factors that are closely related to antibody titer, which is a productivity indicator, and the area percentage of high molecular weight species in cultivated media, which is equivalent to aggregate content and is used as a quality indicator. We examined the factors influencing antibody titer and aggregate content using various data from 28 cell lines throughout their culture periods from growth to death phases. Our study using correlation analysis revealed that statistically significant correlations between factors and indicators changes with sampling points, hence we thought that various factors would influence each indicator simultaneously. To understand the relationship between these factors and titer/aggregates contents, we performed stepwise multiple linear regression analyses and deduced a multiple linear model for each indicator. The titer was found to positively associate with specific growth rate and specific production rate and negatively with intracellular heavy chain content. The aggregate content was found to positively associate with protein disulfide isomerase mRNA level and negatively with light chain secreted into culture media, specific production rate, intracellular light chain content, and specific growth rate. Our observations suggest that correct and efficient assembling and/or folding of an antibody molecule in an endoplasmic reticulum are important for high titer and low aggregates contents.
Collapse
Affiliation(s)
- Yoichi Ishii
- Bio-process Research and Development Laboratories, Kyowa Hakko Kirin Co., Ltd., 100-1 Hagiwara-machi, Takasaki-shi, Gunma 370-0013, Japan; Graduate School of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu-shi, Gunma 376-8515, Japan.
| | - Junko Murakami
- Bio-process Research and Development Laboratories, Kyowa Hakko Kirin Co., Ltd., 100-1 Hagiwara-machi, Takasaki-shi, Gunma 370-0013, Japan
| | - Kazue Sasaki
- Bio-process Research and Development Laboratories, Kyowa Hakko Kirin Co., Ltd., 100-1 Hagiwara-machi, Takasaki-shi, Gunma 370-0013, Japan
| | - Masayoshi Tsukahara
- Kyowa Hakko Kirin Co., Ltd., 1-6-1 Ohte-machi, Chiyoda-ku, Tokyo 100-8185, Japan
| | - Kaori Wakamatsu
- Graduate School of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu-shi, Gunma 376-8515, Japan
| |
Collapse
|
32
|
Nepomuceno AI, Gibson RJ, Randall SM, Muddiman DC. Accurate identification of deamidated peptides in global proteomics using a quadrupole orbitrap mass spectrometer. J Proteome Res 2013; 13:777-85. [PMID: 24289162 DOI: 10.1021/pr400848n] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Deamidation of asparagine and glutamine residues is a common post-translational modification. Researchers often rely on mass spectrometric based proteomic techniques for the identification of these post-translational sites. Mass spectral analysis of deamidated peptides is complicated and often misassigned due to overlapping (13)C peak of the amidated form with the deamidated monoisotopic peak; these two peaks are only separated by 19.34 mDa. For proper assignment, it is inherently important to use a mass spectrometer with high mass measurement accuracy and high resolving power. Herein, mouse brain tissue lysate was prepared using filter-aided sample preparation (FASP) method and Stage Tip fractionation followed by analysis on a nanoLC coupled with a quadrupole orbitrap (Q-Exactive) mass spectrometer to accurately identify more than 5400 proteins. Mass spectral data was processed using MASCOT and ProteoIQ for accurate identification of peptides and proteins. MASCOT search values for precursor and MS/MS mass tolerances were investigated, and it was determined that data searched with greater than 5 ppm precursor mass tolerance resulted in the misassignment of deamidated peptides. Peptides that were identified with a mass measurement accuracy of ±5 ppm were correctly assigned.
Collapse
Affiliation(s)
- Angelito I Nepomuceno
- W.M. Keck Fourier Transform Mass Spectrometry Laboratory, Department of Chemistry North Carolina State University , Raleigh, North Carolina 27695, United States
| | | | | | | |
Collapse
|
33
|
Solazzo C, Wilson J, Dyer JM, Clerens S, Plowman JE, von Holstein I, Walton Rogers P, Peacock EE, Collins MJ. Modeling Deamidation in Sheep α-Keratin Peptides and Application to Archeological Wool Textiles. Anal Chem 2013; 86:567-75. [DOI: 10.1021/ac4026362] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Caroline Solazzo
- BioArCh, Biology
(S Block), Wentworth Way, University of York, York YO10 5DD, U.K
- Proteins
and Biomaterials, AgResearch Lincoln Research Centre, Private Bag 4749, Christchurch 8140, New Zealand
| | - Julie Wilson
- Department
of Mathematics, University of York, York YO10 5YW, U.K
- Department
of Chemistry, University of York, York YO10 5YW, U.K
| | - Jolon M. Dyer
- Proteins
and Biomaterials, AgResearch Lincoln Research Centre, Private Bag 4749, Christchurch 8140, New Zealand
- Biomolecular Interaction
Centre, School of Biological Sciences, University of Canterbury, Private Bag
4800, Christchurch 8140, New Zealand
- Riddet Institute, Massey University, Private
Bag 11 222, Palmerston North 4442, New Zealand
| | - Stefan Clerens
- Proteins
and Biomaterials, AgResearch Lincoln Research Centre, Private Bag 4749, Christchurch 8140, New Zealand
| | - Jeffrey E. Plowman
- Proteins
and Biomaterials, AgResearch Lincoln Research Centre, Private Bag 4749, Christchurch 8140, New Zealand
| | | | | | - Elizabeth E. Peacock
- NTNU
University Museum, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
- Department
of Conservation, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Matthew J. Collins
- BioArCh, Biology
(S Block), Wentworth Way, University of York, York YO10 5DD, U.K
| |
Collapse
|
34
|
di Pietro M, Vialaret J, Li GW, Hem S, Prado K, Rossignol M, Maurel C, Santoni V. Coordinated post-translational responses of aquaporins to abiotic and nutritional stimuli in Arabidopsis roots. Mol Cell Proteomics 2013; 12:3886-97. [PMID: 24056735 DOI: 10.1074/mcp.m113.028241] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In plants, aquaporins play a crucial role in regulating root water transport in response to environmental and physiological cues. Controls achieved at the post-translational level are thought to be of critical importance for regulating aquaporin function. To investigate the general molecular mechanisms involved, we performed, using the model species Arabidopsis, a comprehensive proteomic analysis of root aquaporins in a large set of physiological contexts. We identified nine physiological treatments that modulate root hydraulics in time frames of minutes (NO and H2O2 treatments), hours (mannitol and NaCl treatments, exposure to darkness and reversal with sucrose, phosphate supply to phosphate-starved roots), or days (phosphate or nitrogen starvation). All treatments induced inhibition of root water transport except for sucrose supply to dark-grown plants and phosphate resupply to phosphate-starved plants, which had opposing effects. Using a robust label-free quantitative proteomic methodology, we identified 12 of 13 plasma membrane intrinsic protein (PIP) aquaporin isoforms, 4 of the 10 tonoplast intrinsic protein isoforms, and a diversity of post-translational modifications including phosphorylation, methylation, deamidation, and acetylation. A total of 55 aquaporin peptides displayed significant changes after treatments and enabled the identification of specific and as yet unknown patterns of response to stimuli. The data show that the regulation of PIP and tonoplast intrinsic protein abundance was involved in response to a few treatments (i.e. NaCl, NO, and nitrate starvation), whereas changes in the phosphorylation status of PIP aquaporins were positively correlated to changes in root hydraulic conductivity in the whole set of treatments. The identification of in vivo deamidated forms of aquaporins and their stimulus-induced changes in abundance may reflect a new mechanism of aquaporin regulation. The overall work provides deep insights into the in vivo post-translational events triggered by environmental constraints and their possible role in regulating plant water status.
Collapse
Affiliation(s)
- Magali di Pietro
- Biochimie et Physiologie Moléculaire des Plantes, SupAgro/INRA/CNRS/UMII/UMR 5004, 2 Place Viala, 34060 F-Montpellier cedex 1, France
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Yu X, Warme C, Lee D, Zhang J, Zhong W. Characterization of a low-level unknown isomeric degradation product using an integrated online-offline top-down tandem mass spectrometry platform. Anal Chem 2013; 85:8964-7. [PMID: 24003984 DOI: 10.1021/ac401911n] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An integrated online-offline platform was developed combining automated online LC-MS fraction collection, continuous accumulation of selected ions (CASI), and offline top-down electron capture dissociation (ECD) tandem mass spectrometry experiments to identify a low-level, unknown isomeric degradant in a formulated drug product during an accelerated stability study. By identifying the diagnostic ions of the isoaspartic acid (isoAsp), the top-down ECD experiment showed that the Asp9 in exenatide was converted to isoAsp9 to form the unknown isomeric degradant. The platform described here provides an accurate, straightforward, and low limit of detection method for the analysis of Asp isomerization as well as other potential low-level degradants in therapeutic polypeptides and proteins. It is especially useful for unstable and time-sensitive degradants and impurities.
Collapse
Affiliation(s)
- Xiang Yu
- Structure Elucidation Group, Global Process & Analytical Chemistry, Merck Research Laboratories , 556 Morris Ave., Summit, New Jersey 07901, United States
| | | | | | | | | |
Collapse
|
36
|
Yang H, Lowenson JD, Clarke S, Zubarev RA. Brain proteomics supports the role of glutamate metabolism and suggests other metabolic alterations in protein l-isoaspartyl methyltransferase (PIMT)-knockout mice. J Proteome Res 2013; 12:4566-76. [PMID: 23947766 DOI: 10.1021/pr400688r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Protein l-isoaspartyl methyltransferase (PIMT) repairs the isoaspartyl residues (isoAsp) that originate from asparagine deamidation and aspartic acid (Asp) isomerization to Asp residues. Deletion of the gene encoding PIMT in mice (Pcmt1) leads to isoAsp accumulation in all tissues measured, especially in the brain. These PIMT-knockout (PIMT-KO) mice have perturbed glutamate metabolism and die prematurely of epileptic seizures. To elucidate the role of PIMT further, brain proteomes of PIMT-KO mice and controls were analyzed. The isoAsp levels from two of the detected 67 isoAsp sites (residue 98 from calmodulin and 68 from glyceraldehyde-3-phosphate dehydrogenase) were quantified and found to be significantly increased in PIMT-KO mice (p < 0.01). Additionally, the abundance of at least 151 out of the 1017 quantified proteins was found to be altered in PIMT-KO mouse brains. Gene ontology analysis revealed that many down-regulated proteins are involved in cellular amino acid biosynthesis. For example, the serine synthesis pathway was suppressed, possibly leading to reduced serine production in PIMT-KO mice. Additionally, the abundances of enzymes in the glutamate-glutamine cycle were altered toward the accumulation of glutamate. These findings support the involvement of PIMT in glutamate metabolism and suggest that the absence of PIMT also affects other processes involving amino acid synthesis and metabolism.
Collapse
Affiliation(s)
- Hongqian Yang
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Scheeles väg 2, SE-17 177 Stockholm, Sweden
| | | | | | | |
Collapse
|
37
|
Cain JA, Solis N, Cordwell SJ. Beyond gene expression: the impact of protein post-translational modifications in bacteria. J Proteomics 2013; 97:265-86. [PMID: 23994099 DOI: 10.1016/j.jprot.2013.08.012] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 07/08/2013] [Accepted: 08/10/2013] [Indexed: 12/12/2022]
Abstract
The post-translational modification (PTM) of proteins plays a critical role in the regulation of a broad range of cellular processes in eukaryotes. Yet their role in governing similar systems in the conventionally presumed 'simpler' forms of life has been largely neglected and, until recently, was thought to occur only rarely, with some modifications assumed to be limited to higher organisms alone. Recent developments in mass spectrometry-based proteomics have provided an unparalleled power to enrich, identify and quantify peptides with PTMs. Additional modifications to biological molecules such as lipids and carbohydrates that are essential for bacterial pathophysiology have only recently been detected on proteins. Here we review bacterial protein PTMs, focusing on phosphorylation, acetylation, proteolytic degradation, methylation and lipidation and the roles they play in bacterial adaptation - thus highlighting the importance of proteomic techniques in a field that is only just in its infancy. This article is part of a Special Issue entitled: Trends in Microbial Proteomics.
Collapse
Affiliation(s)
- Joel A Cain
- School of Molecular Bioscience, School of Medical Sciences, The University of Sydney, 2006, Australia
| | - Nestor Solis
- School of Molecular Bioscience, School of Medical Sciences, The University of Sydney, 2006, Australia
| | - Stuart J Cordwell
- School of Molecular Bioscience, School of Medical Sciences, The University of Sydney, 2006, Australia; Discipline of Pathology, School of Medical Sciences, The University of Sydney, 2006, Australia.
| |
Collapse
|
38
|
Shipman M, Lubick K, Fouchard D, Gurram R, Grieco P, Jutila M, Dratz EA. Proteomic and systems biology analysis of the monocyte response to Coxiella burnetii infection. PLoS One 2013; 8:e69558. [PMID: 23990884 PMCID: PMC3749201 DOI: 10.1371/journal.pone.0069558] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 06/09/2013] [Indexed: 01/02/2023] Open
Abstract
Coxiella burnetii is an obligate intracellular bacterial pathogen and the causative agent of Q fever. Chronic Q fever can produce debilitating fatigue and C. burnetii is considered a significant bioterror threat. C. burnetii occupies the monocyte phagolysosome and although prior work has explained features of the host-pathogen interaction, many aspects are still poorly understood. We have conducted a proteomic investigation of human Monomac I cells infected with the Nine Mile Phase II strain of C. burnetii and used the results as a framework for a systems biology model of the host response. Our principal methodology was multiplex differential 2D gel electrophoresis using ZDyes, a new generation of covalently linked fluorescent protein detection dyes under development at Montana State University. The 2D gel analysis facilitated the detection of changes in posttranslational modifications on intact proteins in response to infection. The systems model created from our data a framework for the design of experiments to seek a deeper understanding of the host-pathogen interactions.
Collapse
Affiliation(s)
- Matt Shipman
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, United States of America
- * E-mail:
| | - Kirk Lubick
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, Montana, United States of America
| | - David Fouchard
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, United States of America
| | - Rajani Gurram
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, United States of America
| | - Paul Grieco
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, United States of America
| | - Mark Jutila
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, Montana, United States of America
| | - Edward A. Dratz
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, United States of America
| |
Collapse
|
39
|
Černý M, Skalák J, Cerna H, Brzobohatý B. Advances in purification and separation of posttranslationally modified proteins. J Proteomics 2013; 92:2-27. [PMID: 23777897 DOI: 10.1016/j.jprot.2013.05.040] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 05/27/2013] [Accepted: 05/29/2013] [Indexed: 11/25/2022]
Abstract
Posttranslational modifications (PTMs) of proteins represent fascinating extensions of the dynamic complexity of living cells' proteomes. The results of enzymatically catalyzed or spontaneous chemical reactions, PTMs form a fourth tier in the gene - transcript - protein cascade, and contribute not only to proteins' biological functions, but also to challenges in their analysis. There have been tremendous advances in proteomics during the last decade. Identification and mapping of PTMs in proteins have improved dramatically, mainly due to constant increases in the sensitivity, speed, accuracy and resolution of mass spectrometry (MS). However, it is also becoming increasingly evident that simple gel-free shotgun MS profiling is unlikely to suffice for comprehensive detection and characterization of proteins and/or protein modifications present in low amounts. Here, we review current approaches for enriching and separating posttranslationally modified proteins, and their MS-independent detection. First, we discuss general approaches for proteome separation, fractionation and enrichment. We then consider the commonest forms of PTMs (phosphorylation, glycosylation and glycation, lipidation, methylation, acetylation, deamidation, ubiquitination and various redox modifications), and the best available methods for detecting and purifying proteins carrying these PTMs. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine.
Collapse
Affiliation(s)
- Martin Černý
- Department of Molecular Biology and Radiobiology, Mendel University in Brno & CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| | | | | | | |
Collapse
|
40
|
Wang S, Kaltashov IA. An 18O-labeling assisted LC/MS method for assignment of aspartyl/isoaspartyl products from Asn deamidation and Asp isomerization in proteins. Anal Chem 2013; 85:6446-52. [PMID: 23713887 DOI: 10.1021/ac400984r] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
An (18)O-labeling assisted LC/MS method was designed for unambiguous assignment of aspartyl/isoaspartyl products produced by Asn deamidation and Asp isomerization. By preparing the acid- and base-catalyzed deamidation standards in H2(18)O, isomer-specific mass tags were introduced to aspartyl- and isoaspartyl-containing peptides, which could be easily distinguished by mass spectrometry (MS). In contrast to the traditional ways of assigning the isomers on the basis of their elution order in reverse phase HPLC, the new method is more reliable and universal. Furthermore, the new method can be applied to the entire protein digest, and is therefore more time- and cost-effective compared with existing methods that use synthetic aspartyl- and isoaspartyl-containing peptide standards. Finally, since the identification of isomers in the new method only relies on LC/MS analysis, it can be easily implemented using the most basic and inexpensive MS instrumentation, thus providing an attractive alternative to tandem MS based approaches. The feasibility of this new method is demonstrated using a model peptide as well as the entire digest of human serum transferrin.
Collapse
Affiliation(s)
- Shunhai Wang
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| | | |
Collapse
|
41
|
Wu Z, Zhou P, Li X, Wang H, Luo D, Qiao H, Ke X, Huang J. Structural characterization of a recombinant fusion protein by instrumental analysis and molecular modeling. PLoS One 2013; 8:e57642. [PMID: 23469213 PMCID: PMC3587646 DOI: 10.1371/journal.pone.0057642] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Accepted: 01/24/2013] [Indexed: 01/05/2023] Open
Abstract
Conbercept is a genetically engineered homodimeric protein for the treatment of wet age-related macular degeneration (wet AMD) that functions by blocking VEGF-family proteins. Its huge, highly variable architecture makes characterization and development of a functional assay difficult. In this study, the primary structure, number of disulfide linkages and glycosylation state of conbercept were characterized by high-performance liquid chromatography, mass spectrometry, and capillary electrophoresis. Molecular modeling was then applied to obtain the spatial structural model of the conbercept–VEGF-A complex, and to study its inter-atomic interactions and dynamic behavior. This work was incorporated into a platform useful for studying the structure of conbercept and its ligand binding functions.
Collapse
Affiliation(s)
- Zhigang Wu
- Chengdu Kanghong Biotechnology Inc., Chengdu, P. R. China
- * E-mail: (ZW); (JH)
| | - Peng Zhou
- Center of Bioinformatics, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Xiaoxin Li
- Peking University People’s Hospital, Beijing, P. R. China
| | - Hui Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Delun Luo
- Chengdu Kanghong Biotechnology Inc., Chengdu, P. R. China
| | - Huaiyao Qiao
- Chengdu Kanghong Biotechnology Inc., Chengdu, P. R. China
| | - Xiao Ke
- Chengdu Kanghong Biotechnology Inc., Chengdu, P. R. China
| | - Jian Huang
- Center of Bioinformatics, University of Electronic Science and Technology of China, Chengdu, P. R. China
- * E-mail: (ZW); (JH)
| |
Collapse
|
42
|
Dai S, Ni W, Patananan AN, Clarke SG, Karger BL, Zhou ZS. Integrated proteomic analysis of major isoaspartyl-containing proteins in the urine of wild type and protein L-isoaspartate O-methyltransferase-deficient mice. Anal Chem 2013; 85:2423-30. [PMID: 23327623 DOI: 10.1021/ac303428h] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The formation of isoaspartyl residues (isoAsp or isoD) via either aspartyl isomerization or asparaginyl deamidation alters protein structure and potentially biological function. This is a spontaneous and nonenzymatic process, ubiquitous both in vivo and in nonbiological systems, such as in protein pharmaceuticals. In almost all organisms, protein L-isoaspartate O-methyltransferase (PIMT, EC2.1.1.77) recognizes and initiates the conversion of isoAsp back to aspartic acid. Additionally, alternative proteolytic and excretion pathways to metabolize isoaspartyl-containing proteins have been proposed but not fully explored, largely due to the analytical challenges for detecting isoAsp. We report here the relative quantitation and site profiling of isoAsp in urinary proteins from wild type and PIMT-deficient mice, representing products from excretion pathways. First, using a biochemical approach, we found that the total isoaspartyl level of proteins in urine of PIMT-deficient male mice was elevated. Subsequently, the major isoaspartyl protein species in urine from these mice were identified as major urinary proteins (MUPs) by shotgun proteomics. To enhance the sensitivity of isoAsp detection, a targeted proteomic approach using electron transfer dissociation-selected reaction monitoring (ETD-SRM) was developed to investigate isoAsp sites in MUPs. A total of 38 putative isoAsp modification sites in MUPs were investigated, with five derived from the deamidation of asparagine that were confirmed to contribute to the elevated isoAsp levels. Our findings lend experimental evidence for the hypothesized excretion pathway for isoAsp proteins. Additionally, the developed method opens up the possibility to explore processing mechanisms of isoaspartyl proteins at the molecular level, such as the fate of protein pharmaceuticals in circulation.
Collapse
Affiliation(s)
- Shujia Dai
- Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston Massachusetts 02115, United States
| | | | | | | | | | | |
Collapse
|
43
|
Kumar M, Chatterjee A, Khedkar AP, Kusumanchi M, Adhikary L. Mass spectrometric distinction of in-source and in-solution pyroglutamate and succinimide in proteins: a case study on rhG-CSF. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:202-212. [PMID: 23283728 DOI: 10.1007/s13361-012-0531-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 10/17/2012] [Accepted: 10/29/2012] [Indexed: 06/01/2023]
Abstract
Formation of cyclic intermediates involving water or ammonia loss is a common occurrence in any reaction involving terminal amines or hydroxyl group containing species. Proteins that have both these functional groups in abundance are no exception, and presence of amino acids such as asparagine, glutamines, aspartic acids, and glutamic acids aid in formation of such intermediates. In the biopharma scenario, such intermediates lead to product- or process-related impurities that might be immunogenic. Mass spectroscopy is a powerful technique that is used to decipher the presence and physicochemical characteristics of such impurities. However, such intermediates can also form in situ during mass spectrometric analysis. We present here the detection of in-source and in-solution formation of succinimide and pyroglutamate in the protein granulocyte colony stimulating factor. We also propose an approach for quick differentiation of such in-situ species from the tangible impurities. We believe that this will not only reduce the time spent in unambiguous identification of succinimide- and/or pyroglutamate-related impurity in bio-pharmaceutics but also provide a platform for similar studies on other impurities that may form due to stabilized intermediates.
Collapse
Affiliation(s)
- Mukesh Kumar
- Molecular Characterization Laboratory, Biocon Research Ltd., Bangalore, Karnataka, India
| | | | | | | | | |
Collapse
|
44
|
Quantitation of asparagine deamidation by isotope labeling and liquid chromatography coupled with mass spectrometry analysis. Anal Biochem 2013; 432:16-22. [DOI: 10.1016/j.ab.2012.09.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 09/17/2012] [Indexed: 12/20/2022]
|
45
|
Zybailov BL, Glazko GV, Jaiswal M, Raney KD. Large Scale Chemical Cross-linking Mass Spectrometry Perspectives. ACTA ACUST UNITED AC 2013; 6:001. [PMID: 25045217 PMCID: PMC4101816 DOI: 10.4172/jpb.s2-001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The spectacular heterogeneity of a complex protein mixture from biological samples becomes even more difficult to tackle when one’s attention is shifted towards different protein complex topologies, transient interactions, or localization of PPIs. Meticulous protein-by-protein affinity pull-downs and yeast-two-hybrid screens are the two approaches currently used to decipher proteome-wide interaction networks. Another method is to employ chemical cross-linking, which gives not only identities of interactors, but could also provide information on the sites of interactions and interaction interfaces. Despite significant advances in mass spectrometry instrumentation over the last decade, mapping Protein-Protein Interactions (PPIs) using chemical cross-linking remains time consuming and requires substantial expertise, even in the simplest of systems. While robust methodologies and software exist for the analysis of binary PPIs and also for the single protein structure refinement using cross-linking-derived constraints, undertaking a proteome-wide cross-linking study is highly complex. Difficulties include i) identifying cross-linkers of the right length and selectivity that could capture interactions of interest; ii) enrichment of the cross-linked species; iii) identification and validation of the cross-linked peptides and cross-linked sites. In this review we examine existing literature aimed at the large-scale protein cross-linking and discuss possible paths for improvement. We also discuss short-length cross-linkers of broad specificity such as formaldehyde and diazirine-based photo-cross-linkers. These cross-linkers could potentially capture many types of interactions, without strict requirement for a particular amino-acid to be present at a given protein-protein interface. How these shortlength, broad specificity cross-linkers be applied to proteome-wide studies? We will suggest specific advances in methodology, instrumentation and software that are needed to make such a leap.
Collapse
Affiliation(s)
- Boris L Zybailov
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Galina V Glazko
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Mihir Jaiswal
- UALR/UAMS Joint Bioinformatics Program, University of Arkansas Little Rock, Little Rock, AR, USA
| | - Kevin D Raney
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
46
|
Wilson J, van Doorn NL, Collins MJ. Assessing the extent of bone degradation using glutamine deamidation in collagen. Anal Chem 2012; 84:9041-8. [PMID: 23030643 DOI: 10.1021/ac301333t] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Collagen peptides are analyzed using a low-cost, high-throughput method for assessing deamidation using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). For each chosen peptide, the theoretical distribution is calculated and the measured distribution for each sample compared with this to determine the extent of glutamine deamidation. The deamidation of glutamine (Q) to glutamic acid (E) results in a mass shift of +0.984 Da. Thus, from the resolution of our data, the second peak in the isotope distribution for a peptide containing one glutamine residue coincides with the first peak of the isotope distribution for the peptide in which the residue is deamidated. A genetic algorithm is used to determine the extent of deamidation that gives the best fit to the measured distribution. The method can be extended to peptides containing more than one glutamine residue. The extent of protein degradation assessed in this way could be used, for example, to assess the damage of collagen, and screen samples for radiocarbon dating and DNA analysis.
Collapse
Affiliation(s)
- Julie Wilson
- Department of Mathematics, University of York, York YO10 5YW, UK.
| | | | | |
Collapse
|
47
|
Du Y, Wang F, May K, Xu W, Liu H. Determination of Deamidation Artifacts Introduced by Sample Preparation Using 18O-Labeling and Tandem Mass Spectrometry Analysis. Anal Chem 2012; 84:6355-60. [DOI: 10.1021/ac3013362] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yi Du
- Merck Research Laboratory, 1011
Morris Avenue, Union, New Jersey 07083, United States
| | - Fengqiang Wang
- Merck Research Laboratory, 1011
Morris Avenue, Union, New Jersey 07083, United States
| | - Kimberly May
- Merck Research Laboratory, 1011
Morris Avenue, Union, New Jersey 07083, United States
| | - Wei Xu
- Merck Research Laboratory, 1011
Morris Avenue, Union, New Jersey 07083, United States
| | - Hongcheng Liu
- Merck Research Laboratory, 1011
Morris Avenue, Union, New Jersey 07083, United States
| |
Collapse
|
48
|
Abstract
Although differentiation of the isomeric Asn deamidation products (Asp and isoAsp) at the peptide level by electron capture dissociation (ECD) has been well-established, isoAsp identification at the intact protein level remains a challenging task. Here, a comprehensive top-down deamidation study is presented using the protein beta2-microglobulin (β(2)M) as the model system. Of the three deamidation sites identified in the aged β(2)M, isoAsp formation was detected at only one site by the top-down ECD analysis. The absence of diagnostic ions likely resulted from an increased number of competing fragmentation channels and a decreased likelihood of product ion separation in ECD of proteins. To overcome this difficulty, an MS(3) approach was applied where a protein ion was first fragmented by collisionally activated dissociation (CAD) and the resulting product ion was isolated and further analyzed by ECD. IsoAsp formation at all three deamidation sites was successfully identified by this CAD-ECD approach. Furthermore, the abundance of the isoAsp diagnostic ion was found to increase linearly with the extent of deamidation. These results demonstrated the potential of ECD in the detection and quantitative analysis of isoAsp formation using the top-down approach.
Collapse
Affiliation(s)
- Xiaojuan Li
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine
| | - Xiang Yu
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine
| | - Catherine E. Costello
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine
| | - Cheng Lin
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine
| | | |
Collapse
|
49
|
Furlong MT, Ouyang Z, Wu S, Tamura J, Olah T, Tymiak A, Jemal M. A universal surrogate peptide to enable LC-MS/MS bioanalysis of a diversity of human monoclonal antibody and human Fc-fusion protein drug candidates in pre-clinical animal studies. Biomed Chromatogr 2012; 26:1024-32. [PMID: 22623136 DOI: 10.1002/bmc.2759] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 04/01/2012] [Accepted: 04/23/2012] [Indexed: 11/06/2022]
Abstract
For the development of human antibody Fc (fraction crystallizable) region-containing therapeutic protein candidates, which can be either monoclonal antibodies (mAbs) or pharmacologically active proteins/peptides fused to the Fc region of human Immunoglobulin G (IgG), reliable quantification of these proteins in animal pharmacokinetic study plasma samples is critical. LC-MS/MS has emerged as a promising assay platform for this purpose. LC-MS/MS assays used for bioanalysis of human antibody Fc region-containing therapeutic protein candidates frequently rely upon quantification of a 'signature' surrogate peptide whose sequence is unique to the protein analyte of interest. One drawback of the signature peptide approach is that a new LC-MS/MS assay must be developed for each new human Fc region-containing therapeutic protein. To address this issue, we propose an alternative 'universal surrogate peptide' approach for the quantification of human antibody Fc region-containing therapeutic protein candidates in plasma samples from all nonclinical species. A single surrogate tryptic peptide was identified in the Fc region of most human antibody Fc-containing therapeutic protein candidates. An LC-MS-MS method based upon this peptide was shown to be capable of supporting bioanalysis of a diversity of human Fc region-containing therapeutic protein candidates in plasma samples of all commonly used animal species.
Collapse
Affiliation(s)
- Michael T Furlong
- Analytical Research and Development, Research and Development, Bristol-Myers Squibb, Princeton, NJ 08543-4000, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
|