1
|
Liu Q, Wang Q, Meng X, Wang X, Zhang Q, Hu HY. Combating Pathogenic Immune Evasion: Sialidase-Activated Thermally Delayed Fluorescence for Probing and Modulating Host-Pathogen Interactions. ACS Sens 2025; 10:1072-1082. [PMID: 39950598 DOI: 10.1021/acssensors.4c02917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Innate immunity represents the primary defense against invasive pathogens with phagocytosis playing a central role in host defense and mediating immune and inflammatory responses. However, pathogens such as Clostridium perfringens have developed strategies to overcome phagocytic clearance. Developing molecular tools to identify and target key factors in pathogenic immune evasion can deepen our understanding of host-pathogen interactions and aid in exploring novel therapeutic strategies. As a key enzyme in the sialylation process of C. perfringens, the virulence factor sialidase is a potential target for investigating pathogenic immune evasion. Herein, a "turn-on" thermally activated delayed fluorescent probe SA-HBT-PXZ is developed as a highly selective and sensitive sialidase sensor, enabling time-resolved fluorescence imaging of C. perfringens in live bacterial cells, tissue sections, and even infected mice. Furthermore, SA-HBT-PXZ is successfully employed to screen sialidase inhibitors based on prompt and delayed fluorescence emissions. The identified lead compounds effectively inhibit the activity of sialidases from C. perfringens, leading to an increased level of differentiation of macrophages into the M1 subtype. This, in turn, enhances the phagocytosis of C. perfringens and ultimately suppresses the immune escape of the bacteria. Our study provides a potential target and lead compounds for novel therapeutic strategies against C. perfringens infections.
Collapse
Affiliation(s)
- Qian Liu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Qinghua Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiangchuan Meng
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiang Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Qingyang Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Hai-Yu Hu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
2
|
Wu Q, Niu Y, Li H, Pan Y, Li C. Comprehensive Analysis of Sialylation-Related Gene Profiles and Their Impact on the Immune Microenvironment in Periodontitis. Inflammation 2024:10.1007/s10753-024-02177-1. [PMID: 39609348 DOI: 10.1007/s10753-024-02177-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/14/2024] [Accepted: 10/27/2024] [Indexed: 11/30/2024]
Abstract
Periodontitis is a chronic inflammatory disease strongly influenced by host's immune response. Aberrant sialylation on cell surface plays a key role in inflammation and immunity. This study aims to identify sialylation-related genes associated with periodontitis and explore their impact on periodontal immune microenvironment. Differential expression analysis and machine learning were employed to determine core sialylation-related genes after datasets were retrieved and integrated. A diagnostic model incorporating these genes was constructed, following the immune cell infiltration analysis. Consensus clustering and weighted gene co-expression network analysis stratified periodontitis patients into subgroups and identified associated module genes. Single-cell sequencing data was further utilized to investigate the impact of sialylation on the periodontal immune microenvironment with pseudo-time series analysis and cell communication analysis. Periodontitis had a higher sialylation score with six key sialylation genes (CHST2, SELP, ST6GAL1, ST3GAL1, NEU1, FCN1) identified. The multi-gene diagnostic model demonstrated high accuracy and efficacy. Significant associations were observed between the key genes and immune cell populations, such as monocytes and B cells, in the periodontal immune microenvironment. Clustering analysis revealed two distinct sialylation-related subgroups with differential immune profiles. Single-cell data showed a significantly higher expression of sialylation-related genes in monocytes, which was found to significantly impact their developmental processes as well as their intercellular communication with B cells. The six identified sialylation-related genes hold potential as periodontitis biomarkers. High sialylation expression can impact the differentiation and cell-cell communication of monocytes. Sialylation-related genes are closely associated with alterations in the periodontal immune microenvironment.
Collapse
Affiliation(s)
- Qibing Wu
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, No.117 Nanjing North Street, Heping District, Shenyang, 110002, Liaoning, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Yixi Niu
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, No.117 Nanjing North Street, Heping District, Shenyang, 110002, Liaoning, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Hanmo Li
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, No.117 Nanjing North Street, Heping District, Shenyang, 110002, Liaoning, China
| | - Yaping Pan
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, No.117 Nanjing North Street, Heping District, Shenyang, 110002, Liaoning, China
| | - Chen Li
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, No.117 Nanjing North Street, Heping District, Shenyang, 110002, Liaoning, China.
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China.
| |
Collapse
|
3
|
Hu ZX, Li SR, Xia QJ, Wang T, Voglmeir J, Widmalm G, Liu L. Enzymatic synthesis of N-formylated sialosides via a five-enzyme cascade. Org Biomol Chem 2024; 22:7485-7491. [PMID: 39189395 DOI: 10.1039/d4ob00874j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Here we report an enzymatic approach to synthesize N-formylneuraminic acid (Neu5Fo) containing sialosides, through a five-enzyme cascade. This method stands as an alternative to traditional chemical syntheses, aiming for precision and efficiency in generating sialosides with a tailored N-formyl group generated directly from formic acid. The newly synthesized Neu5Fo was characterized using various NMR techniques revealing a conformational equilibrium at the amide bond of the formyl group in slow exchange on the NMR time scale with a trans : cis ratio of ∼2 : 1. This work not only suggests potential for exploring the biological roles of sialosides but also points to the possibility of developing novel therapeutic agents.
Collapse
Affiliation(s)
- Zi-Xuan Hu
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, China.
| | - Shu-Rui Li
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, China.
| | - Qing-Jun Xia
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, China.
| | - Ting Wang
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, China.
| | - Josef Voglmeir
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, China.
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden.
| | - Li Liu
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, China.
| |
Collapse
|
4
|
Rocamora F, Peralta AG, Shin S, Sorrentino J, Wu MYM, Toth EA, Fuerst TR, Lewis NE. Glycosylation shapes the efficacy and safety of diverse protein, gene and cell therapies. Biotechnol Adv 2023; 67:108206. [PMID: 37354999 PMCID: PMC11168894 DOI: 10.1016/j.biotechadv.2023.108206] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/26/2023] [Accepted: 06/20/2023] [Indexed: 06/26/2023]
Abstract
Over recent decades, therapeutic proteins have had widespread success in treating a myriad of diseases. Glycosylation, a near universal feature of this class of drugs, is a critical quality attribute that significantly influences the physical properties, safety profile and biological activity of therapeutic proteins. Optimizing protein glycosylation, therefore, offers an important avenue to developing more efficacious therapies. In this review, we discuss specific examples of how variations in glycan structure and glycoengineering impacts the stability, safety, and clinical efficacy of protein-based drugs that are already in the market as well as those that are still in preclinical development. We also highlight the impact of glycosylation on next generation biologics such as T cell-based cancer therapy and gene therapy.
Collapse
Affiliation(s)
- Frances Rocamora
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Angelo G Peralta
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Seunghyeon Shin
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - James Sorrentino
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mina Ying Min Wu
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eric A Toth
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| | - Thomas R Fuerst
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Nathan E Lewis
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
5
|
Bai R, Wang J, Brockhausen I, Gao Y. The generation of 5-N-glycolylneuraminic acid as a consequence of high levels of reactive oxygen species. Glycoconj J 2023; 40:435-448. [PMID: 37266899 DOI: 10.1007/s10719-023-10121-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/12/2023] [Accepted: 05/09/2023] [Indexed: 06/03/2023]
Abstract
The presence of N-glycolylneuraminic acid (Neu5Gc), a non-human sialic acid in cancer patients, is currently attributed to the consumption of red meat. Excess dietary red meat has been considered a risk factor causing chronic inflammation and for the development of cancers. However, it remains unknown whether Neu5Gc can be generated via a chemical reaction rather than via a metabolic pathway in the presence of high levels of reactive oxygen species (ROS) found in the inflammatory and tumor environments. In this study, the conversion of N-acetylneuraminic acid (Neu5Ac) to Neu5Gc has been assessed in vitro under conditions mimicking the hydroxyl radical-rich humoral environment found in inflammatory and cancerous tissues. As a result, Neu5Gc has been detected via liquid chromatography-multiple reaction monitoring mass spectrometry. Furthermore, this conversion has also been found to take place in serum biomatrix containing ROS and in cancer cell cultures with induced ROS production.
Collapse
Affiliation(s)
- Ruifeng Bai
- Key laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Jingyi Wang
- Key laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Inka Brockhausen
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Yin Gao
- Key laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China.
| |
Collapse
|
6
|
Omoto T, Wu D, Maruyama E, Tajima K, Hane M, Sato C, Kitajima K. Forced expression of α2,3-sialyltransferase IV rescues impaired heart development in α2,6-sialyltransferase I-deficient medaka. Biochem Biophys Res Commun 2023; 649:62-70. [PMID: 36745971 DOI: 10.1016/j.bbrc.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 01/07/2023]
Abstract
Sialic acids (Sias) are often linked to galactose (Gal) residues by α2,6- and α2,3-linkages in glycans of glycoproteins. Sias are indispensable for vertebrate development, because organisms deficient in some enzymes in the Sia synthetic pathway are lethal during the development. However, it remains unknown if the difference of Siaα2,6Gal or α2,3Gal linkage has a critical meaning. To find a clue to understand significance of the linkage difference at the organism level, medaka was used as a vertebrate model. In embryos, Siaα2,6Gal epitopes recognized by Sambucus nigra lectin (SNA) and Siaα2,3Gal epitopes recognized by Maackia amurensis lectin (MAA) were enriched in the blastodisc and the yolk sphere, respectively. When these lectins were injected in the perivitelline space, SNA, but not MAA, impaired embryo body formation at 1 day post-fertilization (dpf). Most Siaα2,6Gal epitopes occurred on N-glycans owing to their sensitivity to peptide:N-glycanase. Of knockout-medaka (KO) for either of two β-galactoside:α2,6-sialyltransferase genes, ST6Gal I and ST6Gal II, only ST6Gal I-KO showed severe cardiac abnormalities at 7-16 dpf, leading to lethality at 14-18 dpf. Interestingly, however, these cardiac abnormalities of ST6Gal I-KO were rescued not only by forced expression of ST6Gal I, but also by that of ST6Gal II and the β-galactoside:α2,3-sialyltransferase IV gene (ST3Gal IV). Taken together, the Siaα2,6Gal linkage synthesized by ST6Gal I are critical in heart development; however, it can be replaced by the linkages synthesized by ST6Gal II and ST3Gal IV. These data suggest that sialylation itself is more important than its particular linkage for the heart development.
Collapse
Affiliation(s)
- Takayuki Omoto
- Bioscience and Biotechnology Center, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Di Wu
- Bioscience and Biotechnology Center, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan; Institute for Glyco-core Research, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Emi Maruyama
- Bioscience and Biotechnology Center, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Katsue Tajima
- Bioscience and Biotechnology Center, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Masaya Hane
- Bioscience and Biotechnology Center, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan; Institute for Glyco-core Research, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Chihiro Sato
- Bioscience and Biotechnology Center, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan; Institute for Glyco-core Research, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Ken Kitajima
- Bioscience and Biotechnology Center, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan; Institute for Glyco-core Research, Nagoya University, Chikusa, Nagoya, 464-8601, Japan.
| |
Collapse
|
7
|
Läubli H, Nalle SC, Maslyar D. Targeting the Siglec-Sialic Acid Immune Axis in Cancer: Current and Future Approaches. Cancer Immunol Res 2022; 10:1423-1432. [PMID: 36264237 PMCID: PMC9716255 DOI: 10.1158/2326-6066.cir-22-0366] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/08/2022] [Accepted: 09/01/2022] [Indexed: 01/10/2023]
Abstract
The sialic acid-binding immunoglobulin-like lectin (Siglec)-sialic acid immune axis is an evolutionarily conserved immunoregulatory pathway that provides a mechanism for establishing self-recognition and combatting invasive pathogens. Perturbations in the pathway lead to many immune dysregulated diseases, including autoimmunity, neurodegeneration, allergic conditions, and cancer. The purpose of this review is to provide a brief overview of the relationship between Siglecs and sialic acid as they relate to human health and disease, to consider current Siglec-based therapeutics, and to discuss new therapeutic approaches targeting the Siglec-sialic acid immune axis, with a focus on cancer.
Collapse
Affiliation(s)
- Heinz Läubli
- Laboratory for Cancer Immunotherapy, Department of Biomedicine, University, of Basel, Basel, Switzerland.,Division of Oncology, University Hospital Basel, Basel, Switzerland.,Corresponding Author: Heinz Läubli, University Hospital Basel, Petersgraben 4, Basel 4031, Switzerland. Phone: 416-1556-5212; Fax: 416-1265-5316; E-mail:
| | | | | |
Collapse
|
8
|
Sui D, Liang K, Gui Y, Du Z, Xin D, Yu G, Zhai W, Liu X, Song Y, Deng Y. Optimization design of sialic acid derivatives enhances the performance of liposomes for modulating immunosuppressive tumor microenvironments. Life Sci 2022; 310:121081. [DOI: 10.1016/j.lfs.2022.121081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022]
|
9
|
Dudek B, Rybka J, Bugla-Płoskońska G, Korzeniowska-Kowal A, Futoma-Kołoch B, Pawlak A, Gamian A. Biological functions of sialic acid as a component of bacterial endotoxin. Front Microbiol 2022; 13:1028796. [PMID: 36338080 PMCID: PMC9631793 DOI: 10.3389/fmicb.2022.1028796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/05/2022] [Indexed: 11/28/2022] Open
Abstract
Lipopolysaccharide (endotoxin, LPS) is an important Gram-negative bacteria antigen. LPS of some bacteria contains sialic acid (Neu5Ac) as a component of O-antigen (O-Ag), in this review we present an overview of bacteria in which the presence of Neu5Ac has been confirmed in their outer envelope and the possible ways that bacteria can acquire Neu5Ac. We explain the role of Neu5Ac in bacterial pathogenesis, and also involvement of Neu5Ac in bacterial evading the host innate immunity response and molecular mimicry phenomenon. We also highlight the role of sialic acid in the mechanism of bacterial resistance to action of serum complement. Despite a number of studies on involvement of Neu5Ac in bacterial pathogenesis many aspects of this phenomenon are still not understood.
Collapse
Affiliation(s)
- Bartłomiej Dudek
- Department of Microbiology, University of Wrocław, Wrocław, Poland
- *Correspondence: Bartłomiej Dudek,
| | - Jacek Rybka
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | | | - Agnieszka Korzeniowska-Kowal
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | | | | | - Andrzej Gamian
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
- Andrzej Gamian,
| |
Collapse
|
10
|
Immune disguise: the mechanisms of Neu5Gc inducing autoimmune and transplant rejection. Genes Immun 2022; 23:175-182. [PMID: 36151402 DOI: 10.1038/s41435-022-00182-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/16/2022] [Accepted: 09/05/2022] [Indexed: 11/08/2022]
Abstract
Organ (stem cell) transplantation is the most effective treatment for advanced organ failure. Neu5Gc (N-hydroxyacetylneuraminic acid) is a pathogenic non-human sialic acid, which is very similar to the molecular structure of Neu5Ac (N-acetylneuraminic acid) in human body. Neu5Gc has the function of "immune disguise", which is the main obstacle to transplantation. Gene knockout such as cytidine monophosphate-N-acetylneuraminidase (CMAH) reduces donor antigenicity, making xenotransplantation from fiction to reality. Exploring the immune disguise event in this emerging field has become a hot topic in the research of transplantation immune tolerance mechanism.
Collapse
|
11
|
Liu D, Liu J, Ye F, Su Y, Cheng J, Zhang Q. Risk factors and postnatal biomarkers for acute placental inflammatory lesions and intrauterine infections in preterm infants. Eur J Pediatr 2022; 181:3429-3438. [PMID: 35831682 PMCID: PMC9395443 DOI: 10.1007/s00431-022-04545-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/12/2022] [Accepted: 06/23/2022] [Indexed: 11/23/2022]
Abstract
The purpose of this study is to explore risk factors of acute placental inflammatory lesions and the potential postnatal serum biomarkers for predicting the severity of intrauterine infection in preterm infants. We performed a retrospective analysis of premature infants with or without acute placental inflammatory lesions and their mothers by chart review for clinical data and placental histopathology. The preterm infants with acute placental inflammatory lesions had a higher rate of premature rupture of membranes (PROM), a longer duration of PROM, and a higher level of serum sialic acid (SIA) than those of the non-inflammation group (all p < 0.001). According to the different inflammatory histological structures, preterm infants with funisitis had a dominant longer duration of PROM than others (p < 0.05), and their gestational age was youngest among all the infants (p < 0.05). Furthermore, they had the highest content of serum SIA above other groups. The preterm infants in the acute histological chorioamnionitis group showed a similar trend of clinical manifestation and laboratory parameters with the funisitis group. Moreover, the closer the placental lesions were to the fetus, the lower the gestational age of preterm infants was, and the higher the serum SIA content was. CONCLUSION We utilized a simple and precise anatomically category method of placental inflammatory histopathology for pediatricians to distinguish the extent of fetal inflammatory response for representing early-onset infectious diseases of preterm infants. SIA might be one of the potential early-stage serum biomarkers to reflect the severe intrauterine infections and could guide the postnatal anti-infection treatment. WHAT IS KNOWN • Acute placental inflammatory lesion contributes to preterm birth and a series of complications in preterm infants. • C-reactive protein and interleukin-6 in neonatal blood can be used as biomarkers for potential early-onset sepsis, but they are influenced by the postnatal physiological changes of preterm infants. WHAT IS NEW • The value of serum sialic acids of preterm infants within 1-hour afterbirth may be one of the rapid postnatal biomarkers for evaluating the severity of intra-amniotic infection. • The closer the placental lesions are to the fetus, the higher the content of serum sialic acid is.
Collapse
Affiliation(s)
- Die Liu
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Jing Liu
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Fang Ye
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Yunchao Su
- Department of Pathology, China-Japan Friendship Hospital, Beijing, China
| | - Jiaoying Cheng
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, China.
| | - Qi Zhang
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
12
|
Hawash MBF, El-Deeb MA, Gaber R, Morsy KS. The buried gems of disease tolerance in animals: Evolutionary and interspecies comparative approaches: Interspecies comparative approaches are valuable tools for exploring potential new mechanisms of disease tolerance in animals: Interspecies comparative approaches are valuable tools for exploring potential new mechanisms of disease tolerance in animals. Bioessays 2022; 44:e2200080. [PMID: 36050881 DOI: 10.1002/bies.202200080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 11/07/2022]
Abstract
Host defense mechanisms are categorized into different strategies, namely, avoidance, resistance and tolerance. Resistance encompasses mechanisms that directly kill the pathogen while tolerance is mainly concerned with alleviating the harsh consequences of the infection regardless of the pathogen burden. Resistance is well-known strategy in immunology while tolerance is relatively new. Studies addressed tolerance mainly using mouse models revealing a wide range of interesting tolerance mechanisms. Herein, we aim to emphasize on the interspecies comparative approaches to explore potential new mechanisms of disease tolerance. We will discuss mechanisms of tolerance with focus on those that were revealed using comparative study designs of mammals followed by summarizing the reasons for adopting comparative approaches on disease tolerance studies. Disease tolerance is a relatively new concept in immunology, we believe combining comparative studies with model organism study designs will enhance our understanding to tolerance and unveil new mechanisms of tolerance.
Collapse
Affiliation(s)
- Mohamed B F Hawash
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt.,Biochemistry and Molecular Biomedicine Department, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Mohamed A El-Deeb
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Rahma Gaber
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Kareem S Morsy
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
13
|
de Lederkremer RM, Giorgi ME, Agusti R. trans-Sialylation: a strategy used to incorporate sialic acid into oligosaccharides. RSC Chem Biol 2022; 3:121-139. [PMID: 35360885 PMCID: PMC8827155 DOI: 10.1039/d1cb00176k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/20/2021] [Indexed: 01/02/2023] Open
Abstract
Sialic acid, as a component of cell surface glycoconjugates, plays a crucial role in recognition events. Efficient synthetic methods are necessary for the supply of sialosides in enough quantities for biochemical and immunological studies. Enzymatic glycosylations obviate the steps of protection and deprotection of the constituent monosaccharides required in a chemical synthesis. Sialyl transferases with CMP-Neu5Ac as an activated donor were used for the construction of α2-3 or α2-6 linkages to terminal galactose or N-acetylgalactosamine units. trans-Sialidases may transfer sialic acid from a sialyl glycoside to a suitable acceptor and specifically construct a Siaα2-3Galp linkage. The trans-sialidase of Trypanosoma cruzi (TcTS), which fulfills an important role in the pathogenicity of the parasite, is the most studied one. The recombinant enzyme was used for the sialylation of β-galactosyl oligosaccharides. One of the main advantages of trans-sialylation is that it circumvents the use of the high energy nucleotide. Easily available glycoproteins with a high content of sialic acid such as fetuin and bovine κ-casein-derived glycomacropeptide (GMP) have been used as donor substrates. Here we review the trans-sialidase from various microorganisms and describe their application for the synthesis of sialooligosaccharides.
Collapse
Affiliation(s)
- Rosa M de Lederkremer
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Universidad de Buenos Aires Buenos Aires Argentina
- CONICET - Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR) Buenos Aires Argentina
| | - María Eugenia Giorgi
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Universidad de Buenos Aires Buenos Aires Argentina
- CONICET - Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR) Buenos Aires Argentina
| | - Rosalía Agusti
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Universidad de Buenos Aires Buenos Aires Argentina
- CONICET - Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR) Buenos Aires Argentina
| |
Collapse
|
14
|
A point-mutation in the C-domain of CMP-sialic acid synthetase leads to lethality of medaka due to protein insolubility. Sci Rep 2021; 11:23211. [PMID: 34853329 PMCID: PMC8636478 DOI: 10.1038/s41598-021-01715-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/05/2021] [Indexed: 01/22/2023] Open
Abstract
Vertebrate CMP-sialic acid synthetase (CSS), which catalyzes the synthesis of CMP-sialic acid (CMP-Sia), consists of a 28 kDa-N-domain and a 20 kDa-C-domain. The N-domain is known to be a catalytic domain; however, the significance of the C-domain still remains unknown. To elucidate the function of the C-domain at the organism level, we screened the medaka TILLING library and obtained medaka with non-synonymous mutations (t911a), or single amino acid substitutions of CSS, L304Q, in the C-domain. Prominently, most L304Q medaka was lethal within 19 days post-fertilization (dpf). L304Q young fry displayed free Sia accumulation, and impairment of sialylation, up to 8 dpf. At 8 dpf, a marked abnormality in ventricular contraction and skeletal myogenesis was observed. To gain insight into the mechanism of L304Q-induced abnormalities, L304Q was biochemically characterized. Although bacterially expressed soluble L304Q and WT showed the similar Vmax/Km values, very few soluble L304Q was detected when expressed in CHO cells in sharp contrast to the WT. Additionally, the thermostability of various mutations of L304 greatly decreased, except for WT and L304I. These results suggest that L304 is important for the stability of CSS, and that an appropriate level of expression of soluble CSS is significant for animal survival.
Collapse
|
15
|
Episymbiotic Saccharibacteria suppresses gingival inflammation and bone loss in mice through host bacterial modulation. Cell Host Microbe 2021; 29:1649-1662.e7. [PMID: 34637779 DOI: 10.1016/j.chom.2021.09.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/23/2021] [Accepted: 09/16/2021] [Indexed: 12/14/2022]
Abstract
Saccharibacteria (TM7) are obligate epibionts living on the surface of their host bacteria and are strongly correlated with dysbiotic microbiomes during periodontitis and other inflammatory diseases, suggesting they are putative pathogens. However, due to the recalcitrance of TM7 cultivation, causal research to investigate their role in inflammatory diseases is lacking. Here, we isolated multiple TM7 species on their host bacteria from periodontitis patients. These TM7 species reduce inflammation and consequential bone loss by modulating host bacterial pathogenicity in a mouse ligature-induced periodontitis model. Two host bacterial functions involved in collagen binding and utilization of eukaryotic sialic acid are required for inducing bone loss and are altered by TM7 association. This TM7-mediated downregulation of host bacterial pathogenicity is shown for multiple TM7/host bacteria pairs, suggesting that, in contrast to their suspected pathogenic role, TM7 could protect mammalian hosts from inflammatory damage induced by their host bacteria.
Collapse
|
16
|
Gianchecchi E, Arena A, Fierabracci A. Sialic Acid-Siglec Axis in Human Immune Regulation, Involvement in Autoimmunity and Cancer and Potential Therapeutic Treatments. Int J Mol Sci 2021; 22:5774. [PMID: 34071314 PMCID: PMC8198044 DOI: 10.3390/ijms22115774] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022] Open
Abstract
Siglecs are sialic acid-binding immunoglobulin-like lectins. Most Siglecs function as transmembrane receptors mainly expressed on blood cells in a cell type-specific manner. They recognize and bind sialic acids in specific linkages on glycoproteins and glycolipids. Since Sia is a self-molecule, Siglecs play a role in innate immune responses by distinguishing molecules as self or non-self. Increasing evidence supports the involvement of Siglecs in immune signaling representing immune checkpoints able to regulate immune responses in inflammatory diseases as well as cancer. Although further studies are necessary to fully understand the involvement of Siglecs in pathological conditions as well as their interactions with other immune regulators, the development of therapeutic approaches that exploit these molecules represents a tremendous opportunity for future treatments of several human diseases, as demonstrated by their application in several clinical trials. In the present review, we discuss the involvement of Siglecs in the regulation of immune responses, with particular focus on autoimmunity and cancer and the chance to target the sialic acid-Siglec axis as novel treatment strategy.
Collapse
Affiliation(s)
- Elena Gianchecchi
- VisMederi srl, Strada del Petriccio e Belriguardo, 35, 53100 Siena, Italy;
- Infectivology and Clinical Trials Research Area, Bambino Gesù Children’s Hospital, IRCCS, Viale San Paolo 15, 00146 Rome, Italy;
| | - Andrea Arena
- Infectivology and Clinical Trials Research Area, Bambino Gesù Children’s Hospital, IRCCS, Viale San Paolo 15, 00146 Rome, Italy;
| | - Alessandra Fierabracci
- Infectivology and Clinical Trials Research Area, Bambino Gesù Children’s Hospital, IRCCS, Viale San Paolo 15, 00146 Rome, Italy;
| |
Collapse
|
17
|
Shew CJ, Carmona-Mora P, Soto DC, Mastoras M, Roberts E, Rosas J, Jagannathan D, Kaya G, O'Geen H, Dennis MY. Diverse Molecular Mechanisms Contribute to Differential Expression of Human Duplicated Genes. Mol Biol Evol 2021; 38:3060-3077. [PMID: 34009325 PMCID: PMC8321529 DOI: 10.1093/molbev/msab131] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/08/2021] [Accepted: 04/28/2021] [Indexed: 12/24/2022] Open
Abstract
Emerging evidence links genes within human-specific segmental duplications (HSDs) to traits and diseases unique to our species. Strikingly, despite being nearly identical by sequence (>98.5%), paralogous HSD genes are differentially expressed across human cell and tissue types, though the underlying mechanisms have not been examined. We compared cross-tissue mRNA levels of 75 HSD genes from 30 families between humans and chimpanzees and found expression patterns consistent with relaxed selection on or neofunctionalization of derived paralogs. In general, ancestral paralogs exhibited greatest expression conservation with chimpanzee orthologs, though exceptions suggest certain derived paralogs may retain or supplant ancestral functions. Concordantly, analysis of long-read isoform sequencing data sets from diverse human tissues and cell lines found that about half of derived paralogs exhibited globally lower expression. To understand mechanisms underlying these differences, we leveraged data from human lymphoblastoid cell lines (LCLs) and found no relationship between paralogous expression divergence and post-transcriptional regulation, sequence divergence, or copy-number variation. Considering cis-regulation, we reanalyzed ENCODE data and recovered hundreds of previously unidentified candidate CREs in HSDs. We also generated large-insert ChIP-sequencing data for active chromatin features in an LCL to better distinguish paralogous regions. Some duplicated CREs were sufficient to drive differential reporter activity, suggesting they may contribute to divergent cis-regulation of paralogous genes. This work provides evidence that cis-regulatory divergence contributes to novel expression patterns of recent gene duplicates in humans.
Collapse
Affiliation(s)
- Colin J Shew
- Genome Center, University of California Davis, CA, USA.,Integrative Genetics and Genomics Graduate Group, University of California Davis, CA, USA
| | - Paulina Carmona-Mora
- Genome Center, University of California Davis, CA, USA.,MIND Institute, University of California, Davis, CA, USA.,Autism Research Training Program, University of California, Davis, CA, USA
| | - Daniela C Soto
- Genome Center, University of California Davis, CA, USA.,Integrative Genetics and Genomics Graduate Group, University of California Davis, CA, USA
| | - Mira Mastoras
- Genome Center, University of California Davis, CA, USA
| | | | - Joseph Rosas
- Genome Center, University of California Davis, CA, USA.,Postbaccalaureate Research Education Program, University of California, Davis, CA, USA
| | | | - Gulhan Kaya
- Genome Center, University of California Davis, CA, USA
| | | | - Megan Y Dennis
- Genome Center, University of California Davis, CA, USA.,Integrative Genetics and Genomics Graduate Group, University of California Davis, CA, USA.,MIND Institute, University of California, Davis, CA, USA.,Autism Research Training Program, University of California, Davis, CA, USA.,Postbaccalaureate Research Education Program, University of California, Davis, CA, USA.,Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
| |
Collapse
|
18
|
Di Carluccio C, Forgione RE, Montefiori M, Civera M, Sattin S, Smaldone G, Fukase K, Manabe Y, Crocker PR, Molinaro A, Marchetti R, Silipo A. Behavior of glycolylated sialoglycans in the binding pockets of murine and human CD22. iScience 2021; 24:101998. [PMID: 33490906 PMCID: PMC7811138 DOI: 10.1016/j.isci.2020.101998] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/27/2020] [Accepted: 12/23/2020] [Indexed: 12/18/2022] Open
Abstract
Siglecs (sialic acid binding immunoglobulin (Ig)-like lectins) constitute a group of 15 human and 9 murine cell-surface transmembrane receptors belonging to the I-type lectin family, mostly expressed on innate immune cells and characterized by broadly similar structural features. Here, the prominent inhibitory CD22 (Siglec-2), well known in maintaining tolerance and preventing autoimmune responses on B cells, is studied in its human and murine forms in complex with sialoglycans. In detail, the role of the N-glycolyl neuraminic acid (Neu5Gc) moiety in the interaction with both orthologues was explored. The analysis of the binding mode was carried out by the combination of NMR spectroscopy, computational approaches, and CORCEMA-ST calculations. Our findings provide a first model of Neu5Gc recognition by h-CD22 and show a comparable molecular recognition profile by h- and m-CD22. These data open the way to innovative diagnostic and/or therapeutic methodologies to be used in the modulation of the immune responses.
Collapse
Affiliation(s)
- Cristina Di Carluccio
- Dipartimento di Scienze Chimiche, Complesso Universitario Monte Sant’Angelo, Università di Napoli Federico II, Via Cintia 4, 80126 Napoli, Italy
| | - Rosa Ester Forgione
- Dipartimento di Scienze Chimiche, Complesso Universitario Monte Sant’Angelo, Università di Napoli Federico II, Via Cintia 4, 80126 Napoli, Italy
| | - Marco Montefiori
- Dipartimento di Chimica, Università Degli Studi di Milano, Via Golgi, 19, 20133 Milano, Italy
| | - Monica Civera
- Dipartimento di Chimica, Università Degli Studi di Milano, Via Golgi, 19, 20133 Milano, Italy
| | - Sara Sattin
- Dipartimento di Chimica, Università Degli Studi di Milano, Via Golgi, 19, 20133 Milano, Italy
| | | | - K. Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, Suita, Japan
| | - Y. Manabe
- Department of Chemistry, Graduate School of Science, Osaka University, Suita, Japan
| | - Paul R. Crocker
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Antonio Molinaro
- Dipartimento di Scienze Chimiche, Complesso Universitario Monte Sant’Angelo, Università di Napoli Federico II, Via Cintia 4, 80126 Napoli, Italy
| | - Roberta Marchetti
- Dipartimento di Scienze Chimiche, Complesso Universitario Monte Sant’Angelo, Università di Napoli Federico II, Via Cintia 4, 80126 Napoli, Italy
| | - Alba Silipo
- Dipartimento di Scienze Chimiche, Complesso Universitario Monte Sant’Angelo, Università di Napoli Federico II, Via Cintia 4, 80126 Napoli, Italy
| |
Collapse
|
19
|
Klaus C, Liao H, Allendorf DH, Brown GC, Neumann H. Sialylation acts as a checkpoint for innate immune responses in the central nervous system. Glia 2020; 69:1619-1636. [PMID: 33340149 DOI: 10.1002/glia.23945] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 12/28/2022]
Abstract
Sialic acids are monosaccharides that normally terminate the glycan chains of cell surface glyco-proteins and -lipids in mammals, and are highly enriched in the central nervous tissue. Sialic acids are conjugated to proteins and lipids (termed "sialylation") by specific sialyltransferases, and are removed ("desialylation") by neuraminidases. Cell surface sialic acids are sensed by complement factor H (FH) to inhibit complement activation or by sialic acid-binding immunoglobulin-like lectin (SIGLEC) receptors to inhibit microglial activation, phagocytosis, and oxidative burst. In contrast, desialylation of cells enables binding of the opsonins C1, calreticulin, galectin-3, and collectins, stimulating phagocytosis of such cells. Hypersialylation is used by bacteria and cancers as camouflage to escape immune recognition, while polysialylation of neurons protects synapses and neurogenesis. Insufficient lysosomal cleavage of sialylated molecules can lead to lysosomal accumulation of lipids and aggregated proteins, which if excessive may be expelled into the extracellular space. On the other hand, desialylation of immune receptors can activate them or trigger removal of proteins. Loss of inhibitory SIGLECs or FH triggers reduced clearance of aggregates, oxidative brain damage and complement-mediated retinal damage. Thus, cell surface sialylation recognized by FH, SIGLEC, and other immune-related receptors acts as a major checkpoint inhibitor of innate immune responses in the central nervous system, while excessive cleavage of sialic acid residues and consequently removing this checkpoint inhibitor may trigger lipid accumulation, protein aggregation, inflammation, and neurodegeneration.
Collapse
Affiliation(s)
- Christine Klaus
- Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany
| | - Huan Liao
- Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany
| | | | - Guy C Brown
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Harald Neumann
- Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany
| |
Collapse
|
20
|
Van Rompuy LS, Moons J, Aelbers J, Struyf T, Van den Ende W, Parac‐Vogt TN. Selective Hydrolysis of Terminal Glycosidic Bond in α‐1‐Acid Glycoprotein Promoted by Keggin and Wells–Dawson Type Heteropolyacids. Chemistry 2020; 26:16463-16471. [DOI: 10.1002/chem.202003189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Indexed: 01/18/2023]
Affiliation(s)
| | - Jens Moons
- Department of Chemistry KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Jo Aelbers
- Department of Chemistry KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Tom Struyf
- Department of Biology Molecular Plant Biology KU Leuven Kasteelpark Arenberg 31 3001 Leuven Belgium
| | - Wim Van den Ende
- Department of Biology Molecular Plant Biology KU Leuven Kasteelpark Arenberg 31 3001 Leuven Belgium
| | | |
Collapse
|
21
|
Abstract
Numerous bioactive components exist in human milk including free oligosaccharides, which represent some of the most important, and provide numerous health benefits to the neonate. Considering the demonstrated value of these compounds, much interest lies in characterising structurally similar oligosaccharides in the dairy industry. In this study, the impacts of days post-parturition and parity of the cows on the oligosaccharide and lactose profiles of their milk were evaluated. Colostrum and milk samples were obtained from 18 cows 1–5 days after parturition. Three distinct phases were identified using multivariate analysis: colostrum (day 0), transitional milk (days 1–2) and mature milk (days 3–5). LS-tetrasaccharide c, lacto-N-neotetraose, disialyllacto-N-tetraose, 3’-sial-N-acetyllactosamine, 3’-sialyllactose, lacto-N-neohexaose and disialyllactose were found to be highly affiliated with colostrum. Notably, levels of lactose were at their lowest concentration in the colostrum and substantially increased 1-day post-parturition. The cow’s parity was also shown to have a significant effect on the oligosaccharide profile, with first lactation cows containing more disialyllacto-N-tetraose, 6’-sialyllactose and LS-tetrasaccharide compared to cows in their second or third parity. Overall, this study identifies key changes in oligosaccharide and lactose content that clearly distinguish colostrum from transitional and mature milk and may facilitate the collection of specific streams with divergent biological functions.
Collapse
|
22
|
de Fátima Martins M, Honório-Ferreira A, S Reis M, Cortez-Vaz C, Gonçalves CA. Sialic acids expression in newborn rat lungs: implications for pulmonary developmental biology. Acta Histochem 2020; 122:151626. [PMID: 33068965 DOI: 10.1016/j.acthis.2020.151626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 08/15/2020] [Accepted: 09/02/2020] [Indexed: 11/30/2022]
Abstract
Mammalian lung development proceeds during the postnatal period and continues throughout life. Intricate tubular systems of airways and vessels lined by epithelial cells are developed during this process. All cells, and particularly epithelial cells, carry an array of glycans on their surfaces. N-acetylneuraminic (Neu5Ac) and N-glycolylneuraminic (Neu5Gc) acids, two most frequently-occurring sialic acid residues, are essential determinants during development and in the homeostasis of cells and organisms. However, systematic data about the presence of cell surface sialic acids in the postnatal lung and their content is still scarce. In the present study, we addressed the histochemical localization of Neu5Ac > Neu5Gc in 0-day-old rat lungs. Furthermore, both residues were separated, identified and quantified in lung membranes isolated from 0-day-old rat lungs using high-performance liquid chromatography (HPLC) methodologies. Finally, we compared these results with those previously reported by us for adult rat lungs. The Neu5Ac > Neu5Gc residues were located on the surface of ciliated and non-ciliated cells and the median values for both residues in the purified lung membranes of newborn rats were 5.365 and 1.935 μg/mg prot., respectively. Comparing these results with those reported for the adults, it was possible to observe a significant difference between the levels of Neu5Ac and Neu5Gc (p < 0.001). A more substantial change was found for the case of Neu5Ac. The preponderance of Neu5Ac and its expressive increase during the postnatal development points towards a more prominent role of this residue. Bearing in mind that sialic acids are negatively charged molecules, the high content of Neu5Ac could contribute to the formation of an anion "shield" and have a role in pulmonary development and physiology.
Collapse
Affiliation(s)
- Maria de Fátima Martins
- Instituto de Histologia e Embriologia, Faculdade de Medicina, Universidade de Coimbra, Polo I Rua Larga, 3004-504, Coimbra, Portugal; Centro Hospitalar e Universitário de Coimbra, Praceta Prof. Mota Pinto, 3000-075 Coimbra, Portugal.
| | - Ana Honório-Ferreira
- Instituto de Histologia e Embriologia, Faculdade de Medicina, Universidade de Coimbra, Polo I Rua Larga, 3004-504, Coimbra, Portugal
| | - Marco S Reis
- CIEPQPF, Departamento de Engenharia Química, Universidade de Coimbra, Pólo II, Rua Sílvio Lima, 3030-790 Coimbra, Portugal
| | - Catarina Cortez-Vaz
- Instituto de Histologia e Embriologia, Faculdade de Medicina, Universidade de Coimbra, Polo I Rua Larga, 3004-504, Coimbra, Portugal
| | - Carlos Alberto Gonçalves
- Instituto de Histologia e Embriologia, Faculdade de Medicina, Universidade de Coimbra, Polo I Rua Larga, 3004-504, Coimbra, Portugal; Centro Hospitalar e Universitário de Coimbra, Praceta Prof. Mota Pinto, 3000-075 Coimbra, Portugal
| |
Collapse
|
23
|
Liao H, Klaus C, Neumann H. Control of Innate Immunity by Sialic Acids in the Nervous Tissue. Int J Mol Sci 2020; 21:ijms21155494. [PMID: 32752058 PMCID: PMC7432451 DOI: 10.3390/ijms21155494] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/11/2022] Open
Abstract
Sialic acids (Sias) are the most abundant terminal sugar residues of glycoproteins and glycolipids on the surface of mammalian cells. The nervous tissue is the organ with the highest expression level of Sias. The ‘sialylation’ of glycoconjugates is performed via sialyltransferases, whereas ‘desialylation’ is done by sialidases or is a possible consequence of oxidative damage. Sialic acid residues on the neural cell surfaces inhibit complement and microglial activation, as well as phagocytosis of the underlying structures, via binding to (i) complement factor H (CFH) or (ii) sialic acid-binding immunoglobulin-like lectin (SIGLEC) receptors. In contrast, activated microglial cells show sialidase activity that desialylates both microglia and neurons, and further stimulates innate immunity via microglia and complement activation. The desialylation conveys neurons to become susceptible to phagocytosis, as well as triggers a microglial phagocytosis-associated oxidative burst and inflammation. Dysfunctions of the ‘Sia–SIGLEC’ and/or ‘Sia–complement’ axes often lead to neurological diseases. Thus, Sias on glycoconjugates of the intact glycocalyx and its desialylation are major regulators of neuroinflammation.
Collapse
Affiliation(s)
| | | | - Harald Neumann
- Correspondence: ; Tel.: +49-228-6885-500; Fax: +49-228-6885-501
| |
Collapse
|
24
|
Martins MDF, Reis MS, Honório-Ferreira A, Gonçalves CA. Presence of N-acetylneuraminic acid in the lung during postnatal development. Eur J Histochem 2020; 64:3124. [PMID: 32378837 PMCID: PMC7212207 DOI: 10.4081/ejh.2020.3124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/18/2020] [Indexed: 12/17/2022] Open
Abstract
Sialic acids, particularly N-acetylneuraminic acid (Neu5Ac), are present as terminal components of rich and complex oligosaccharide chains, which are termed glycans, and are exhibited on the cell surfaces, especially on epithelial cells. Crucial in the 'social behavior' of the cell, sialic acids play vital roles in many physiological and pathological phenomena. The aim of the present study was to separate, identify, and quantify Neu5Ac in purified lung membranes from 4-, 14-, and 21-day-old animals, followed by the statistical analysis of these results with our previously reported data (0-day-old and adult results). Complementary, ultrastructural methodologies were used. The differences in the Neu5Ac values obtained across the examined postnatal-lung development relevant ages studied were found to be statistically significant. A substantial increase in the mean level of this compound was found during the period of 'bulk' alveolarization, which takes place from postnatal day 4 to 14 (P4-P14). The comparison of the mean levels of Neu5Ac, during microvascular maturation (mainly between P12 and P21), reveals that the difference, although statistically significant, is the least significant difference among all the pair-wise differences between the developmental stages. The presence of sub-terminal N-acetylgalactosamine (GalNAc)/Galactose (Gal) residues with terminal sialic acids on the bronchioloalveolar cell surfaces was confirmed using lung ultra-thin sections of adult and 0-day-old animals. These results showed that, although Neu5Ac levels increase throughout postnatal lung development, this sialic acid was substantially added to epithelial cell surfaces during the "bulk" alveolarization period, while its presence was less important during the microvascular maturation period. Bearing in mind that sialic acids are negatively charged and create charge repulsions between adjacent cells, we hypothesized that they can substantially contribute to postnatal alveolar formation and maturation.
Collapse
Affiliation(s)
- Maria de Fátima Martins
- Instituto de Histologia e Embriologia, Faculdade de Medicina, Universidade de Coimbra; Centro Hospitalar e Universitário de Coimbra.
| | - Marco S Reis
- Department of Chemical Engineering, University of Coimbra.
| | - Ana Honório-Ferreira
- Instituto de Histologia e Embriologia, Faculdade de Medicina, Universidade de Coimbra.
| | - Carlos Alberto Gonçalves
- Instituto de Histologia e Embriologia, Faculdade de Medicina, Universidade de Coimbra; Centro Hospitalar e Universitário de Coimbra.
| |
Collapse
|
25
|
Tector AJ, Mosser M, Tector M, Bach JM. The Possible Role of Anti-Neu5Gc as an Obstacle in Xenotransplantation. Front Immunol 2020; 11:622. [PMID: 32351506 PMCID: PMC7174778 DOI: 10.3389/fimmu.2020.00622] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 03/18/2020] [Indexed: 12/20/2022] Open
Abstract
Seventy to ninety percentage of preformed xenoreactive antibodies in human serum bind to the galactose-α(1,3)-galactose Gal epitope, and the creation of Gal knockout (KO) pigs has eliminated hyperacute rejection as a barrier to xenotransplantation. Now other glycan antigens are barriers to move ahead with xenotransplantation, and the N-glycolyl neuraminic acid, Neu5Gc (or Hanganutziu-Deicher antigen), is also a major pig xenoantigen. Humans have anti-Neu5Gc antibodies. Several data indicate a strong immunogenicity of Neu5Gc in humans that may contribute to an important part in antibody-dependent injury to pig xenografts. Pig islets express Neu5Gc, which reacted with diet-derived human antibodies and mice deleted for Neu5Gc reject pancreatic islets from wild-type counterpart. However, Neu5Gc positive heart were not rejected in Neu5Gc KO mice indicating that the role of Neu5Gc-specific antibodies has to be nuanced and depend of the graft situation parameters (organ/tissue, recipient, implication of other glycan antigens). Recently generated Gal/Neu5Gc KO pigs eliminate the expression of Gal and Neu5Gc, and improve the crossmatch of humans with the pig. This review summarizes the current and recent experimental and (pre)clinical data on the Neu5Gc immunogenicity and emphasize of the potential impact of anti-Neu5Gc antibodies in limiting xenotransplantation in humans.
Collapse
Affiliation(s)
- Alfred Joseph Tector
- Department of Surgery, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| | - Mathilde Mosser
- Immuno-Endocrinology Unit (IECM), USC1383, Oniris, INRA, Nantes, France
| | - Matthew Tector
- Department of Surgery, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| | - Jean-Marie Bach
- Immuno-Endocrinology Unit (IECM), USC1383, Oniris, INRA, Nantes, France
| |
Collapse
|
26
|
Characterization of Sialic Acid-Binding Immunoglobulin-Type Lectins in Fish Reveals Teleost-Specific Structures and Expression Patterns. Cells 2020; 9:cells9040836. [PMID: 32244286 PMCID: PMC7226832 DOI: 10.3390/cells9040836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/15/2022] Open
Abstract
The cellular glycocalyx of vertebrates is frequently decorated with sialic acid residues. These sialylated structures are recognized by sialic acid-binding immunoglobulin-type lectins (Siglecs) of immune cells, which modulate their responsiveness. Fifteen Siglecs are known to be expressed in humans, but only four Siglecs are regularly present in fish: Siglec1, CD22, myelin-associated glycoprotein (MAG), and Siglec15. While several studies have dealt with the physiological roles of these four Siglecs in mammals, little is known about Siglecs in fish. In the present manuscript, the expression landscapes of these Siglecs were determined in the two salmonid species Oncorhynchus mykiss and Coregonus maraena and in the percid fish Sander lucioperca. This gene-expression profiling revealed that the expression of MAG is not restricted to neuronal cells but is detectable in all analyzed blood cells, including erythrocytes. The teleostean MAG contains the inhibitory motif ITIM; therefore, an additional immunomodulatory function of MAG is likely to be present in fish. Besides MAG, Siglec1, CD22, and Siglec15 were also expressed in all analyzed blood cell populations. Interestingly, the expression profiles of genes encoding Siglecs and particular associated enzymes changed in a gene- and tissue-specific manner when Coregonus maraena was exposed to handling stress. Thus, the obtained data indicate once more that stress directly affects immune-associated processes.
Collapse
|
27
|
Boligan KF, Oechtering J, Keller CW, Peschke B, Rieben R, Bovin N, Kappos L, Cummings RD, Kuhle J, von Gunten S, Lünemann JD. Xenogeneic Neu5Gc and self-glycan Neu5Ac epitopes are potential immune targets in MS. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2020; 7:7/2/e676. [PMID: 32014849 PMCID: PMC7051216 DOI: 10.1212/nxi.0000000000000676] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/16/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To explore the repertoire of glycan-specific immunoglobulin G (IgG) antibodies in treatment-naive patients with relapsing-remitting multiple sclerosis (RRMS). METHODS A systems-level approach combined with glycan array technologies was used to determine specificities and binding reactivities of glycan-specific IgGs in treatment-naive patients with RRMS compared with patients with noninflammatory and other inflammatory neurologic diseases. RESULTS We identified a unique signature of glycan-binding IgG in MS with high reactivities to the dietary xenoglycan N-glycolylneuraminic acid (Neu5Gc) and the self-glycan N-acetylneuraminic acid (Neu5Ac). Increased reactivities of serum IgG toward Neu5Gc and Neu5Ac were additionally observed in an independent, treatment-naive cohort of patients with RRMS. CONCLUSION Patients with MS show increased IgG reactivities to structurally related xenogeneic and human neuraminic acids. The discovery of these glycan-specific epitopes as immune targets and potential biomarkers in MS merits further investigation.
Collapse
Affiliation(s)
- Kayluz F Boligan
- From the Institute of Pharmacology (K.F.B., S.v.G.), University of Bern, Switzerland; Neurologic Clinic and Policlinic (J.O., L.K., J.K.), Departments of Medicine, Clinical Research, Biomedicine and Biomedical Engineering, University Hospital Basel, University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (C.W.K., J.D.L.), University Hospital Münster, University of Münster, Germany; Laboratory of Neuroinflammation (C.W.K., B.P., J.D.L.), Institute of Experimental Immunology, University of Zurich, Switzerland; Department for BioMedical Research (DBMR) (R.R.), University of Bern, Switzerland; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Science (N.B.), Moscow, Russia; Auckland University of Technology (N.B.), New Zealand; and Department of Surgery (R.D.C.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Johanna Oechtering
- From the Institute of Pharmacology (K.F.B., S.v.G.), University of Bern, Switzerland; Neurologic Clinic and Policlinic (J.O., L.K., J.K.), Departments of Medicine, Clinical Research, Biomedicine and Biomedical Engineering, University Hospital Basel, University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (C.W.K., J.D.L.), University Hospital Münster, University of Münster, Germany; Laboratory of Neuroinflammation (C.W.K., B.P., J.D.L.), Institute of Experimental Immunology, University of Zurich, Switzerland; Department for BioMedical Research (DBMR) (R.R.), University of Bern, Switzerland; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Science (N.B.), Moscow, Russia; Auckland University of Technology (N.B.), New Zealand; and Department of Surgery (R.D.C.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Christian W Keller
- From the Institute of Pharmacology (K.F.B., S.v.G.), University of Bern, Switzerland; Neurologic Clinic and Policlinic (J.O., L.K., J.K.), Departments of Medicine, Clinical Research, Biomedicine and Biomedical Engineering, University Hospital Basel, University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (C.W.K., J.D.L.), University Hospital Münster, University of Münster, Germany; Laboratory of Neuroinflammation (C.W.K., B.P., J.D.L.), Institute of Experimental Immunology, University of Zurich, Switzerland; Department for BioMedical Research (DBMR) (R.R.), University of Bern, Switzerland; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Science (N.B.), Moscow, Russia; Auckland University of Technology (N.B.), New Zealand; and Department of Surgery (R.D.C.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Benjamin Peschke
- From the Institute of Pharmacology (K.F.B., S.v.G.), University of Bern, Switzerland; Neurologic Clinic and Policlinic (J.O., L.K., J.K.), Departments of Medicine, Clinical Research, Biomedicine and Biomedical Engineering, University Hospital Basel, University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (C.W.K., J.D.L.), University Hospital Münster, University of Münster, Germany; Laboratory of Neuroinflammation (C.W.K., B.P., J.D.L.), Institute of Experimental Immunology, University of Zurich, Switzerland; Department for BioMedical Research (DBMR) (R.R.), University of Bern, Switzerland; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Science (N.B.), Moscow, Russia; Auckland University of Technology (N.B.), New Zealand; and Department of Surgery (R.D.C.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Robert Rieben
- From the Institute of Pharmacology (K.F.B., S.v.G.), University of Bern, Switzerland; Neurologic Clinic and Policlinic (J.O., L.K., J.K.), Departments of Medicine, Clinical Research, Biomedicine and Biomedical Engineering, University Hospital Basel, University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (C.W.K., J.D.L.), University Hospital Münster, University of Münster, Germany; Laboratory of Neuroinflammation (C.W.K., B.P., J.D.L.), Institute of Experimental Immunology, University of Zurich, Switzerland; Department for BioMedical Research (DBMR) (R.R.), University of Bern, Switzerland; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Science (N.B.), Moscow, Russia; Auckland University of Technology (N.B.), New Zealand; and Department of Surgery (R.D.C.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Nicolai Bovin
- From the Institute of Pharmacology (K.F.B., S.v.G.), University of Bern, Switzerland; Neurologic Clinic and Policlinic (J.O., L.K., J.K.), Departments of Medicine, Clinical Research, Biomedicine and Biomedical Engineering, University Hospital Basel, University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (C.W.K., J.D.L.), University Hospital Münster, University of Münster, Germany; Laboratory of Neuroinflammation (C.W.K., B.P., J.D.L.), Institute of Experimental Immunology, University of Zurich, Switzerland; Department for BioMedical Research (DBMR) (R.R.), University of Bern, Switzerland; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Science (N.B.), Moscow, Russia; Auckland University of Technology (N.B.), New Zealand; and Department of Surgery (R.D.C.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Ludwig Kappos
- From the Institute of Pharmacology (K.F.B., S.v.G.), University of Bern, Switzerland; Neurologic Clinic and Policlinic (J.O., L.K., J.K.), Departments of Medicine, Clinical Research, Biomedicine and Biomedical Engineering, University Hospital Basel, University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (C.W.K., J.D.L.), University Hospital Münster, University of Münster, Germany; Laboratory of Neuroinflammation (C.W.K., B.P., J.D.L.), Institute of Experimental Immunology, University of Zurich, Switzerland; Department for BioMedical Research (DBMR) (R.R.), University of Bern, Switzerland; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Science (N.B.), Moscow, Russia; Auckland University of Technology (N.B.), New Zealand; and Department of Surgery (R.D.C.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Richard D Cummings
- From the Institute of Pharmacology (K.F.B., S.v.G.), University of Bern, Switzerland; Neurologic Clinic and Policlinic (J.O., L.K., J.K.), Departments of Medicine, Clinical Research, Biomedicine and Biomedical Engineering, University Hospital Basel, University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (C.W.K., J.D.L.), University Hospital Münster, University of Münster, Germany; Laboratory of Neuroinflammation (C.W.K., B.P., J.D.L.), Institute of Experimental Immunology, University of Zurich, Switzerland; Department for BioMedical Research (DBMR) (R.R.), University of Bern, Switzerland; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Science (N.B.), Moscow, Russia; Auckland University of Technology (N.B.), New Zealand; and Department of Surgery (R.D.C.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Jens Kuhle
- From the Institute of Pharmacology (K.F.B., S.v.G.), University of Bern, Switzerland; Neurologic Clinic and Policlinic (J.O., L.K., J.K.), Departments of Medicine, Clinical Research, Biomedicine and Biomedical Engineering, University Hospital Basel, University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (C.W.K., J.D.L.), University Hospital Münster, University of Münster, Germany; Laboratory of Neuroinflammation (C.W.K., B.P., J.D.L.), Institute of Experimental Immunology, University of Zurich, Switzerland; Department for BioMedical Research (DBMR) (R.R.), University of Bern, Switzerland; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Science (N.B.), Moscow, Russia; Auckland University of Technology (N.B.), New Zealand; and Department of Surgery (R.D.C.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Stephan von Gunten
- From the Institute of Pharmacology (K.F.B., S.v.G.), University of Bern, Switzerland; Neurologic Clinic and Policlinic (J.O., L.K., J.K.), Departments of Medicine, Clinical Research, Biomedicine and Biomedical Engineering, University Hospital Basel, University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (C.W.K., J.D.L.), University Hospital Münster, University of Münster, Germany; Laboratory of Neuroinflammation (C.W.K., B.P., J.D.L.), Institute of Experimental Immunology, University of Zurich, Switzerland; Department for BioMedical Research (DBMR) (R.R.), University of Bern, Switzerland; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Science (N.B.), Moscow, Russia; Auckland University of Technology (N.B.), New Zealand; and Department of Surgery (R.D.C.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Jan D Lünemann
- From the Institute of Pharmacology (K.F.B., S.v.G.), University of Bern, Switzerland; Neurologic Clinic and Policlinic (J.O., L.K., J.K.), Departments of Medicine, Clinical Research, Biomedicine and Biomedical Engineering, University Hospital Basel, University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (C.W.K., J.D.L.), University Hospital Münster, University of Münster, Germany; Laboratory of Neuroinflammation (C.W.K., B.P., J.D.L.), Institute of Experimental Immunology, University of Zurich, Switzerland; Department for BioMedical Research (DBMR) (R.R.), University of Bern, Switzerland; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Science (N.B.), Moscow, Russia; Auckland University of Technology (N.B.), New Zealand; and Department of Surgery (R.D.C.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.
| |
Collapse
|
28
|
Yehuda S, Padler-Karavani V. Glycosylated Biotherapeutics: Immunological Effects of N-Glycolylneuraminic Acid. Front Immunol 2020; 11:21. [PMID: 32038661 PMCID: PMC6989436 DOI: 10.3389/fimmu.2020.00021] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 01/07/2020] [Indexed: 12/14/2022] Open
Abstract
The emerging field of biotherapeutics provides successful treatments for various diseases, yet immunogenicity and limited efficacy remain major concerns for many products. Glycosylation is a key factor determining the pharmacological properties of biotherapeutics, including their stability, solubility, bioavailability, pharmacokinetics, and immunogenicity. Hence, an increased attention is directed at optimizing the glycosylation properties of biotherapeutics. Currently, most biotherapeutics are produced in non-human mammalian cells in light of their ability to produce human-like glycosylation. However, most mammals produce the sialic acid N-glycolylneuraminic acid (Neu5Gc), while humans cannot due to a specific genetic defect. Humans consume Neu5Gc in their diet from mammalian derived foods (red meat and dairy) and produce polyclonal antibodies against diverse Neu5Gc-glycans. Moreover, Neu5Gc can metabolically incorporate into human cells and become presented on surface or secreted glycans, glycoproteins, and glycolipids. Several studies in mice suggested that the combination of Neu5Gc-containing epitopes and anti-Neu5Gc antibodies could contribute to exacerbation of chronic inflammation-mediated diseases (e.g., cancer, cardiovascular diseases, and autoimmunity). This could potentially become complicated with exposure to Neu5Gc-containing biotherapeutics, bio-devices or xenografts. Indeed, Neu5Gc can be found on various approved and marketed biotherapeutics. Here, we provide a perspective review on the possible consequences of Neu5Gc glycosylation of therapeutic protein drugs due to the limited published evidence of Neu5Gc glycosylation on marketed biotherapeutics and studies on their putative effects on immunogenicity, drug efficacy, and safety.
Collapse
Affiliation(s)
- Sharon Yehuda
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Vered Padler-Karavani
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
29
|
Agusti R, Gallo-Rodriguez C, de Lederkremer RM. Trypanosoma cruzi trans-sialidase. A tool for the synthesis of sialylated oligosaccharides. Carbohydr Res 2019; 479:48-58. [PMID: 31132642 DOI: 10.1016/j.carres.2019.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/07/2019] [Accepted: 05/15/2019] [Indexed: 12/14/2022]
Abstract
Cells are covered by a complex array of carbohydrates. Among them, sialosides are of key importance in intracellular adhesion, recognition and signaling. The need for structurally diverse sialosides impelled the search for efficient synthetic methods since their isolation from natural sources is a difficult task. The enzymatic approach obviates the need of a chemical synthesis for protecting or participating groups in the substrates. The trans-sialidase of Trypanosoma cruzi (TcTS) is highly stereospecific for the transfer of sialic acid from an α-sialylglycoside donor to a terminal β-galactopyranosyl unit in the acceptor substrate to form the α-Neu5Ac-(2 → 3)-β-D-Galp motif. The enzyme was cloned and easily available glycoproteins, e.g. fetuin, may be used as donors of sialic acid, constituting strong points for the scalability of TcTS-catalyzed reactions. This review outlines the preparative use of TcTS for the sialylation of oligosaccharides. A detailed description of the substrates used as sialic acid donors, the acceptor substrates and the methods employed to monitor the reaction is included.
Collapse
Affiliation(s)
- Rosalía Agusti
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Buenos Aires, Argentina; CONICET- Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Buenos Aires, Argentina
| | - Carola Gallo-Rodriguez
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Buenos Aires, Argentina; CONICET- Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Buenos Aires, Argentina
| | - Rosa M de Lederkremer
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Buenos Aires, Argentina; CONICET- Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Buenos Aires, Argentina.
| |
Collapse
|
30
|
't Hart BA. Experimental autoimmune encephalomyelitis in the common marmoset: a translationally relevant model for the cause and course of multiple sclerosis. Primate Biol 2019; 6:17-58. [PMID: 32110715 PMCID: PMC7041540 DOI: 10.5194/pb-6-17-2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023] Open
Abstract
Aging Western societies are facing an increasing prevalence of chronic
autoimmune-mediated inflammatory disorders (AIMIDs) for which treatments that are safe and effective are scarce. One of the
main reasons for this situation is the lack of animal models, which accurately replicate
clinical and pathological aspects of the human diseases. One important AIMID is the
neuroinflammatory disease multiple sclerosis (MS), for which the mouse experimental
autoimmune encephalomyelitis (EAE) model has been frequently used in preclinical
research. Despite some successes, there is a long list of experimental treatments that
have failed to reproduce promising effects observed in murine EAE models when they were
tested in the clinic. This frustrating situation indicates a wide validity gap between
mouse EAE and MS. This monography describes the development of an EAE model in nonhuman
primates, which may help to bridge the gap.
Collapse
Affiliation(s)
- Bert A 't Hart
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, the Netherlands.,Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, the Netherlands
| |
Collapse
|
31
|
Affiliation(s)
- Wen-Ling Lee
- Department of Medicine, Cheng-Hsin General Hospital, Taipei, Taiwan, ROC
- Department of Nursing, Oriental Institute of Technology, New Taipei City, Taiwan, ROC
| | - Peng-Hui Wang
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Obstetrics and Gynecology, National Yang-Ming University, Taipei, Taiwan, ROC
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, ROC
| |
Collapse
|
32
|
Social Structure Facilitated the Evolution of Care-giving as a Strategy for Disease Control in the Human Lineage. Sci Rep 2018; 8:13997. [PMID: 30262928 PMCID: PMC6160448 DOI: 10.1038/s41598-018-31568-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 08/21/2018] [Indexed: 01/18/2023] Open
Abstract
Humans are the only species to have evolved cooperative care-giving as a strategy for disease control. A synthesis of evidence from the fossil record, paleogenomics, human ecology, and disease transmission models, suggests that care-giving for the diseased evolved as part of the unique suite of cognitive and socio-cultural specializations that are attributed to the genus Homo. Here we demonstrate that the evolution of hominin social structure enabled the evolution of care-giving for the diseased. Using agent-based modeling, we simulate the evolution of care-giving in hominin networks derived from a basal primate social system and the three leading hypotheses of ancestral human social organization, each of which would have had to deal with the elevated disease spread associated with care-giving. We show that (1) care-giving is an evolutionarily stable strategy in kin-based cooperatively breeding groups, (2) care-giving can become established in small, low density groups, similar to communities that existed before the increases in community size and density that are associated with the advent of agriculture in the Neolithic, and (3) once established, care-giving became a successful method of disease control across social systems, even as community sizes and densities increased. We conclude that care-giving enabled hominins to suppress disease spread as social complexity, and thus socially-transmitted disease risk, increased.
Collapse
|
33
|
Bornhöfft KF, Goldammer T, Rebl A, Galuska SP. Siglecs: A journey through the evolution of sialic acid-binding immunoglobulin-type lectins. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 86:219-231. [PMID: 29751010 DOI: 10.1016/j.dci.2018.05.008] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/04/2018] [Accepted: 05/04/2018] [Indexed: 05/11/2023]
Abstract
Siglecs (sialic acid-binding immunoglobulin-type lectins) are a family of immune regulatory receptors predominantly found on the cells of the hematopoietic system. A V-set Ig-like domain mediates the recognition of different sialylated glycoconjugates, which can lead to the activation or inhibition of the immune response, depending on the involved Siglecs. Siglecs are categorized into two subgroups: one including all CD33-related Siglecs and the other consisting of Siglec-1 (Sialoadhesin), Siglec-2 (CD22), Siglec-4 (myelin-associated glycoprotein, MAG) and Siglec-15. In contrast to the members of the CD33-related Siglecs, which share ∼50-99% sequence identity, Siglecs of the other subgroup show quite low homology (approximately 25-30% sequence identity). Based on the published sequences and functions of Siglecs, we performed phylogenetic analyses and sequence alignments to reveal the conservation of Siglecs throughout evolution. Therefore, we focused on the presence of Siglecs in different classes of vertebrates (fishes, amphibians, birds, reptiles and mammals), offering a bridge between the presence of different Siglecs and the biological situations of the selected animals.
Collapse
Affiliation(s)
- Kim F Bornhöfft
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Tom Goldammer
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Alexander Rebl
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| | - Sebastian P Galuska
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| |
Collapse
|
34
|
Paul A, Padler-Karavani V. Evolution of sialic acids: Implications in xenotransplant biology. Xenotransplantation 2018; 25:e12424. [PMID: 29932472 PMCID: PMC6756921 DOI: 10.1111/xen.12424] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 12/13/2022]
Abstract
All living cells are covered with a dense “sugar-coat” of carbohydrate chains (glycans) conjugated to proteins and lipids. The cell surface glycome is determined by a non-template driven process related to the collection of enzymes that assemble glycans in a sequential manner. In mammals, many of these glycans are topped with sialic acids (Sia), a large family of acidic sugars. The “Sialome” is highly diverse owing to various Sia types, linkage to underlying glycans, range of carriers, and complex spatial organization. Presented at the front of cells, Sia play a major role in immunity and recognition of “self” versus “non-self,” largely mediated by the siglecs family of Sia-binding host receptors. Albeit many mammalian pathogens have evolved to hijack this recognition system to avoid host immune attack, presenting a fascinating host-pathogen evolutionary arms race. Similarly, cancer cells exploit Sia for their own survival and propagation. As part of this ongoing fitness, humans lost the ability to synthesize the Sia type N-glycolylneuraminic acid (Neu5Gc), in contrast to other mammals. While this loss had provided an advantage against certain pathogens, humans are continuously exposed to Neu5Gc through mammalian-derived diet (eg, red meat), consequently generating a complex immune response against it. Circulating anti-Neu5Gc antibodies together with Neu5Gc on some human tissues mediate chronic inflammation “xenosialitis” that exacerbate various human diseases (eg, cancer and atherosclerosis). Similarly, Neu5Gc-containing xenografts are exposed to human anti-Neu5Gc antibodies with implications to sustainability. This review aimed to provide a glimpse into the evolution of Sia and their implications to xenotransplantation.
Collapse
Affiliation(s)
- Anu Paul
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Vered Padler-Karavani
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
35
|
Challenging tumour immunological techniques that help to track cancer stem cells in malignant melanomas and other solid tumours. Contemp Oncol (Pozn) 2018; 22:41-47. [PMID: 29628793 PMCID: PMC5885074 DOI: 10.5114/wo.2018.73884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim of the study The arsenal of questions and answers about the minor cancer initiating cancer stem cell (CSC) population put responsible for cancer invasiveness and metastases, has left with an unsolved puzzle. Specific aims of a complex project were partly focused on revealing new biomarkers of cancer. We designed and set up novel techniques to facilitate the detection of cancerous cells. Materials and methods As a novel approach, we investigated B cells infiltrating breast carcinomas and melanomas (TIL-B) in terms of their tumour antigen binding potential. By developing the TIL-B phage display technology we provide here a new technology for the specific detection of highly tumour-associated antigens. Single chain Fv (scFv) antibody fragment phage ELISA, immunofluorescence (IF) FACS analysis, chamber slide technique with IF confocal laser microscopy and immunohistochemistry (IHC) in paraffin-embedded tissue sections were set up and standardized. Results We showed strong tumour-associated disialylated glycosphingolipid expression levels on various cancer cells using scFv antibody fragments, generated previously by uniquely invasive breast carcinoma TIL-B phage display library technology. Conclusions We report herein a novel strategy to obtain antibody fragments of human origin that recognise tumour-associated ganglioside antigens. Our investigations have the power to detect privileged molecules in cancer progression, invasiveness, and metastases. The technical achievements of this study are being harnessed for early diagnostics and effective cancer therapeutics.
Collapse
|