1
|
Bashyal A, Hui JO, Flick T, Dykstra AB, Zhang Q, Campuzano IDG, Brodbelt JS. Differentiation of Aspartic and Isoaspartic Acid Using 193 nm Ultraviolet Photodissociation Mass Spectrometry. Anal Chem 2023; 95:11510-11517. [PMID: 37458293 PMCID: PMC10588209 DOI: 10.1021/acs.analchem.3c02025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Spontaneous conversion of aspartic acid (Asp) to isoaspartic acid (isoAsp) is a ubiquitous modification that influences the structure and function of proteins. This modification of Asp impacts the stability of biotherapeutics and has been linked to the development of neurodegenerative diseases. We explored the use of 193 nm ultraviolet photodissociation (UVPD) to distinguish Asp and isoAsp in the protonated and deprotonated peptides. The differences in the relative abundances of several fragment ions uniquely generated by UVPD were used to differentiate isomeric peptide standards containing Asp or isoAsp. These fragment ions result from the cleavage of bonds N-terminal to Asp/isoAsp residues in addition to the side-chain losses from Asp/isoAsp or the losses of COOH, CO2, CO, or H2O from y-ions. Fragmentation of Asp-containing tryptic peptides using UVPD resulted in more enhanced w/w + 1/y - 1/x ions, while isoAsp-containing peptides yielded more enhanced y - 18/y - 45/y - 46 ions. UVPD was also used to identify an isomerized peptide from a tryptic digest of a monoclonal antibody. Moreover, UVPD of a protonated nontryptic peptide resulted in more enhanced y ions N- and C-terminal to isoAsp and differences in b/y ion ratios that were used to identify the isoAsp peptide.
Collapse
Affiliation(s)
- Aarti Bashyal
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - John O Hui
- Amgen Research, Molecular Analytics, Amgen Inc., Thousand Oaks, California 91320, United States
| | - Tawnya Flick
- Process Development, Attribute Sciences, Amgen Inc., Thousand Oaks, California 91320, United States
| | - Andrew B Dykstra
- Process Development, Attribute Sciences, Amgen Inc., Thousand Oaks, California 91320, United States
| | - Qingchun Zhang
- Process Development, Attribute Sciences, Amgen Inc., Thousand Oaks, California 91320, United States
| | - Iain D G Campuzano
- Amgen Research, Molecular Analytics, Amgen Inc., Thousand Oaks, California 91320, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
2
|
Lichti CF, Wan X. Using mass spectrometry to identify neoantigens in autoimmune diseases: The type 1 diabetes example. Semin Immunol 2023; 66:101730. [PMID: 36827760 PMCID: PMC10324092 DOI: 10.1016/j.smim.2023.101730] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/24/2023]
Abstract
In autoimmune diseases, recognition of self-antigens presented by major histocompatibility complex (MHC) molecules elicits unexpected attack of tissue by autoantibodies and/or autoreactive T cells. Post-translational modification (PTM) may alter the MHC-binding motif or TCR contact residues in a peptide antigen, transforming the tolerance to self to autoreactivity. Mass spectrometry-based immunopeptidomics provides a valuable mechanism for identifying MHC ligands that contain PTMs and can thus provide valuable insights into pathogenesis and therapeutics of autoimmune diseases. A plethora of PTMs have been implicated in this process, and this review highlights their formation and identification.
Collapse
Affiliation(s)
- Cheryl F Lichti
- Department of Pathology and Immunology, Division of Immunobiology, The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, 660 S. Euclid Ave, Campus Box 8118, St. Louis, MO 63110, USA.
| | - Xiaoxiao Wan
- Department of Pathology and Immunology, Division of Immunobiology, The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, 660 S. Euclid Ave, Campus Box 8118, St. Louis, MO 63110, USA.
| |
Collapse
|
3
|
Hashii N, Tajiri M, Ishii-Watabe A. [Quality Evaluation of Therapeutic Antibodies by Multi-attribute Method]. YAKUGAKU ZASSHI 2022; 142:731-744. [PMID: 35781502 DOI: 10.1248/yakushi.21-00211-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the development of therapeutic monoclonal antibodies (mAbs), it is essential to characterize the modifications causing structural heterogeneity because certain modifications are associated with safety and efficacy. However, the rapid structural analysis of mAbs remains challenging due to their structural complexity. The multi-attribute method (MAM) is a structural analytical method based on peptide mapping using LC/MS, and has drawn attention as a new quality control method for therapeutic mAbs instead of conventional structural heterogeneity analyses using several chromatographic techniques. Peptide mapping, which is regarded as an identification test method, is used to confirm that the amino acid sequence corresponds to that deduced from the gene sequence for the desired product. In contrast, MAM is used for simultaneously monitoring the modification rates of individual amino acid residues of therapeutic mAbs, indicating that MAM is used as quantitative test rather than identification test. In this review, we summarized the typical structural heterogeneities of mAbs and the general scheme of MAM. We also introduced our optimized sample preparation method for MAM, and examples of simultaneous monitoring of several modifications including deamidation, oxidation, N-terminal pyroglutamination, C-terminal clipping and glycosylation by our MAM system.
Collapse
Affiliation(s)
- Noritaka Hashii
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences
| | - Michiko Tajiri
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences
| | - Akiko Ishii-Watabe
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences
| |
Collapse
|
4
|
Edwards HM, Wu HT, Julian RR, Jackson GP. Differentiating aspartic acid isomers and epimers with charge transfer dissociation mass spectrometry (CTD-MS). Analyst 2022; 147:1159-1168. [PMID: 35188507 DOI: 10.1039/d1an02279b] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ability to understand the function of a protein often relies on knowledge about its detailed structure. Sometimes, seemingly insignificant changes in the primary structure of a protein, like an amino acid substitution, can completely disrupt a protein's function. Long-lived proteins (LLPs), which can be found in critical areas of the human body, like the brain and eye, are especially susceptible to primary sequence alterations in the form of isomerization and epimerization. Because long-lived proteins do not have the corrective regeneration capabilities of most other proteins, points of isomerism and epimerization that accumulate within the proteins can severely hamper their functions and can lead to serious diseases like Alzheimer's disease, cancer and cataracts. Whereas tandem mass spectrometry (MS/MS) in the form of collision-induced dissociation (CID) generally excels at peptide characterization, MS/MS often struggles to pinpoint modifications within LLPs, especially when the differences are only isomeric or epimeric in nature. One of the most prevalent and difficult-to-identify modifications is that of aspartic acid between its four isomeric forms: L-Asp, L-isoAsp, D-Asp, and D-isoAsp. In this study, peptides containing isomers of Asp were analyzed by charge transfer dissociation (CTD) mass spectrometry to identify spectral features that could discriminate between the different isomers. For the four isomers of Asp in three model peptides, CTD produced diagnostic ions of the form cn+57 on the N-terminal side of iso-Asp residues, but not on the N-terminal side of Asp residues. Using CTD, the L- and D forms of Asp and isoAsp could also be differentiated based on the relative abundance of y- and z ions on the C-terminal side of Asp residues. Differentiation was accomplished through a chiral discrimination factor, R, which compares an ion ratio in a spectrum of one epimer or isomer to the same ion ratio in the spectrum of a different epimer or isomer. The R values obtained using CTD are as robust and statistically significant as other fragmentation techniques, like radical directed dissociation (RDD). In summary, the extent of backbone and side-chain fragments produced by CTD enabled the differentiation of isomers and epimers of Asp in a variety of peptides.
Collapse
Affiliation(s)
- Halle M Edwards
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA.
| | - Hoi-Ting Wu
- Department of Chemistry, University of California, Riverside, CA, USA
| | - Ryan R Julian
- Department of Chemistry, University of California, Riverside, CA, USA
| | - Glen P Jackson
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA. .,Department of Forensic and Investigative Science, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
5
|
Tajiri-Tsukada M, Hashii N, Ishii-Watabe A. Establishment of a highly precise multi-attribute method for the characterization and quality control of therapeutic monoclonal antibodies. Bioengineered 2021; 11:984-1000. [PMID: 32942957 PMCID: PMC8291864 DOI: 10.1080/21655979.2020.1814683] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The multi-attribute method (MAM) has garnered attention as a new quality control method of therapeutic monoclonal antibodies (mAbs). MAM analysis allows multiple relative quantifications of several structural attributes of therapeutic mAbs; however, some issues remain to be addressed in its procedures especially for sample preparation. The goal of this study was to optimize the sample preparation method for MAM analysis of mAbs. Using a model mAb, we compared five sample preparation methods based on sequence coverage, peptide redundancy, missed cleavage and chemical deamidation. It was found that low pH buffer and short digestion time reduced artificial deamidation. The desalting process after carboxymethylation was essential to obtaining high sequence coverage by a short digestion time. The generation of missed cleavage peptides was also improved by using a trypsin/lysyl endopeptidase (Lys-C) mixture. Next, we evaluated the usefulness of our method as a part of MAM analysis. Finally, 17 glycopeptides, 2 deamidated peptides and N- and C-terminal peptides of the heavy chain were successfully monitored with acceptable mass accuracy and coefficient of variation (CV, %) of the relative peak area. On the other hand, 4 oxidated peptides indicated the unavoidable slightly higher inter-assay CV (%) of the peak area ratio due to the instability in the MS sample solution. Collectively, we demonstrated that our method was applicable as an easy and reliable sample preparation method for MAM analysis, and the variation in the relative peak area could be influenced by the modification type rather than by the amount of each peptide.
Collapse
Affiliation(s)
- Michiko Tajiri-Tsukada
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences , Kawasaki, Kanagawa, Japan.,Graduate School of Medical Life Science, Yokohama City University , Yokohama, Kanagawa, Japan
| | - Noritaka Hashii
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences , Kawasaki, Kanagawa, Japan
| | - Akiko Ishii-Watabe
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences , Kawasaki, Kanagawa, Japan
| |
Collapse
|
6
|
Sang-Aroon W, Phatchana R, Tontapha S, Ruangpornvisuti V. A DFT calculation on nonenzymatic degradation of isoaspartic residue. J Mol Model 2021; 27:300. [PMID: 34570254 DOI: 10.1007/s00894-021-04920-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/16/2021] [Indexed: 11/30/2022]
Abstract
βAsp is an isomer of Asp that can be formed by either deamidation of Asn or isomerization of Asp and known as biological clock. The presence of βAsp affects the proteolytic stability of the protein. Formation of the isomerized Asp plays a diverse and crucial role in aging, cancer, autoimmune, neurodegenerative, and other diseases. A number of methods have been developed to detect βAsp, and they are usually used in conjunction. Because of identical mass, differentiation of βAsp and Asp residues is challenged. Degradation of βAsp is still unclear and needed to be explored. The energetics and mechanism of five possible pathways for cleavages at βAsp in peptide model have been investigated by DFT/B3LYP/6-311 + + G(d,p) level of the theory. The calculations show that peptide bond cleavage at α-chain (amino side) due to αOC → αCN ring closure is the most favorable reaction. The result is in agreement with experiment utilizing PSD/CRF method. The second most favorable pathway is due to αOC → βC ring closure results in β-chain cleavage. The cleavage products βAsp and Asp fragments can be used to signify an abundance of βAsp residue in nonenzymatic condition. Other three cyclizations initiated by either α- or β-amino nitrogen result in various cleavages, isomerization to Asp, and reconversion to original βAsp. These three cyclization pathways are obstructed because they require mostly high activation barriers and their intermediates are quite less thermodynamically stable. Thus, computational results also confirm that βAsp → Asp is prohibited in case of nonenzymatic condition which means that protein L-isoaspartyl O-methyl transferase (PIMT) is needed for this modification.
Collapse
Affiliation(s)
- Wichien Sang-Aroon
- Department of Chemistry, Faculty of Engineering, Rajamangala University of Technology Isan, KhonKaen Campus, Khon Kaen, 40000, Thailand.
| | - Ratchanee Phatchana
- Department of Chemistry, Faculty of Engineering, Rajamangala University of Technology Isan, KhonKaen Campus, Khon Kaen, 40000, Thailand
| | - Sarawut Tontapha
- Post Doctoral Research Fellow, Integrated Nanotechnology Research Center, Department of Physics, Faculty of Science, KhonKaen University, Khon Kaen, 40001, Thailand
| | - Vithaya Ruangpornvisuti
- Supramolecular Chemistry Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10320, Thailand
| |
Collapse
|
7
|
Arndt JR, Wormwood Moser KL, Van Aken G, Doyle RM, Talamantes T, DeBord D, Maxon L, Stafford G, Fjeldsted J, Miller B, Sherman M. High-Resolution Ion-Mobility-Enabled Peptide Mapping for High-Throughput Critical Quality Attribute Monitoring. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2019-2032. [PMID: 33835810 DOI: 10.1021/jasms.0c00434] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Characterization and monitoring of post-translational modifications (PTMs) by peptide mapping is a ubiquitous assay in biopharmaceutical characterization. Often, this assay is coupled to reversed-phase liquid chromatographic (LC) separations that require long gradients to identify all components of the protein digest and resolve critical modifications for relative quantitation. Incorporating ion mobility (IM) as an orthogonal separation that relies on peptide structure can supplement the LC separation by providing an additional differentiation filter to resolve isobaric peptides, potentially reducing ambiguity in identification through mobility-aligned fragmentation and helping to reduce the run time of peptide mapping assays. A next-generation high-resolution ion mobility (HRIM) technique, based on structures for lossless ion manipulations (SLIM) technology with a 13 m ion path, provides peak capacities and higher resolving power that rivals traditional chromatographic separations and, owing to its ability to resolve isobaric peptides that coelute in faster chromatographic methods, allows for up to 3× shorter run times than conventional peptide mapping methods. In this study, the NIST monoclonal antibody IgG1κ (NIST RM 8671, NISTmAb) was characterized by LC-HRIM-MS and LC-HRIM-MS with collision-induced dissociation (HRIM-CID-MS) using a 20 min analytical method. This approach delivered a sequence coverage of 96.5%. LC-HRIM-CID-MS experiments provided additional confidence in sequence determination. HRIM-MS resolved critical oxidations, deamidations, and isomerizations that coelute with their native counterparts in the chromatographic dimension. Finally, quantitative measurements of % modification were made using only the m/z-extracted HRIM arrival time distributions, showing good agreement with the reference liquid-phase separation. This study shows, for the first time, the analytical capability of HRIM using SLIM technology for enhancing peptide mapping workflows relevant to biopharmaceutical characterization.
Collapse
Affiliation(s)
- James R Arndt
- MOBILion Systems, Inc., 4 Hillman Drive, Suite 130, Chadds Ford, Pennsylvania 19317, United States
| | - Kelly L Wormwood Moser
- MOBILion Systems, Inc., 4 Hillman Drive, Suite 130, Chadds Ford, Pennsylvania 19317, United States
| | - Gregory Van Aken
- MOBILion Systems, Inc., 4 Hillman Drive, Suite 130, Chadds Ford, Pennsylvania 19317, United States
| | - Rory M Doyle
- MOBILion Systems, Inc., 4 Hillman Drive, Suite 130, Chadds Ford, Pennsylvania 19317, United States
| | - Tatjana Talamantes
- MOBILion Systems, Inc., 4 Hillman Drive, Suite 130, Chadds Ford, Pennsylvania 19317, United States
| | - Daniel DeBord
- MOBILion Systems, Inc., 4 Hillman Drive, Suite 130, Chadds Ford, Pennsylvania 19317, United States
| | - Laura Maxon
- MOBILion Systems, Inc., 4 Hillman Drive, Suite 130, Chadds Ford, Pennsylvania 19317, United States
| | - George Stafford
- Agilent Technologies Inc., 5301 Stevens Creek Bouelvard, Santa Clara, California 95051, United States
| | - John Fjeldsted
- Agilent Technologies Inc., 5301 Stevens Creek Bouelvard, Santa Clara, California 95051, United States
| | - Bryan Miller
- Agilent Technologies Inc., 5301 Stevens Creek Bouelvard, Santa Clara, California 95051, United States
| | - Melissa Sherman
- MOBILion Systems, Inc., 4 Hillman Drive, Suite 130, Chadds Ford, Pennsylvania 19317, United States
| |
Collapse
|
8
|
Hui JO, Flick T, Loo JA, Campuzano IDG. Unequivocal Identification of Aspartic Acid and isoAspartic Acid by MALDI-TOF/TOF: From Peptide Standards to a Therapeutic Antibody. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1901-1909. [PMID: 33390012 DOI: 10.1021/jasms.0c00370] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Aspartic acid (Asp) to isoaspartic acid (isoAsp) isomerization in therapeutic monoclonal antibodies (mAbs) and other biotherapeutics is a critical quality attribute (CQA) that requires careful control and monitoring during the drug discovery and production processes. The unwanted formation of isoAsp within biotherapeutics and resultant structural changes in the peptide backbone may negatively impact the efficacy, potency, and safety of the molecule or become immunogenic, especially if the isomerization occurs within the mAb complementarity determining region (CDR). Herein we describe a MALDI-TOF/TOF mass spectrometry method that affords unequivocal identification of the presence and the exact position of the isoAsp residue(s) in peptide standards ranging in size from a tripeptide to a docosapeptide (22 residues). In general, the peptide bond immediately N-terminal to the isoAsp residue is more susceptible to MALDI-TOF/TOF fragmentation than its unmodified counterpart. In some of the peptides evaluated in this study, fragmentation of the peptide bond C-terminal to the isoAsp residue (the aspartate effect) is also enhanced when compared to the control. Relative quantification by MALDI-TOF/TOF of this chemical modification is dependent upon a successful reversed-phase HPLC (rpHPLC) separation of the control and modified peptides. This method has also been validated on a therapeutic mAb that contains a well-documented isoAsp residue in the heavy chain CDR3 after forced degradation. Moreover, we also demonstrate that higher energy C-trap dissociation of only the singly charged species, and not the multiply charged form, of the isoAsp containing peptide, separated by rpHPLC, results in LC-MS/MS fragmentation that is highly consistent to that of MALDI-TOF/TOF.
Collapse
Affiliation(s)
- John O Hui
- Amgen Research, Discovery Attribute Sciences, Amgen, Inc., Thousand Oaks, California 91320, United States
| | - Tawnya Flick
- Attribute Sciences, Pivotal, Amgen, Inc., Thousand Oaks, California 91320, United States
| | - Joseph A Loo
- Department of Chemistry & Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Iain D G Campuzano
- Amgen Research, Discovery Attribute Sciences, Amgen, Inc., Thousand Oaks, California 91320, United States
| |
Collapse
|
9
|
Campuzano IDG, Sandoval W. Denaturing and Native Mass Spectrometric Analytics for Biotherapeutic Drug Discovery Research: Historical, Current, and Future Personal Perspectives. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1861-1885. [PMID: 33886297 DOI: 10.1021/jasms.1c00036] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Mass spectrometry (MS) plays a key role throughout all stages of drug development and is now as ubiquitous as other analytical techniques such as surface plasmon resonance, nuclear magnetic resonance, and supercritical fluid chromatography, among others. Herein, we aim to discuss the history of MS, both electrospray and matrix-assisted laser desorption ionization, specifically for the analysis of antibodies, evolving through to denaturing and native-MS analysis of newer biologic moieties such as antibody-drug conjugates, multispecific antibodies, and interfering nucleic acid-based therapies. We discuss challenging therapeutic target characterization such as membrane protein receptors. Importantly, we compare and contrast the MS and hyphenated analytical chromatographic methods used to characterize these therapeutic modalities and targets within biopharmaceutical research and highlight the importance of appropriate MS deconvolution software and its essential contribution to project progression. Finally, we describe emerging applications and MS technologies that are still predominantly within either a development or academic stage of use but are poised to have significant impact on future drug development within the biopharmaceutic industry once matured. The views reflected herein are personal and are not meant to be an exhaustive list of all relevant MS performed within biopharmaceutical research but are what we feel have been historically, are currently, and will be in the future the most impactful for the drug development process.
Collapse
MESH Headings
- Antibodies, Monoclonal/analysis
- Automation, Laboratory
- Biopharmaceutics/methods
- Chromatography, Liquid
- Drug Discovery/methods
- Drug Industry/history
- History, 20th Century
- History, 21st Century
- Humans
- Immunoconjugates/analysis
- Immunoconjugates/chemistry
- Protein Denaturation
- Protein Processing, Post-Translational
- Proteins/analysis
- Spectrometry, Mass, Electrospray Ionization/history
- Spectrometry, Mass, Electrospray Ionization/instrumentation
- Spectrometry, Mass, Electrospray Ionization/methods
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/history
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/instrumentation
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
Collapse
Affiliation(s)
- Iain D G Campuzano
- Discovery Attribute Sciences, Amgen Research, 1 Amgen Center Drive, Thousand Oaks, California 92130, United States
| | - Wendy Sandoval
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
10
|
Johnson SR, Rikli HG. Aspartic Acid Isomerization Characterized by High Definition Mass Spectrometry Significantly Alters the Bioactivity of a Novel Toxin from Poecilotheria. Toxins (Basel) 2020; 12:E207. [PMID: 32218140 PMCID: PMC7232244 DOI: 10.3390/toxins12040207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 11/25/2022] Open
Abstract
Research in toxinology has created a pharmacological paradox. With an estimated 220,000 venomous animals worldwide, the study of peptidyl toxins provides a vast number of effector molecules. However, due to the complexity of the protein-protein interactions, there are fewer than ten venom-derived molecules on the market. Structural characterization and identification of post-translational modifications are essential to develop biological lead structures into pharmaceuticals. Utilizing advancements in mass spectrometry, we have created a high definition approach that fuses conventional high-resolution MS-MS with ion mobility spectrometry (HDMSE) to elucidate these primary structure characteristics. We investigated venom from ten species of "tiger" spider (Genus: Poecilotheria) and discovered they contain isobaric conformers originating from non-enzymatic Asp isomerization. One conformer pair conserved in five of ten species examined, denominated PcaTX-1a and PcaTX-1b, was found to be a 36-residue peptide with a cysteine knot, an amidated C-terminus, and isoAsp33Asp substitution. Although the isomerization of Asp has been implicated in many pathologies, this is the first characterization of Asp isomerization in a toxin and demonstrates the isomerized product's diminished physiological effects. This study establishes the value of a HDMSE approach to toxin screening and characterization.
Collapse
Affiliation(s)
- Stephen R. Johnson
- Carbon Dynamics Institute LLC, Sherman, IL 62684, USA
- Chemistry Department, University of Illinois Springfield, Springfield, IL 62703, USA
| | - Hillary G. Rikli
- College of Liberal Arts & Sciences, University of Illinois Springfield, Springfield, IL 62703, USA;
| |
Collapse
|
11
|
Kundinger SR, Bishof I, Dammer EB, Duong DM, Seyfried NT. Middle-Down Proteomics Reveals Dense Sites of Methylation and Phosphorylation in Arginine-Rich RNA-Binding Proteins. J Proteome Res 2020; 19:1574-1591. [PMID: 31994892 DOI: 10.1021/acs.jproteome.9b00633] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Post-translational modifications (PTMs) within arginine (Arg)-rich RNA-binding proteins, such as phosphorylation and methylation, regulate multiple steps in RNA metabolism. However, the identification of PTMs within Arg-rich domains with complete trypsin digestion is extremely challenging due to the high density of Arg residues within these proteins. Here, we report a middle-down proteomic approach coupled with electron-transfer dissociation (ETD) mass spectrometry to map previously unknown sites of phosphorylation and methylation within the Arg-rich domains of U1-70K and structurally similar RNA-binding proteins from nuclear extracts of human embryonic kidney (HEK)-293T cells. Notably, the Arg-rich domains in RNA-binding proteins are densely modified by methylation and phosphorylation compared with the remainder of the proteome, with methylation and phosphorylation favoring RSRS motifs. Although they favor a common motif, analysis of combinatorial PTMs within RSRS motifs indicates that phosphorylation and methylation do not often co-occur, suggesting that they may functionally oppose one another. Furthermore, we show that phosphorylation may modify interactions between Arg-rich proteins, as serine-arginine splicing factor 2 (SRSF2) has a stronger association with U1-70K and LUC7L3 upon dephosphorylation. Collectively, these findings suggest that the level of PTMs within Arg-rich domains may be among the highest in the proteome and a possible unexplored regulator of RNA-binding protein interactions.
Collapse
|
12
|
Pekov SI, Ivanov DG, Bugrova AE, Indeykina MI, Zakharova NV, Popov IA, Kononikhin AS, Kozin SA, Makarov AA, Nikolaev EN. Evaluation of MALDI-TOF/TOF Mass Spectrometry Approach for Quantitative Determination of Aspartate Residue Isomerization in the Amyloid-β Peptide. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1325-1329. [PMID: 31073890 DOI: 10.1007/s13361-019-02199-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 03/11/2019] [Accepted: 03/29/2019] [Indexed: 06/09/2023]
Abstract
Immunoprecipitation (IP) combined with MALDI-TOF mass spectrometry is a powerful instrument for peptide and protein identification in biological samples. In this study, the analytical capabilities of MALDI-TOF/TOF mass spectrometry for relative quantitation of isoAsp7 in Aβ(1-42) and Aβ(1-16) were investigated. The possibility of quantitative determination of isoAsp7 in Aβ(1-42) with the detection limit as low as 2 pmol has been demonstrated. The same approach was applied for a shorter peptide Aβ(1-16) and resulted in enhanced accuracy (± 3.2%), and lower detection limit (50 fmol). Pilot experiments with artificial cerebrospinal fluid and mouse brain tissue were performed and showed that the proposed IP-MALDI-TOF/TOF approach could be applied for measuring isoAβ content in biological fluids and tissues. Additionally, it was shown that 6E10 anti-amyloid antibodies might affect the accuracy of the amyloid-β quantitation in the presence of the isomerized peptide.
Collapse
Affiliation(s)
- Stanislav I Pekov
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow region, Russia
- V.L. Talrose Institute for Energy Problems of Chemical Physics RAS, Moscow, Russia
| | - Daniil G Ivanov
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow region, Russia
- Emanuel Institute of Biochemical Physics RAS, Moscow, Russia
| | - Anna E Bugrova
- Emanuel Institute of Biochemical Physics RAS, Moscow, Russia
| | - Maria I Indeykina
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow region, Russia
- Emanuel Institute of Biochemical Physics RAS, Moscow, Russia
| | - Natalia V Zakharova
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow region, Russia
- Emanuel Institute of Biochemical Physics RAS, Moscow, Russia
| | - Igor A Popov
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow region, Russia.
| | - Alexey S Kononikhin
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow region, Russia.
- V.L. Talrose Institute for Energy Problems of Chemical Physics RAS, Moscow, Russia.
| | - Sergey A Kozin
- Engelhardt Institute of Molecular Biology RAS, Moscow, Russia
| | | | | |
Collapse
|
13
|
Lam YPY, Wootton CA, Hands-Portman I, Wei J, Chiu CKC, Romero-Canelon I, Lermyte F, Barrow MP, O'Connor PB. Does deamidation of islet amyloid polypeptide accelerate amyloid fibril formation? Chem Commun (Camb) 2019; 54:13853-13856. [PMID: 30474090 DOI: 10.1039/c8cc06675b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mass spectrometry has been applied to determine the deamidation sites and the aggregation region of the deamidated human islet amyloid polypeptide (hIAPP). Mutant hIAPP with iso-aspartic residue mutations at possible deamidation sites showed very different fibril formation behaviour, which correlates with the observed deamidation-induced acceleration of hIAPP aggregation.
Collapse
Affiliation(s)
- Yuko P Y Lam
- Department of Chemistry, University of Warwick, Coventry, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Shi Y, Hong X, Fan H, Wu Z, Liu A. Characterizing Novel Modifications of a Therapeutic Protein Using Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry, Sedimentation Velocity Analytical Ultracentrifugation, and Structural Modeling. Anal Chem 2018; 90:12870-12877. [PMID: 30295031 DOI: 10.1021/acs.analchem.8b03459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heterogeneity of biopharmaceutical products is common due to various co- and post-translational modifications and degradation events that occur during the biological production process and throughout the shelf life. Product-related variants resulting from these modifications potentially affect a product's biological activity and safety, and thus, their detailed structure characterization is of great importance for successful development of protein therapeutics. Specifically, in this study, two novel low-level product variants in a recombinant therapeutic protein were characterized via chromatographic enrichment followed by proteolytic digestion and analysis using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). One of the variants was identified to be the therapeutic protein missing a 61-amino-acid fragment from its N-terminus. Consequently, the other variant was found to be the therapeutic protein carrying the 61-amino-acid long peptide. Furthermore, detailed structure at the modification site of the latter variant was determined as that amino group from the protein's N-terminus linked to side chain carbonyl carbon at Asp 61 residue of the peptide, based on the complementary information from collision induced dissociation and electron transfer dissociation MS/MS analysis. Results from sedimentation velocity analytical ultracentrifugation and computational structural modeling supported the hypothesis that formation of these two variants was a result of protein self-association. In dimeric state, the head-to-toe stacking conformation of two therapeutic protein molecules allowed spatial closeness between the N-terminus of one molecule and the 61st amino acid of the other molecule, resulting in a novel peptide transfer between the two protein molecules.
Collapse
|
15
|
Lermyte F, Valkenborg D, Loo JA, Sobott F. Radical solutions: Principles and application of electron-based dissociation in mass spectrometry-based analysis of protein structure. MASS SPECTROMETRY REVIEWS 2018; 37:750-771. [PMID: 29425406 PMCID: PMC6131092 DOI: 10.1002/mas.21560] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 01/19/2018] [Accepted: 01/19/2018] [Indexed: 05/11/2023]
Abstract
In recent years, electron capture (ECD) and electron transfer dissociation (ETD) have emerged as two of the most useful methods in mass spectrometry-based protein analysis, evidenced by a considerable and growing body of literature. In large part, the interest in these methods is due to their ability to induce backbone fragmentation with very little disruption of noncovalent interactions which allows inference of information regarding higher order structure from the observed fragmentation behavior. Here, we review the evolution of electron-based dissociation methods, and pay particular attention to their application in "native" mass spectrometry, their mechanism, determinants of fragmentation behavior, and recent developments in available instrumentation. Although we focus on the two most widely used methods-ECD and ETD-we also discuss the use of other ion/electron, ion/ion, and ion/neutral fragmentation methods, useful for interrogation of a range of classes of biomolecules in positive- and negative-ion mode, and speculate about how this exciting field might evolve in the coming years.
Collapse
Affiliation(s)
- Frederik Lermyte
- Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, Antwerp, Belgium
- Centre for Proteomics, University of Antwerp, Antwerp, Belgium
- School of Engineering, University of Warwick, Coventry, United Kingdom
| | - Dirk Valkenborg
- Centre for Proteomics, University of Antwerp, Antwerp, Belgium
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Agoralaan, Diepenbeek, Belgium
- Applied Bio and Molecular Systems, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Joseph A Loo
- Department of Biological Chemistry, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California
- UCLA/DOE Institute for Genomics and Proteomics, University of California-Los Angeles, Los Angeles, California
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California
| | - Frank Sobott
- Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, Antwerp, Belgium
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
16
|
Khatri K, Pu Y, Klein JA, Wei J, Costello CE, Lin C, Zaia J. Comparison of Collisional and Electron-Based Dissociation Modes for Middle-Down Analysis of Multiply Glycosylated Peptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1075-1085. [PMID: 29663256 PMCID: PMC6004259 DOI: 10.1007/s13361-018-1909-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 01/09/2018] [Accepted: 01/29/2018] [Indexed: 05/12/2023]
Abstract
Analysis of singly glycosylated peptides has evolved to a point where large-scale LC-MS analyses can be performed at almost the same scale as proteomics experiments. While collisionally activated dissociation (CAD) remains the mainstay of bottom-up analyses, it performs poorly for the middle-down analysis of multiply glycosylated peptides. With improvements in instrumentation, electron-activated dissociation (ExD) modes are becoming increasingly prevalent for proteomics experiments and for the analysis of fragile modifications such as glycosylation. While these methods have been applied for glycopeptide analysis in isolated studies, an organized effort to compare their efficiencies, particularly for analysis of multiply glycosylated peptides (termed here middle-down glycoproteomics), has not been made. We therefore compared the performance of different ExD modes for middle-down glycopeptide analyses. We identified key features among the different dissociation modes and show that increased electron energy and supplemental activation provide the most useful data for middle-down glycopeptide analysis. Graphical Abstract.
Collapse
Affiliation(s)
- Kshitij Khatri
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA, USA
| | - Yi Pu
- Department of Chemistry, Boston University, Boston, MA, USA
| | - Joshua A Klein
- Program in Bioinformatics, Boston University, Boston, MA, USA
| | - Juan Wei
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA, USA
| | - Catherine E Costello
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA, USA
- Department of Chemistry, Boston University, Boston, MA, USA
| | - Cheng Lin
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA, USA.
- Boston University Medical Campus, 670 Albany St., Suite 504, Boston, MA, 02118, USA.
| | - Joseph Zaia
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA, USA.
- Program in Bioinformatics, Boston University, Boston, MA, USA.
- Boston University Medical Campus, 670 Albany St., Suite 504, Boston, MA, 02118, USA.
| |
Collapse
|
17
|
Lyon YA, Beran G, Julian RR. Leveraging Electron Transfer Dissociation for Site Selective Radical Generation: Applications for Peptide Epimer Analysis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1365-1373. [PMID: 28374314 PMCID: PMC5497491 DOI: 10.1007/s13361-017-1627-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 02/07/2017] [Accepted: 02/08/2017] [Indexed: 06/07/2023]
Abstract
Traditional electron-transfer dissociation (ETD) experiments operate through a complex combination of hydrogen abundant and hydrogen deficient fragmentation pathways, yielding c and z ions, side-chain losses, and disulfide bond scission. Herein, a novel dissociation pathway is reported, yielding homolytic cleavage of carbon-iodine bonds via electronic excitation. This observation is very similar to photodissociation experiments where homolytic cleavage of carbon-iodine bonds has been utilized previously, but ETD activation can be performed without addition of a laser to the mass spectrometer. Both loss of iodine and loss of hydrogen iodide are observed, with the abundance of the latter product being greatly enhanced for some peptides after additional collisional activation. These observations suggest a novel ETD fragmentation pathway involving temporary storage of the electron in a charge-reduced arginine side chain. Subsequent collisional activation of the peptide radical produced by loss of HI yields spectra dominated by radical-directed dissociation, which can be usefully employed for identification of peptide isomers, including epimers. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Yana A Lyon
- Department of Chemistry, University of California-Riverside, 501 Big Springs Road, Riverside, CA, 92521, USA
| | - Gregory Beran
- Department of Chemistry, University of California-Riverside, 501 Big Springs Road, Riverside, CA, 92521, USA
| | - Ryan R Julian
- Department of Chemistry, University of California-Riverside, 501 Big Springs Road, Riverside, CA, 92521, USA.
| |
Collapse
|
18
|
Rogstad S, Faustino A, Ruth A, Keire D, Boyne M, Park J. A Retrospective Evaluation of the Use of Mass Spectrometry in FDA Biologics License Applications. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:786-794. [PMID: 27873217 DOI: 10.1007/s13361-016-1531-9] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/12/2016] [Accepted: 10/13/2016] [Indexed: 05/12/2023]
Abstract
The characterization sections of biologics license applications (BLAs) approved by the United States Food and Drug Administration (FDA) between 2000 and 2015 were investigated to examine the extent of the use of mass spectrometry. Mass spectrometry was found to be integral to the characterization of these biotherapeutics. Of the 80 electronically submitted monoclonal antibody and protein biotherapeutic BLAs included in this study, 79 were found to use mass spectrometric workflows for protein or impurity characterization. To further examine how MS is being used in successful BLAs, the applications were filtered based on the type and number of quality attributes characterized, the mass spectrometric workflows used (peptide mapping, intact mass analysis, and cleaved glycan analysis), the methods used to introduce the proteins into the gas phase (ESI, MALDI, or LC-ESI), and the specific types of instrumentation used. Analyses were conducted over a time course based on the FDA BLA approval to determine if any trends in utilization could be observed over time. Additionally, the different classes of protein-based biotherapeutics among the approved BLAs were clustered to determine if any trends could be attributed to the specific type of biotherapeutic. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Sarah Rogstad
- Division of Pharmaceutical Analysis, Office of Testing and Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA.
| | - Anneliese Faustino
- Division of Pharmaceutical Analysis, Office of Testing and Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Ashley Ruth
- Biotechlogic, Inc., Glenview, IL, 60025, USA
| | - David Keire
- Division of Pharmaceutical Analysis, Office of Testing and Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | | | - Jun Park
- Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| |
Collapse
|
19
|
Qi Y, Volmer DA. Electron-based fragmentation methods in mass spectrometry: An overview. MASS SPECTROMETRY REVIEWS 2017; 36:4-15. [PMID: 26445267 DOI: 10.1002/mas.21482] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 07/03/2015] [Accepted: 07/03/2015] [Indexed: 05/21/2023]
Abstract
Tandem mass spectrometry (MS/MS) provides detailed information for structural characterization of biomolecules. The combination of electron capture dissociation (ECD) techniques with Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) often provides unique ion-electron reactions and fragmentation channels in MS/MS. ECD is often a complimentary, sometimes even a superior tool to conventional MS/MS techniques. This article is aimed at providing a short overview of ECD-based fragmentation techniques (ExD) and optimization of ECD experiments for FTICR mass analyzers. Most importantly, it is meant to pique the interest of potential users for this exciting research field. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:4-15, 2017.
Collapse
Affiliation(s)
- Yulin Qi
- Institute of Bioanalytical Chemistry, Saarland University, Campus B2.2, Saarbrücken, 66123, Germany
| | - Dietrich A Volmer
- Institute of Bioanalytical Chemistry, Saarland University, Campus B2.2, Saarbrücken, 66123, Germany
| |
Collapse
|
20
|
Kumar S, Prakash S, Gupta K, Dongre A, Balaram P, Balaram H. Unexpected functional implication of a stable succinimide in the structural stability of Methanocaldococcus jannaschii glutaminase. Nat Commun 2016; 7:12798. [PMID: 27677693 PMCID: PMC5052720 DOI: 10.1038/ncomms12798] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 08/01/2016] [Indexed: 11/16/2022] Open
Abstract
Protein ageing is often mediated by the formation of succinimide intermediates. These short-lived intermediates derive from asparaginyl deamidation and aspartyl dehydration and are rapidly converted into β-aspartyl or D-aspartyl residues. Here we report the presence of a highly stable succinimide intermediate in the glutaminase subunit of GMP synthetase from the hyperthermophile Methanocaldoccocus jannaschii. By comparing the biophysical properties of the wild-type protein and of several mutants, we show that the presence of succinimide increases the structural stability of the glutaminase subunit. The protein bearing this modification in fact remains folded at 100 °C and in 8 M guanidinium chloride. Mutation of the residue following the reactive asparagine provides insight into the factors that contribute to the hydrolytic stability of the succinimide. Our findings suggest that sequences that stabilize succinimides from hydrolysis may be evolutionarily selected to confer extreme thermal stability. Succinimide is a post-translational modification susceptible to rapid hydrolysis and generally associated with protein destabilisation. Here, the authors use mass spectroscopy to identify a stable succinimide intermediate that is responsible for the high thermostability of a thermophilic enzyme.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Sunita Prakash
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Kallol Gupta
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Aparna Dongre
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Padmanabhan Balaram
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Hemalatha Balaram
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| |
Collapse
|
21
|
Kuznetsova KG, Trufanov PV, Moysa AA, Pyatnitskiy MA, Zgoda VG, Gorshkov MV, Moshkovskii SA. Threonine versus isothreonine in synthetic peptides analyzed by high-resolution liquid chromatography/tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:1323-1331. [PMID: 27173114 DOI: 10.1002/rcm.7566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/15/2016] [Accepted: 03/15/2016] [Indexed: 06/05/2023]
Abstract
RATIONALE One of the problems in proteogenomic research aimed at identification of variant peptides is the presence of peptides with amino acid isomers of different origin in the analyzed samples. Among the most challenging examples are peptides with threonine and isothreonine (homoserine) in their sequences. Indeed, the latter residue may appear in vitro as a methionine substitution during sample preparation for shotgun proteome analysis. Yet, this substitution of Met to isoThr is not encoded genetically and should be unambiguously distinguished from, e.g., point mutations in proteins that result in Met conversion to Thr. METHODS In this work we compared tandem mass (MS/MS) spectra produced by an Orbitrap mass spectrometer of Thr- and isoThr-containing tryptic peptides and found a distinctive feature in their collisionally activated fragmentation patterns. RESULTS Up to 84% of MS/MS spectra for peptides containing isoThr residues have been positively specified. We also studied the differences in retention times for peptides containing Thr isoforms that can be further used for their distinction. CONCLUSIONS Threonine can be distinguished from isothreonine by its retention time and HCD fragmentation pattern, specifically relative intensity of the bn - product ion, which can be further used in proteomic research. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - Pavel V Trufanov
- Institute of Biomedical Chemistry, Moscow, Russia
- Moscow State University, Biological Faculty, Moscow, Russia
| | - Alexander A Moysa
- Institute of Biomedical Chemistry, Moscow, Russia
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | | | - Mikhail V Gorshkov
- Institute of Energy Problems of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow Region, Russia
| | - Sergei A Moshkovskii
- Institute of Biomedical Chemistry, Moscow, Russia
- Pirogov Russian National Medical University, Moscow, Russia
| |
Collapse
|
22
|
Yu X, Sargaeva NP, Thompson CJ, Costello CE, Lin C. In-Source Decay Characterization of Isoaspartate and β-Peptides. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2015; 390:101-109. [PMID: 26644780 PMCID: PMC4669973 DOI: 10.1016/j.ijms.2015.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Deamidation and the subsequent formation of isoaspartic acid (isoAsp) are common modifications of asparagine (Asn) residues in proteins. Differentiation of isoAsp and Asp residues is a challenging task owing to their similar chemical properties and identical molecular mass. Recent studies showed that they can be differentiated using electron capture dissociation (ECD) which generates diagnostic fragments c'+57 and z•-57 specific to the isoAsp residue. However, the ECD approach is only applicable towards multiply charged precursor ions and generally does not work for β-amino acids other than isoAsp. In this study, the potential of in-source decay (ISD) in characterization of isoAsp and other β-amino acids was explored. For isoAsp-containing peptides, ISD with a conventional hydrogen-donating matrix produced ECD-like, c'+57 and z•-57 diagnostic ions, even for singly charged precursor ions. For other β-amino acids, a hydrogen-accepting matrix was used to induce formation of site-specific a-14 ions from a synthetic β-analogue of substance P. These results indicated that ISD can be broadly applied for β-peptide characterization.
Collapse
Affiliation(s)
- Xiang Yu
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine, 670 Albany Street, Suite 504, Boston, MA 02118
| | - Nadezda P. Sargaeva
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine, 670 Albany Street, Suite 504, Boston, MA 02118
| | | | - Catherine E. Costello
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine, 670 Albany Street, Suite 504, Boston, MA 02118
| | - Cheng Lin
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine, 670 Albany Street, Suite 504, Boston, MA 02118
| |
Collapse
|
23
|
Eakin CM, Miller A, Kerr J, Kung J, Wallace A. Assessing analytical methods to monitor isoAsp formation in monoclonal antibodies. Front Pharmacol 2014; 5:87. [PMID: 24808864 PMCID: PMC4010776 DOI: 10.3389/fphar.2014.00087] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 04/09/2014] [Indexed: 11/13/2022] Open
Abstract
A ubiquitous post-translational modification observed in proteins is isomerization of aspartic acid to isoaspartic acid (isoAsp). This non-enzymatic post-translational modification occurs spontaneously in proteins and plays a role in aging, autoimmune response, cancer, neurodegeneration, and other diseases. Formation of isoAsp is also a significant issue for recombinant monoclonal antibody based protein therapeutics particularly when isomerization occurs in a complementarity-determining region due to potential impact to the clinical efficacy. Here, we present and compare three analytical methods to monitor and/or quantify isoAsp formation in a monoclonal antibody. The methods include two peptide map based technologies with quantitation from either UV integration or total ion peak areas, as well as an alternative approach using IdeS digestion to generate Fc/2 and Fab’2 regions, followed by hydrophobic interaction chromatography (HIC) to separate the population of Fab’2 containing an isoAsp. The level of isoAsp detected by the peptide map and the digested-HIC methods presented here show similar trends although sample throughput varies by method.
Collapse
Affiliation(s)
| | - Amanda Miller
- Department of Analytical Sciences, Amgen Inc., Seattle WA, USA
| | - Jennifer Kerr
- Department of Analytical Sciences, Amgen Inc., Seattle WA, USA
| | - James Kung
- Department of Functional Biocharacterization, Amgen Inc., Thousand Oaks CA, USA
| | - Alison Wallace
- Department of Analytical Sciences, Amgen Inc., Seattle WA, USA
| |
Collapse
|
24
|
Truscott RJW, Friedrich MG. Old proteins and the Achilles heel of mass spectrometry. The role of proteomics in the etiology of human cataract. Proteomics Clin Appl 2014; 8:195-203. [PMID: 24458544 DOI: 10.1002/prca.201300044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 12/10/2013] [Accepted: 12/16/2013] [Indexed: 11/09/2022]
Abstract
Proteomics may have enabled the root cause of a major human-blinding condition, age-related cataract, to be established. Cataract appears to result from the spontaneous decomposition of long-lived macromolecules in the human lens, and recent proteomic analysis has enabled both the particular crystallins, and the specific sites of amino acid modification within each polypeptide, to be identified. Analysis of proteins from cataract lenses has demonstrated that there are key sites on some structural proteins that show a consistently greater degree of deterioration than age-matched normal lenses. Proteomic analysis, using MS, revealed that the most abundant posttranslational modification of aged lens proteins is racemization. This is somewhat ironic, since structural isomers can be viewed as the "Achilles heel" of MS and there are typically few, if any, differences in the MS/MS spectra of tryptic peptides containing one d-amino acid. It is proposed that once a certain level of spontaneous PTM at key sites occurs, that protein-protein interactions are disrupted, and binding of complexes to cell membranes takes place that impairs cell-to-cell communication. These findings may apply more widely to age-related human diseases, in particular where the deterioration of long-lived proteins is a crucial component in the etiology.
Collapse
Affiliation(s)
- Roger J W Truscott
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | | |
Collapse
|
25
|
Dai S, Ni W, Patananan AN, Clarke SG, Karger BL, Zhou ZS. Integrated proteomic analysis of major isoaspartyl-containing proteins in the urine of wild type and protein L-isoaspartate O-methyltransferase-deficient mice. Anal Chem 2013; 85:2423-30. [PMID: 23327623 DOI: 10.1021/ac303428h] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The formation of isoaspartyl residues (isoAsp or isoD) via either aspartyl isomerization or asparaginyl deamidation alters protein structure and potentially biological function. This is a spontaneous and nonenzymatic process, ubiquitous both in vivo and in nonbiological systems, such as in protein pharmaceuticals. In almost all organisms, protein L-isoaspartate O-methyltransferase (PIMT, EC2.1.1.77) recognizes and initiates the conversion of isoAsp back to aspartic acid. Additionally, alternative proteolytic and excretion pathways to metabolize isoaspartyl-containing proteins have been proposed but not fully explored, largely due to the analytical challenges for detecting isoAsp. We report here the relative quantitation and site profiling of isoAsp in urinary proteins from wild type and PIMT-deficient mice, representing products from excretion pathways. First, using a biochemical approach, we found that the total isoaspartyl level of proteins in urine of PIMT-deficient male mice was elevated. Subsequently, the major isoaspartyl protein species in urine from these mice were identified as major urinary proteins (MUPs) by shotgun proteomics. To enhance the sensitivity of isoAsp detection, a targeted proteomic approach using electron transfer dissociation-selected reaction monitoring (ETD-SRM) was developed to investigate isoAsp sites in MUPs. A total of 38 putative isoAsp modification sites in MUPs were investigated, with five derived from the deamidation of asparagine that were confirmed to contribute to the elevated isoAsp levels. Our findings lend experimental evidence for the hypothesized excretion pathway for isoAsp proteins. Additionally, the developed method opens up the possibility to explore processing mechanisms of isoaspartyl proteins at the molecular level, such as the fate of protein pharmaceuticals in circulation.
Collapse
Affiliation(s)
- Shujia Dai
- Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston Massachusetts 02115, United States
| | | | | | | | | | | |
Collapse
|
26
|
Mo J, Tymiak AA, Chen G. Structural mass spectrometry in biologics discovery: advances and future trends. Drug Discov Today 2012; 17:1323-30. [DOI: 10.1016/j.drudis.2012.07.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/11/2012] [Accepted: 07/13/2012] [Indexed: 11/16/2022]
|
27
|
Hurtado PP, O'Connor PB. Differentiation of isomeric amino acid residues in proteins and peptides using mass spectrometry. MASS SPECTROMETRY REVIEWS 2012; 31:609-25. [PMID: 22322410 DOI: 10.1002/mas.20357] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Characterization and differentiation of isomers in biological macromolecules using mass spectrometry is one of the most significant challenges facing scientists in the field. The capability of high-resolution MS instruments along with the development of new fragmentation methods now provides the ability to indirectly differentiate between some isomers. This ability has enabled mass spectrometry to evolve into a multidisciplinary technique incorporating areas such as pharmaceutical research, proteomics, polymer science, medicine, environmental chemistry, and recently archeology. This article aims to review recent developments in mass spectrometry methodologies in the identification of structural and spatial isomers in biological macromolecules, such as aspartic acid and isoaspartic acid (Asp/IsoAsp), leucine and isoleucine (Leu/Ile), glutamic acid and γ-glutamic acid, and D/L enantiomers.
Collapse
|
28
|
Abstract
Although differentiation of the isomeric Asn deamidation products (Asp and isoAsp) at the peptide level by electron capture dissociation (ECD) has been well-established, isoAsp identification at the intact protein level remains a challenging task. Here, a comprehensive top-down deamidation study is presented using the protein beta2-microglobulin (β(2)M) as the model system. Of the three deamidation sites identified in the aged β(2)M, isoAsp formation was detected at only one site by the top-down ECD analysis. The absence of diagnostic ions likely resulted from an increased number of competing fragmentation channels and a decreased likelihood of product ion separation in ECD of proteins. To overcome this difficulty, an MS(3) approach was applied where a protein ion was first fragmented by collisionally activated dissociation (CAD) and the resulting product ion was isolated and further analyzed by ECD. IsoAsp formation at all three deamidation sites was successfully identified by this CAD-ECD approach. Furthermore, the abundance of the isoAsp diagnostic ion was found to increase linearly with the extent of deamidation. These results demonstrated the potential of ECD in the detection and quantitative analysis of isoAsp formation using the top-down approach.
Collapse
Affiliation(s)
- Xiaojuan Li
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine
| | - Xiang Yu
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine
| | - Catherine E. Costello
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine
| | - Cheng Lin
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine
| | | |
Collapse
|
29
|
Berkowitz SA, Engen JR, Mazzeo JR, Jones GB. Analytical tools for characterizing biopharmaceuticals and the implications for biosimilars. Nat Rev Drug Discov 2012; 11:527-40. [PMID: 22743980 DOI: 10.1038/nrd3746] [Citation(s) in RCA: 376] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Biologics such as monoclonal antibodies are much more complex than small-molecule drugs, which raises challenging questions for the development and regulatory evaluation of follow-on versions of such biopharmaceutical products (also known as biosimilars) and their clinical use once patent protection for the pioneering biologic has expired. With the recent introduction of regulatory pathways for follow-on versions of complex biologics, the role of analytical technologies in comparing biosimilars with the corresponding reference product is attracting substantial interest in establishing the development requirements for biosimilars. Here, we discuss the current state of the art in analytical technologies to assess three characteristics of protein biopharmaceuticals that regulatory authorities have identified as being important in development strategies for biosimilars: post-translational modifications, three-dimensional structures and protein aggregation.
Collapse
Affiliation(s)
- Steven A Berkowitz
- Analytical Development, Biogen Idec, 14 Cambridge Center, Cambridge, Massachusetts 02142, USA
| | | | | | | |
Collapse
|
30
|
|
31
|
Kim MS, Pandey A. Electron transfer dissociation mass spectrometry in proteomics. Proteomics 2012; 12:530-42. [PMID: 22246976 DOI: 10.1002/pmic.201100517] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 10/25/2011] [Accepted: 11/02/2011] [Indexed: 01/30/2023]
Abstract
Mass spectrometry has rapidly evolved to become the platform of choice for proteomic analysis. While CID remains the major fragmentation method for peptide sequencing, electron transfer dissociation (ETD) is emerging as a complementary method for the characterization of peptides and post-translational modifications (PTMs). Here, we review the evolution of ETD and some of its newer applications including characterization of PTMs, non-tryptic peptides and intact proteins. We will also discuss some of the unique features of ETD such as its complementarity with CID and the use of alternating CID/ETD along with issues pertaining to analysis of ETD data. The potential of ETD for applications such as multiple reaction monitoring and proteogenomics in the future will also be discussed.
Collapse
Affiliation(s)
- Min-Sik Kim
- Department of Biological Chemistry, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
32
|
Zhang J, Katta V. Identification of Asp isomerization in proteins by ¹⁸O labeling and tandem mass spectrometry. Methods Mol Biol 2012; 899:365-377. [PMID: 22735965 DOI: 10.1007/978-1-61779-921-1_23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Isomerization of aspartic acid (Asp) to isoaspartic acid (isoAsp) via succinimide intermediate is a common route of degradation for proteins that can affect their structural integrity. As Asp/isoAsp is isobaric in mass, it is difficult to identify the site of modification by LC-MS/MS peptide mapping. Here, we describe an approach to label the Asp residue involved in isomerization at the protein level by hydrolyzing the succinimide intermediate in H₂¹⁸O. Tryptic digestion of this labeled protein will result in peptides containing the site of isomerization being 2 Da heavier than the ¹⁶O-containing counterparts, due to ¹⁸O incorporation during the hydrolysis process. Comparison of tandem mass spectra of isomerized peptides with and without ¹⁸O incorporation allows easy identification of the Asp residue involved. This method proved to be especially useful in identifying the sites when isomerization occurs in Asp-Asp motifs.
Collapse
Affiliation(s)
- Jennifer Zhang
- Protein Analytical Chemistry, Genentech Inc, South San Francisco, CA, USA.
| | | |
Collapse
|
33
|
Liu M, Cheetham J, Cauchon N, Ostovic J, Ni W, Ren D, Zhou ZS. Protein Isoaspartate Methyltransferase-Mediated 18O-Labeling of Isoaspartic Acid for Mass Spectrometry Analysis. Anal Chem 2011; 84:1056-62. [DOI: 10.1021/ac202652z] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Min Liu
- Analytical Research and Development, Amgen, One Amgen Center Drive, Thousand Oaks, California
91320, United States
- Department
of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts
02115, United States
- Barnett Institute of Chemical
and Biological Analysis, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Janet Cheetham
- Analytical Research and Development, Amgen, One Amgen Center Drive, Thousand Oaks, California
91320, United States
| | - Nina Cauchon
- Analytical Research and Development, Amgen, One Amgen Center Drive, Thousand Oaks, California
91320, United States
| | - Judy Ostovic
- Analytical Research and Development, Amgen, One Amgen Center Drive, Thousand Oaks, California
91320, United States
| | - Wenqin Ni
- Department
of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts
02115, United States
- Barnett Institute of Chemical
and Biological Analysis, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Da Ren
- Process and Product Development, Amgen, One Amgen Center Drive, Thousand Oaks, California
91320, United States
| | - Zhaohui Sunny Zhou
- Department
of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts
02115, United States
- Barnett Institute of Chemical
and Biological Analysis, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
34
|
Rios D, Rutkowski PX, Shuh DK, Bray TH, Gibson JK, Van Stipdonk MJ. Electron transfer dissociation of dipositive uranyl and plutonyl coordination complexes. JOURNAL OF MASS SPECTROMETRY : JMS 2011; 46:1247-1254. [PMID: 22223415 DOI: 10.1002/jms.2011] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Reported here is a comparison of electron transfer dissociation (ETD) and collision-induced dissociation (CID) of solvent-coordinated dipositive uranyl and plutonyl ions generated by electrospray ionization. Fundamental differences between the ETD and CID processes are apparent, as are differences between the intrinsic chemistries of uranyl and plutonyl. Reduction of both charge and oxidation state, which is inherent in ETD activation of [An(VI) O(2) (CH(3) COCH(3) )(4) ](2+) , [An(VI) O(2) (CH(3) CN)(4) ](2) , [U(VI) O(2) (CH(3) COCH(3) )(5) ](2+) and [U(VI) O(2) (CH(3) CN)(5) ](2+) (An = U or Pu), is accompanied by ligand loss. Resulting low-coordinate uranyl(V) complexes add O(2) , whereas plutonyl(V) complexes do not. In contrast, CID of the same complexes generates predominantly doubly-charged products through loss of coordinating ligands. Singly-charged CID products of [U(VI) O(2) (CH(3) COCH(3) )(4,5) ](2+) , [U(VI) O(2) (CH(3) CN)(4,5) ](2+) and [Pu(VI) O(2) (CH(3) CN)(4) ](2+) retain the hexavalent metal oxidation state with the addition of hydroxide or acetone enolate anion ligands. However, CID of [Pu(VI) O(2) (CH(3) COCH(3) )(4) ](2+) generates monopositive plutonyl(V) complexes, reflecting relatively more facile reduction of Pu(VI) to Pu(V).
Collapse
Affiliation(s)
- Daniel Rios
- Chemical Sciences Division, The Glenn T. Seaborg Center, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | | | | | | | |
Collapse
|
35
|
Sargaeva NP, Lin C, O’Connor PB. Differentiating N-terminal aspartic and isoaspartic acid residues in peptides. Anal Chem 2011; 83:6675-82. [PMID: 21736361 PMCID: PMC3165085 DOI: 10.1021/ac201223d] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Formation of isoaspartic acid (isoAsp) is a common modification of aspartic acid (Asp) or asparagine (Asn) residue in proteins. Differentiation of isoAsp and Asp residues is a challenging task owing to their similar properties and identical molecular mass. It was recently shown that they can be differentiated using ion-electron or ion-ion interaction fragmentation methods (ExD) because these methods provide diagnostic fragments c + 57 and z(•) - 57 specific to the isoAsp residue. To date, however, the presence of such fragments has not been explored on peptides with an N-terminal isoAsp residue. To address this question, several N-terminal isoAsp-containing peptides were analyzed using ExD methods alone or combined with chromatography. A diagnostic fragment [M + 2H - 74](+•) was observed for the doubly charged precursor ions with N-terminal isoAsp residues. For some peptides, identification of the N-terminal isoAsp residue was challenging because of the low diagnostic ion peak intensity and the presence of interfering peaks. Supplemental activation was used to improve diagnostic ion detection. Further, N-terminal acetylation was offered as a means to overcome the interference problem by shifting the diagnostic fragment peak to [M + 2H - 116](+•).
Collapse
Affiliation(s)
- Nadezda P. Sargaeva
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine, 670 Albany Street, R504, Boston, Massachusetts 02118
| | - Cheng Lin
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine, 670 Albany Street, R504, Boston, Massachusetts 02118
| | - Peter B. O’Connor
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine, 670 Albany Street, R504, Boston, Massachusetts 02118
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| |
Collapse
|
36
|
Sargaeva NP, Lin C, O’Connor PB. Unusual fragmentation of β-linked peptides by ExD tandem mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:480-91. [PMID: 21472566 PMCID: PMC4361814 DOI: 10.1007/s13361-010-0049-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 11/18/2010] [Accepted: 11/18/2010] [Indexed: 05/11/2023]
Abstract
Ion-electron reaction based fragmentation methods (ExD) in tandem mass spectrometry (MS), such as electron capture dissociation (ECD) and electron transfer dissociation (ETD) represent a powerful tool for biological analysis. ExD methods have been used to differentiate the presence of the isoaspartate (isoAsp) from the aspartate (Asp) in peptides and proteins. IsoAsp is a β(3)-type amino acid that has an additional methylene group in the backbone, forming a C(α)-C(β) bond within the polypeptide chain. Cleavage of this bond provides specific fragments that allow differentiation of the isomers. The presence of a C(α)-C(β) bond within the backbone is unique to β-amino acids, suggesting a similar application of ExD toward the analysis of peptides containing other β-type amino acids. In the current study, ECD and ETD analysis of several β-amino acid containing peptides was performed. It was found that N-C(β) and C(α)-C(β) bond cleavages were rare, providing few c and z• type fragments, which was attributed to the instability of the C(β) radical. Instead, the electron capture resulted primarily in the formation of a• and y fragments, representing an alternative fragmentation pathway, likely initiated by the electron capture at a backbone amide nitrogen protonation site within the β amino acid residues.
Collapse
Affiliation(s)
- Nadezda P. Sargaeva
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine, 670 Albany Street, R504, Boston, Massachusetts 02118
| | - Cheng Lin
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine, 670 Albany Street, R504, Boston, Massachusetts 02118
| | - Peter B. O’Connor
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine, 670 Albany Street, R504, Boston, Massachusetts 02118
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| |
Collapse
|
37
|
Ni W, Dai S, Karger BL, Zhou ZS. Analysis of isoaspartic Acid by selective proteolysis with Asp-N and electron transfer dissociation mass spectrometry. Anal Chem 2011; 82:7485-91. [PMID: 20712325 DOI: 10.1021/ac101806e] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A ubiquitous yet underappreciated protein post-translational modification, isoaspartic acid (isoAsp, isoD, or beta-Asp), generated via the deamidation of asparagine or isomerization of aspartic acid in proteins, plays a diverse and crucial role in aging, as well as autoimmune, cancer, neurodegeneration, and other diseases. In addition, formation of isoAsp is a major concern in protein pharmaceuticals, as it may lead to aggregation or activity loss. The scope and significance of isoAsp have, up to now, not been fully explored, as an unbiased screening of isoAsp at low abundance remains challenging. This difficulty is due to the subtle difference in the physicochemical properties between isoAsp and Asp, e.g., identical mass. In contrast, endoprotease Asp-N (EC 3.4.24.33) selectively cleaves aspartyl peptides but not the isoaspartyl counterparts. As a consequence, isoaspartyl peptides can be differentiated from those containing Asp and also enriched by Asp-N digestion. Subsequently, the existence and site of isoaspartate can be confirmed by electron transfer dissociation (ETD) mass spectrometry. As little as 0.5% of isoAsp was detected in synthetic beta-amyloid and cytochrome c peptides, even though both were initially assumed to be free of isoAsp. Taken together, our approach should expedite the unbiased discovery of isoAsp.
Collapse
Affiliation(s)
- Wenqin Ni
- Barnett Institute of Chemical and Biological Analysis and Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
38
|
Zhang J, Yip H, Katta V. Identification of isomerization and racemization of aspartate in the Asp-Asp motifs of a therapeutic protein. Anal Biochem 2010; 410:234-43. [PMID: 21130067 DOI: 10.1016/j.ab.2010.11.040] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 11/22/2010] [Accepted: 11/26/2010] [Indexed: 11/18/2022]
Abstract
A thermally stressed Fab molecule showed a significant increase of basic variants in imaged capillary isoelectric focusing (iCIEF) analysis. Mass analyses of the reduced protein found an increase in -18Da species from both light chain and heavy chain. A tryptic peptide map identified two isoAsp-containing peptides, both containing Asp-Asp motifs and located in complementarity-determining regions (CDRs) of light chains and heavy chains, respectively. The approaches of hydrolyzing succinimide in H(2)(18)O followed by tryptic digestion were used to label and identify the sites of isomerization. This method enabled identification of the isomerization site by comparing the MS/MS spectra of isomerized peptides with and without (18)O incorporation. The light chain peptide L2 VTITCITSTDID(12)DDMNWYQQKPGK underwent simultaneous isomerization and recemization at residue Asp-12 after thermal stress as evidenced by the coinjection of synthetic peptide L2 with l-Asp-12, l-isoAsp-12, d-Asp-12, and d-isoAsp-12, respectively. A thermal stress study of the synthetic peptide (l-)L2 showed that the isomerization and racemization did not occur, indicating that the Asp degradation in this Asp-Asp motif is more related to the protein conformation than the primary sequence. Another isomerization site was identified as Asp-24 in the heavy chain peptide H5 QAPGQGLEWMGWINTYTGETTYAD(24)DFK. No other isomerizations were detected in CDR peptides containing either Asp-Ser or Asp-Thr motifs.
Collapse
Affiliation(s)
- Jennifer Zhang
- Protein Analytical Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | | | | |
Collapse
|
39
|
Chen G, Warrack BM, Goodenough AK, Wei H, Wang-Iverson DB, Tymiak AA. Characterization of protein therapeutics by mass spectrometry: recent developments and future directions. Drug Discov Today 2010; 16:58-64. [PMID: 21093608 DOI: 10.1016/j.drudis.2010.11.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 10/08/2010] [Accepted: 11/08/2010] [Indexed: 10/18/2022]
Abstract
Mass spectrometry (MS) has become a powerful technology in the discovery and development of protein therapeutics in the biopharmaceutical industry. This review article describes recent developments and future trends in the characterization of protein therapeutics using MS. We discuss top-down MS for the characterization of protein modifications, hydrogen/deuterium exchange MS and ion mobility MS methods for higher order protein structure studies. Quantitative analysis of protein therapeutics (in vivo) by MS as an orthogonal approach to immunoassay for pharmacokinetics studies will also be illustrated.
Collapse
Affiliation(s)
- Guodong Chen
- Bioanalytical and Discovery Analytical Sciences, Research and Development, Bristol-Myers Squibb Company, PO Box 4000, Princeton, NJ 08543, USA.
| | | | | | | | | | | |
Collapse
|