1
|
Wu Z, Zang Y, Li C, He Z, Liu J, Du Z, Ma X, Jing L, Duan H, Feng J, Yan X. CD146, a therapeutic target involved in cell plasticity. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1563-1578. [PMID: 38613742 DOI: 10.1007/s11427-023-2521-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/28/2023] [Indexed: 04/15/2024]
Abstract
Since its identification as a marker for advanced melanoma in the 1980s, CD146 has been found to have multiple functions in both physiological and pathological processes, including embryonic development, tissue repair and regeneration, tumor progression, fibrosis disease, and inflammations. Subsequent research has revealed that CD146 is involved in various signaling pathways as a receptor or co-receptor in these processes. This correlation between CD146 and multiple diseases has sparked interest in its potential applications in diagnosis, prognosis, and targeted therapy. To better comprehend the versatile roles of CD146, we have summarized its research history and synthesized findings from numerous reports, proposing that cell plasticity serves as the underlying mechanism through which CD146 contributes to development, regeneration, and various diseases. Targeting CD146 would consequently halt cell state shifting during the onset and progression of these related diseases. Therefore, the development of therapy targeting CD146 holds significant practical value.
Collapse
Affiliation(s)
- Zhenzhen Wu
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuzhe Zang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuyi Li
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiheng He
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingyu Liu
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaoqi Du
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinran Ma
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lin Jing
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hongxia Duan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, 451163, China.
| | - Jing Feng
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xiyun Yan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, 451163, China.
- Joint Laboratory of Nanozymes in Zhengzhou University, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
2
|
Maeda K, Tanioka T, Takahashi R, Watanabe H, Sueki H, Takimoto M, Hashimoto SI, Ikeo K, Miwa Y, Kasama T, Iwamoto S. MCAM+CD161- Th17 Subset Expressing CD83 Enhances Tc17 Response in Psoriasis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1867-1881. [PMID: 37186262 DOI: 10.4049/jimmunol.2200530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 03/27/2023] [Indexed: 05/17/2023]
Abstract
Recent studies have highlighted the pathogenic roles of IL-17-producing CD8+ T cells (T-cytotoxic 17 [Tc17]) in psoriasis. However, the underlying mechanisms of Tc17 induction remain unclear. In this study, we focused on the pathogenic subsets of Th17 and their mechanism of promotion of Tc17 responses. We determined that the pathogenic Th17-enriched fraction expressed melanoma cell adhesion molecule (MCAM) and CCR6, but not CD161, because this subset produced IL-17A abundantly and the presence of these cells in the peripheral blood of patients has been correlated with the severity of psoriasis. Intriguingly, the serial analysis of gene expression revealed that CCR6+MCAM+CD161-CD4+ T cells displayed the gene profile for adaptive immune responses, including CD83, which is an activator for CD8+ T cells. Coculture assay with or without intercellular contact between CD4+ and CD8+ T cells showed that CCR6+MCAM+CD161-CD4+ T cells induced the proliferation of CD8+ T cells in a CD83-dependent manner. However, the production of IL-17A by CD8+ T cells required exogenous IL-17A, suggesting that intercellular contact via CD83 and the production of IL-17A from activated CD4+ T cells elicit Tc17 responses. Intriguingly, the CD83 expression was enhanced in the presence of IL-15, and CD83+ cells stimulated with IL-1β, IL-23, IL-15, and IL-15Rα did not express FOXP3. Furthermore, CCR6+MCAM+CD161-CD4+ T cells expressing CD83 were increased in the peripheral blood of patients, and the CD83+ Th17-type cells accumulated in the lesional skin of psoriasis. In conclusion, pathogenic MCAM+CD161- Th17 cells may be involved in the Tc17 responses via IL-17A and CD83 in psoriasis.
Collapse
Affiliation(s)
- Kohei Maeda
- Division of Physiology and Pathology, Department of Pharmacology, Toxicology, and Therapeutics, Showa University School of Pharmacy, Tokyo, Japan
| | - Toshihiro Tanioka
- Division of Physiology and Pathology, Department of Pharmacology, Toxicology, and Therapeutics, Showa University School of Pharmacy, Tokyo, Japan
| | - Rei Takahashi
- Division of Physiology and Pathology, Department of Pharmacology, Toxicology, and Therapeutics, Showa University School of Pharmacy, Tokyo, Japan
| | - Hideaki Watanabe
- Department of Dermatology, Showa University School of Medicine, Tokyo, Japan
| | - Hirohiko Sueki
- Department of Dermatology, Showa University School of Medicine, Tokyo, Japan
| | - Masafumi Takimoto
- Department of Pathology and Laboratory Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Shin-Ichi Hashimoto
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Kazuho Ikeo
- DNA Data Analysis Laboratory, National Institute of Genetics, Shizuoka, Japan
| | - Yusuke Miwa
- Department of Internal Medicine, Division of Rheumatology, Showa University School of Medicine, Tokyo, Japan
| | - Tsuyoshi Kasama
- Department of Internal Medicine, Division of Rheumatology, Showa University School of Medicine, Tokyo, Japan
| | - Sanju Iwamoto
- Division of Physiology and Pathology, Department of Pharmacology, Toxicology, and Therapeutics, Showa University School of Pharmacy, Tokyo, Japan
| |
Collapse
|
3
|
Charabati M, Zandee S, Fournier AP, Tastet O, Thai K, Zaminpeyma R, Lécuyer MA, Bourbonnière L, Larouche S, Klement W, Grasmuck C, Tea F, Zierfuss B, Filali-Mouhim A, Moumdjian R, Bouthillier A, Cayrol R, Peelen E, Arbour N, Larochelle C, Prat A. MCAM+ brain endothelial cells contribute to neuroinflammation by recruiting pathogenic CD4+ T lymphocytes. Brain 2023; 146:1483-1495. [PMID: 36319587 PMCID: PMC10115172 DOI: 10.1093/brain/awac389] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/12/2022] [Accepted: 10/01/2022] [Indexed: 01/13/2023] Open
Abstract
The trafficking of autoreactive leucocytes across the blood-brain barrier endothelium is a hallmark of multiple sclerosis pathogenesis. Although the blood-brain barrier endothelium represents one of the main CNS borders to interact with the infiltrating leucocytes, its exact contribution to neuroinflammation remains understudied. Here, we show that Mcam identifies inflammatory brain endothelial cells with pro-migratory transcriptomic signature during experimental autoimmune encephalomyelitis. In addition, MCAM was preferentially upregulated on blood-brain barrier endothelial cells in multiple sclerosis lesions in situ and at experimental autoimmune encephalomyelitis disease onset by molecular MRI. In vitro and in vivo, we demonstrate that MCAM on blood-brain barrier endothelial cells contributes to experimental autoimmune encephalomyelitis development by promoting the cellular trafficking of TH1 and TH17 lymphocytes across the blood-brain barrier. Last, we showcase ST14 as an immune ligand to brain endothelial MCAM, enriched on CD4+ T lymphocytes that cross the blood-brain barrier in vitro, in vivo and in multiple sclerosis lesions as detected by flow cytometry on rapid autopsy derived brain tissue from multiple sclerosis patients. Collectively, our findings reveal that MCAM is at the centre of a pathological pathway used by brain endothelial cells to recruit pathogenic CD4+ T lymphocyte from circulation early during neuroinflammation. The therapeutic targeting of this mechanism is a promising avenue to treat multiple sclerosis.
Collapse
Affiliation(s)
- Marc Charabati
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
- Department of Neurosciences, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Stephanie Zandee
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
- Department of Neurosciences, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Antoine P Fournier
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
- Department of Neurosciences, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Olivier Tastet
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
| | - Karine Thai
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
- Department of Neurosciences, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Roxaneh Zaminpeyma
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
| | - Marc-André Lécuyer
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Lyne Bourbonnière
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
| | - Sandra Larouche
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
| | - Wendy Klement
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
| | - Camille Grasmuck
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
- Department of Neurosciences, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Fiona Tea
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
- Department of Neurosciences, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Bettina Zierfuss
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
- Department of Neurosciences, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Ali Filali-Mouhim
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
| | - Robert Moumdjian
- Division of Neurosurgery, Centre Hospitalier de l’Université de Montréal (CHUM), Montreal, Quebec H2X 0C1, Canada
- Department of Surgery, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Alain Bouthillier
- Division of Neurosurgery, Centre Hospitalier de l’Université de Montréal (CHUM), Montreal, Quebec H2X 0C1, Canada
- Department of Surgery, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Romain Cayrol
- Clinical Department of Laboratory Medicine, CHUM, Montreal, Quebec H2X 0C1, Canada
- Department of Pathology and Cell Biology, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Evelyn Peelen
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
- Department of Neurosciences, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Nathalie Arbour
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
- Department of Neurosciences, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Catherine Larochelle
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
- Department of Neurosciences, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
- Multiple Sclerosis Clinic, Division of Neurology, CHUM, Montreal, Quebec H2L 4M1, Canada
| | - Alexandre Prat
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
- Department of Neurosciences, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
- Multiple Sclerosis Clinic, Division of Neurology, CHUM, Montreal, Quebec H2L 4M1, Canada
| |
Collapse
|
4
|
Heim X, Bermudez J, Joshkon A, Kaspi E, Bachelier R, Nollet M, Vélier M, Dou L, Brodovitch A, Foucault-Bertaud A, Leroyer AS, Benyamine A, Daumas A, Granel B, Sabatier F, Dignat-George F, Blot-Chabaud M, Bardin N. CD146 at the Interface between Oxidative Stress and the Wnt Signaling Pathway in Systemic Sclerosis. J Invest Dermatol 2022; 142:3200-3210.e5. [PMID: 35690141 DOI: 10.1016/j.jid.2022.03.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/01/2022] [Accepted: 03/12/2022] [Indexed: 01/05/2023]
Abstract
CD146 involvement was recently described in skin fibrosis of systemic sclerosis through its regulation of the Wnt pathway. Because the interaction between Wnt and ROS signaling plays a major role in fibrosis, we hypothesized that in systemic sclerosis, CD146 may regulate Wnt/ROS crosstalk. Using a transcriptomic and western blot analysis performed on CD146 wild-type or knockout mouse embryonic fibroblasts, we showed a procanonical Wnt hallmark in the absence of CD146 that is reversed when CD146 expression is restored. We found an elevated ROS content in knockout cells and an increase in DNA oxidative damage in the skin sections of knockout mice compared with those of wild-type mice. We also showed that ROS increased CD146 and its noncanonical Wnt ligand, WNT5A, only in wild-type cells. In humans, fibroblasts from patients with systemic sclerosis presented higher ROS content and expressed CD146, whereas control fibroblasts did not. Moreover, CD146 and its ligand were upregulated by ROS in both human fibroblasts. The increase in bleomycin-induced WNT5A expression was abrogated when CD146 was silenced. We showed an interplay between Wnt and ROS signaling in systemic sclerosis, regulated by CD146, which promotes the noncanonical Wnt pathway and prevents ROS signaling, opening the way for innovative therapeutic strategies.
Collapse
Affiliation(s)
- Xavier Heim
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France; Service d'immunologie, Biogénopôle, Hôpital de la Timone, Assistance Publique des Hôpitaux de Marseille (AP-HM), Marseille, France.
| | | | - Ahmad Joshkon
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
| | - Elise Kaspi
- Aix Marseille University, APHM, INSERM, MMG, Hôpital la Timone, Service de Biologie Cellulaire, Marseille, France
| | | | - Marie Nollet
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
| | - Mélanie Vélier
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France; Hematology and Vascular Biology Department, Hopital de la Conception, Assistance Publique des Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Laetitia Dou
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
| | - Alexandre Brodovitch
- Service d'immunologie, Biogénopôle, Hôpital de la Timone, Assistance Publique des Hôpitaux de Marseille (AP-HM), Marseille, France
| | | | | | - Audrey Benyamine
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France; Internal Medicine Department, Hopital Nord, Assistance Publique des Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Aurélie Daumas
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France; Internal Medicine, Geriatric and Therapeutic Department, Hopital de la Timone, Assistance Publique des Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Brigitte Granel
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France; Internal Medicine Department, Hopital Nord, Assistance Publique des Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Florence Sabatier
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France; Cell Therapy Laboratory, INSERM CIC BT 1409, Hôpital de la Conception, Assistance Publique des Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Françoise Dignat-George
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France; Hematology and Vascular Biology Department, Hopital de la Conception, Assistance Publique des Hôpitaux de Marseille (AP-HM), Marseille, France
| | | | - Nathalie Bardin
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France; Service d'immunologie, Biogénopôle, Hôpital de la Timone, Assistance Publique des Hôpitaux de Marseille (AP-HM), Marseille, France
| |
Collapse
|
5
|
He Y, Kim J, Tacconi C, Moody J, Dieterich LC, Anzengruber F, Maul JT, Gousopoulos E, Restivo G, Levesque MP, Lindenblatt N, Shin JW, Hon CC, Detmar M. Mediators of Capillary-to-Venule Conversion in the Chronic Inflammatory Skin Disease Psoriasis. J Invest Dermatol 2022; 142:3313-3326.e13. [PMID: 35777499 DOI: 10.1016/j.jid.2022.05.1089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 01/05/2023]
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by epidermal hyperplasia and hyperkeratosis, immune cell infiltration and vascular remodeling. Despite the emerging recognition of vascular normalization as a potential strategy for managing psoriasis, an in-depth delineation of the remodeled dermal vasculature has been missing. In this study, we exploited 5' single-cell RNA sequencing to investigate the transcriptomic alterations in different subpopulations of blood vascular and lymphatic endothelial cells directly isolated from psoriatic and healthy human skin. Individual subtypes of endothelial cells underwent specific molecular repatterning associated with cell adhesion and extracellular matrix organization. Blood capillaries, in particular, showed upregulation of the melanoma cell adhesion molecule as well as its binding partners and adopted postcapillary venule‒like characteristics during chronic inflammation that are more permissive to leukocyte transmigration. We also identified psoriasis-specific interactions between cis-regulatory enhancers and promoters for each endothelial cell subtype, revealing the dysregulated gene regulatory networks in psoriasis. Together, our results provide more insights into the specific transcriptional responses and epigenetic signatures of endothelial cells lining different vessel compartments in chronic skin inflammation.
Collapse
Affiliation(s)
- Yuliang He
- Institute of Pharmaceutical Sciences (IPW), Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Jihye Kim
- Institute of Pharmaceutical Sciences (IPW), Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Carlotta Tacconi
- Institute of Pharmaceutical Sciences (IPW), Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland; Department of Biosciences, University of Milan, Milan, Italy
| | - Jonathan Moody
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Lothar C Dieterich
- Institute of Pharmaceutical Sciences (IPW), Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Florian Anzengruber
- Department of Dermatology, University Hospital Zürich, Zürich, Switzerland; Faculty of Medicine, University of Zürich, Zürich, Switzerland; Department of Internal Medicine - Dermatology, Cantonal Hospital Graubünden, Chur, Switzerland
| | - Julia-Tatjana Maul
- Department of Dermatology, University Hospital Zürich, Zürich, Switzerland; Faculty of Medicine, University of Zürich, Zürich, Switzerland
| | | | - Gaetana Restivo
- Department of Dermatology, University Hospital Zürich, Zürich, Switzerland
| | | | - Nicole Lindenblatt
- Department of Plastic Surgery and Hand Surgery, University Hospital, Zürich, Switzerland
| | - Jay W Shin
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Chung-Chau Hon
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Michael Detmar
- Institute of Pharmaceutical Sciences (IPW), Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland.
| |
Collapse
|
6
|
Zhang ZY, Zhai C, Yang XY, Li HB, Wu LL, Li L. Knockdown of CD146 promotes endothelial-to-mesenchymal transition via Wnt/β-catenin pathway. PLoS One 2022; 17:e0273542. [PMID: 36001597 PMCID: PMC9401105 DOI: 10.1371/journal.pone.0273542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/10/2022] [Indexed: 11/27/2022] Open
Abstract
Purpose Cardiac fibrosis is characterized by the excessive deposition of extracellular matrix (ECM) proteins and leads to the maladaptive changes in myocardium. Endothelial cells (ECs) undergoing mesenchymal transition contributes to the occurrence and development of cardiac fibrosis. CD146 is an adhesion molecule highly expressed in ECs. The present study was performed to explore the role of CD146 in modulating endothelial to mesenchymal transition (EndMT). Methods C57BL/6 mice were subjected to subcutaneous implantation of osmotic minipump infused with angiotensin II (Ang Ⅱ). Adenovirus carrying CD146 short hairpin RNA (shRNA) or CD146 encoding sequence were infected into cultured human umbilical vein endothelial cells (HUVECs) followed by stimulation with Ang II or transforming growth factor-β1 (TGF-β1). Differentially expressed genes were revealed by RNA-sequencing (RNA-Seq) analysis. Gene expression was measured by quantitative real-time PCR, and protein expression and distribution were determined by Western blot and immunofluorescence staining, respectively. Results CD146 was predominantly expressed by ECs in normal mouse hearts. CD146 was upregulated in ECs but not fibroblasts and myocytes in hearts of Ang II-infused mice and in HUVECs stimulated with Ang Ⅱ. RNA-Seq analysis revealed the differentially expressed genes related to EndMT and Wnt/β-catenin signaling pathway. CD146 knockdown and overexpression facilitated and attenuated, respectively, EndMT induced by Ang II or TGF-β1. CD146 knockdown upregulated Wnt pathway-related genes including Wnt4, LEF1, HNF4A, FOXA1, SOX6, and CCND3, and increased the protein level and nuclear translocation of β-catenin. Conclusions Knockdown of CD146 exerts promotional effects on EndMT via activating Wnt/β-catenin pathway and the upregulation of CD146 might play a protective role against EndMT and cardiac fibrosis.
Collapse
Affiliation(s)
- Zhao-Yu Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Chao Zhai
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Xue-Yuan Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Hai-Bing Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Li-Ling Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Li Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
- * E-mail:
| |
Collapse
|
7
|
Duan H, Jing L, Jiang X, Ma Y, Wang D, Xiang J, Chen X, Wu Z, Yan H, Jia J, Liu Z, Feng J, Zhu M, Yan X. CD146 bound to LCK promotes T cell receptor signaling and antitumor immune responses in mice. J Clin Invest 2021; 131:e148568. [PMID: 34491908 DOI: 10.1172/jci148568] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 09/02/2021] [Indexed: 01/27/2023] Open
Abstract
Initiation of T cell receptor (TCR) signaling involves the activation of the tyrosine kinase LCK; however, it is currently unclear how LCK is recruited and activated. Here, we have identified the membrane protein CD146 as an essential member of the TCR network for LCK activation. CD146 deficiency in T cells substantially impaired thymocyte development and peripheral activation, both of which depend on TCR signaling. CD146 was found to directly interact with the SH3 domain of coreceptor-free LCK via its cytoplasmic domain. Interestingly, we found CD146 to be present in both monomeric and dimeric forms in T cells, with the dimerized form increasing after TCR ligation. Increased dimerized CD146 recruited LCK and promoted LCK autophosphorylation. In tumor models, CD146 deficiency dramatically impaired the antitumor response of T cells. Together, our data reveal an LCK activation mechanism for TCR initiation. We also underscore a rational intervention based on CD146 for tumor immunotherapy.
Collapse
Affiliation(s)
- Hongxia Duan
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Lin Jing
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoqing Jiang
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yanbin Ma
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Daji Wang
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jianquan Xiang
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xuehui Chen
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zhenzhen Wu
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Huiwen Yan
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | | | - Zheng Liu
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jing Feng
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Mingzhao Zhu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiyun Yan
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Joint Laboratory of Nanozymes in Zhengzhou University, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Bouvier S, Kaspi E, Joshkon A, Paulmyer-Lacroix O, Piercecchi-Marti MD, Sharma A, Leroyer AS, Bertaud A, Gris JC, Dignat-George F, Blot-Chabaud M, Bardin N. The Role of the Adhesion Receptor CD146 and Its Soluble Form in Human Embryo Implantation and Pregnancy. Front Immunol 2021; 12:711394. [PMID: 34512633 PMCID: PMC8427600 DOI: 10.3389/fimmu.2021.711394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/27/2021] [Indexed: 11/26/2022] Open
Abstract
CD146 is an adhesion molecule essentially located in the vascular system, which has been described to play an important role in angiogenesis. A soluble form of CD146, called sCD146, is detected in the bloodstream and is known as an angiogenic factor. During placental development, CD146 is selectively expressed in extravillous trophoblasts. A growing body of evidence shows that CD146 and, in particular, sCD146, regulate extravillous trophoblasts migration and invasion both in vitro and in vivo. Hereby, we review expression and functions of CD146/sCD146 in the obstetrical field, mainly in pregnancy and in embryo implantation. We emphasized the relevance of quantifying sCD146 in the plasma of pregnant women or in embryo supernatant in the case of in vitro fertilization (IVF) to predict pathological pregnancy such as preeclampsia or implantation defect. This review will also shed light on some major results that led us to define CD146/sCD146 as a biomarker of placental development and paves the way toward identification of new therapeutic targets during implantation and pregnancy.
Collapse
Affiliation(s)
- Sylvie Bouvier
- Department of Hematology, Nîmes University Hospital, Nîmes, France.,Faculty of Pharmaceutical and Biological Sciences, University of Montpellier, Montpellier, France.,UA11 Institute Desbrest of Epidemiology and Public Health, INSERM, Univ Montpellier, Montpellier, France
| | - Elise Kaspi
- Aix Marseille Univ, APHM, INSERM, MMG, Hôpital la Timone, Service de Biologie Cellulaire, Marseille, France
| | - Ahmad Joshkon
- Aix-Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
| | - Odile Paulmyer-Lacroix
- Aix Marseille Univ, APHM, Hôpital la Conception, Laboratory of Histology-Embryology/Biology of Reproduction, Marseille, France
| | | | - Akshita Sharma
- Department of Stem Cell and Regenerative Medicine, Centre for Interdisciplinary Research, DY Patil University, Kolhapur, India
| | | | | | - Jean-Christophe Gris
- Department of Hematology, Nîmes University Hospital, Nîmes, France.,Faculty of Pharmaceutical and Biological Sciences, University of Montpellier, Montpellier, France.,UA11 Institute Desbrest of Epidemiology and Public Health, INSERM, Univ Montpellier, Montpellier, France.,I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Françoise Dignat-George
- Aix Marseille Univ, APHM, INSERM, INRAE, C2VN, Hôpital la Conception, Laboratoire d'Hématologie, Marseille, France
| | | | - Nathalie Bardin
- Aix Marseille Univ, APHM, INSERM, INRAE, C2VN, Hôpital la Conception, Laboratoire d'Immunologie, Marseille, France
| |
Collapse
|
9
|
Raychaudhuri SK, Abria C, Raychaudhuri SP. Phenotype and pathological significance of MCAM + (CD146 +) T cell subset in psoriatic arthritis. Mol Biol Rep 2021; 48:6787-6796. [PMID: 34491483 PMCID: PMC8481216 DOI: 10.1007/s11033-021-06678-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 08/23/2021] [Indexed: 11/24/2022]
Abstract
Background CD146 (MCAM-melanoma cell adhesion molecule) is a cell surface adhesion molecule for Laminin 411. T cells expressing MCAM are mainly responsible for IL-17 production. IL-17 secreting T helper cells (Th17 cells) are critical for the pathogenesis of psoriatic arthritis (PsA). Here we hypothesized enrichment of CD146+IL-17+ memory T cells in PsA synovium and studied the association of CD146 expression and CD4+IL-17+ activated memory (CD11a+CD45RO+) T cells in synovial fluid and blood of PSA, rheumatoid arthritis (RA, a positive control) and osteoarthritis (OA) patients. Methods Hi-D FACS studies were done to identify IL-17 in CD4+CD146+CD45RO+ and CD8+CD146+CD45RO+ T cells. Results We observed that effector CD146+(MCAM+) T cells are enriched at the synovial inflammation site in PsA. Conclusion As CD146+ T cells are a key resource for IL-17 it is likely that the enrichment of these MCAM+ pathologic cells are critical for the disease process of PsA.
Collapse
Affiliation(s)
- Smriti K Raychaudhuri
- University of California Davis School of Medicine, Sacramento, USA.,Sacramento VA Medical Center, 10535 Hospital Way, Mather, CA, 95655, USA
| | - Christine Abria
- Sacramento VA Medical Center, 10535 Hospital Way, Mather, CA, 95655, USA
| | - Siba P Raychaudhuri
- University of California Davis School of Medicine, Sacramento, USA. .,Sacramento VA Medical Center, 10535 Hospital Way, Mather, CA, 95655, USA.
| |
Collapse
|
10
|
Ikeguchi R, Shimizu Y, Kondo A, Kanda N, So H, Kojima H, Kitagawa K. Melanoma Cell Adhesion Molecule Expressing Helper T Cells in CNS Inflammatory Demyelinating Diseases. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 8:8/6/e1069. [PMID: 34429366 PMCID: PMC8387012 DOI: 10.1212/nxi.0000000000001069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/21/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND OBJECTIVE To elucidate the relationship between melanoma cell adhesion molecule (MCAM)-expressing lymphocytes and pathogenesis of CNS inflammatory demyelinating diseases (IDDs). METHODS Patients with multiple sclerosis (MS) (n = 72) and neuromyelitis optica spectrum disorder (NMOSD, n = 29) were included. We analyzed the frequency and absolute numbers of MCAM+ lymphocytes (memory helper T [mTh] cells, naive helper T cells, CD8+ T cells, and B cells) in the peripheral blood (PB) and the CSF of patients with MS and NMOSD, treated with/without disease-modifying drugs (DMDs) or steroids, using flow cytometry. RESULTS The frequency of MCAM+ cells was higher in the mTh cell subset than that in other lymphocyte subsets. A significant increase in the frequency and the absolute number of MCAM+ mTh cells was observed in the PB of patients with NMOSD, whereas no increase was observed in the PB of patients with MS. The frequency of CSF MCAM+ mTh cells was higher in relapsing patients with MS and NMOSD than that in the control group. Although there was no difference in the frequencies of MCAM+ lymphocytes among the DMD-treated groups, fingolimod decreased the absolute number of MCAM+ lymphocytes. DISCUSSION MCAM+ mTh cells were elevated in the CSF of relapsing patients with MS and in both the PB and CSF of patients with NMOSD. These results indicate that MCAM contributes to the pathogenesis of MS and NMOSD through different mechanisms. MCAM could be a therapeutic target of CNS IDDs, and further study is needed to elucidate the underlying mechanism of MCAM in CNS IDD pathogenesis.
Collapse
Affiliation(s)
- Ryotaro Ikeguchi
- From the Department of Neurology, Tokyo Women's Medical University, Japan
| | - Yuko Shimizu
- From the Department of Neurology, Tokyo Women's Medical University, Japan.
| | - Akihiro Kondo
- From the Department of Neurology, Tokyo Women's Medical University, Japan
| | - Natsuki Kanda
- From the Department of Neurology, Tokyo Women's Medical University, Japan
| | - Hayato So
- From the Department of Neurology, Tokyo Women's Medical University, Japan
| | - Haruka Kojima
- From the Department of Neurology, Tokyo Women's Medical University, Japan
| | - Kazuo Kitagawa
- From the Department of Neurology, Tokyo Women's Medical University, Japan
| |
Collapse
|
11
|
Zondler L, Herich S, Kotte P, Körner K, Schneider-Hohendorf T, Wiendl H, Schwab N, Zarbock A. MCAM/CD146 Signaling via PLCγ1 Leads to Activation of β 1-Integrins in Memory T-Cells Resulting in Increased Brain Infiltration. Front Immunol 2020; 11:599936. [PMID: 33381120 PMCID: PMC7767877 DOI: 10.3389/fimmu.2020.599936] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis is a chronic auto-inflammatory disease of the central nervous system affecting patients worldwide. Neuroinflammation in multiple sclerosis is mainly driven by peripheral immune cells which invade the central nervous system and cause neurodegenerative inflammation. To enter the target tissue, immune cells have to overcome the endothelium and transmigrate into the tissue. Numerous molecules mediate this process and, as they determine the tissue invasiveness of immune cells, display great therapeutic potential. Melanoma cell adhesion molecule (MCAM) is a membrane-anchored glycoprotein expressed by a subset of T-cells and MCAM+ T-cells have been shown to contribute to neuroinflammation in multiple sclerosis. The role of the MCAM molecule for brain invasion, however, remained largely unknown. In order to investigate the role of the MCAM molecule on T-cells, we used different in vitro and in vivo assays, including ex vivo flow chambers, biochemistry and microscopy experiments of the mouse brain. We demonstrate that MCAM directly mediates adhesion and that the engagement of MCAM induces intracellular signaling leading to β1-integrin activation on human T-cells. Furthermore, we show that MCAM engagement triggers the phosphorylation of PLCγ1 which is required for integrin activation and thus amplification of the cellular adhesive potential. To confirm the physiological relevance of our findings in vivo, we demonstrate that MCAM plays an important role in T-cell recruitment into the mouse brain. In conclusion, our data demonstrate that MCAM expressed on T-cells acts as an adhesion molecule and a signaling receptor that may trigger β1-integrin activation via PLCγ1 upon engagement.
Collapse
Affiliation(s)
- Lisa Zondler
- Department of Anesthesiology, Intensive Care and Pain Medicine, University of Münster, Münster, Germany
| | - Sebastian Herich
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Petra Kotte
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Katharina Körner
- Department of Anesthesiology, Intensive Care and Pain Medicine, University of Münster, Münster, Germany
| | - Tilman Schneider-Hohendorf
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Nicholas Schwab
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care and Pain Medicine, University of Münster, Münster, Germany
| |
Collapse
|
12
|
CD146/sCD146 in the Pathogenesis and Monitoring of Angiogenic and Inflammatory Diseases. Biomedicines 2020; 8:biomedicines8120592. [PMID: 33321883 PMCID: PMC7764286 DOI: 10.3390/biomedicines8120592] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 12/19/2022] Open
Abstract
CD146 is a cell adhesion molecule expressed on endothelial cells, as well as on other cells such as mesenchymal stem cells and Th17 lymphocytes. This protein also exists in a soluble form, whereby it can be detected in biological fluids, including the serum or the cerebrospinal fluid (CSF). Some studies have highlighted the significance of CD146 and its soluble form in angiogenesis and inflammation, having been shown to contribute to the pathogenesis of many inflammatory autoimmune diseases, such as systemic sclerosis, mellitus diabetes, rheumatoid arthritis, inflammatory bowel diseases, and multiple sclerosis. In this review, we will focus on how CD146 and sCD146 contribute to the pathogenesis of the aforementioned autoimmune diseases and discuss the relevance of considering it as a biomarker in these pathologies.
Collapse
|
13
|
Hawke S, Zinger A, Juillard PG, Holdaway K, Byrne SN, Grau GE. Selective modulation of trans-endothelial migration of lymphocyte subsets in multiple sclerosis patients under fingolimod treatment. J Neuroimmunol 2020; 349:577392. [PMID: 33007647 DOI: 10.1016/j.jneuroim.2020.577392] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/26/2020] [Accepted: 09/09/2020] [Indexed: 12/17/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune disorder where auto-aggressive T cells target the central nervous system (CNS), causing demyelination. The trans-endothelial migration of leucocytes across the blood-brain barrier (BBB) is one of the earliest CNS events in MS pathogenesis. We examined the effect of the disease state and treatment with fingolimod on the transmigration of peripheral blood mononuclear cells (PBMCs) in an in vitro BBB model. Patients' leucocyte numbers, subsets and phenotypes were assessed by flow cytometry. As expected, fingolimod treatment induced a significant reduction in T cell and B cell numbers compared to untreated MS patients and healthy controls. Interestingly fingolimod led to a marked reduction of CD4+ and a significant increase in CD8+ cell numbers. In migrated cells, only CD3+ cell numbers were reduced in fingolimod-treated, compared to untreated patients; it had no effect on B cell or monocyte transmigration. T cells were then differentiated into naïve, effector and memory subsets based on their expression of CCR7. This showed that MS patients had increased numbers of effector memory CD4+ cells re-expressing CD45RA (TEMRA) and a decrease in central memory (CM) CD8+ cells. The former was corrected by fingolimod, while the latter was not. CM CD4+ and CD8+ cells migrated across BBB more efficiently in fingolimod-treated patients. We found that while fingolimod reduced the proportions of naïve CD19+ B cells, it significantly increased the proportions of these cells which migrated. When B cells were further stratified based on CD24, CD27 and CD38 expression, the only effect of fingolimod was an enhancement of CD24hiCD27+ B cell migration, compared to untreated MS patients. The migratory capacities of CD8hi Natural Killer (NK), CD8dim NK and NK-T cells were also reduced by fingolimod. While the disease-modifying effects of fingolimod are currently explained by its effect on reducing circulating auto-aggressive lymphocytes, our data suggests that fingolimod may also have a direct though differential effect on the trans-endothelial migration of circulating lymphocyte populations.
Collapse
Affiliation(s)
- Simon Hawke
- Vascular Immunology Unit, Discipline of Pathology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia; Central West Neurology and Neurosurgery, Orange, NSW, Australia.
| | - Anna Zinger
- Vascular Immunology Unit, Discipline of Pathology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - Pierre-Georges Juillard
- Vascular Immunology Unit, Discipline of Pathology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | | | - Scott N Byrne
- The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Georges E Grau
- Vascular Immunology Unit, Discipline of Pathology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| |
Collapse
|
14
|
Pedrero-Prieto CM, García-Carpintero S, Frontiñán-Rubio J, Llanos-González E, Aguilera García C, Alcaín FJ, Lindberg I, Durán-Prado M, Peinado JR, Rabanal-Ruiz Y. A comprehensive systematic review of CSF proteins and peptides that define Alzheimer's disease. Clin Proteomics 2020; 17:21. [PMID: 32518535 PMCID: PMC7273668 DOI: 10.1186/s12014-020-09276-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/09/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND During the last two decades, over 100 proteomics studies have identified a variety of potential biomarkers in CSF of Alzheimer's (AD) patients. Although several reviews have proposed specific biomarkers, to date, the statistical relevance of these proteins has not been investigated and no peptidomic analyses have been generated on the basis of specific up- or down- regulation. Herein, we perform an analysis of all unbiased explorative proteomics studies of CSF biomarkers in AD to critically evaluate whether proteins and peptides identified in each study are consistent in distribution; direction change; and significance, which would strengthen their potential use in studies of AD pathology and progression. METHODS We generated a database containing all CSF proteins whose levels are known to be significantly altered in human AD from 47 independent, validated, proteomics studies. Using this database, which contains 2022 AD and 2562 control human samples, we examined whether each protein is consistently present on the basis of reliable statistical studies; and if so, whether it is over- or under-represented in AD. Additionally, we performed a direct analysis of available mass spectrometric data of these proteins to generate an AD CSF peptide database with 3221 peptides for further analysis. RESULTS Of the 162 proteins that were identified in 2 or more studies, we investigated their enrichment or depletion in AD CSF. This allowed us to identify 23 proteins which were increased and 50 proteins which were decreased in AD, some of which have never been revealed as consistent AD biomarkers (i.e. SPRC or MUC18). Regarding the analysis of the tryptic peptide database, we identified 87 peptides corresponding to 13 proteins as the most highly consistently altered peptides in AD. Analysis of tryptic peptide fingerprinting revealed specific peptides encoded by CH3L1, VGF, SCG2, PCSK1N, FBLN3 and APOC2 with the highest probability of detection in AD. CONCLUSIONS Our study reveals a panel of 27 proteins and 21 peptides highly altered in AD with consistent statistical significance; this panel constitutes a potent tool for the classification and diagnosis of AD.
Collapse
Affiliation(s)
- Cristina M. Pedrero-Prieto
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Sonia García-Carpintero
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Javier Frontiñán-Rubio
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Emilio Llanos-González
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Cristina Aguilera García
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Francisco J. Alcaín
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, University of Maryland, Baltimore, MD 21201 USA
| | - Mario Durán-Prado
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Juan R. Peinado
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Yoana Rabanal-Ruiz
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| |
Collapse
|
15
|
Xia Y, Yang J, Sanyal AJ, Shah VH, Chalasani NP, Yu Q, Zheng X, Li W. Persistent Hyperactivation of Endothelial Cells in Patients with Alcoholic Hepatitis. Alcohol Clin Exp Res 2020; 44:1075-1087. [PMID: 32246771 DOI: 10.1111/acer.14331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/19/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Alcoholic hepatitis (AH) is a severe inflammatory liver disease that develops in some heavy drinkers. AH patients have intense hepatic infiltration of leukocytes. Up-regulation of cell adhesion molecules (CAMs) upon endothelial cell (EC) activation plays an important role in leukocyte transendothelial migration. CAMs can shed from EC surface and accumulate in the blood, serving as soluble markers for EC activation. In this study, we examined the impact of heavy drinking on expression of soluble forms of EC activation markers (CD146, ICAM-1, VCAM-1, and VEGF-A) and the effect of alcohol abstinence on the reversal of these abnormalities in heavy drinkers with and without AH. METHODS ELISA and multiplex immunoassays were used to measure soluble EC activation markers in plasma samples from 79 AH patients, 66 heavy drinkers without overt liver disease (HDC), and 44 healthy controls (HC) at baseline, 31 AH patients and 30 HDC at 6-month follow-up, and 18 AH patients and 25 HDC at 12-month follow-up. RESULTS At baseline, the 4 soluble markers were significantly up-regulated in AH patients compared with HDC and HC, whereas only sVCAM-1 was elevated in HDC relative to HC. At follow-ups, plasma levels of CD146, VCAM-1, and VEGF-A remained higher in AH patients, even for those who stopped drinking. These dysregulated markers correlated with AH disease severity, clinical parameters, and several soluble inflammatory factors. CONCLUSIONS The levels of soluble CD146, ICAM-1, VCAM-1, and VEGF-A were highly elevated in AH patients, and alcohol abstinence did not completely reverse these abnormalities.
Collapse
Affiliation(s)
- Ying Xia
- Department of Clinical Laboratory, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jing Yang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Arun J Sanyal
- Division of Gastroenterology and Hepatology, Department of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Vijay H Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Naga P Chalasani
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Qigui Yu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Xiaoqun Zheng
- Department of Clinical Laboratory, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei Li
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
16
|
Breuer J, Schneider-Hohendorf T, Ostkamp P, Herich S, Rakhade S, Antonijevic I, Klotz L, Wiendl H, Schwab N. VLA-2 blockade in vivo by vatelizumab induces CD4+FoxP3+ regulatory T cells. Int Immunol 2020; 31:407-412. [PMID: 30783682 DOI: 10.1093/intimm/dxz018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/28/2019] [Accepted: 02/15/2019] [Indexed: 12/13/2022] Open
Abstract
Integrin α2β1, also known as very late antigen (VLA)-2, is a collagen-binding molecule expressed constitutively on platelets. Vatelizumab, a monoclonal antibody targeting the α2 subunit (CD49b) of VLA-2, was recently investigated for its safety and efficacy during a Phase 2 clinical study in multiple sclerosis patients, as integrin-mediated collagen binding at the site of inflammation is central to a number of downstream pro-inflammatory events. In the course of this study, we could show that VLA-2 is expressed ex vivo on platelets, platelet-T-cell aggregates, as well as a small population of highly activated memory T cells. Even though the clinical trial did not meet its primary clinical end-point (reduction in the cumulative number of new contrast-enhancing lesions on magnetic resonance imaging (MRI)), we observed enhanced frequencies of regulatory T cells (TREG) following vatelizumab treatment. Elevated TREG frequencies might be explained by the inhibition of p38 mitogen-activated protein kinase (MAPK) signaling, which is critically involved in the polarization of T helper 17 (TH17) cells and is activated by the α2 integrin cytoplasmic domain. Our findings suggest that blockade of VLA-2 might be a way to safely shift the TH17/TREG balance by inducing TREGin vivo.
Collapse
Affiliation(s)
- Johanna Breuer
- Clinic of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Tilman Schneider-Hohendorf
- Clinic of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Patrick Ostkamp
- Clinic of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Sebastian Herich
- Clinic of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | | | | | - Luisa Klotz
- Clinic of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Heinz Wiendl
- Clinic of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Nicholas Schwab
- Clinic of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| |
Collapse
|
17
|
Yıldız Gülhan P, Güleç Balbay E, Erçelik M, Yıldız Ş, Yılmaz MA. Is sarcoidosis related to metabolic syndrome and insulin resistance? Aging Male 2020; 23:53-58. [PMID: 31250684 DOI: 10.1080/13685538.2019.1631272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: To investigate the relationship between sarcoidosis and metabolic syndrome (MetS) and insulin resistance (IR).Method: In our study, 47 patients with sarcoidosis who applied to our outpatient clinic and 45 healthy individuals without chronic disease were included. All patients were evaluated for MetS according to the National Cholesterol Education Program's Adult Treatment Panel III (NCEP-ATP III) criteria. The presence of three of the five factors defined by ATP III for MetS was accepted as a diagnosis of MetS. IR is calculated using the HOMA-IR index.Results: The mean age of the 47 patients with sarcoidosis was 50.7 ± 12.2 years and the mean age of the 45 control groups was 42.9 ± 14.4 years. Almost 80% of the patients were diagnosed as stage 2 sarcoidosis. Distribution of the patients according to the use of steroid is; almost half of the patients (47%) received steroid previously or recently. Patients with sarcoidosis have a 7.66 relative risk for MetS, whereas they also have a 5.48 relative risk of insulin resistance development.Conclusion: This study shows that MetS is associated with increased sarcoidosis risk. MetS and IR diagnosis was higher in patients with sarcoidosis.
Collapse
Affiliation(s)
- Pinar Yıldız Gülhan
- Faculty of Medicine, Department of Chest Diseases, Düzce University, Düzce, Turkey
| | - Ege Güleç Balbay
- Faculty of Medicine, Department of Chest Diseases, Düzce University, Düzce, Turkey
| | - Merve Erçelik
- Faculty of Medicine, Department of Chest Diseases, Düzce University, Düzce, Turkey
| | - Şeyma Yıldız
- Faculty of Medicine, Department of Internal Medicine, Gazi University, Ankara, Turkey
| | - Mehmet Alper Yılmaz
- Department of Internal Medicine, Izmir Tepecik Education and Research Hospital, Izmir, Turkey
| |
Collapse
|
18
|
Gabsi A, Heim X, Dlala A, Gati A, Sakhri H, Abidi A, Amri S, Neili B, Leroyer AS, Bertaud A, Smiti Khanfir M, Said F, Houman MH, Granel B, Blot-Chabaud M, Bardin N, Marrakchi R. TH17 cells expressing CD146 are significantly increased in patients with Systemic sclerosis. Sci Rep 2019; 9:17721. [PMID: 31776424 PMCID: PMC6881361 DOI: 10.1038/s41598-019-54132-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/11/2019] [Indexed: 11/30/2022] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune disorder characterized by vascular damage, excessive fibrosis and abnormal T cells immune-regulation. CD146 is an adhesion molecule essentially expressed in the vascular system, but also on TH17 lymphocytes. In view of the recently described role of CD146 in SSc, we hypothesized an involvement of CD146 positive TH17 cells in this disease. Compared to healthy controls, we showed that both soluble form of CD146 (sCD146), and IL17A levels were increased in patients with SSc with a positive correlation between both factors. A significant increase in TH17 cells attested by an increase of RORγT, IL17A mRNA and CD4+ IL17A+ cell was observed in patients with SSc. Interestingly, the percentage of TH17 cells expressing CD146 was higher in patients with SSc and inversely correlated with pulmonary fibrosis. In vitro experiments showed an augmentation of the percentage of TH17 cells expressing CD146 after cell treatment with sCD146, suggesting that, in patients the increase of this sub-population could be the consequence of the sCD146 increase in serum. In conclusion, TH17 cells expressing CD146 could represent a new component of the adaptive immune response, opening the way for the generation of new tools for the management of SSc.
Collapse
Affiliation(s)
- Amira Gabsi
- Université de Tunis El Manar, Faculté des Sciences de Tunis, LR05SE05, 2092, Tunis, Tunisia. .,Aix Marseille Univ, INSERM, INRA, C2VN, Marseille, France.
| | - Xavier Heim
- Aix Marseille Univ, INSERM, INRA, C2VN, Marseille, France.,Service dImmunologie, Pôle de Biologie, Hôpital de la Conception, Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Akram Dlala
- Université de Tunis El Manar, Faculté des Sciences de Tunis, LR05SE05, 2092, Tunis, Tunisia
| | - Asma Gati
- Université de Tunis El Manar, Faculté des Sciences de Tunis, LR05SE05, 2092, Tunis, Tunisia
| | - Haifa Sakhri
- Université de Tunis El Manar, Faculté des Sciences de Tunis, LR05SE05, 2092, Tunis, Tunisia
| | - Ahmed Abidi
- Université de Tunis El Manar, Faculté des Sciences de Tunis, LR05SE05, 2092, Tunis, Tunisia
| | - Sonia Amri
- Université de Tunis El Manar, Faculté des Sciences de Tunis, LR05SE05, 2092, Tunis, Tunisia
| | - Bilel Neili
- Université de Tunis El Manar, Faculté des Sciences de Tunis, LR05SE05, 2092, Tunis, Tunisia
| | | | | | - Monia Smiti Khanfir
- Internal medicine service, University hospital center LA RABTA, 1007, Tunis, Tunisia.,Université de Tunis El Manar, Faculté de Medicine de Tunis, 1007, Tunis, Tunisia
| | - Fatma Said
- Internal medicine service, University hospital center LA RABTA, 1007, Tunis, Tunisia.,Université de Tunis El Manar, Faculté de Medicine de Tunis, 1007, Tunis, Tunisia
| | - Mohamed Habib Houman
- Internal medicine service, University hospital center LA RABTA, 1007, Tunis, Tunisia.,Université de Tunis El Manar, Faculté de Medicine de Tunis, 1007, Tunis, Tunisia
| | - Brigitte Granel
- Department of Internal Medicine and Therapeutics, Timone Hospital, Marseille, France
| | | | - Nathalie Bardin
- Aix Marseille Univ, INSERM, INRA, C2VN, Marseille, France.,Service dImmunologie, Pôle de Biologie, Hôpital de la Conception, Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Raja Marrakchi
- Université de Tunis El Manar, Faculté des Sciences de Tunis, LR05SE05, 2092, Tunis, Tunisia
| |
Collapse
|
19
|
Olajuyin AM, Olajuyin AK, Wang Z, Zhao X, Zhang X. CD146 T cells in lung cancer: its function, detection, and clinical implications as a biomarker and therapeutic target. Cancer Cell Int 2019; 19:247. [PMID: 31572064 PMCID: PMC6761715 DOI: 10.1186/s12935-019-0969-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022] Open
Abstract
CD146 alternatively called melanoma cell adhesion molecule (MCAM), is a biomarker and therapeutic target of clinical significance. It is found on different cells including the endothelial cells and lymphocytes which participate in heterotypic and homotypic ligand-receptor. This review concentrated on the CD146 expression T cells (or lymphocytes) centering on Treg in lung cancer. Here, we have also considered the vigorous investigation of CD146 mainly acknowledged new roles, essential mechanisms and clinical implications of CD146 in cancer. CD146 has progressively become a significant molecule, particularly recognized as a novel biomarker, prognosis and therapy for cancer. Hence, targeting CD146 expression by utilization of methanol extracts of Calotropis procera leaf may be useful for the treatment of carcinogenesis.
Collapse
Affiliation(s)
- Ayobami Matthew Olajuyin
- Department of Respiratory and Critical Care Medicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, 450003 Henan China
| | - Adefunke Kafayat Olajuyin
- Department of Respiratory and Critical Care Medicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, 450003 Henan China
| | - Ziqi Wang
- Department of Respiratory and Critical Care Medicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, 450003 Henan China
| | - Xingru Zhao
- Department of Respiratory and Critical Care Medicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, 450003 Henan China
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, 450003 Henan China
| |
Collapse
|
20
|
Blin MG, Bachelier R, Fallague K, Moussouni K, Aurrand-Lions M, Fernandez S, Guillet B, Robert S, Foucault-Bertaud A, Bardin N, Blot-Chabaud M, Dignat-George F, Leroyer AS. CD146 deficiency promotes plaque formation in a mouse model of atherosclerosis by enhancing RANTES secretion and leukocyte recruitment. J Mol Cell Cardiol 2019; 130:76-87. [PMID: 30928429 DOI: 10.1016/j.yjmcc.2019.03.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 02/26/2019] [Accepted: 03/25/2019] [Indexed: 11/18/2022]
Abstract
AIMS The progression of atherosclerosis is based on the continued recruitment of leukocytes in the vessel wall. The previously described role of CD146 in leukocyte infiltration suggests an involvement for this adhesion molecule in the inflammatory response. In this study, we investigated the role of CD146 in leukocyte recruitment by using an experimental model of atherogenesis. METHODS AND RESULTS The role of CD146 was explored in atherosclerosis by crossing CD146-/- mice with ApoE-/- mice. CD146 -/-/ApoE -/- and ApoE -/- mice were fed a Western diet for 24 weeks and were monitored for aortic wall thickness using high frequency ultrasound. The arterial wall was significantly thicker in CD146-deficient mice. After 24 weeks of Western diet, a significant increase of atheroma in both total aortic lesion and aortic sinus of CD146-null mice was observed. In addition, atherosclerotic lesions were more inflammatory since plaques from CD146-deficient mice contained more neutrophils and macrophages. This was due to up-regulation of RANTES secretion by macrophages in CD146-deficient atherosclerotic arteries. This prompted us to further address the function of CD146 in leukocyte recruitment during acute inflammation by using a second experimental model of peritonitis induced by thioglycollate. Neutrophil recruitment was significantly increased in CD146-deficient mice 12 h after peritonitis induction and associated with higher RANTES levels in the peritoneal cavity. In CD146-null macrophages, we also showed that increased RANTES production was dependent on constitutive inhibition of the p38-MAPK signaling pathway. Finally, Maraviroc, a RANTES receptor antagonist, was able to reduce atherosclerotic lesions and neutrophilia in CD146-deficient mice to the same level as that found in ApoE -/- mice. CONCLUSIONS Our data indicate that CD146 deficiency is associated with the upregulation of RANTES production and increased inflammation of atheroma, which could influence the atherosclerotic plaque fate. Thus, these data identify CD146 agonists as potential new therapeutic candidates for atherosclerosis treatment.
Collapse
Affiliation(s)
- Muriel G Blin
- Aix-Marseille Univ., INSERM 1263, INRA 1260, C2VN, Marseille, France
| | - Richard Bachelier
- Aix-Marseille Univ., INSERM 1263, INRA 1260, C2VN, Marseille, France
| | - Karim Fallague
- Aix-Marseille Univ., INSERM 1263, INRA 1260, C2VN, Marseille, France
| | - Karima Moussouni
- Aix-Marseille Univ., INSERM 1263, INRA 1260, C2VN, Marseille, France
| | - Michel Aurrand-Lions
- Aix Marseille Univ., CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Samantha Fernandez
- Aix-Marseille Univ., CERIMED, Secteur Nucléaire Pré-clinique, Timone, 13005 Marseille, France
| | - Benjamin Guillet
- Aix-Marseille Univ., INSERM 1263, INRA 1260, C2VN, Marseille, France; Aix-Marseille Univ., CERIMED, Secteur Nucléaire Pré-clinique, Timone, 13005 Marseille, France; Assistance Publique-Hôpitaux de Marseille, Hôpital Nord, Marseille, France
| | - Stéphane Robert
- Aix-Marseille Univ., INSERM 1263, INRA 1260, C2VN, Marseille, France
| | | | - Nathalie Bardin
- Aix-Marseille Univ., INSERM 1263, INRA 1260, C2VN, Marseille, France; Assistance Publique-Hôpitaux de Marseille, Hôpital de la Conception, 13385 Marseille, France
| | | | - Françoise Dignat-George
- Aix-Marseille Univ., INSERM 1263, INRA 1260, C2VN, Marseille, France; Assistance Publique-Hôpitaux de Marseille, Hôpital de la Conception, 13385 Marseille, France
| | - Aurélie S Leroyer
- Aix-Marseille Univ., INSERM 1263, INRA 1260, C2VN, Marseille, France.
| |
Collapse
|
21
|
Kumar P, Shih DCW, Lim A, Paleja B, Ling S, Li Yun L, Li Poh S, Ngoh A, Arkachaisri T, Yeo JG, Albani S. Pro-inflammatory, IL-17 pathways dominate the architecture of the immunome in pediatric refractory epilepsy. JCI Insight 2019; 5:126337. [PMID: 30912766 PMCID: PMC6538358 DOI: 10.1172/jci.insight.126337] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Drug refractory epilepsy (RE) is a chronic neurological disease with varied etiology that represents a group of patients whose seizures do not respond to antiepileptic drugs. The immune system may have a role in seizure and epilepsy development, but the specific mechanisms of inflammation that lead to epileptogenesis and contribute to RE are unknown. Here, we used mass cytometry to comprehensively study the immune system of pediatric patients with RE and compared their immune profile and function with patients with age-matched autoimmune encephalitis (AIE) and healthy controls. Patients with RE and AIE displayed similar immune profiles overall, with changes in CD4+ and CD8+ T cell subsets and an unbalance toward proinflammatory IL-17 production. In addition, patients with RE uniquely showed an altered balance in NK cell subsets. A systems-level intercellular network analysis identified rewiring of the immune system, leading to loss of inhibitory/regulatory intercellular connections and emergence of proinflammatory pathogenic functions in neuroinflammatory immune cell networks in patients with AIE and RE. These data underscore the contribution of systemic inflammation to the pathogenesis of seizures and epileptogenesis and have direct translational implications in advancing diagnostics and therapeutics design. The architecture of the immunome in pediatric refractory epilepsy is dominated by a emergence of pro-inflammatory, IL-17 dependent pathways.
Collapse
Affiliation(s)
- Pavanish Kumar
- Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, Singapore
| | - Derrick Chan Wei Shih
- Paediatrics Academic Clinical Programme, KK Women's and Children's Hospital, Singapore, Singapore
| | - Amanda Lim
- Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, Singapore
| | - Bhairav Paleja
- Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, Singapore
| | - Simon Ling
- Paediatrics Academic Clinical Programme, KK Women's and Children's Hospital, Singapore, Singapore
| | - Lai Li Yun
- Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, Singapore
| | - Su Li Poh
- Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, Singapore
| | - Adeline Ngoh
- Paediatrics Academic Clinical Programme, KK Women's and Children's Hospital, Singapore, Singapore
| | - Thaschawee Arkachaisri
- Duke-NUS Medical School and Rheumatology and Immunology Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Joo Guan Yeo
- Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, Singapore.,Paediatrics Academic Clinical Programme, KK Women's and Children's Hospital, Singapore, Singapore
| | - Salvatore Albani
- Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, Singapore.,Paediatrics Academic Clinical Programme, KK Women's and Children's Hospital, Singapore, Singapore
| |
Collapse
|
22
|
Larochette V, Miot C, Poli C, Beaumont E, Roingeard P, Fickenscher H, Jeannin P, Delneste Y. IL-26, a Cytokine With Roles in Extracellular DNA-Induced Inflammation and Microbial Defense. Front Immunol 2019; 10:204. [PMID: 30809226 PMCID: PMC6379347 DOI: 10.3389/fimmu.2019.00204] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/23/2019] [Indexed: 12/21/2022] Open
Abstract
Interleukin 26 (IL-26) is the most recently identified member of the IL-20 cytokine subfamily, and is a novel mediator of inflammation overexpressed in activated or transformed T cells. Novel properties have recently been assigned to IL-26, owing to its non-conventional cationic, and amphipathic features. IL-26 binds to DNA released from damaged cells and, as a carrier molecule for extracellular DNA, links DNA to inflammation. This observation suggests that IL-26 may act both as a driver and an effector of inflammation, leading to the establishment of a deleterious amplification loop and, ultimately, sustained inflammation. Thus, IL-26 emerges as an important mediator in local immunity/inflammation. The dysregulated expression and extracellular DNA carrier capacity of IL-26 may have profound consequences for the chronicity of inflammation. IL-26 also exhibits direct antimicrobial properties. This review summarizes recent advances on the biology of IL-26 and discusses its roles as a novel kinocidin.
Collapse
Affiliation(s)
- Vincent Larochette
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France
| | - Charline Miot
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.,CHU Angers, Département d'Immunologie et Allergologie, Angers, France
| | - Caroline Poli
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.,CHU Angers, Département d'Immunologie et Allergologie, Angers, France
| | - Elodie Beaumont
- Inserm unit 1259, Medical School of the University of Tours, Tours, France
| | - Philippe Roingeard
- Inserm unit 1259, Medical School of the University of Tours, Tours, France
| | - Helmut Fickenscher
- Institute for Infection Medicine, Christian-Albrecht University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Pascale Jeannin
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.,CHU Angers, Département d'Immunologie et Allergologie, Angers, France
| | - Yves Delneste
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.,CHU Angers, Département d'Immunologie et Allergologie, Angers, France
| |
Collapse
|
23
|
Breuer J, Korpos E, Hannocks MJ, Schneider-Hohendorf T, Song J, Zondler L, Herich S, Flanagan K, Korn T, Zarbock A, Kuhlmann T, Sorokin L, Wiendl H, Schwab N. Blockade of MCAM/CD146 impedes CNS infiltration of T cells over the choroid plexus. J Neuroinflammation 2018; 15:236. [PMID: 30134924 PMCID: PMC6106934 DOI: 10.1186/s12974-018-1276-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/10/2018] [Indexed: 12/20/2022] Open
Abstract
Background Very late antigen 4 (VLA-4; integrin α4β1) is critical for transmigration of T helper (TH) 1 cells into the central nervous system (CNS) under inflammatory conditions such as multiple sclerosis (MS). We have previously shown that VLA-4 and melanoma cell adhesion molecule (MCAM) are important for trans-endothelial migration of human TH17 cells in vitro and here investigate their contribution to pathogenic CNS inflammation. Methods Antibody blockade of VLA-4 and MCAM is assessed in murine models of CNS inflammation in conjunction with conditional ablation of α4-integrin expression in T cells. Effects of VLA-4 and MCAM blockade on lymphocyte migration are further investigated in the human system via in vitro T cell transmigration assays. Results Compared to the broad effects of VLA-4 blockade on encephalitogenic T cell migration over endothelial barriers, MCAM blockade impeded encephalitogenic T cell migration in murine models of MS that especially depend on CNS migration across the choroid plexus (CP). In transgenic mice lacking T cell α4-integrin expression (CD4::Itga4−/−), MCAM blockade delayed disease onset. Migration of MCAM-expressing T cells through the CP into the CNS was restricted, where laminin 411 (composed of α4, β1, γ1 chains), the proposed major ligand of MCAM, is detected in the endothelial basement membranes of murine CP tissue. This finding was translated to the human system; blockade of MCAM with a therapeutic antibody reduced in vitro transmigration of MCAM-expressing T cells across a human fibroblast-derived extracellular matrix layer and a brain-derived endothelial monolayer, both expressing laminin α4. Laminin α4 was further detected in situ in CP endothelial-basement membranes in MS patients’ brain tissue. Conclusions Our findings suggest that MCAM-laminin 411 interactions facilitate trans-endothelial migration of MCAM-expressing T cells into the CNS, which seems to be highly relevant to migration via the CP and to potential future clinical applications in neuroinflammatory disorders. Electronic supplementary material The online version of this article (10.1186/s12974-018-1276-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Johanna Breuer
- Clinic of Neurology with Institute of Translational Neurology, University of Münster, Albert-Schweitzer-Campus-1, Building A01, 48149, Münster, Germany
| | - Eva Korpos
- Institute of Physiological Chemistry and of Pathobiochemistry, University of Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence, University of Münster, Münster, Germany
| | - Melanie-Jane Hannocks
- Institute of Physiological Chemistry and of Pathobiochemistry, University of Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence, University of Münster, Münster, Germany
| | - Tilman Schneider-Hohendorf
- Clinic of Neurology with Institute of Translational Neurology, University of Münster, Albert-Schweitzer-Campus-1, Building A01, 48149, Münster, Germany
| | - Jian Song
- Institute of Physiological Chemistry and of Pathobiochemistry, University of Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence, University of Münster, Münster, Germany
| | - Lisa Zondler
- Department of Anesthesiology, University of Münster, Münster, Germany
| | - Sebastian Herich
- Clinic of Neurology with Institute of Translational Neurology, University of Münster, Albert-Schweitzer-Campus-1, Building A01, 48149, Münster, Germany
| | - Ken Flanagan
- Prothena Biosciences Inc., South San Francisco, CA, USA
| | - Thomas Korn
- Department of Neurology, Technical University of Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Alexander Zarbock
- Cells-in-Motion Cluster of Excellence, University of Münster, Münster, Germany.,Department of Anesthesiology, University of Münster, Münster, Germany
| | - Tanja Kuhlmann
- Department of Neuropathology, University of Münster, Münster, Germany
| | - Lydia Sorokin
- Institute of Physiological Chemistry and of Pathobiochemistry, University of Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence, University of Münster, Münster, Germany
| | - Heinz Wiendl
- Clinic of Neurology with Institute of Translational Neurology, University of Münster, Albert-Schweitzer-Campus-1, Building A01, 48149, Münster, Germany.,Cells-in-Motion Cluster of Excellence, University of Münster, Münster, Germany
| | - Nicholas Schwab
- Clinic of Neurology with Institute of Translational Neurology, University of Münster, Albert-Schweitzer-Campus-1, Building A01, 48149, Münster, Germany.
| |
Collapse
|
24
|
Diedrichs-Möhring M, Kaufmann U, Wildner G. The immunopathogenesis of chronic and relapsing autoimmune uveitis – Lessons from experimental rat models. Prog Retin Eye Res 2018; 65:107-126. [DOI: 10.1016/j.preteyeres.2018.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/19/2018] [Accepted: 02/22/2018] [Indexed: 12/12/2022]
|
25
|
Forcade E, Paz K, Flynn R, Griesenauer B, Amet T, Li W, Liu L, Bakoyannis G, Jiang D, Chu HW, Lobera M, Yang J, Wilkes DS, Du J, Gartlan K, Hill GR, MacDonald KP, Espada EL, Blanco P, Serody JS, Koreth J, Cutler CS, Antin JH, Soiffer RJ, Ritz J, Paczesny S, Blazar BR. An activated Th17-prone T cell subset involved in chronic graft-versus-host disease sensitive to pharmacological inhibition. JCI Insight 2017; 2:92111. [PMID: 28614794 DOI: 10.1172/jci.insight.92111] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 05/16/2017] [Indexed: 01/13/2023] Open
Abstract
Chronic graft-versus-host disease (cGvHD) remains a major complication of allogeneic stem cell transplantation requiring novel therapies. CD146 and CCR5 are expressed by activated T cells and associated with increased T cell migration capacity and Th17 polarization. We performed a multiparametric flow cytometry analysis in a cohort of 40 HSCT patients together with a cGvHD murine model to understand the role of CD146-expressing subsets. We observed an increased frequency of CD146+ CD4 T cells in the 20 patients with active cGvHD with enhanced RORγt expression. This Th17-prone subset was enriched for cells coexpressing CD146 and CCR5 that harbor mixed Th1/Th17 features and were more frequent in cGvHD patients. Utilizing a murine cGvHD model with bronchiolitis obliterans (BO), we observed that donor T cells from CD146-deficient mice versus those from WT mice caused significantly reduced pulmonary cGvHD. Reduced cGvHD was not the result of failed germinal center B cell or T follicular helper cell generation. Instead, CD146-deficient T cells had significantly lower pulmonary macrophage infiltration and T cell CCR5, IL-17, and IFN-γ coexpression, suggesting defective pulmonary end-organ effector mechanisms. We, thus, evaluated the effect of TMP778, a small-molecule RORγt activity inhibitor. TMP778 markedly alleviated cGvHD in murine models similarly to agents targeting the Th17 pathway, such as STAT3 inhibitor or IL-17-blocking antibody. Our data suggest CD146-expressing T cells as a cGvHD biomarker and suggest that targeting the Th17 pathway may represent a promising therapy for cGvHD.
Collapse
Affiliation(s)
- Edouard Forcade
- Division of Hematologic Malignancies and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Immunoconcept, CNRS UMR 5164, Bordeaux University, Bordeaux, France.,Department of Hematology and Cell Therapy, University Hospital, Bordeaux, France
| | - Katelyn Paz
- Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ryan Flynn
- Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Brad Griesenauer
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Herman B. Wells Center for Pediatric Research.,Department of Microbiology and Immunology, and.,Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Tohti Amet
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Herman B. Wells Center for Pediatric Research.,Department of Microbiology and Immunology, and.,Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Wei Li
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Herman B. Wells Center for Pediatric Research.,Department of Microbiology and Immunology, and.,Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Liangyi Liu
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Herman B. Wells Center for Pediatric Research.,Department of Microbiology and Immunology, and.,Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Giorgos Bakoyannis
- Department of Biostatistics, Indiana University Fairbanks School of Public Health and School of Medicine, Indiana, USA
| | - Di Jiang
- National Jewish Health, Denver, Colorado, USA
| | | | | | | | - David S Wilkes
- Dean, University of Virginia, School of Medicine, Charlottesville, Virginia, USA
| | - Jing Du
- Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kate Gartlan
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Geoffrey R Hill
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Kelli Pa MacDonald
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Eduardo L Espada
- Division of Hematologic Malignancies and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Patrick Blanco
- Immunoconcept, CNRS UMR 5164, Bordeaux University, Bordeaux, France
| | - Jonathan S Serody
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - John Koreth
- Division of Hematologic Malignancies and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Corey S Cutler
- Division of Hematologic Malignancies and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph H Antin
- Division of Hematologic Malignancies and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Robert J Soiffer
- Division of Hematologic Malignancies and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Jerome Ritz
- Division of Hematologic Malignancies and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Sophie Paczesny
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Herman B. Wells Center for Pediatric Research.,Department of Microbiology and Immunology, and.,Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
26
|
McFarlin BK, Gary MA. Flow cytometry what you see matters: Enhanced clinical detection using image-based flow cytometry. Methods 2016; 112:1-8. [PMID: 27620330 DOI: 10.1016/j.ymeth.2016.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/01/2016] [Accepted: 09/08/2016] [Indexed: 02/08/2023] Open
Abstract
Image-based flow cytometry combines the throughput of traditional flow cytometry with the ability to visually confirm findings and collect novel data that would not be possible otherwise. Since image-based flow cytometry borrows measurement parameters and analysis techniques from microscopy, it is possible to collect unique measures (i.e. nuclear translocation, co-localization, cellular synapse, cellular endocytosis, etc.) that would not be possible with traditional flow cytometry. The ability to collect unique outcomes has led many researchers to develop novel assays for the monitoring and detection of a variety of clinical conditions and diseases. In many cases, investigators have innovated and expanded classical assays to provide new insight regarding clinical conditions and chronic disease. Beyond human clinical applications, image-based flow cytometry has been used to monitor marine biology changes, nano-particles for solar cell production, and particle quality in pharmaceuticals. This review article summarizes work from the major scientists working in the field of image-based flow cytometry.
Collapse
Affiliation(s)
- Brian K McFarlin
- University of North Texas, Applied Physiology Laboratory, United States; University of North Texas, Department of Biological Sciences, United States.
| | - Melody A Gary
- University of North Texas, Applied Physiology Laboratory, United States
| |
Collapse
|
27
|
Li W, Liu L, Gomez A, Zhang J, Ramadan A, Zhang Q, Choi SW, Zhang P, Greenson JK, Liu C, Jiang D, Virts E, Kelich SL, Chu HW, Flynn R, Blazar BR, Hanenberg H, Hanash S, Paczesny S. Proteomics analysis reveals a Th17-prone cell population in presymptomatic graft-versus-host disease. JCI Insight 2016; 1:86660. [PMID: 27195312 DOI: 10.1172/jci.insight.86660] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Gastrointestinal graft-versus-host-disease (GI-GVHD) is a life-threatening complication occurring after allogeneic hematopoietic cell transplantation (HCT), and a blood biomarker that permits stratification of HCT patients according to their risk of developing GI-GVHD would greatly aid treatment planning. Through in-depth, large-scale proteomic profiling of presymptomatic samples, we identified a T cell population expressing both CD146, a cell adhesion molecule, and CCR5, a chemokine receptor that is upregulated as early as 14 days after transplantation in patients who develop GI-GVHD. The CD4+CD146+CCR5+ T cell population is Th17 prone and increased by ICOS stimulation. shRNA knockdown of CD146 in T cells reduced their transmigration through endothelial cells, and maraviroc, a CCR5 inhibitor, reduced chemotaxis of the CD4+CD146+CCR5+ T cell population toward CCL14. Mice that received CD146 shRNA-transduced human T cells did not lose weight, showed better survival, and had fewer CD4+CD146+CCR5+ T cells and less pathogenic Th17 infiltration in the intestine, even compared with mice receiving maraviroc with control shRNA- transduced human T cells. Furthermore, the frequency of CD4+CD146+CCR5+ Tregs was increased in GI-GVHD patients, and these cells showed increased plasticity toward Th17 upon ICOS stimulation. Our findings can be applied to early risk stratification, as well as specific preventative therapeutic strategies following HCT.
Collapse
Affiliation(s)
- Wei Li
- Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Liangyi Liu
- Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | - Jilu Zhang
- Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | - Qing Zhang
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Sung W Choi
- University of Michigan, Ann Arbor, Michigan, USA
| | - Peng Zhang
- University of Michigan, Ann Arbor, Michigan, USA
| | | | - Chen Liu
- Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Di Jiang
- National Jewish Health, Denver, Colorado, USA
| | - Elizabeth Virts
- Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | - Ryan Flynn
- University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Helmut Hanenberg
- Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | - Sophie Paczesny
- Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
28
|
Li F, Wang H, Liu J, Lin J, Zeng A, Ai W, Wang X, Dahlgren RA, Wang H. Immunotoxicity of β-Diketone Antibiotic Mixtures to Zebrafish (Danio rerio) by Transcriptome Analysis. PLoS One 2016; 11:e0152530. [PMID: 27046191 PMCID: PMC4821563 DOI: 10.1371/journal.pone.0152530] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 03/15/2016] [Indexed: 12/21/2022] Open
Abstract
Fluoroquinolones and tetracyclines are known as β-diketone antibiotics (DKAs) because of bearing a diketone group in their molecular structure. DKAs are the most widely used antibiotics to prevent generation of disease in humans and animals and to suppress bacterial growth in aquaculture. In recent years, overuse of DKAs has caused serious environmental risk due to their pseudo-persistence in the environment, even though their half-lives are not long. So far, no reports were concerned with the joint immunotoxicity of DKAs. Herein, we reported on the immunotoxicity of DKAs on zebrafish after a 3-month DKAs exposure using transcriptomic techniques. According to transcriptome sequencing, 10 differentially expressed genes were screened out among the genes related to KEGG pathways with high enrichment. The identified 7 genes showed to be consistent between RNA-seq and qRT-PCR. Due to DKAs exposure, the content or activity for a series of immune-related biomarkers (Complement 3, lysozyme, IgM and AKP) showed the inconsistent changing trends as compared with the control group. Histopathological observations showed that the number of goblet cells increased sharply, the columnar epithelial cells swelled, the nucleus became slender in intestinal villi, and numerous brown metachromatic granules occurred in spleens of DKAs-exposed groups. Overall, both detection of biomarkers and histopathological observation corroborated that chronic DKAs exposure could result in abnormal expression of immune genes and enzymes, and variable levels of damage to immune-related organs. These complex effects of DKAs may lead to zebrafish dysfunction and occurrence of diseases related to the immune system.
Collapse
Affiliation(s)
- Fanghui Li
- School of Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hui Wang
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
| | - Jinfeng Liu
- School of Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jiebo Lin
- School of Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Aibing Zeng
- School of Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Weiming Ai
- School of Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xuedong Wang
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
- * E-mail: (HW); (XW)
| | - Randy A. Dahlgren
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
| | - Huili Wang
- School of Life Sciences, Wenzhou Medical University, Wenzhou, China
- * E-mail: (HW); (XW)
| |
Collapse
|
29
|
Roberts MEP, Higgs BW, Brohawn P, Pilataxi F, Guo X, Kuziora M, Bowler RP, White WI. CD4+ T-Cell Profiles and Peripheral Blood Ex-Vivo Responses to T-Cell Directed Stimulation Delineate COPD Phenotypes. CHRONIC OBSTRUCTIVE PULMONARY DISEASES-JOURNAL OF THE COPD FOUNDATION 2015; 2:268-280. [PMID: 28848849 DOI: 10.15326/jcopdf.2.4.2015.0131] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The heterogeneous clinical phenotypes of chronic obstructive pulmonary disease (COPD) challenge successful drug development. To identify COPD subgroups beyond clinical phenotypes, we interrogated blood immune cell profiles and ex-vivo responses of current and former smokers, with or without COPD, in the longitudinal COPD Genetic Epidemiology study (COPDGene) cohort. CD4+ and CD8+ T cells and monocytes were profiled by flow cytometry. Microarray analysis was performed on the RNA from the aforementioned isolated cells. T-cell directed whole blood ex-vivo stimulation was used to assess functional responses. Blood CD4+ T-cell transcript analysis distinguished patients with COPD from control smokers and also enriched for a subset of patients with COPD that had a history of exacerbations of the disease. Analogous analyses of CD8+ T cells and monocytes failed to discriminate patients with COPD from the control population. Patients with COPD had a diminished cytokine response, compared to control smokers, characterized by low levels of granulocyte-monocyte colony stimulation factor (GM-CSF), interferon gamma (IFN-ɣ), interleukin one-alpha (IL-1α), tumor necrosis factor-alpha (TNF-α) and tumor necrosis factor-beta (TNF-β) secreted in response to T-cell directed ex-vivo stimulation. This cytokine response associated with baseline disease severity (forced expiratory volume in 1 second [FEV1]% predicted), rapidly declining lung function, and emphysema. Our observations indicate that COPD phenotypes can be further differentiated based on blood CD4+ T-cell profiles and resultant immune responses, suggesting a role for these cells in COPD pathophysiology.
Collapse
Affiliation(s)
| | - Brandon W Higgs
- MedImmune, Department of Translational Sciences, Gaithersburg, Maryland
| | - Philip Brohawn
- MedImmune, Department of Translational Sciences, Gaithersburg, Maryland
| | - Fernanda Pilataxi
- MedImmune, Department of Translational Sciences, Gaithersburg, Maryland
| | - Xiang Guo
- MedImmune, Department of Translational Sciences, Gaithersburg, Maryland
| | - Michael Kuziora
- MedImmune, Department of Translational Sciences, Gaithersburg, Maryland
| | - Russell P Bowler
- National Jewish Health, Department of Medicine, Denver, Colorado
| | - Wendy I White
- MedImmune, Department of Translational Sciences, Gaithersburg, Maryland
| |
Collapse
|
30
|
Kachamakova-Trojanowska N, Bukowska-Strakova K, Zukowska M, Dulak J, Jozkowicz A. The real face of endothelial progenitor cells - Circulating angiogenic cells as endothelial prognostic marker? Pharmacol Rep 2015; 67:793-802. [PMID: 26321283 DOI: 10.1016/j.pharep.2015.05.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 02/08/2023]
Abstract
Endothelial progenitor cells (EPCs) have been extensively studied for almost 19 years now and were considered as a potential marker for endothelial regeneration ability. On the other hand, circulating endothelial cells (CEC) were studied as biomarker for endothelial injury. Yet, in the literature, there is also huge incoherency in regards to terminology and protocols used. This results in misleading conclusions on the role of so called "EPCs", especially in the clinical field. The discrepancies are mainly due to strong phenotypic overlap between EPCs and circulating angiogenic cells (CAC), therefore changes in "EPC" terminology have been suggested. Other factors leading to inconsistent results are varied definitions of the studied populations and the lack of universal data reporting, which could strongly affect data interpretation. The current review is focused on controversies concerning the use of "EPCs"/CAC and CEC as putative endothelial diagnostic markers.
Collapse
Affiliation(s)
- Neli Kachamakova-Trojanowska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Karolina Bukowska-Strakova
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Monika Zukowska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Jozef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
31
|
Larochelle C, Lécuyer MA, Alvarez JI, Charabati M, Saint-Laurent O, Ghannam S, Kebir H, Flanagan K, Yednock T, Duquette P, Arbour N, Prat A. Melanoma cell adhesion molecule-positive CD8 T lymphocytes mediate central nervous system inflammation. Ann Neurol 2015; 78:39-53. [PMID: 25869475 DOI: 10.1002/ana.24415] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 03/23/2015] [Accepted: 03/30/2015] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Although Tc17 lymphocytes are enriched in the central nervous system (CNS) of multiple sclerosis (MS) subjects and of experimental autoimmune encephalomyelitis (EAE) animals, limited information is available about their recruitment into the CNS and their role in neuroinflammation. Identification of adhesion molecules used by autoaggressive CD8(+) T lymphocytes to enter the CNS would allow further characterization of this pathogenic subset and could provide new therapeutic targets in MS. We propose that melanoma cell adhesion molecule (MCAM) is a surface marker and adhesion molecule used by pathogenic CD8(+) T lymphocytes to access the CNS. METHODS Frequency, phenotype, and function of MCAM(+) CD8(+) T lymphocytes was characterized using a combination of ex vivo, in vitro, in situ, and in vivo approaches in humans and mice, including healthy controls, MS subjects, and EAE animals. RESULTS Herein, we report that MCAM is expressed by human effector CD8(+) T lymphocytes and it is strikingly upregulated during MS relapses. We further demonstrate that MCAM(+) CD8(+) T lymphocytes express more interleukin 17, interferon γ, granulocyte-macrophage colony-stimulating factor, and tumor necrosis factor than MCAM(-) lymphocytes, and exhibit an enhanced killing capacity toward oligodendrocytes. MCAM blockade restricts the transmigration of CD8(+) T lymphocytes across human blood-brain barrier endothelial cells in vitro, and blocking or depleting MCAM in vivo reduces chronic neurological deficits in active, transfer, and spontaneous progressive EAE models. INTERPRETATION Our data demonstrate that MCAM identifies encephalitogenic CD8(+) T lymphocytes, suggesting that MCAM could represent a biomarker of MS disease activity and a valid target for the treatment of neuroinflammatory conditions.
Collapse
Affiliation(s)
- Catherine Larochelle
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada.,Multiple Sclerosis Clinic, Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM)-Notre Dame Hospital, Montreal, Quebec, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montreal, Montreal, Quebec, Canada
| | - Marc-André Lécuyer
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Jorge Ivan Alvarez
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Marc Charabati
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Olivia Saint-Laurent
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Soufiane Ghannam
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Hania Kebir
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Ken Flanagan
- Prothena Biosciences, South San Francisco, CA, USA
| | - Ted Yednock
- Prothena Biosciences, South San Francisco, CA, USA
| | - Pierre Duquette
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada.,Multiple Sclerosis Clinic, Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM)-Notre Dame Hospital, Montreal, Quebec, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montreal, Montreal, Quebec, Canada
| | - Nathalie Arbour
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montreal, Montreal, Quebec, Canada
| | - Alexandre Prat
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada.,Multiple Sclerosis Clinic, Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM)-Notre Dame Hospital, Montreal, Quebec, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montreal, Montreal, Quebec, Canada
| |
Collapse
|
32
|
Wu C, Goodall JC, Busch R, Gaston JSH. Relationship of CD146 expression to secretion of interleukin (IL)-17, IL-22 and interferon-γ by CD4(+) T cells in patients with inflammatory arthritis. Clin Exp Immunol 2015; 179:378-91. [PMID: 25113810 PMCID: PMC4337671 DOI: 10.1111/cei.12434] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2014] [Indexed: 12/14/2022] Open
Abstract
Expression of the adhesion molecule, CD146/MCAM/MelCAM, on T cells has been associated with recent activation, memory subsets and T helper type 17 (Th17) effector function, and is elevated in inflammatory arthritis. Th17 cells have been implicated in the pathogenesis of rheumatoid arthritis (RA) and spondyloarthritides (SpA). Here, we compared the expression of CD146 on CD4(+) T cells between healthy donors (HD) and patients with RA and SpA [ankylosing spondylitis (AS) or psoriatic arthritis (PsA)] and examined correlations with surface markers and cytokine secretion. Peripheral blood mononuclear cells (PBMC) were obtained from patients and controls, and synovial fluid mononuclear cells (SFMC) from patients. Cytokine production [elicited by phorbol myristate acetate (PMA)/ionomycin] and surface phenotypes were evaluated by flow cytometry. CD146(+) CD4(+) and interleukin (IL)-17(+) CD4(+) T cell frequencies were increased in PBMC of PsA patients, compared with HD, and in SFMC compared with PBMC. CD146(+) CD4(+) T cells were enriched for secretion of IL-17 [alone or with IL-22 or interferon (IFN)-γ] and for some putative Th17-associated surface markers (CD161 and CCR6), but not others (CD26 and IL-23 receptor). CD4(+) T cells producing IL-22 or IFN-γ without IL-17 were also present in the CD146(+) subset, although their enrichment was less marked. Moreover, a majority of cells secreting these cytokines lacked CD146. Thus, CD146 is not a sensitive or specific marker of Th17 cells, but rather correlates with heterogeneous cytokine secretion by subsets of CD4(+) helper T cells.
Collapse
Affiliation(s)
- C Wu
- Department of Medicine, University of Cambridge, Cambridge, UK; Department of Rheumatology and Immunology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | | | | | | |
Collapse
|
33
|
Endothelial-binding, proinflammatory T cells identified by MCAM (CD146) expression: Characterization and role in human autoimmune diseases. Autoimmun Rev 2015; 14:415-22. [PMID: 25595133 DOI: 10.1016/j.autrev.2015.01.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 01/06/2015] [Indexed: 12/17/2022]
Abstract
A subset of T cells defined by the cell surface expression of MCAM (CD146) has been identified in the peripheral circulation of healthy individuals. These cells comprise approximately 3% of the pool of circulating T cells, have an effector memory phenotype, and are capable of producing several cytokines. Notably, the MCAM positive cells are enhanced for IL-17 production compared to MCAM negative effector memory T cells. These cells are committed to IL-17 production and do not require in vitro polarization with exogenous cytokines. MCAM positive T cells also demonstrate an increased ability to bind to endothelial monolayers. In numerous autoimmune diseases these cells are found at increased proportions in the peripheral circulation, and at the sites of active inflammation in patients with autoimmune disease, these cells appear in large numbers and are major contributors to IL-17 production. Studies to date have been performed with human subjects and it is uncertain if appropriate mouse models exist for this cell type. These cells could represent early components of the adaptive immune response and serve as targets of therapy in these diseases, although much work remains to be performed in order to discern the exact nature and function of these cells.
Collapse
|
34
|
François A, Gombault A, Villeret B, Alsaleh G, Fanny M, Gasse P, Adam SM, Crestani B, Sibilia J, Schneider P, Bahram S, Quesniaux V, Ryffel B, Wachsmann D, Gottenberg JE, Couillin I. B cell activating factor is central to bleomycin- and IL-17-mediated experimental pulmonary fibrosis. J Autoimmun 2014; 56:1-11. [PMID: 25441030 DOI: 10.1016/j.jaut.2014.08.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 08/05/2014] [Accepted: 08/19/2014] [Indexed: 01/12/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive devastating, yet untreatable fibrotic disease of unknown origin. We investigated the contribution of the B-cell activating factor (BAFF), a TNF family member recently implicated in the regulation of pathogenic IL-17-producing cells in autoimmune diseases. The contribution of BAFF was assessed in a murine model of lung fibrosis induced by airway administered bleomycin. We show that murine BAFF levels were strongly increased in the bronchoalveolar space and lungs after bleomycin exposure. We identified Gr1(+) neutrophils as an important source of BAFF upon BLM-induced lung inflammation and fibrosis. Genetic ablation of BAFF or BAFF neutralization by a soluble receptor significantly attenuated pulmonary fibrosis and IL-1β levels. We further demonstrate that bleomycin-induced BAFF expression and lung fibrosis were IL-1β and IL-17A dependent. BAFF was required for rIL-17A-induced lung fibrosis and augmented IL-17A production by CD3(+) T cells from murine fibrotic lungs ex vivo. Finally we report elevated levels of BAFF in bronchoalveolar lavages from IPF patients. Our data therefore support a role for BAFF in the establishment of pulmonary fibrosis and a crosstalk between IL-1β, BAFF and IL-17A.
Collapse
Affiliation(s)
- Antoine François
- ImmunoRhumatologie Moléculaire, INSERM UMR S1109, Université de Strasbourg; Fédération de Médecine Translationnelle de Strasbourg, Centre National de Référence pour les Maladies Auto-immunes Systémiques Rares, Service de Rhumatologie, CHU Strasbourg; Centre de Recherche d'Immunologie et d'Hématologie, Strasbourg, France
| | - Aurélie Gombault
- University of Orleans and CNRS UMR7355, Experimental and Molecular Immunology and Neurogenetics, Orleans, France
| | - Bérengère Villeret
- University of Orleans and CNRS UMR7355, Experimental and Molecular Immunology and Neurogenetics, Orleans, France
| | - Ghada Alsaleh
- ImmunoRhumatologie Moléculaire, INSERM UMR S1109, Université de Strasbourg; Fédération de Médecine Translationnelle de Strasbourg, Centre National de Référence pour les Maladies Auto-immunes Systémiques Rares, Service de Rhumatologie, CHU Strasbourg; Centre de Recherche d'Immunologie et d'Hématologie, Strasbourg, France
| | - Manoussa Fanny
- University of Orleans and CNRS UMR7355, Experimental and Molecular Immunology and Neurogenetics, Orleans, France
| | - Paméla Gasse
- University of Orleans and CNRS UMR7355, Experimental and Molecular Immunology and Neurogenetics, Orleans, France
| | - Sylvain Marchand Adam
- University François Rabelais, CEPR UMR-INSERM U1100/E.A. 6305, Faculté de Médecine; CHU de Tours, Service de Pneumologie, Tours, France
| | - Bruno Crestani
- Service de Pneumologie, Hôpital Bichat, Assistance Publique - Hôpitaux de Paris; Université Paris Diderot - Paris 7; INSERM Unité 700, Faculté de Médecine Bichat, Paris, France
| | - Jean Sibilia
- ImmunoRhumatologie Moléculaire, INSERM UMR S1109, Université de Strasbourg; Fédération de Médecine Translationnelle de Strasbourg, Centre National de Référence pour les Maladies Auto-immunes Systémiques Rares, Service de Rhumatologie, CHU Strasbourg; Centre de Recherche d'Immunologie et d'Hématologie, Strasbourg, France
| | - Pascal Schneider
- Department of Biochemistry, University of Lausanne, CH-1066 Epalinges, Switzerland
| | - Seiamak Bahram
- ImmunoRhumatologie Moléculaire, INSERM UMR S1109, Université de Strasbourg; Fédération de Médecine Translationnelle de Strasbourg, Centre National de Référence pour les Maladies Auto-immunes Systémiques Rares, Service de Rhumatologie, CHU Strasbourg; Centre de Recherche d'Immunologie et d'Hématologie, Strasbourg, France
| | - Valérie Quesniaux
- University of Orleans and CNRS UMR7355, Experimental and Molecular Immunology and Neurogenetics, Orleans, France
| | - Bernhard Ryffel
- University of Orleans and CNRS UMR7355, Experimental and Molecular Immunology and Neurogenetics, Orleans, France
| | - Dominique Wachsmann
- ImmunoRhumatologie Moléculaire, INSERM UMR S1109, Université de Strasbourg; Fédération de Médecine Translationnelle de Strasbourg, Centre National de Référence pour les Maladies Auto-immunes Systémiques Rares, Service de Rhumatologie, CHU Strasbourg; Centre de Recherche d'Immunologie et d'Hématologie, Strasbourg, France
| | - Jacques-Eric Gottenberg
- ImmunoRhumatologie Moléculaire, INSERM UMR S1109, Université de Strasbourg; Fédération de Médecine Translationnelle de Strasbourg, Centre National de Référence pour les Maladies Auto-immunes Systémiques Rares, Service de Rhumatologie, CHU Strasbourg; Centre de Recherche d'Immunologie et d'Hématologie, Strasbourg, France.
| | - Isabelle Couillin
- University of Orleans and CNRS UMR7355, Experimental and Molecular Immunology and Neurogenetics, Orleans, France
| |
Collapse
|
35
|
Van Kaer L, Algood HMS, Singh K, Parekh VV, Greer MJ, Piazuelo MB, Weitkamp JH, Matta P, Chaturvedi R, Wilson KT, Olivares-Villagómez D. CD8αα⁺ innate-type lymphocytes in the intestinal epithelium mediate mucosal immunity. Immunity 2014; 41:451-464. [PMID: 25220211 DOI: 10.1016/j.immuni.2014.08.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 08/08/2014] [Indexed: 01/22/2023]
Abstract
Innate immune responses are critical for mucosal immunity. Here we describe an innate lymphocyte population, iCD8α cells, characterized by expression of CD8α homodimers. iCD8α cells exhibit innate functional characteristics such as the capacity to engulf and kill bacteria. Development of iCD8α cells depends on expression of interleukin-2 receptor γ chain (IL-2Rγc), IL-15, and the major histocompatibility complex (MHC) class Ib protein H2-T3, also known as the thymus leukemia antigen or TL. While lineage tracking experiments indicated that iCD8α cells have a lymphoid origin, their development was independent of the transcriptional suppressor Id2, suggesting that these cells do not belong to the family of innate lymphoid cells. Finally, we identified cells with a similar phenotype in humans, which were profoundly depleted in newborns with necrotizing enterocolitis. These findings suggest a critical role of iCD8α cells in immune responses associated with the intestinal epithelium.
Collapse
Affiliation(s)
- Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | - Holly M Scott Algood
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37232, USA; Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kshipra Singh
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Vrajesh V Parekh
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Michael J Greer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - M Blanca Piazuelo
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jörn-Hendrik Weitkamp
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Pranathi Matta
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Rupesh Chaturvedi
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Keith T Wilson
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37232, USA; Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Danyvid Olivares-Villagómez
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
36
|
|
37
|
Seo E, Seo KW, Gil JE, Ha YR, Yeom E, Lee S, Lee SJ. Biophysiochemical properties of endothelial cells cultured on bio-inspired collagen films. BMC Biotechnol 2014; 14:61. [PMID: 24984812 PMCID: PMC4085646 DOI: 10.1186/1472-6750-14-61] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 06/26/2014] [Indexed: 11/23/2022] Open
Abstract
Background In this study, we investigated the effect of the extracellular matrix on
endothelial dysfunction by careful observation of human umbilical vein
endothelial cells (HUVECs) cultured on denatured collagen film. Results HUVECs on denatured collagen film showed relatively high surface roughness
compared with normal HUVECs. The expression levels of MMP-1, MMP-2 and CD146
increased in the ECs on denatured collagen film. In addition, we examined
the accumulation of fluorescent beads on HUVEC layers subjected to
circulatory flow. The number of accumulated fluorescent beads increased on
the disorganized HUVEC layers. Conclusions The proposed in vitro study using bio-inspired collagen films could
potentially be used in the size- and ligand-based design of drugs to treat
endothelial dysfunction caused by circulatory vascular diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sang Joon Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, San 31, Hyoja-dong, Nam-Gu, Pohang, Gyeongbuk 790-784, Korea.
| |
Collapse
|
38
|
Wu W, Jin M, Wang Y, Liu B, Shen D, Chen P, Hannes S, Li Z, Hirani S, Jawad S, Sen HN, Chan CC, Nussenblatt RB, Wei L. Overexpression of IL-17RC associated with ocular sarcoidosis. J Transl Med 2014; 12:152. [PMID: 24885153 PMCID: PMC4059456 DOI: 10.1186/1479-5876-12-152] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 05/14/2014] [Indexed: 12/04/2022] Open
Abstract
Background Sarcoidosis is a chronic inflammatory disease with a systemic granulomatous disorder affecting multiple organs including the eye. Both CD4+ T cell and macrophage have been linked to the pathogenesis of the disease. Methods The expression of IL-17RC was measured using FACS,immunohistochemistry and real-time PCR. Serum level of IL-17 was detected using ELISA. Results An elevated expression of IL-17RC on CD8+ T cells in peripheral blood was found in patients with ocular sarcoidosis as compared to healthy controls. Interestingly, we found a significant increase in the serum level of IL-17 in patients with ocular sarcoidosis as compared to healthy controls, which may be responsible for the induction of IL-17RC on CD8+ cells. In addition, IL-17RC appeared only in the retinal tissue of the patient with clinically active sarcoidosis. Conclusions Our results suggested a potential involvement of IL-17RC+CD8+ T cells in pathogenesis of ocular sarcoidosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Robert B Nussenblatt
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
39
|
Xing S, Luo Y, Liu Z, Bu P, Duan H, Liu D, Wang P, Yang J, Song L, Feng J, Yang D, Qin Z, Yan X. Targeting endothelial CD146 attenuates colitis and prevents colitis-associated carcinogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:1604-1616. [PMID: 24767106 DOI: 10.1016/j.ajpath.2014.01.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 01/28/2014] [Accepted: 01/30/2014] [Indexed: 01/24/2023]
Abstract
Recently, enhanced CD146 expression was reported on endothelial cells in intestinal biopsies from patients with inflammatory bowel disease. However, the underlying mechanism remains unknown. Here, we found that overexpressed endothelial CD146 promoted the inflammatory responses in inflammatory bowel disease, which further potentiated the occurrence of colitis-associated colorectal carcinogenesis. Eliminating endothelial CD146 by conditional knockout significantly ameliorated the severity of inflammation in two different murine models of colitis, and decreased tumor incidence and tumor progression in a murine model of colitis-associated colorectal carcinogenesis. Mechanistic study showed that cytokine tumor necrosis factor-α (TNF-α) up-regulated the expression of endothelial CD146 through NF-κB transactivation. In turn, the enhanced endothelial CD146 expression promoted both angiogenesis and proinflammatory leukocyte extravasations, contributing to inflammation. Using an anti-CD146 antibody, AA98, alone or together with an anti-TNF-α antibody significantly attenuated colitis and prevented colitis-associated colorectal carcinogenesis in mice. Our study provides the first evidence that CD146 plays a dual role on endothelium, facilitating leukocyte extravasations and angiogenesis, thus promoting inflammation. This finding not only reveals the function and regulating mechanism of CD146 in inflammatory bowel disease, but also provides a promising therapeutic strategy for treating inflammatory bowel disease and preventing colitis-associated colorectal carcinogenesis.
Collapse
Affiliation(s)
- Shu Xing
- Key Laboratory of Protein and Peptide Pharmaceuticals, Center for Infection and Immunity, and the Chinese Academy of Sciences-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yongting Luo
- Key Laboratory of Protein and Peptide Pharmaceuticals, Center for Infection and Immunity, and the Chinese Academy of Sciences-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zhihua Liu
- Key Laboratory of Protein and Peptide Pharmaceuticals, Center for Infection and Immunity, and the Chinese Academy of Sciences-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Pengcheng Bu
- Key Laboratory of Protein and Peptide Pharmaceuticals, Center for Infection and Immunity, and the Chinese Academy of Sciences-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Hongxia Duan
- Key Laboratory of Protein and Peptide Pharmaceuticals, Center for Infection and Immunity, and the Chinese Academy of Sciences-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Dan Liu
- Key Laboratory of Protein and Peptide Pharmaceuticals, Center for Infection and Immunity, and the Chinese Academy of Sciences-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ping Wang
- Key Laboratory of Protein and Peptide Pharmaceuticals, Center for Infection and Immunity, and the Chinese Academy of Sciences-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jing Yang
- Department of Gastroenterology, Chinese PLA General Hospital, Beijing, China
| | - Lina Song
- Key Laboratory of Protein and Peptide Pharmaceuticals, Center for Infection and Immunity, and the Chinese Academy of Sciences-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jing Feng
- Key Laboratory of Protein and Peptide Pharmaceuticals, Center for Infection and Immunity, and the Chinese Academy of Sciences-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Dongling Yang
- Key Laboratory of Protein and Peptide Pharmaceuticals, Center for Infection and Immunity, and the Chinese Academy of Sciences-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zhihai Qin
- Key Laboratory of Protein and Peptide Pharmaceuticals, Center for Infection and Immunity, and the Chinese Academy of Sciences-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiyun Yan
- Key Laboratory of Protein and Peptide Pharmaceuticals, Center for Infection and Immunity, and the Chinese Academy of Sciences-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
40
|
Abstract
The initiation and perpetuation of autoimmunity recognize numerous checkpoints, from the genomic susceptibility to the breakdown of tolerance. This latter phenomenon includes the loss of B cell anergy and T regulatory cell failure, as well as the production of autoantibodies and autoreactive T cells. These mechanisms ultimately lead to tissue injury via different mechanisms that span from the production of proinflammatory cytokines to the chemotaxis of immune cells to the target sites. The pathways to autoimmunity have been widely investigated over the past year and resulted in a number of articles in peer-reviewed journals that has increased by nearly 10 % compared to 2011. We herein follow on the attempt to provide a brief discussion of the majority of articles on autoimmune diseases that were published in the major immunology journals in the previous solar year. The selection is necessarily arbitrary and may thus not be seen as comprehensive but reflects current research trends. Indeed, 2012 articles were mostly dedicated to define new and old mechanisms with potential therapeutic implications in autoimmunity in general, though based on specific clinical conditions or animal models. As paradigmatic examples, the environmental influence on autoimmunity, Th17 changes modulating the autoimmune response, serum autoantibodies and B cell changes as biomarkers and therapeutic targets were major issues addressed by experimental articles in 2012. Further, a growing number of studies investigated the sex bias of autoimmunity and supported different working hypotheses to explain the female predominance, including sex chromosome changes and reproductive life factors. In conclusion, the resulting scenario illustrates that common factors may underlie different autoimmune diseases and this is well represented by the observed alterations in interferon-α and TGFβ or by the shared signaling pathways.
Collapse
Affiliation(s)
- Carlo Selmi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy,
| |
Collapse
|
41
|
Dagur PK, Biancotto A, Stansky E, Sen HN, Nussenblatt RB, McCoy JP. Secretion of interleukin-17 by CD8+ T cells expressing CD146 (MCAM). Clin Immunol 2014; 152:36-47. [PMID: 24681356 DOI: 10.1016/j.clim.2014.01.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 01/29/2014] [Accepted: 01/31/2014] [Indexed: 12/21/2022]
Abstract
Interleukin-17 (IL-17) has been associated with the pathogenesis of numerous autoimmune diseases. CD4+ T cells secreting IL-17 are termed Th17 cells. CD8+ T cells, designated Tc17 cells, are also capable of secreting IL-17. Here we describe a population of Tc17 cells characterized by the expression of surface CD146, an endothelial adhesion molecule. These cells display signatures of a human Tc17 genotype and phenotype. Circulating CD8+CD146+ T cells are present in low levels in healthy adults. Elevations in CD8+CD146+ T cells are found in Behcet's disease and birdshot retinochoroidopathy, which have been reported to have HLA class I associations. Sarcoidosis does not have a class I association and displays an increase in CD4+ CD146+ T cells but not in CD8+CD146+ T cells. CD146 on these cells may facilitate their ability to bind to, and migrate through, endothelium, as has been reported for CD4+CD146+ T cells.
Collapse
Affiliation(s)
- Pradeep K Dagur
- Hematology Branch, National Heart Lung and Blood Institute, Bethesda, MD 20892, USA
| | - Angélique Biancotto
- Center for Human Immunology, Autoimmunity and Inflammation, NIH, Bethesda, MD 20892, USA
| | - Elena Stansky
- Hematology Branch, National Heart Lung and Blood Institute, Bethesda, MD 20892, USA
| | - H Nida Sen
- Clinical Immunology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert B Nussenblatt
- Center for Human Immunology, Autoimmunity and Inflammation, NIH, Bethesda, MD 20892, USA; Clinical Immunology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - J Philip McCoy
- Hematology Branch, National Heart Lung and Blood Institute, Bethesda, MD 20892, USA; Center for Human Immunology, Autoimmunity and Inflammation, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
42
|
Nawaz AA, Zhang X, Mao X, Rufo J, Lin SCS, Guo F, Zhao Y, Lapsley M, Li P, McCoy JP, Levine SJ, Huang TJ. Sub-micrometer-precision, three-dimensional (3D) hydrodynamic focusing via "microfluidic drifting". LAB ON A CHIP 2014; 14:415-23. [PMID: 24287742 PMCID: PMC3989543 DOI: 10.1039/c3lc50810b] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In this article, we demonstrate single-layered, "microfluidic drifting" based three-dimensional (3D) hydrodynamic focusing devices with particle/cell focal positioning approaching submicron precision along both lateral and vertical directions. By systematically optimizing channel geometries and sample/sheath flow rates, a series of "microfluidic drifting" based 3D hydrodynamic focusing devices with different curvature angles are designed and fabricated. Their performances are then evaluated using confocal microscopy, fast camera imaging, and side-view imaging techniques. Using a device with a curvature angle of 180°, we have achieved a standard deviation of ±0.45 μm in particle focal position and a coefficient of variation (CV) of 2.37% in flow cytometric measurements. To the best of our knowledge, this is the best CV that has been achieved using a microfluidic flow cytometry device. Moreover, the device showed the capability to distinguish 8 peaks when subjected to a stringent 8-peak rainbow calibration test, signifying the ability to perform sensitive, accurate tests similar to commercial flow cytometers. We have further tested and validated our device by detection of HEK-293 cells. With its advantages in simple fabrication (i.e., single-layered device), precise 3D hydrodynamic focusing (i.e., submicrometer precision along both lateral and vertical directions), and high detection resolution (i.e., low CV), our method could serve as an important basis for high-performance, mass-producible microfluidic flow cytometry.
Collapse
Affiliation(s)
- Ahmad Ahsan Nawaz
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Samsel L, Dagur PK, Raghavachari N, Seamon C, Kato GJ, McCoy JP. Imaging flow cytometry for morphologic and phenotypic characterization of rare circulating endothelial cells. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2013; 84:379-89. [PMID: 23554273 PMCID: PMC3819459 DOI: 10.1002/cyto.b.21088] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 02/04/2013] [Accepted: 03/02/2013] [Indexed: 01/14/2023]
Abstract
Endothelial cells in the peripheral circulation are rare events that require technically rigorous approaches for detection by flow cytometry. Visualization of these cells has been even more demanding, as this has historically required extensive enrichment and processing prior to attempting imaging. As a result, few, if any, examples exist on images of peripheral blood circulating endothelial cells (CECs) that include verification of the cell lineage both phenotypically and genomically. In this study, we have devised a method whereby CECs can be directly visualized after lysis of red blood cells and staining, without pre-enrichment or additional processing. Peripheral blood is stained with CD45, CD146, CD3, Hoechst, and DAPI to permit identification of CD146 positive, nonleukocyte, nucleated, and live cells that fit the description of CECs. These cells are imaged using the Amnis ImageStream(X), an imaging flow cytometer. Genomic verification of the endothelial nature of these cells is accomplished by using an aliquot of the same stained samples for sorting CECs using similar gating strategies. This proof of principle of direct imaging of CECs by imaging flow cytometry will permit studies to be conducted heretofore not possible, as the ImageStream(X) has the capability of detecting additional fluorochromes other than those used to identify the CECs. Such potential investigations include antigen colocalization or capping, autophagy and apoptosis, morphologic changes in response to therapy, and others. Thus, this method will enable a broad range of novel studies to be conducted using CECs as surrogates of the endothelium.
Collapse
Affiliation(s)
- Leigh Samsel
- Flow Cytometry Core Facility, National Heart Lung and Blood Institute, NIH, Bethesda, Maryland
| | | | | | | | | | | |
Collapse
|
44
|
Shang H, Hyun KA, Kwon MH, Ha KS, Joo C, Jung HI. Microfluidic sorting of fluorescently activated cells depending on gene expression level. Electrophoresis 2013; 34:3103-10. [DOI: 10.1002/elps.201300300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 08/22/2013] [Accepted: 08/30/2013] [Indexed: 12/23/2022]
Affiliation(s)
- Haifeng Shang
- School of Mechanical Engineering; Yonsei University; Seodaemun-gu Seoul South Korea
| | - Kyung-A. Hyun
- School of Mechanical Engineering; Yonsei University; Seodaemun-gu Seoul South Korea
| | - Mi-Hye Kwon
- Department of Molecular & Cellular Biochemistry; Kangwon National University College of Medicine; Chunchon Kangwon-do South Korea
| | - Kwon-Soo Ha
- Department of Molecular & Cellular Biochemistry; Kangwon National University College of Medicine; Chunchon Kangwon-do South Korea
| | - Chulmin Joo
- School of Mechanical Engineering; Yonsei University; Seodaemun-gu Seoul South Korea
| | - Hyo-Il Jung
- School of Mechanical Engineering; Yonsei University; Seodaemun-gu Seoul South Korea
| |
Collapse
|
45
|
Abstract
Psoriasis is a lifelong skin disease, affecting about 2% of the global population. Generalized involvement of the body (erythroderma), extensive pustular lesions, and an associated arthritis known as psoriatic arthritis (PsA) are severe complications of psoriasis. Genetic, immunologic, and environmental factors contribute to its pathogenesis. A complete understanding of the pathogenesis of psoriasis and psoriatic arthritis is lacking. Cytokines, chemokines, adhesion molecules, growth factors like NGF, neuropeptides, and T cell receptors all act in an integrated way to evolve into unique inflammatory and proliferative processes typical of psoriasis and PsA. Management of psoriasis requires exemplary skin care along with careful monitoring of arrays of comorbidities which includes arthritis and coronary artery disease. In many ways, psoriasis can be considered a model autoimmune disease. This statement itself is ironic considering that it was not recognized as immune mediated until relatively recently. Fortunately, the immunobiology has made enormous strides and there are now excellent therapeutic options for patients. In this thematic review, we have attempted to provide summaries of not only basic science and clinical research, but also an overview of future research directions.
Collapse
Affiliation(s)
- Siba P Raychaudhuri
- Department of Medicine, VA Sacramento Medical Centre, 10535 Hospital Way, Mather, CA 95655, USA.
| |
Collapse
|
46
|
Candia J, Maunu R, Driscoll M, Biancotto A, Dagur P, McCoy JP, Sen HN, Wei L, Maritan A, Cao K, Nussenblatt RB, Banavar JR, Losert W. From cellular characteristics to disease diagnosis: uncovering phenotypes with supercells. PLoS Comput Biol 2013; 9:e1003215. [PMID: 24039568 PMCID: PMC3763994 DOI: 10.1371/journal.pcbi.1003215] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 07/23/2013] [Indexed: 11/25/2022] Open
Abstract
Cell heterogeneity and the inherent complexity due to the interplay of multiple molecular processes within the cell pose difficult challenges for current single-cell biology. We introduce an approach that identifies a disease phenotype from multiparameter single-cell measurements, which is based on the concept of “supercell statistics”, a single-cell-based averaging procedure followed by a machine learning classification scheme. We are able to assess the optimal tradeoff between the number of single cells averaged and the number of measurements needed to capture phenotypic differences between healthy and diseased patients, as well as between different diseases that are difficult to diagnose otherwise. We apply our approach to two kinds of single-cell datasets, addressing the diagnosis of a premature aging disorder using images of cell nuclei, as well as the phenotypes of two non-infectious uveitides (the ocular manifestations of Behçet's disease and sarcoidosis) based on multicolor flow cytometry. In the former case, one nuclear shape measurement taken over a group of 30 cells is sufficient to classify samples as healthy or diseased, in agreement with usual laboratory practice. In the latter, our method is able to identify a minimal set of 5 markers that accurately predict Behçet's disease and sarcoidosis. This is the first time that a quantitative phenotypic distinction between these two diseases has been achieved. To obtain this clear phenotypic signature, about one hundred CD8+ T cells need to be measured. Although the molecular markers identified have been reported to be important players in autoimmune disorders, this is the first report pointing out that CD8+ T cells can be used to distinguish two systemic inflammatory diseases. Beyond these specific cases, the approach proposed here is applicable to datasets generated by other kinds of state-of-the-art and forthcoming single-cell technologies, such as multidimensional mass cytometry, single-cell gene expression, and single-cell full genome sequencing techniques. The behavior of organisms is based on the concerted action occurring on an astonishing range of scales from the molecular to the organismal level. Molecular properties control the function of a cell, while cell ensembles form tissues and organs, which work together as an organism. In order to understand and characterize the molecular nature of the emergent properties of a cell, it is essential that multiple components of the cell are measured simultaneously in the same cell. Similarly, multiple cells must be measured in order to understand health and disease in the organism. In this work, we develop an approach that is able to determine how many cells, how many measurements per cell, and which measurements are needed to reliably diagnose disease. We apply this method to two different problems: the diagnosis of a premature aging disorder using images of cell nuclei, and the distinction between two similar autoimmune eye diseases using stained cells from patients' blood samples. Our findings shed new light on the role of specific kinds of immune system cells in systemic inflammatory diseases and may lead to improved diagnosis and treatment.
Collapse
Affiliation(s)
- Julián Candia
- Department of Physics, University of Maryland, College Park, Maryland, United States of America ; School of Medicine, University of Maryland, Baltimore, Maryland, United States of America ; IFLYSIB and CONICET, University of La Plata, La Plata,
| | - Ryan Maunu
- Department of Physics, University of Maryland, College Park, Maryland, United States of America
| | - Meghan Driscoll
- Department of Physics, University of Maryland, College Park, Maryland, United States of America
| | - Angélique Biancotto
- Center for Human Immunology, Autoimmunity and Inflammation, National Institutes of Health, Bethesda, Maryland, United States of America, Hematology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Pradeep Dagur
- Hematology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - J Philip McCoy
- Center for Human Immunology, Autoimmunity and Inflammation, National Institutes of Health, Bethesda, Maryland, United States of America,; Hematology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - H Nida Sen
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lai Wei
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Amos Maritan
- Dipartimento di Fisica “G. Galilei,” Università di Padova, Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia and Istituto Nazionale di Fisica Nucleare, Padua, Italy
| | - Kan Cao
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Robert B Nussenblatt
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jayanth R Banavar
- Department of Physics, University of Maryland, College Park, Maryland, United States of America
| | - Wolfgang Losert
- Department of Physics, University of Maryland, College Park, Maryland, United States of America
| |
Collapse
|
47
|
Abstract
The mechanisms leading to the onset and perpetuation of systemic and tissue-specific autoimmune diseases are complex, and numerous hypotheses have been proposed or confirmed over the past 12 months. It is particularly of note that the number of articles published during 2011 in the major immunology and autoimmunity journals increased by 3 % compared to the previous year. The present article is dedicated to a brief review of the reported data and, albeit not comprehensive of all articles, is aimed at identifying common and future themes. First, clinical researchers were particularly dedicated to defining refractory forms of diseases and to discuss the use and switch of therapeutic monoclonal antibodies in everyday practice. Second, following the plethora of genome-wide association studies reported in most multifactorial diseases, it became clear that genomics cannot fully explain the individual susceptibility and additional environmental or epigenetic factors are necessary. Both these components were widely investigated, both in organ-specific (i.e., type 1 diabetes) and systemic (i.e., systemic lupus erythematosus) diseases. Third, a large number of 2011 works published in the autoimmunity area are dedicated to dissect pathogenetic mechanisms of tolerance breakdown in general or in specific conditions. While our understanding of T regulatory and Th17 cells has significantly increased in 2011, it is of note that most of the proposed lines of evidence identify potential targets for future treatments and should not be overlooked.
Collapse
|
48
|
Studying the human immunome: the complexity of comprehensive leukocyte immunophenotyping. Curr Top Microbiol Immunol 2013; 377:23-60. [PMID: 23975032 DOI: 10.1007/82_2013_336] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A comprehensive study of the cellular components of the immune system requires both deep and broad immunophenotyping of numerous cell populations in an efficient and practical manner. In this chapter, we describe the technical aspects of studying the human immunome using high-dimensional (15 color) fluorescence-based immunophenotyping. We focus on the technical aspects of polychromatic flow cytometry and the initial stages in developing a panel for comprehensive leukocyte immunophenotyping (CLIP). We also briefly discuss how this panel is being used and the challenges of encyclopedic analysis of these rich data sets.
Collapse
|
49
|
Miyamoto Y, Uga H, Tanaka S, Kadowaki M, Ikeda M, Saegusa J, Morinobu A, Kumagai S, Kurata H. Podoplanin is an inflammatory protein upregulated in Th17 cells in SKG arthritic joints. Mol Immunol 2012; 54:199-207. [PMID: 23287598 DOI: 10.1016/j.molimm.2012.11.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 11/21/2012] [Accepted: 11/27/2012] [Indexed: 01/03/2023]
Abstract
Interleukin 17-producing helper T (Th17) cells play pathogenic roles in chronic inflammatory and autoimmune diseases, including arthritis, colitis and multiple sclerosis. Th17 cells selectively express the transcription factor RORγt, as well as the cytokine receptors IL-23R and CCR6. Identification of novel Th17 cell-specific molecules may have potential value as diagnostic markers in the above-mentioned inflammatory diseases. To that aim, we carried out a comparative microarray analysis on in vitro differentiated Th1, Th2, Treg and Th17 cells from naïve CD4(+) cells of BALB/c mice. Among a total of one hundred and twenty Th17 cell-specific molecules, twenty-nine were novel cell-surface molecules. Then we revealed that thirteen of them were up-regulated in vivo in inflamed tissues from experimental autoimmune diseases, including spontaneous SKG arthritis, inflammatory bowel disease (IBD) and experimental autoimmune encephalomyelitis (EAE). Next, we analyzed the expression of four membranous molecules, and revealed that podoplanin was expressed highly in the in vitro differentiated Th17 cells. Moreover, at the inflamed synovium of the arthritic SKG mice, most of the accumulating Th17 cells were podoplanin-positive. These results indicate that podoplanin would be a useful Th17 cell marker for diagnosing pathological conditions of autoimmune diseases, including rheumatoid arthritis.
Collapse
|
50
|
CD146, a multi-functional molecule beyond adhesion. Cancer Lett 2012; 330:150-62. [PMID: 23266426 DOI: 10.1016/j.canlet.2012.11.049] [Citation(s) in RCA: 222] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 11/13/2012] [Accepted: 11/28/2012] [Indexed: 02/08/2023]
Abstract
CD146 is a cell adhesion molecule (CAM) that is primarily expressed at the intercellular junction of endothelial cells. CD146 was originally identified as a tumor marker for melanoma (MCAM) due to its existence only in melanoma but not in the corresponding normal counterpart. However CD146 is not just a CAM for the inter-cellular and cell-matrix adhesion. Recent evidence indicates that CD146 is actively involved in miscellaneous processes, such as development, signaling transduction, cell migration, mesenchymal stem cells differentiation, angiogenesis and immune response. CD146 has increasingly become an important molecule, especially identified as a novel bio-marker for angiogenesis and for cancer. Here we have reviewed the dynamic research of CD146, particularly newly identified functions and the underlying mechanisms of CD146.
Collapse
|