1
|
Jiang Y, Immadi MS, Wang D, Zeng S, On Chan Y, Zhou J, Xu D, Joshi T. IRnet: Immunotherapy response prediction using pathway knowledge-informed graph neural network. J Adv Res 2025; 72:319-331. [PMID: 39097091 DOI: 10.1016/j.jare.2024.07.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/10/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024] Open
Abstract
INTRODUCTION Immune checkpoint inhibitors (ICIs) are potent and precise therapies for various cancer types, significantly improving survival rates in patients who respond positively to them. However, only a minority of patients benefit from ICI treatments. OBJECTIVES Identifying ICI responders before treatment could greatly conserve medical resources, minimize potential drug side effects, and expedite the search for alternative therapies. Our goal is to introduce a novel deep-learning method to predict ICI treatment responses in cancer patients. METHODS The proposed deep-learning framework leverages graph neural network and biological pathway knowledge. We trained and tested our method using ICI-treated patients' data from several clinical trials covering melanoma, gastric cancer, and bladder cancer. RESULTS Our results demonstrate that this predictive model outperforms current state-of-the-art methods and tumor microenvironment-based predictors. Additionally, the model quantifies the importance of pathways, pathway interactions, and genes in its predictions. A web server for IRnet has been developed and deployed, providing broad accessibility to users at https://irnet.missouri.edu. CONCLUSION IRnet is a competitive tool for predicting patient responses to immunotherapy, specifically ICIs. Its interpretability also offers valuable insights into the mechanisms underlying ICI treatments.
Collapse
Affiliation(s)
- Yuexu Jiang
- Department of Electrical Engineering and Computer Science, University of Missouri-Columbia, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, USA
| | - Manish Sridhar Immadi
- Department of Electrical Engineering and Computer Science, University of Missouri-Columbia, Columbia, MO, USA
| | - Duolin Wang
- Department of Electrical Engineering and Computer Science, University of Missouri-Columbia, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, USA
| | - Shuai Zeng
- Department of Electrical Engineering and Computer Science, University of Missouri-Columbia, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, USA
| | - Yen On Chan
- Department of Electrical Engineering and Computer Science, University of Missouri-Columbia, Columbia, MO, USA; MU Institute for Data Science and Informatics, University of Missouri-Columbia, Columbia, MO, USA
| | - Jing Zhou
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, USA
| | - Dong Xu
- Department of Electrical Engineering and Computer Science, University of Missouri-Columbia, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, USA; MU Institute for Data Science and Informatics, University of Missouri-Columbia, Columbia, MO, USA
| | - Trupti Joshi
- Department of Electrical Engineering and Computer Science, University of Missouri-Columbia, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, USA; MU Institute for Data Science and Informatics, University of Missouri-Columbia, Columbia, MO, USA; Department of Biomedical Informatics, Biostatistics and Medical Epidemiology, University of Missouri-Columbia, Columbia, MO, USA.
| |
Collapse
|
2
|
Zhang C, Zhang X, Liang J, Liu Y, Chen J, Wang Q, Li C. Subacute cutaneous lupus erythematosus triggered by sintilimab: a case report. Front Immunol 2025; 16:1544312. [PMID: 40342412 PMCID: PMC12058751 DOI: 10.3389/fimmu.2025.1544312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 04/07/2025] [Indexed: 05/11/2025] Open
Abstract
Immune checkpoint inhibitors (ICIs) have become a standard treatment for various cancers, but their use is often associated with immune-related adverse events (irAEs), including cutaneous irAEs (cirAEs). Here, we report a rare case of subacute cutaneous lupus erythematosus (SCLE) induced by sintilimab, a PD-1 inhibitor, in a 30-year-old woman undergoing neoadjuvant chemo-immunotherapy for gastric cancer. The patient presented with erythema, macules, papules, and vesicles, with positive ANA (108U/mL) and strongly positive anti-SSA/Ro. After discontinuation of sintilimab and treatment with corticosteroids, hydroxychloroquine, and intravenous immunoglobulin (IVIG), her symptoms improved. This case represents the first reported instance of drug-induced lupus caused by sintilimab and emphasizes the importance of distinguishing between paraneoplastic lupus and ICI-induced lupus.
Collapse
Affiliation(s)
- Chenxi Zhang
- Department of Dermatology, Southern Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoying Zhang
- Department of Dermatology, Southern Hospital, Southern Medical University, Guangzhou, China
| | - Jiali Liang
- Department of Dermatology, Southern Hospital, Southern Medical University, Guangzhou, China
| | - Yifei Liu
- Department of Dermatology, Southern Hospital, Southern Medical University, Guangzhou, China
| | - Jialong Chen
- Department of Dermatology, Southern Hospital, Southern Medical University, Guangzhou, China
| | - Qi Wang
- Department of Dermatology, Southern Hospital, Southern Medical University, Guangzhou, China
| | - Changxing Li
- Department of Dermatology, Southern Hospital, Southern Medical University, Guangzhou, China
- Department of Dermatology, the Tenth Affiliated Hospital, Southern Medical University (Dongguan People’s Hospital), Dongguan, China
| |
Collapse
|
3
|
Deng J, Zhu J, Jiang X, Yao C, Chen H, Ding Y, Niu P, Chen Q, Ding H, Shen N. PD-1 activation mitigates lupus nephritis by suppressing hyperactive and heterogeneous PD-1 +CD8 + T cells. Theranostics 2025; 15:5029-5044. [PMID: 40303350 PMCID: PMC12036892 DOI: 10.7150/thno.107418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 03/23/2025] [Indexed: 05/02/2025] Open
Abstract
Rationale: Programmed cell death protein 1 (PD-1)-expressing CD8+ T cells are typically associated with exhaustion in cancer and infections, but their role in autoimmune diseases, particularly lupus nephritis (LN), remains less understood. Understanding the characteristics and functions of PD-1+CD8+ T cells in LN could help identify novel therapeutic strategies. Methods: We analyzed the abundance and phenotypes of PD-1+CD8+ T cells in LN patients and NZB/W F1 mice. Single-cell RNA sequencing (scRNA-seq) was used to delineate subsets and TCR clonal diversity in PD-1+CD8+ T cells in NZB/W F1 mice. The therapeutic efficacy of a PD-L1 Fc fusion protein on kidney pathology and proteinuria in NZB/W F1 mice was evaluated. In addition, the inhibitory mechanism of PD-1 in CD8+ T cells were further explored using RNA-seq, q-PCR, flow cytometry, and Western blot. Results: PD-1+CD8+ T cells were enriched in LN patients and NZB/W F1 mice, exhibiting elevated activation markers and cytotoxic molecules compared to PD-1- cells. scRNA-seq identified seven distinct subsets with diverse effector functions and robust TCR clonal expansion in the kidney of NZB/W F1 mice with severe disease. PD-L1 Fc treatment reduced kidney damage and proteinuria in NZB/W F1 mice, which correlated with decreased frequencies of PD-1+CD8+ and IFN-γ+CD8+ T cells. Mechanistically, PD-L1 Fc inhibited Stat1 phosphorylation, T-bet expression, and IFN-γ production in CD8+ T cells. Conclusion: These findings show that PD-1+CD8+ T cells in LN are hyperactive, clonally expanded, and contribute to disease progression. Targeting the PD-1/PD-L1 pathway with PD-L1 Fc effectively reduced kidney pathology in a murine model of LN, underscoring the potential of modulating PD-1 signaling as a treatment strategy for LN.
Collapse
Affiliation(s)
- Jun Deng
- Shanghai Institute of Rheumatology, Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junling Zhu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyue Jiang
- Shanghai Institute of Rheumatology, Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Yao
- Shanghai Institute of Rheumatology, Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haifeng Chen
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanjie Ding
- Department of Rheumatology and Immunology, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan, China
| | - Peng Niu
- Shanghai Institute of Rheumatology, Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Chen
- Department of Ophthalmology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huihua Ding
- Shanghai Institute of Rheumatology, Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nan Shen
- Shanghai Institute of Rheumatology, Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
4
|
Yordanova A, Ivanova M, Tumangelova-Yuzeir K, Angelov A, Kyurkchiev S, Belemezova K, Kurteva E, Kyurkchiev D, Ivanova-Todorova E. Umbilical Cord Mesenchymal Stem Cell Secretome: A Potential Regulator of B Cells in Systemic Lupus Erythematosus. Int J Mol Sci 2024; 25:12515. [PMID: 39684227 DOI: 10.3390/ijms252312515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/13/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Autoimmune diseases represent a severe personal and healthcare problem that seeks novel therapeutic solutions. Mesenchymal stem cells (MSCs) are multipotent cells with interesting cell biology and promising therapeutic potential. The immunoregulatory effects of secretory factors produced by umbilical cord mesenchymal stem cells (UC-MSCs) were assessed on B lymphocytes from 17 patients with systemic lupus erythematosus (SLE), as defined by the 2019 European Alliance of Associations for Rheumatology (EULAR)/American College of Rheumatology (ACR) classification criteria for SLE, and 10 healthy volunteers (HVs). Peripheral blood mononuclear cells (PBMCs) from patients and HVs were cultured in a UC-MSC-conditioned medium (UC-MSCcm) and a control medium. Flow cytometry was used to detect the surface expression of CD80, CD86, BR3, CD40, PD-1, and HLA-DR on CD19+ B cells and assess the percentage of B cells in early and late apoptosis. An enzyme-linked immunosorbent assay (ELISA) quantified the production of BAFF, IDO, and PGE2 in PBMCs and UC-MSCs. Under UC-MSCcm influence, the percentage and mean fluorescence intensity (MFI) of CD19+BR3+ cells were reduced in both SLE patients and HVs. Regarding the effects of the MSC secretome on B cells in lupus patients, we observed a decrease in CD40 MFI and a reduced percentage of CD19+PD-1+ and CD19+HLA-DR+ cells. In contrast, in the B cells of healthy participants, we found an increased percentage of CD19+CD80+ cells and decreased CD80 MFI, along with a decrease in CD40 MFI and the percentage of CD19+PD-1+ cells. The UC-MSCcm had a minimal effect on B-cell apoptosis. The incubation of patients' PBMCs with the UC-MSCcm increased PGE2 levels compared to the control medium. This study provides new insights into the impact of the MSC secretome on the key molecules involved in B-cell activation and antigen presentation and survival, potentially guiding the development of future SLE treatments.
Collapse
Affiliation(s)
- Adelina Yordanova
- University Hospital St. Ivan Rilski, Laboratory of Clinical Immunology, Department of Clinical Immunology, Medical Faculty, Medical University of Sofia, 15 Akademik Iv. E. Geshov Blvd., 1431 Sofia, Bulgaria
| | - Mariana Ivanova
- University Hospital St. Ivan Rilski, Clinic of Rheumatology, Department of Rheumatology, Medical Faculty, Medical University of Sofia, 13 Urvich St., 1612 Sofia, Bulgaria
| | - Kalina Tumangelova-Yuzeir
- University Hospital St. Ivan Rilski, Laboratory of Clinical Immunology, Department of Clinical Immunology, Medical Faculty, Medical University of Sofia, 15 Akademik Iv. E. Geshov Blvd., 1431 Sofia, Bulgaria
| | - Alexander Angelov
- University Hospital St. Ivan Rilski, Clinic of Rheumatology, Department of Rheumatology, Medical Faculty, Medical University of Sofia, 13 Urvich St., 1612 Sofia, Bulgaria
| | | | | | - Ekaterina Kurteva
- University Hospital St. Ivan Rilski, Laboratory of Clinical Immunology, Department of Clinical Immunology, Medical Faculty, Medical University of Sofia, 15 Akademik Iv. E. Geshov Blvd., 1431 Sofia, Bulgaria
| | - Dobroslav Kyurkchiev
- University Hospital St. Ivan Rilski, Laboratory of Clinical Immunology, Department of Clinical Immunology, Medical Faculty, Medical University of Sofia, 15 Akademik Iv. E. Geshov Blvd., 1431 Sofia, Bulgaria
| | - Ekaterina Ivanova-Todorova
- University Hospital St. Ivan Rilski, Laboratory of Clinical Immunology, Department of Clinical Immunology, Medical Faculty, Medical University of Sofia, 15 Akademik Iv. E. Geshov Blvd., 1431 Sofia, Bulgaria
| |
Collapse
|
5
|
Anton-Pampols P, Martinez Valenzuela L, Fernandez Lorente L, Quero Ramos M, Gómez Preciado F, Gomà M, Manrique J, Fulladosa X, Cruzado JM, Torras J, Draibe JB. Immune checkpoint molecules performance in ANCA vasculitis. RMD Open 2024; 10:e004660. [PMID: 39537557 PMCID: PMC11575324 DOI: 10.1136/rmdopen-2024-004660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
OBJECTIVE The PD-1 axis promotes protection against autoimmunity. Immune checkpoint (IC) molecules performance in anti-neutrophil cytoplasmic antibody-associated vasculitis (AAV) remains unknown. This study aims to assess the IC pathway's role in the AAV's pathophysiology. METHODS We recruited 88 AAV from our centre as a discovery cohort (acute=42, remission=46) and 30 patients from another institution for external validation (acute=16, remission=14).Serum, urine and peripheral blood mononuclear cells (PBMCs) were collected. In vitro IC molecules production by lymphocytes was studied with and without MPO/PR3 antigen stimulus. Cell culture supernatant (SN) was obtained by centrifugation. PD-1, PD-L1 and PD-L2 concentrations were assessed in serum (s), urine (u) and SN of AAV and healthy controls (HC) using a multiplex assay. PD-1 and PD-L1's expression was analysed in six diagnostic kidney biopsies. RESULTS uPD-1 and uPD-L2's concentration was lower in AAV than HC (p<0.0001, p=0.0075). Acute patients exhibited lower uPD-L2 levels compared with those in remission (p=0.036). Similarly, PBMCs showed reduced PD-1 production than HC (stimulated group p=0.04, unstimulated p=0.0074). Furthermore, patients with inflammatory renal lesions had fewer PD-1-positive interstitial cells/staining intensity compared with those with sclerotic lesions. Contradictorily, sPD-1 and sPD-L1's concentration was higher in AAV than HC (p=0.007, p<0.0001) with acute patients exhibiting elevated sPD-1 levels compared with those in remission (p=0.0051). Serum and urine findings were confirmed in the validation cohort. CONCLUSIONS Results in urine, SN and histology suggest IC pathway abolition during acute disease restored in remission and contribute to understand PD-1 axis's role in AAV proposing it as a new biomarker of disease activity.
Collapse
Affiliation(s)
- Paula Anton-Pampols
- Nephrology, Bellvitge University Hospital, L'Hospitalet de Llobregat, Spain
- IDIBELL, Barcelona, Spain
| | - Laura Martinez Valenzuela
- Nephrology, Bellvitge University Hospital, L'Hospitalet de Llobregat, Spain
- IDIBELL, Barcelona, Spain
| | | | - Maria Quero Ramos
- Nephrology, Bellvitge University Hospital, L'Hospitalet de Llobregat, Spain
- IDIBELL, Barcelona, Spain
| | - Francisco Gómez Preciado
- Nephrology, Bellvitge University Hospital, L'Hospitalet de Llobregat, Spain
- IDIBELL, Barcelona, Spain
| | - Montserrat Gomà
- IDIBELL, Barcelona, Spain
- Pathological Anatomy, Bellvitge University Hospital, L'Hospitalet de Llobregat, Spain
| | - Joaquin Manrique
- Nephrology, Navarre Hospital Complex, Pamplona, Spain
- IdiSNA, Pamplona, Spain
| | - Xavier Fulladosa
- Nephrology, Bellvitge University Hospital, L'Hospitalet de Llobregat, Spain
- IDIBELL, Barcelona, Spain
| | - Josep M Cruzado
- Nephrology, Bellvitge University Hospital, L'Hospitalet de Llobregat, Spain
- IDIBELL, Barcelona, Spain
| | - Juan Torras
- Nephrology, Bellvitge University Hospital, L'Hospitalet de Llobregat, Spain
- IDIBELL, Barcelona, Spain
| | - Juliana Bordignon Draibe
- Nephrology, Bellvitge University Hospital, L'Hospitalet de Llobregat, Spain
- IDIBELL, Barcelona, Spain
| |
Collapse
|
6
|
Chen R, Lin Q, Tang H, Dai X, Jiang L, Cui N, Li X. PD-1 immunology in the kidneys: a growing relationship. Front Immunol 2024; 15:1458209. [PMID: 39507530 PMCID: PMC11537962 DOI: 10.3389/fimmu.2024.1458209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
In recent years, knowledge regarding immune regulation has expanded rapidly, and major advancements have been made in immunotherapy for immune-associated disorders, particularly cancer. The programmed cell death 1 (PD-1) pathway is a cornerstone in immune regulation. It comprises PD-1 and its ligands mediating immune tolerance mechanisms and immune homeostasis. Accumulating evidence demonstrates that the PD-1 axis has a crucial immunosuppressive role in the tumor microenvironment and autoimmune diseases. PD-1 receptors and ligands on immune cells and renal parenchymal cells aid in maintaining immunological homeostasis in the kidneys. Here, we present a comprehensive review of PD-1 immunology in various kidney disorders, including renal cell carcinoma, glomerulonephritis, kidney transplantation, renal aging, and renal immune-related adverse events secondary to PD-1 immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Ningxun Cui
- Department of Nephrology and Immunology, Children’s Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaozhong Li
- Department of Nephrology and Immunology, Children’s Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
7
|
Chen W, Song X, Zhou Y. Kutaner Lupus erythematodes ausgelöst durch Tislelizumab. J Dtsch Dermatol Ges 2024; 22:1003-1005. [PMID: 38664067 DOI: 10.1111/ddg.15396_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 02/02/2024] [Indexed: 07/10/2024]
Affiliation(s)
- Weiquan Chen
- Institute of Dermatology and Venereal diseases, Department of Dermatology and Venereal diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xuan Song
- Institute of Dermatology and Venereal diseases, Department of Dermatology and Venereal diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Ying Zhou
- Institute of Dermatology and Venereal diseases, Department of Dermatology and Venereal diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
8
|
Huang ZX, Lin DC, Zhang HY, Yang MJ, Chen JH, Ding XY, Dai SJ, Hong YH, Liang GS, Li QY, Chen QH. The dysfunction of CD8 + T cells triggered by endometriotic stromal cells promotes the immune survival of endometriosis. Immunology 2024; 172:469-485. [PMID: 38544333 DOI: 10.1111/imm.13786] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/14/2024] [Indexed: 02/08/2025] Open
Abstract
Endometriosis is defined as an oestrogen-dependent and inflammatory gynaecological disease of which the pathogenesis remains unclear. This study aimed to investigate the cellular heterogeneity and reveal the effect of CD8+ T cells on the progress of endometriosis. Three ovarian endometriosis patients were collected, and single-cell RNA sequencing (scRNA-seq) progressed and delineated the cellular landscape of endometriosis containing five cell clusters. The endometrial cells (EMCs) were the major component, of which the mesenchymal cells were preponderant and characterized with increased inflammation and oestrogen synthesis in endometriosis. The proportion of T cells, mainly CD8+ T cells rather than CD4+, was reduced in endometriotic lesions, and the cytokines and cytotoxicity of ectopic T cells were depressed. CD8+ T cells depressed the proliferation of ESCs through inhibiting CDK1/CCNB1 pathway to arrest the cell cycle and triggered inflammation through activating STAT1 pathway. Correspondingly, the coculture with ESCs resulted in the dysfunction of CD8+ T cells through upregulating STAT1/PDCD1 pathway and glycolysis-promoted metabolism reprogramming. The endometriotic lesions were larger in nude mouse models with T-cell deficiency than the normal mouse models. The inhibition of T cells via CD90.2 or CD8A antibody increased the endometriotic lesions in mouse models, and the supplement of T cells to nude mouse models diminished the lesion sizes. In conclusion, this study revealed the global cellular variation of endometriosis among which the cellular count and physiology of EMCs and T cells were significantly changed. The depressed cytotoxicity and aberrant metabolism of CD8+ T cells were induced by ESCs with the activation of STAT1/PDCD1 pathway resulting in immune survival to promote endometriosis.
Collapse
Affiliation(s)
- Zhi-Xiong Huang
- Clinical Medical Research Center for Obstetrics and Gynecology Diseases of Fujian Province, Laboratory of Research and Diagnosis of Gynecological Diseases of Xiamen City, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
| | - Dian-Chao Lin
- Clinical Medical Research Center for Obstetrics and Gynecology Diseases of Fujian Province, Laboratory of Research and Diagnosis of Gynecological Diseases of Xiamen City, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Hua-Ying Zhang
- Clinical Medical Research Center for Obstetrics and Gynecology Diseases of Fujian Province, Laboratory of Research and Diagnosis of Gynecological Diseases of Xiamen City, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
| | - Meng-Jie Yang
- Clinical Medical Research Center for Obstetrics and Gynecology Diseases of Fujian Province, Laboratory of Research and Diagnosis of Gynecological Diseases of Xiamen City, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
| | - Jia-Hao Chen
- Clinical Medical Research Center for Obstetrics and Gynecology Diseases of Fujian Province, Laboratory of Research and Diagnosis of Gynecological Diseases of Xiamen City, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
| | - Xin-Yu Ding
- Clinical Medical Research Center for Obstetrics and Gynecology Diseases of Fujian Province, Laboratory of Research and Diagnosis of Gynecological Diseases of Xiamen City, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
| | - Song-Juan Dai
- Clinical Medical Research Center for Obstetrics and Gynecology Diseases of Fujian Province, Laboratory of Research and Diagnosis of Gynecological Diseases of Xiamen City, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yi-Huang Hong
- Clinical Medical Research Center for Obstetrics and Gynecology Diseases of Fujian Province, Laboratory of Research and Diagnosis of Gynecological Diseases of Xiamen City, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Gui-Shuang Liang
- Clinical Medical Research Center for Obstetrics and Gynecology Diseases of Fujian Province, Laboratory of Research and Diagnosis of Gynecological Diseases of Xiamen City, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Qi-Yuan Li
- School of Medicine, Xiamen University, Xiamen, China
| | - Qiong-Hua Chen
- Clinical Medical Research Center for Obstetrics and Gynecology Diseases of Fujian Province, Laboratory of Research and Diagnosis of Gynecological Diseases of Xiamen City, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
| |
Collapse
|
9
|
Wang J, Yan L, Wang X, Jia R, Guo J. Surface PD-1 expression in T cells is suppressed by HNRNPK through an exonic splicing silencer on exon 3. Inflamm Res 2024; 73:1123-1135. [PMID: 38698180 DOI: 10.1007/s00011-024-01887-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 05/05/2024] Open
Abstract
OBJECTIVE Immunotherapy targeting programmed cell death 1 (PDCD1 or PD-1) and its ligands has shown remarkable promise and the regulation mechanism of PD-1 expression has received arising attention in recent years. PDCD1 exon 3 encodes the transmembrane domain and the deletion of exon 3 produces a soluble protein isoform of PD-1 (sPD-1), which can enhance immune response by competing with full-length PD-1 protein (flPD-1 or surface PD-1) on T cell surface. However, the mechanism of PDCD1 exon 3 skipping is unclear. METHODS The online SpliceAid program and minigene expression system were used to analyze potential splicing factors involved in the splicing event of PDCD1 exon 3. The potential binding motifs of heterogeneous nuclear ribonucleoprotein K (HNRNPK) on exon 3 predicted by SpliceAid were mutated by site-directed mutagenesis technology, which were further verified by pulldown assay. Antisense oligonucleotides (ASOs) targeting the exonic splicing silencer (ESS) on PDCD1 exon 3 were synthesized and screened to suppress the skipping of exon 3. The alternative splicing of PDCD1 exon 3 was analyzed by semiquantitative reverse transcription PCR. Western blot and flow cytometry were performed to detect the surface PD-1 expression in T cells. RESULTS HNRNPK was screened as a key splicing factor that promoted PDCD1 exon 3 skipping, causing a decrease in flPD-1 expression on T cell membrane and an increase in sPD-1 expression. Mechanically, a key ESS has been identified on exon 3 and can be bound by HNRNPK protein to promote exon 3 skipping. Blocking the interaction between ESS and HNRNPK with an ASO significantly reduced exon 3 skipping. Importantly, HNRNPK can promote exon 3 skipping of mouse Pdcd1 gene as well. CONCLUSIONS Our study revealed a novel evolutionarily conserved regulatory mechanism of PD-1 expression. The splicing factor HNRNPK markedly promoted PDCD1 exon 3 skipping by binding to the ESS on PDCD1 exon 3, resulting in decreased expression of flPD-1 and increased expression of sPD-1 in T cells.
Collapse
Affiliation(s)
- Jiayun Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Lingyan Yan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Xu Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Rong Jia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- RNA Institute, Wuhan University, Wuhan, 430072, China
| | - Jihua Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
- Department of Endodontics, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
10
|
Zhang Y, Wang J, Fang Y, Liang W, Lei L, Wang J, Gao X, Ma C, Li M, Guo H, Wei L. IFN-α affects Th17/Treg cell balance through c-Maf and associated with the progression of EBV- SLE. Mol Immunol 2024; 171:22-35. [PMID: 38749236 DOI: 10.1016/j.molimm.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 06/13/2024]
Abstract
OBJECTIVES Systemic lupus erythematosus (SLE) is a multi-organ autoimmune disease, of which the pathogens is remains obscure. Viral infection, particularly Epstein Barr viru (EBV) infection, has been considered a common pathogenic factor. This study suggests that c-Maf may be an important target in T cell differentiation during SLE progression, providing a potentially new perspective on the role of viral infection in the pathogenesis of autoimmune diseases. METHODS Cytokines of EBV-infected SLE patients were measured by ELISA and assessed in conjunction with their clinical data. IFN-α, c-Maf, and the differentiation of Th17/Treg cells in SLE patients and MRL/LPR mice were analyzed using FCM, WB, RT-PCR, etc. Following the infection of cells and mice with EBV or viral mimic poly (dA:dT), the changes of the aforementioned indicators were investigated. The relationship among IFN-α, STAT3, c-Maf and Th17 cells was determined by si-RNA technique. RESULTS Many SLE patients are found to be complicated by viral infections; Further, studies have demonstrated that viral infection, especially EBV, is involved in SLE development. This study showed that viral infections might promote IFN-α secretion, inhibit c-Maf expression by activating STAT3, increase Th17 cell differentiation, and lead to the immune imbalance of Th17/Treg cells, thus playing a role in the onset and progression of SLE. CONCLUSION This study demonstrates that EBV infections may contribute to SLE development by activating STAT3 through IFN-α, inhibiting c-Maf, and causing Th17/Treg immune imbalance. Our work provided a new insight into the pathogenesis and treatment of SLE.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Immune mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China; Department of Rheumatology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jiachao Wang
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Immune mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Yaqi Fang
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Immune mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Wenzhang Liang
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Immune mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Lingyan Lei
- Department of Rheumatology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Junhai Wang
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Immune mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Xue Gao
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Immune mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Cuiqing Ma
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Immune mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Miao Li
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Immune mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Huifang Guo
- Department of Rheumatology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Lin Wei
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Immune mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China.
| |
Collapse
|
11
|
L’Estrange-Stranieri E, Gottschalk TA, Wright MD, Hibbs ML. The dualistic role of Lyn tyrosine kinase in immune cell signaling: implications for systemic lupus erythematosus. Front Immunol 2024; 15:1395427. [PMID: 39007135 PMCID: PMC11239442 DOI: 10.3389/fimmu.2024.1395427] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
Systemic lupus erythematosus (SLE, lupus) is a debilitating, multisystem autoimmune disease that can affect any organ in the body. The disease is characterized by circulating autoantibodies that accumulate in organs and tissues, which triggers an inflammatory response that can cause permanent damage leading to significant morbidity and mortality. Lyn, a member of the Src family of non-receptor protein tyrosine kinases, is highly implicated in SLE as remarkably both mice lacking Lyn or expressing a gain-of-function mutation in Lyn develop spontaneous lupus-like disease due to altered signaling in B lymphocytes and myeloid cells, suggesting its expression or activation state plays a critical role in maintaining tolerance. The past 30 years of research has begun to elucidate the role of Lyn in a duplicitous signaling network of activating and inhibitory immunoreceptors and related targets, including interactions with the interferon regulatory factor family in the toll-like receptor pathway. Gain-of-function mutations in Lyn have now been identified in human cases and like mouse models, cause severe systemic autoinflammation. Studies of Lyn in SLE patients have presented mixed findings, which may reflect the heterogeneity of disease processes in SLE, with impairment or enhancement in Lyn function affecting subsets of SLE patients that may be a means of stratification. In this review, we present an overview of the phosphorylation and protein-binding targets of Lyn in B lymphocytes and myeloid cells, highlighting the structural domains of the protein that are involved in its function, and provide an update on studies of Lyn in SLE patients.
Collapse
Affiliation(s)
- Elan L’Estrange-Stranieri
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Timothy A. Gottschalk
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Mark D. Wright
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Margaret L. Hibbs
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
12
|
Liu Z, Yang L, Liu C, Wang Z, Xu W, Lu J, Wang C, Xu X. Identification and validation of immune-related gene signature models for predicting prognosis and immunotherapy response in hepatocellular carcinoma. Front Immunol 2024; 15:1371829. [PMID: 38933262 PMCID: PMC11199539 DOI: 10.3389/fimmu.2024.1371829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Background This study seeks to enhance the accuracy and efficiency of clinical diagnosis and therapeutic decision-making in hepatocellular carcinoma (HCC), as well as to optimize the assessment of immunotherapy response. Methods A training set comprising 305 HCC cases was obtained from The Cancer Genome Atlas (TCGA) database. Initially, a screening process was undertaken to identify prognostically significant immune-related genes (IRGs), followed by the application of logistic regression and least absolute shrinkage and selection operator (LASSO) regression methods for gene modeling. Subsequently, the final model was constructed using support vector machines-recursive feature elimination (SVM-RFE). Following model evaluation, quantitative polymerase chain reaction (qPCR) was employed to examine the gene expression profiles in tissue samples obtained from our cohort of 54 patients with HCC and an independent cohort of 231 patients, and the prognostic relevance of the model was substantiated. Thereafter, the association of the model with the immune responses was examined, and its predictive value regarding the efficacy of immunotherapy was corroborated through studies involving three cohorts undergoing immunotherapy. Finally, the study uncovered the potential mechanism by which the model contributed to prognosticating HCC outcomes and assessing immunotherapy effectiveness. Results SVM-RFE modeling was applied to develop an OS prognostic model based on six IRGs (CMTM7, HDAC1, HRAS, PSMD1, RAET1E, and TXLNA). The performance of the model was assessed by AUC values on the ROC curves, resulting in values of 0.83, 0.73, and 0.75 for the predictions at 1, 3, and 5 years, respectively. A marked difference in OS outcomes was noted when comparing the high-risk group (HRG) with the low-risk group (LRG), as demonstrated in both the initial training set (P <0.0001) and the subsequent validation cohort (P <0.0001). Additionally, the SVMRS in the HRG demonstrated a notable positive correlation with key immune checkpoint genes (CTLA-4, PD-1, and PD-L1). The results obtained from the examination of three cohorts undergoing immunotherapy affirmed the potential capability of this model in predicting immunotherapy effectiveness. Conclusions The HCC predictive model developed in this study, comprising six genes, demonstrates a robust capability to predict the OS of patients with HCC and immunotherapy effectiveness in tumor management.
Collapse
Affiliation(s)
- Zhiqiang Liu
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lingge Yang
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chun Liu
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zicheng Wang
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wendi Xu
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jueliang Lu
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Chunmeng Wang
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xundi Xu
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of General Surgery, South China Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
13
|
Parodis I, Lindblom J, Toro-Domínguez D, Beretta L, Borghi MO, Castillo J, Carnero-Montoro E, Enman Y, Mohan C, Alarcón-Riquelme ME, Barturen G, Nikolopoulos D. Interferon and B-cell Signatures Inform Precision Medicine in Lupus Nephritis. Kidney Int Rep 2024; 9:1817-1835. [PMID: 38899167 PMCID: PMC11184261 DOI: 10.1016/j.ekir.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/11/2024] [Indexed: 06/21/2024] Open
Abstract
Introduction Current therapeutic management of lupus nephritis (LN) fails to induce long-term remission in over 50% of patients, highlighting the urgent need for additional options. Methods We analyzed differentially expressed genes (DEGs) in peripheral blood from patients with active LN (n = 41) and active nonrenal lupus (n = 62) versus healthy controls (HCs) (n = 497) from the European PRECISESADS project (NTC02890121), and dysregulated gene modules in a discovery (n = 26) and a replication (n = 15) set of active LN cases. Results Replicated gene modules qualified for correlation analyses with serologic markers, and regulatory network and druggability analysis. Unsupervised coexpression network analysis revealed 20 dysregulated gene modules and stratified the active LN population into 3 distinct subgroups. These subgroups were characterized by low, intermediate, and high interferon (IFN) signatures, with differential dysregulation of the "B cell" and "plasma cells/Ig" modules. Drugs annotated to the IFN network included CC-motif chemokine receptor 1 (CCR1) inhibitors, programmed death-ligand 1 (PD-L1) inhibitors, and irinotecan; whereas the anti-CD38 daratumumab and proteasome inhibitor bortezomib showed potential for counteracting the "plasma cells/Ig" signature. In silico analysis demonstrated the low-IFN subgroup to benefit from calcineurin inhibition and the intermediate-IFN subgroup from B-cell targeted therapies. High-IFN patients exhibited greater anticipated response to anifrolumab whereas daratumumab appeared beneficial to the intermediate-IFN and high-IFN subgroups. Conclusion IFN upregulation and B and plasma cell gene dysregulation patterns revealed 3 subgroups of LN, which may not necessarily represent distinct disease phenotypes but rather phases of the inflammatory processes during a renal flare, providing a conceptual framework for precision medicine in LN.
Collapse
Affiliation(s)
- Ioannis Parodis
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Gastroenterology, Dermatology, and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
- Department of Rheumatology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Julius Lindblom
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Gastroenterology, Dermatology, and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - Daniel Toro-Domínguez
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada / Andalusian Regional Government, Granada, Spain, Medical Genomics, Granada, Spain
| | - Lorenzo Beretta
- Referral Center for Systemic Autoimmune Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, Italy
| | - Maria O. Borghi
- Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, Milan, Italy
- IRCCS, Istituto Auxologico Italiano, Milan, Italy
| | - Jessica Castillo
- Department of Biomedical Engineering, University of Houston, Houston, Texas, USA
| | - Elena Carnero-Montoro
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada / Andalusian Regional Government, Granada, Spain, Medical Genomics, Granada, Spain
| | - Yvonne Enman
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Chandra Mohan
- Department of Biomedical Engineering, University of Houston, Houston, Texas, USA
| | - Marta E. Alarcón-Riquelme
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada / Andalusian Regional Government, Granada, Spain, Medical Genomics, Granada, Spain
- Department of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Guillermo Barturen
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada / Andalusian Regional Government, Granada, Spain, Medical Genomics, Granada, Spain
- Department of Genetics, Faculty of Sciences, University of Granada, Granada, Spain
| | - Dionysis Nikolopoulos
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Gastroenterology, Dermatology, and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
14
|
Lin X, Kang K, Chen P, Zeng Z, Li G, Xiong W, Yi M, Xiang B. Regulatory mechanisms of PD-1/PD-L1 in cancers. Mol Cancer 2024; 23:108. [PMID: 38762484 PMCID: PMC11102195 DOI: 10.1186/s12943-024-02023-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/10/2024] [Indexed: 05/20/2024] Open
Abstract
Immune evasion contributes to cancer growth and progression. Cancer cells have the ability to activate different immune checkpoint pathways that harbor immunosuppressive functions. The programmed death protein 1 (PD-1) and programmed cell death ligands (PD-Ls) are considered to be the major immune checkpoint molecules. The interaction of PD-1 and PD-L1 negatively regulates adaptive immune response mainly by inhibiting the activity of effector T cells while enhancing the function of immunosuppressive regulatory T cells (Tregs), largely contributing to the maintenance of immune homeostasis that prevents dysregulated immunity and harmful immune responses. However, cancer cells exploit the PD-1/PD-L1 axis to cause immune escape in cancer development and progression. Blockade of PD-1/PD-L1 by neutralizing antibodies restores T cells activity and enhances anti-tumor immunity, achieving remarkable success in cancer therapy. Therefore, the regulatory mechanisms of PD-1/PD-L1 in cancers have attracted an increasing attention. This article aims to provide a comprehensive review of the roles of the PD-1/PD-L1 signaling in human autoimmune diseases and cancers. We summarize all aspects of regulatory mechanisms underlying the expression and activity of PD-1 and PD-L1 in cancers, including genetic, epigenetic, post-transcriptional and post-translational regulatory mechanisms. In addition, we further summarize the progress in clinical research on the antitumor effects of targeting PD-1/PD-L1 antibodies alone and in combination with other therapeutic approaches, providing new strategies for finding new tumor markers and developing combined therapeutic approaches.
Collapse
Affiliation(s)
- Xin Lin
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Kuan Kang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Pan Chen
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Mei Yi
- Department of Dermotology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
- FuRong Laboratory, Changsha, 410078, Hunan, China.
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China.
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
15
|
Liu Y, Chen W, Ruan R, Zhang Z, Wang Z, Guan T, Lin Q, Tang W, Deng J, Wang Z, Li G. Deep learning based digital pathology for predicting treatment response to first-line PD-1 blockade in advanced gastric cancer. J Transl Med 2024; 22:438. [PMID: 38720336 PMCID: PMC11077733 DOI: 10.1186/s12967-024-05262-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Advanced unresectable gastric cancer (GC) patients were previously treated with chemotherapy alone as the first-line therapy. However, with the Food and Drug Administration's (FDA) 2022 approval of programmed cell death protein 1 (PD-1) inhibitor combined with chemotherapy as the first-li ne treatment for advanced unresectable GC, patients have significantly benefited. However, the significant costs and potential adverse effects necessitate precise patient selection. In recent years, the advent of deep learning (DL) has revolutionized the medical field, particularly in predicting tumor treatment responses. Our study utilizes DL to analyze pathological images, aiming to predict first-line PD-1 combined chemotherapy response for advanced-stage GC. METHODS In this multicenter retrospective analysis, Hematoxylin and Eosin (H&E)-stained slides were collected from advanced GC patients across four medical centers. Treatment response was evaluated according to iRECIST 1.1 criteria after a comprehensive first-line PD-1 immunotherapy combined with chemotherapy. Three DL models were employed in an ensemble approach to create the immune checkpoint inhibitors Response Score (ICIsRS) as a novel histopathological biomarker derived from Whole Slide Images (WSIs). RESULTS Analyzing 148,181 patches from 313 WSIs of 264 advanced GC patients, the ensemble model exhibited superior predictive accuracy, leading to the creation of ICIsNet. The model demonstrated robust performance across four testing datasets, achieving AUC values of 0.92, 0.95, 0.96, and 1 respectively. The boxplot, constructed from the ICIsRS, reveals statistically significant disparities between the well response and poor response (all p-values < = 0.001). CONCLUSION ICIsRS, a DL-derived biomarker from WSIs, effectively predicts advanced GC patients' responses to PD-1 combined chemotherapy, offering a novel approach for personalized treatment planning and allowing for more individualized and potentially effective treatment strategies based on a patient's unique response situations.
Collapse
Affiliation(s)
- Yifan Liu
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat-sen University, Zhongshan 2nd Street, No. 58, Guangzhou, 510080, 86, Guangdong, China
| | - Wei Chen
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Ruiwen Ruan
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Zhimei Zhang
- Department of Pathology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhixiong Wang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat-sen University, Zhongshan 2nd Street, No. 58, Guangzhou, 510080, 86, Guangdong, China
| | - Tianpei Guan
- Department of Gastrointestinal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qi Lin
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat-sen University, Zhongshan 2nd Street, No. 58, Guangzhou, 510080, 86, Guangdong, China
| | - Wei Tang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat-sen University, Zhongshan 2nd Street, No. 58, Guangzhou, 510080, 86, Guangdong, China
| | - Jun Deng
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China.
| | - Zhao Wang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat-sen University, Zhongshan 2nd Street, No. 58, Guangzhou, 510080, 86, Guangdong, China.
| | - Guanghua Li
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat-sen University, Zhongshan 2nd Street, No. 58, Guangzhou, 510080, 86, Guangdong, China.
| |
Collapse
|
16
|
Gao M, Shi J, Xiao X, Yao Y, Chen X, Wang B, Zhang J. PD-1 regulation in immune homeostasis and immunotherapy. Cancer Lett 2024; 588:216726. [PMID: 38401888 DOI: 10.1016/j.canlet.2024.216726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/31/2024] [Accepted: 02/10/2024] [Indexed: 02/26/2024]
Abstract
Harnessing the programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) axis is pivotal in autoimmunity and cancer immunotherapy. PD-1 receptors on immune cells engage with one of its ligands, PD-L1 or PD-L2, expressed on antigen-presenting cells or tumor cells, driving T-cell dysfunction and tumor immune escape. Thus, targeting PD-1/PD-L1 revitalizes cytotoxic T cells for cancer elimination. However, a majority of cancer patients don't respond to PD-1/PD-L1 blockade, and the underlying mechanisms remain partially understood. Recent studies have revealed that PD-1 expression levels or modifications impact the effectiveness of anti-PD-1/PD-L1 treatments. Therefore, understanding the molecular mechanisms governing PD-1 expression and modifications is crucial for innovating therapeutic strategies to enhance the efficacy of PD-1/PD-L1 inhibition. This article presents a comprehensive overview of advancements in PD-1 regulation and highlights their potential in modulating immune homeostasis and cancer immunotherapy, aiming to refine clinical outcomes.
Collapse
Affiliation(s)
- Minling Gao
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Jie Shi
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xiangling Xiao
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yingmeng Yao
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xu Chen
- Chongqing University Medical School, Chongqing, 400044, China
| | - Bin Wang
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Jinfang Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
17
|
Chen W, Song X, Zhou Y. Cutaneous lupus erythematosus induced by tislelizumab. J Dtsch Dermatol Ges 2024. [PMID: 38679760 DOI: 10.1111/ddg.15396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 02/02/2024] [Indexed: 05/01/2024]
Affiliation(s)
- Weiquan Chen
- Institute of Dermatology and Venereal diseases, Department of Dermatology and Venereal diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xuan Song
- Institute of Dermatology and Venereal diseases, Department of Dermatology and Venereal diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Ying Zhou
- Institute of Dermatology and Venereal diseases, Department of Dermatology and Venereal diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
18
|
Wang CM, Jan Wu YJ, Zheng JW, Huang LY, Tan KP, Chen JY. T cell expressions of aberrant gene signatures and Co-inhibitory receptors (Co-IRs) as predictors of renal damage and lupus disease activity. J Biomed Sci 2024; 31:41. [PMID: 38650001 PMCID: PMC11034032 DOI: 10.1186/s12929-024-01024-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/01/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is distinguished by an extensive range of clinical heterogeneity with unpredictable disease flares and organ damage. This research investigates the potential of aberrant signatures on T cell genes, soluble Co-IRs/ligands, and Co-IRs expression on T cells as biomarkers for lupus disease parameters. METHODS Comparative transcriptome profiling analysis of non-renal and end-stage renal disease (ESRD) phenotypes of SLE was performed using CD4 + and CD8 + cDNA microarrays of sorted T cells. Comparing the expression of Co-IRs on T cells and serum soluble mediators among healthy and SLE phenotypes. RESULTS SLE patients with ESRD were downregulated CD38, PLEK, interferon-γ, CX3CR1, FGFBP2, and SLCO4C1 transcripts on CD4 + and CD8 + T cells simultaneously and NKG7, FCRL6, GZMB/H, FcγRIII, ITGAM, Fas ligand, TBX21, LYN, granulysin, CCL4L1, CMKLR1, HLA-DRβ, KIR2DL3, and KLRD1 in CD8 T cells. Pathway enrichment and PPI network analyses revealed that the overwhelming majority of Differentially Expressed Genes (DEGs) have been affiliated with novel cytotoxic, antigen presentation, and chemokine-cell migration signature pathways. CD8 + GZMK + T cells that are varied in nature, including CD161 + Mucosal-associated invariant T (MAIT) cells and CD161- aged-associated T (Taa) cells and CD161-GZMK + GZMB + T cells might account for a higher level of GZMK in CD8 + T cells associated with ESRD. SLE patients have higher TIGIT + , PD1 + , and lower CD127 + cell percentages on CD4 + T cells, higher TIM3 + , TIGIT + , HLA-DR + cell frequency, and lower MFI expression of CD127, CD160 in CD8 T cells. Co-IRs expression in T cells was correlated with soluble PD-1, PDL-2, and TIM3 levels, as well as SLE disease activity, clinical phenotypes, and immune-therapy responses. CONCLUSION The signature of dysfunctional pathways defines a distinct immunity pattern in LN ESRD patients. Expression levels of Co-IRs in peripheral blood T cells and serum levels of soluble PD1/PDL-2/TIM3 can serve as biomarkers for evaluating clinical parameters and therapeutic responses.
Collapse
Affiliation(s)
- Chin-Man Wang
- Department of Rehabilitation, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, No. 5, Fu-Shin St. Kwei-Shan, Taoyuan, Republic of China
| | - Yeong-Jian Jan Wu
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan, No. 5, Fu-Shin St. Kwei-Shan, Republic of China
| | - Jian-Wen Zheng
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan, No. 5, Fu-Shin St. Kwei-Shan, Republic of China
| | - Li Yu Huang
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan, No. 5, Fu-Shin St. Kwei-Shan, Republic of China
| | - Keng Poo Tan
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan, No. 5, Fu-Shin St. Kwei-Shan, Republic of China
| | - Ji-Yih Chen
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan, No. 5, Fu-Shin St. Kwei-Shan, Republic of China.
| |
Collapse
|
19
|
Wu J, Wang W, Gao L, Shao X, Wang X. Cyclin-dependent kinase inhibitors enhance programmed cell death protein 1 immune checkpoint blockade efficacy in triple-negative breast cancer by affecting the immune microenvironment. Cancer 2024; 130:1449-1463. [PMID: 38482921 DOI: 10.1002/cncr.35270] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/25/2023] [Accepted: 01/22/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Clinical studies on programmed death-ligand 1 (PD-L1) immune checkpoint inhibitors for treating triple-negative breast cancer (TNBC) have shown unsatisfactory efficacy due to low tumor-infiltrating lymphocyte (TIL) levels. Inhibitors targeting cyclin-dependent kinase (CDK) proteins can affect the immune microenvironment, increase TIL levels, and promote antitumor immunity, thus providing a new direction for TNBC treatment strategies. METHODS The authors tested three CDK inhibitors on the TNBC cell lines MDA-MB-231 and 4T1 and validated their antitumor effects and impact on the immune microenvironment using multiple detection methods. They verified the efficacy and immune-related mechanisms of different combination therapy experiments in a 4T1 cell-transplanted BALB/c mouse model. RESULTS Treatment with CDK inhibitors for 72 hours inhibited cell proliferation, clone formation, migration, and cell-cycle arrest and induced apoptosis in human breast cancer MDA-MB-231 cells and mouse breast cancer 4T1 cells. CDK inhibitors suppressed DNA methylation by downregulating DNMT1, DNMT3a, and DNMT3b expression. These three inhibitors promoted the secretion of various chemokines, enhanced tumor cell antigen presentation, and increased PD-L1 expression. CDK inhibitors improved the efficacy of immunotherapy in animal models and increased TIL levels. CONCLUSIONS Combination therapy with CDK and PD-L1 immune checkpoint inhibitors affects the immune microenvironment, promotes antitumor immunity, and improves the efficacy of immunotherapy for TNBC.
Collapse
Affiliation(s)
- Jiayi Wu
- Department of Breast Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Wei Wang
- Department of Breast Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Lu Gao
- Department of Breast Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Xiying Shao
- Department of Breast Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Xiaojia Wang
- Department of Breast Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
20
|
Yang Y, Yan X, Bai X, Yang J, Song J. Programmed cell death-ligand 2: new insights in cancer. Front Immunol 2024; 15:1359532. [PMID: 38605944 PMCID: PMC11006960 DOI: 10.3389/fimmu.2024.1359532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
Immunotherapy has revolutionized cancer treatment, with the anti-PD-1/PD-L1 axis therapy demonstrating significant clinical efficacy across various tumor types. However, it should be noted that this therapy is not universally effective for all PD-L1-positive patients, highlighting the need to expedite research on the second ligand of PD-1, known as Programmed Cell Death Receptor Ligand 2 (PD-L2). As an immune checkpoint molecule, PD-L2 was reported to be associated with patient's prognosis and plays a pivotal role in cancer cell immune escape. An in-depth understanding of the regulatory process of PD-L2 expression may stratify patients to benefit from anti-PD-1 immunotherapy. Our review focuses on exploring PD-L2 expression in different tumors, its correlation with prognosis, regulatory factors, and the interplay between PD-L2 and tumor treatment, which may provide a notable avenue in developing immune combination therapy and improving the clinical efficacy of anti-PD-1 therapies.
Collapse
Affiliation(s)
- Yukang Yang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
| | - Xia Yan
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Xueqi Bai
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Jiayang Yang
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Jianbo Song
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
21
|
Vitzthum von Eckstaedt H, Singh A, Reid P, Trotter K. Immune Checkpoint Inhibitors and Lupus Erythematosus. Pharmaceuticals (Basel) 2024; 17:252. [PMID: 38399467 PMCID: PMC10892070 DOI: 10.3390/ph17020252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/16/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) are the standard of care for a growing number of malignancies. Unfortunately, they are associated with a broad range of unique toxicities that mimic the presentations of primary autoimmune conditions. These adverse events are termed immune-related adverse events (irAEs), of which ICI-lupus erythematosus (ICI-LE) constitutes a small percentage. Our review aims to describe the available literature on ICI-LE and ICI treatment for patients with pre-existing lupus. Most diagnoses of ICI-LE had findings of only cutaneous lupus; four diagnoses of ICI-LE had systemic lupus manifestations. Over 90% (27 of 29) of cases received anti-PD-1/PDL-1 monotherapy, 1 received combination therapy, and 1 received only anti-CTLA-4 treatment. About three-fourths (22 of 29 or 76%) of patients with ICI-lupus were managed with topical steroids, 13 (45%) received hydroxychloroquine, and 10 (34%) required oral corticosteroids. In our case series, none of the patients with pre-existing lupus receiving ICI therapy for cancer had a flare of their lupus, but few had de novo irAE manifestations, all of which were characterized as low-grade. The review of the literature yielded seven ICI-LE flares from a total of 27 patients with pre-existing lupus who received ICI. Most flares were manageable without need for ICI cessation.
Collapse
Affiliation(s)
| | - Arohi Singh
- College of the University of Chicago, University of Chicago, Chicago, IL 60637, USA;
| | - Pankti Reid
- Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago Medicine, Chicago, IL 60637, USA
- Department of Medicine, Section of Rheumatology, University of Chicago Medicine, Chicago, IL 60637, USA;
| | - Kimberly Trotter
- Department of Medicine, Section of Rheumatology, University of Chicago Medicine, Chicago, IL 60637, USA;
| |
Collapse
|
22
|
Little CJ, Kim SC, Fechner JH, Post J, Coonen J, Chlebeck P, Winslow M, Kobuzi D, Strober S, Kaufman DB. Early allogeneic immune modulation after establishment of donor hematopoietic cell-induced mixed chimerism in a nonhuman primate kidney transplant model. Front Immunol 2024; 15:1343616. [PMID: 38318170 PMCID: PMC10839019 DOI: 10.3389/fimmu.2024.1343616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Background Mixed lymphohematopoietic chimerism is a proven strategy for achieving operational transplant tolerance, though the underlying immunologic mechanisms are incompletely understood. Methods A post-transplant, non-myeloablative, tomotherapy-based total lymphoid (TLI) irradiation protocol combined with anti-thymocyte globulin and T cell co-stimulatory blockade (belatacept) induction was applied to a 3-5 MHC antigen mismatched rhesus macaque kidney and hematopoietic cell transplant model. Mechanistic investigations of early (60 days post-transplant) allogeneic immune modulation induced by mixed chimerism were conducted. Results Chimeric animals demonstrated expansion of circulating and graft-infiltrating CD4+CD25+Foxp3+ regulatory T cells (Tregs), as well as increased differentiation of allo-protective CD8+ T cell phenotypes compared to naïve and non-chimeric animals. In vitro mixed lymphocyte reaction (MLR) responses and donor-specific antibody production were suppressed in animals with mixed chimerism. PD-1 upregulation was observed among CD8+ T effector memory (CD28-CD95+) subsets in chimeric hosts only. PD-1 blockade in donor-specific functional assays augmented MLR and cytotoxic responses and was associated with increased intracellular granzyme B and extracellular IFN-γ production. Conclusions These studies demonstrated that donor immune cell engraftment was associated with early immunomodulation via mechanisms of homeostatic expansion of Tregs and early PD-1 upregulation among CD8+ T effector memory cells. These responses may contribute to TLI-based mixed chimerism-induced allogenic tolerance.
Collapse
Affiliation(s)
- Christopher J. Little
- Department of Surgery, University of Wisconsin School of Medicine & Public Health, Madison, WI, United States
- Department of Surgery, University of Washington School of Medicine, Seattle, WA, United States
| | - Steven C. Kim
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States
| | - John H. Fechner
- Department of Surgery, University of Wisconsin School of Medicine & Public Health, Madison, WI, United States
| | - Jen Post
- Department of Surgery, University of Wisconsin School of Medicine & Public Health, Madison, WI, United States
| | - Jennifer Coonen
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, United States
| | - Peter Chlebeck
- Department of Surgery, University of Wisconsin School of Medicine & Public Health, Madison, WI, United States
| | - Max Winslow
- Department of Surgery, University of Wisconsin School of Medicine & Public Health, Madison, WI, United States
| | - Dennis Kobuzi
- Department of Surgery, University of Wisconsin School of Medicine & Public Health, Madison, WI, United States
| | - Samuel Strober
- Department of Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Dixon B. Kaufman
- Department of Surgery, University of Wisconsin School of Medicine & Public Health, Madison, WI, United States
| |
Collapse
|
23
|
Yang LQ, Qin Z, Fu L, Xu WD. Relationship between CD274 gene polymorphism and systemic lupus erythematosus risk in a Chinese Han population. Int J Rheum Dis 2024; 27:e15026. [PMID: 38287556 DOI: 10.1111/1756-185x.15026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/29/2023] [Accepted: 12/21/2023] [Indexed: 01/31/2024]
Abstract
OBJECTIVE Relationship between surface antigen differentiation cluster 274 (CD274) gene polymorphism and systemic lupus erythematosus (SLE) risk is limited. This study aims to discuss whether in a Chinese Han population, CD274 gene polymorphisms may relate to SLE susceptibility. METHODS Three hundred and ten SLE patients and 390 healthy controls were included in this case-control study. Using the Kompetitive Allele-Specific PCR (KASP) approach, five single nucleotide polymorphisms (SNPs), including rs2890658, rs4143815, rs822339, rs2282055, and rs2297137, were genotyped for CD274 gene polymorphisms. Correlation between the polymorphisms and clinical, laboratory features in SLE patients were discussed. RESULTS Frequency of C allele was substantially lower in SLE patients than in healthy controls (p = .015), and CC genotype was significantly negatively related to developing SLE at locus rs4143815 (p = .013). At locus rs822339, frequency of GA genotype was higher than that of the healthy controls (p = .006). At locus rs2282055, frequency of GG genotype was lower than that of healthy controls (p = .024). According to subgroup analysis, the CD274 gene polymorphisms rs2890658, rs4143815, rs822339, rs2282055, and rs2297137 were partly linked to some clinical symptoms of SLE patients, such as Complement 4 (C4), C-reactive protein (CRP), and erythrocyte sedimentation rate (ESR). CONCLUSION CD274 gene polymorphisms may be susceptible to SLE in the Chinese Han people.
Collapse
Affiliation(s)
- Lu-Qi Yang
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Zhen Qin
- Department of Rheumatology and Immunology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Lu Fu
- Laboratory Animal Center, Southwest Medical University, Luzhou, Sichuan, China
| | - Wang-Dong Xu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
24
|
Carlsson E, Cowell-McGlory T, Hedrich CM. cAMP responsive element modulator α promotes effector T cells in systemic autoimmune diseases. Immunology 2023; 170:470-482. [PMID: 37435993 DOI: 10.1111/imm.13680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/01/2023] [Indexed: 07/13/2023] Open
Abstract
T lymphocytes play a crucial role in adaptive immunity. Dysregulation of T cell-derived inflammatory cytokine expression and loss of self-tolerance promote inflammation and tissue damage in several autoimmune/inflammatory diseases, including systemic lupus erythematosus (SLE) and psoriasis. The transcription factor cAMP responsive element modulator α (CREMα) plays a key role in the regulation of T cell homeostasis. Increased expression of CREMα is a hallmark of the T cell-mediated inflammatory diseases SLE and psoriasis. Notably, CREMα regulates the expression of effector molecules through trans-regulation and/or the co-recruitment of epigenetic modifiers, including DNA methyltransferases (DNMT3a), histone-methyltransferases (G9a) and histone acetyltransferases (p300). Thus, CREMα may be used as a biomarker for disease activity and/or target for future targeted therapeutic interventions.
Collapse
Affiliation(s)
- Emil Carlsson
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Taylor Cowell-McGlory
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Christian M Hedrich
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
- Department of Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, UK
- Paediatric Excellence Initiative, NIHR Great Ormond Street Biomedical Research Centre, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, UK
| |
Collapse
|
25
|
Li F, Zhou Z, Wang L, Li B, Jin M, Liu J, Chen Y, He Y, Ren B, Shen H, Liu L. A study of programmed death-1/programmed death ligand and iodine-induced autoimmune thyroiditis in NOD.H-2h4 mice. ENVIRONMENTAL TOXICOLOGY 2023; 38:2574-2584. [PMID: 37598415 DOI: 10.1002/tox.23893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/14/2023] [Accepted: 07/01/2023] [Indexed: 08/22/2023]
Abstract
Excess iodine will trigger the occurrence of autoimmune thyroiditis (AIT), and programmed death-1 (PD-1)/programmed death ligand (PD-L) will also contribute to the development of AIT. The purpose of this study was to explore the role that negative regulatory signals mediated by PD-1/PD-L play in the development of spontaneous autoimmune thyroiditis (SAT) in NOD.H-2h4 mice when they are exposed to iodine. Programmed death ligand 1 (PD-L1) antibody was administered intraperitoneally to NOD.H-2h4 mice. The relevant indicators were determined by flow cytometry, real-time quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, immunohistochemistry, pathological hematoxylin and eosin staining, and arsenic-cerium catalytic spectrophotometry. Results showed that the level of urinary iodine, the level of thyroid lymphocyte infiltration, the level of thyroglobulin antibodies (TgAb) and interferon (IFN-γ)/tumor necrosis factor (TNF-α)/interleukin (IL-2)/IL-17, and the relative expression of PD-1/PD-L1/programmed death-2 (PD-L2) increased with the intervention of excess iodine. After the intervention of the PD-L1 antibody, the expression of PD-1/PD-L1/PD-L2 in different degrees was inhibited, but the level of thyroid lymphocyte infiltration and serum TgAb/IFN-γ/TNF-α/ IL-2/IL-17 did not decrease. Collectively, although PD-1/PD-L participates in the occurrence of SAT and induces inflammation, administration of the PD-L1 antibody does not effectively improve the pathological process of SAT. More research is needed to determine whether PD-1/PD-L intervention can treat autoimmune thyroid disease.
Collapse
Affiliation(s)
- Fan Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, People's Republic of China
- Control Infection Department, Xi'an First Hospital, Xi'an, People's Republic of China
| | - Zheng Zhou
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, People's Republic of China
| | - Lingbo Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, People's Republic of China
| | - Baoxiang Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, People's Republic of China
| | - Meihui Jin
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, People's Republic of China
| | - Jinjin Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, People's Republic of China
| | - Yun Chen
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, People's Republic of China
| | - Yanhong He
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, People's Republic of China
| | - Bingxuan Ren
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, People's Republic of China
| | - Hongmei Shen
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, People's Republic of China
| | - Lixiang Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, People's Republic of China
| |
Collapse
|
26
|
Xie Z, Dai L, He H, Hong D, Tang H, Xu W, Chen Z, Wang H, Li B, Xie C, Wang Y. The effect of PD-1/PD-L1 signaling axis on the interaction between CD19 +B cells and CD4 +T cells in peripheral blood of patients with systemic lupus erythematosus. Adv Rheumatol 2023; 63:51. [PMID: 37848996 DOI: 10.1186/s42358-023-00333-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND The defect of B cell self-tolerance and the continuous antigen presentation by T cells (TCs) mediated by autoreactive B cells (BCs) play a key role in the occurrence and development of systemic lupus erythematosus (SLE). PD-1/PD-L1 signaling axis negatively regulates the immune response of TCs after activation and maintains immune tolerance. However, the effect of PD-1/PD-L1 signaling axis on the interaction between CD19+B/CD4+TCs in the peripheral blood of patients with SLE has not been studied in detail. METHODS PD-1/PD-L1 and Ki-67 levels in peripheral blood (PB) of 50 SLE patients and 41 healthy controls (HCs) were detected through flow cytometry, and then the expression of PD-1+/-cells and PD-L1+/-cells Ki-67 was further analyzed. CD19+B/CD4+TCs were separated for cell culture and the supernatant was collected to determine proliferation and differentiation of TCs. IL-10 and IFN-γ secretion in the supernatant was also determined using ELISA. RESULTS The PD-1, PD-L1, and Ki-67 levels on CD19+B/CD4+TCs in patients with SLE were higher than HCs. In CD19+B/CD4+TCs of SLE patients, the proliferative activity of PD-L1+ cells was higher than that of PD-L1- cells, and the proliferative activity of PD-1+ cells was higher than that of PD-1- cells. In the system co-culturing CD19+B/CD4+TCs from HCs/SLE patients, activated BCs promoted TCs proliferation and PD-L1 expression among TCs. Addition of anti-PD-L1 to co-culture system restored the proliferation of TCs, and inhibited IL-10/IFN-γ level. The addition of anti-PD-L1 to co-culture system also restored Tfh and downregulated Treg in HCs. CONCLUSIONS Axis of PD-1/PD-L1 on CD19+B/CD4+TCs in PB of SLE patients is abnormal, and cell proliferation is abnormal. In CD19+B/CD4+TCs of SLE patients, the proliferative activity of PD-L1+ and PD-1+ cells compared with PD-L1- and PD-1- cells in SLE patients, respectively. CD19+B/CD4+TCs in SLE patients can interact through PD-1/PD-L1.
Collapse
Affiliation(s)
- Zhuobei Xie
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233003, China
- Department of Geriatrics, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Li Dai
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233003, China
| | - Haohua He
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233003, China
| | - Dengxiao Hong
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233003, China
| | - Honghui Tang
- Clinical Medical College of Bengbu Medical College, Bengbu, 233003, China
| | - Wenyan Xu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233003, China
| | - Zhongxin Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233003, China
| | - Hongtao Wang
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, 233003, China
| | - Baiqing Li
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, 233003, China
| | - Changhao Xie
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233003, China.
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, 233003, China.
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-Related Diseases, Bengbu Medical College, Bengbu, 233003, China.
| | - Yuanyuan Wang
- Department of Histology and Embryology, Bengbu Medical College, Bengbu, 233003, China.
| |
Collapse
|
27
|
Rezayi M, Hosseini A. Structure of PD1 and its mechanism in the treatment of autoimmune diseases. Cell Biochem Funct 2023; 41:726-737. [PMID: 37475518 DOI: 10.1002/cbf.3827] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/27/2023] [Accepted: 07/08/2023] [Indexed: 07/22/2023]
Abstract
PD-1 and CTLA-4 can play an important role in addressing the issue of autoimmune diseases. PD-1 is a transmembrane glycoprotein expressed on T, B, and Dentric cells. This molecule functions as a checkpoint in T cell proliferation. Ligation of PD-1 with its ligands inhibits the production of IL-2, IL-7, IL-10, and IL-12 as well as other cytokines by macrophages, natural killer (NK) cells, and T cells, which can suppress cell proliferation and inflammation. Today, scientists attempt to protect against autoimmune diseases by PD-1 inhibitory signals. In this review, we discuss the structure, expression, and signaling pathway of PD-1. In addition, we discuss the importance of PD-1 in regulating several autoimmune diseases, reflecting how manipulating this molecule can be an effective method in the immunotherapy of some autoimmune diseases.
Collapse
Affiliation(s)
- Mahdi Rezayi
- Department of Medical Sciences, Marand Baranch, Islamic Azad University, Marand, Iran
| | - Arezoo Hosseini
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
28
|
Gao X, Huang X, Wang Y, Sun S, Chen T, Gao Y, Zhang X. Global research hotspots and frontier trends of epigenetic modifications in autoimmune diseases: A bibliometric analysis from 2012 to 2022. Medicine (Baltimore) 2023; 102:e35221. [PMID: 37773838 PMCID: PMC10545364 DOI: 10.1097/md.0000000000035221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/23/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Recent studies have shown substantial progress in understanding the association between epigenetics and autoimmune diseases. However, there is a lack of comprehensive bibliometric analysis in this research area. This article aims to present the current status and hot topics of epigenetic research in autoimmune diseases (ADs) from a bibliometric perspective, as well as explore the frontier hotspots and trends in epigenetic studies related to ADs. METHODS This study collected 1870 epigenetic records related to autoimmune diseases from the web of science core collection database, spanning from 2012 to 2022. Analysis of regions, institutions, journals, authors, and keywords was conducted using CiteSpace, VOSviewer, and the R package "bibliometrix" to predict the latest trends in epigenetic research relevant to autoimmune diseases. RESULTS The number of epigenetic publications related to autoimmune diseases has been increasing annually. The United States has played a major role in this field, contributing over 45.9% of publications and leading in terms of publication volume and citation counts. Central South University emerged as the most active institution, contributing the highest number of publications. Frontiers in Immunology is the most popular journal in this field, publishing the most articles, while the Journal of Autoimmunity is the most co-cited journal. Lu QJ is the most prolific author, and Zhao M is the most frequently co-cited author. "Immunology" serves as a broad representative of epigenetic research in ADs. Hot topics in the field of epigenetic modifications associated with autoimmune diseases include "regulatory T cells (Treg)," "rheumatoid arthritis," "epigenetic regulation," "cAMPresponsive element modulator alpha," "cell-specific enhancer," "genetic susceptibility," and "systemic lupus erythematosus." Furthermore, the study discusses the frontiers and existing issues of epigenetic modifications in the development of autoimmune diseases. CONCLUSIONS This study provides a comprehensive overview of the knowledge structure and developmental trends in epigenetic research related to autoimmune diseases over the past 11 years.
Collapse
Affiliation(s)
- Xiang Gao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Xin Huang
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Yehui Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Sheng Sun
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Tao Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Yongxiang Gao
- International Education College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Xiaodan Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| |
Collapse
|
29
|
Pan Z, Yang Q, Zhang X, Xu X, Sun Y, Zhou F, Wen L. TRIM5 Promotes Systemic Lupus Erythematosus Through CD4(+) T Cells and Macrophage. Int J Gen Med 2023; 16:3567-3580. [PMID: 37614552 PMCID: PMC10443694 DOI: 10.2147/ijgm.s416493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/03/2023] [Indexed: 08/25/2023] Open
Abstract
Purpose Systemic lupus erythematosus (SLE) is a typical autoimmune disease characterized by the involvement of multiple organs and the production of antinuclear antibodies. This study aimed to investigate the molecular mechanism of SLE. Patients and Methods We retrieved genome-wide gene expression levels from five public datasets with relatively large sample sizes from the Gene Expression Omnibus (GEO), and we compared the expression profiles of peripheral blood mononuclear cells (PBMCs) from SLE patients and healthy controls (HCs). The expression of seven target genes in PBMCs from 25 cases and 3 HCs was further validated by reverse-transcription quantitative PCR (RT‒qPCR). Flow cytometry was used for verifying the proportion of naive CD4(+) T cells and M2 macrophages in PBMCs from 5 cases and 4 HCs. Results We found 14 genes (TRIM5, FAM8A1, SHFL, LHFPL2, PARP14, IFIT5, PARP12, DDX60, IRF7, IF144, OAS1, OAS3, RHBDF2, and RSAD2) that were differentially expressed among all five datasets. The heterogeneity test under the fixed effect model showed no obvious heterogeneity of TRIM5, FAM8A1, and SHFL across different populations. TRIM5 was positively correlated with the remaining 13 genes. By separating patient samples into TRIM5-high and TRIM5-low groups, we found that up-regulated genes in the TRIM5-high group were mainly enriched in virus-related pathways. Immune cell proportion analysis and flow cytometry revealed that naive CD4(+) T cells were significantly decreased while M2 macrophages were increased in the SLE group. TRIM5 expression levels were negatively correlated with naive CD4(+) T cells but positively correlated with M2 macrophages. Conclusion Our data indicated that TRIM5 might be a key factor that modulates SLE etiology, possibly through naive CD4(+) T cells and M2 macrophages.
Collapse
Affiliation(s)
- Zhaobing Pan
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, People’s Republic of China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, People’s Republic of China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, People’s Republic of China
| | - Qiaoshan Yang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, People’s Republic of China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, People’s Republic of China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, People’s Republic of China
| | - Xiaojing Zhang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, People’s Republic of China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, People’s Republic of China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, People’s Republic of China
| | - Xiaoqing Xu
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, People’s Republic of China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, People’s Republic of China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, People’s Republic of China
| | - Yao Sun
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, People’s Republic of China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, People’s Republic of China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, People’s Republic of China
| | - Fusheng Zhou
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, People’s Republic of China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, People’s Republic of China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, People’s Republic of China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, People’s Republic of China
| | - Leilei Wen
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, People’s Republic of China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, People’s Republic of China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, People’s Republic of China
| |
Collapse
|
30
|
Zhang YC, Zhang YT, Wang Y, Zhao Y, He LJ. What role does PDL1 play in EMT changes in tumors and fibrosis? Front Immunol 2023; 14:1226038. [PMID: 37649487 PMCID: PMC10463740 DOI: 10.3389/fimmu.2023.1226038] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023] Open
Abstract
Epithelial-mesenchymal transformation (EMT) plays a pivotal role in embryonic development, tissue fibrosis, repair, and tumor invasiveness. Emerging studies have highlighted the close association between EMT and immune checkpoint molecules, particularly programmed cell death ligand 1 (PDL1). PDL1 exerts its influence on EMT through bidirectional regulation. EMT-associated factors, such as YB1, enhance PDL1 expression by directly binding to its promoter. Conversely, PDL1 signaling triggers downstream pathways like PI3K/AKT and MAPK, promoting EMT and facilitating cancer cell migration and invasion. Targeting PDL1 holds promise as a therapeutic strategy for EMT-related diseases, including cancer and fibrosis. Indeed, PDL1 inhibitors, such as pembrolizumab and nivolumab, have shown promising results in clinical trials for various cancers. Recent research has also indicated their potential benefit in fibrosis treatment in reducing fibroblast activation and extracellular matrix deposition, thereby addressing fibrosis. In this review, we examine the multifaceted role of PDL1 in immunomodulation, growth, and fibrosis promotion. We discuss the challenges, mechanisms, and clinical observations related to PDL1, including the limitations of the PD1/PDL1 axis in treatment and PD1-independent intrinsic PDL1 signaling. Our study highlights the dynamic changes in PDL1 expression during the EMT process across various tumor types. Through interplay between PDL1 and EMT, we uncover co-directional alterations, regulatory pathways, and diverse changes resulting from PDL1 intervention in oncology. Additionally, our findings emphasize the dual role of PDL1 in promoting fibrosis and modulating immune responses across multiple diseases, with potential implications for therapeutic approaches. We particularly investigate the therapeutic potential of targeting PDL1 in type II EMT fibrosis: strike balance between fibrosis modulation and immune response regulation. This analysis provides valuable insights into the multifaceted functions of PDL1 and contributes to our understanding of its complex mechanisms and therapeutic implications.
Collapse
Affiliation(s)
- Yun-Chao Zhang
- Department of Nephrology, Xi Jing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yu-Ting Zhang
- Department of Nephrology, Xi Jing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yi Wang
- Department of Nephrology, Xi Jing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Ya Zhao
- Department of Medical Microbiology and Parasitology, Fourth Military Medical University, Xi'an, China
| | - Li-Jie He
- Department of Nephrology, Xi Jing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
31
|
Zeng H, Zhuang Y, Li X, Yin Z, Huang X, Peng H. Exploring the potential common denominator pathogenesis of system lupus erythematosus with COVID-19 based on comprehensive bioinformatics analysis. Front Immunol 2023; 14:1179664. [PMID: 37426642 PMCID: PMC10325730 DOI: 10.3389/fimmu.2023.1179664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Objective Evidences show that there may be a link between SLE and COVID-19. The purpose of this study is to screen out the diagnostic biomarkers of systemic lupus erythematosus (SLE) with COVID-19 and explore the possible related mechanisms by the bioinformatics approach. Methods SLE and COVID-19 datasets were extracted separately from the NCBI Gene Expression Omnibus (GEO) database. The limma package in R was used to obtain the differential genes (DEGs). The protein interaction network information (PPI) and core functional modules were constructed in the STRING database using Cytoscape software. The hub genes were identified by the Cytohubba plugin, and TF-gene together with TF-miRNA regulatory networks were constructed via utilizing the Networkanalyst platform. Subsequently, we generated subject operating characteristic curves (ROC) to verify the diagnostic capabilities of these hub genes to predict the risk of SLE with COVID-19 infection. Finally, a single-sample gene set enrichment (ssGSEA) algorithm was used to analyze immune cell infiltration. Results A total of 6 common hub genes (CDC6, PLCG1, KIF15, LCK, CDC25C, and RASGRP1) were identified with high diagnostic validity. These gene functional enrichments were mainly involved in cell cycle, and inflammation-related pathways. Compared to the healthy controls, abnormal infiltration of immune cells was found in SLE and COVID-19, and the proportion of immune cells linked to the 6 hub genes. Conclusion Our research logically identified 6 candidate hub genes that could predict SLE complicated with COVID-19. This work provides a foothold for further study of potential pathogenesis in SLE and COVID-19.
Collapse
Affiliation(s)
- Huiqiong Zeng
- Department of Rheumatology, Shenzhen Futian Hospital for Rheumatic Diseases, Futian District, Shenzhen, Guangdong, China
| | - Yu Zhuang
- Department of Rheumatology and Immunology, Huizhou Central People’s Hospital, Huizhou, Guangdong, China
| | - Xiaojuan Li
- Department of Public Health, Shenzhen Hospital of Southern Medical University, Shenzhen, China
| | - Zhihua Yin
- Department of Rheumatology, Shenzhen Futian Hospital for Rheumatic Diseases, Futian District, Shenzhen, Guangdong, China
| | - Xia Huang
- Department of Xi Yuan Community Health Service Center, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Haiyan Peng
- Department of Rheumatology, Shenzhen Futian Hospital for Rheumatic Diseases, Futian District, Shenzhen, Guangdong, China
| |
Collapse
|
32
|
Chen RY, Zhu Y, Shen YY, Xu QY, Tang HY, Cui NX, Jiang L, Dai XM, Chen WQ, Lin Q, Li XZ. The role of PD-1 signaling in health and immune-related diseases. Front Immunol 2023; 14:1163633. [PMID: 37261359 PMCID: PMC10228652 DOI: 10.3389/fimmu.2023.1163633] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/02/2023] [Indexed: 06/02/2023] Open
Abstract
Programmed cell death 1 receptor (PD-1) and its ligands constitute an inhibitory pathway to mediate the mechanism of immune tolerance and provide immune homeostasis. Significantly, the binding partners of PD-1 and its associated ligands are diverse, which facilitates immunosuppression in cooperation with other immune checkpoint proteins. Accumulating evidence has demonstrated the important immunosuppressive role of the PD-1 axis in the tumor microenvironment and in autoimmune diseases. In addition, PD-1 blockades have been approved to treat various cancers, including solid tumors and hematological malignancies. Here, we provide a comprehensive review of the PD-1 pathway, focusing on the structure and expression of PD-1, programmed cell death 1 ligand 1 (PD-L1), and programmed cell death 1 ligand 2 (PD-L2); the diverse biological functions of PD-1 signaling in health and immune-related diseases (including tumor immunity, autoimmunity, infectious immunity, transplantation immunity, allergy and immune privilege); and immune-related adverse events related to PD-1 and PD-L1 inhibitors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Qiang Lin
- *Correspondence: Qiang Lin, ; Xiao-Zhong Li,
| | | |
Collapse
|
33
|
Li J, Dong T, Wu Z, Zhu D, Gu H. The effects of MYC on tumor immunity and immunotherapy. Cell Death Discov 2023; 9:103. [PMID: 36966168 PMCID: PMC10039951 DOI: 10.1038/s41420-023-01403-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/03/2023] [Accepted: 03/14/2023] [Indexed: 03/27/2023] Open
Abstract
The oncogene MYC is dysregulated in a host of human cancers, and as an important point of convergence in multitudinous oncogenic signaling pathways, it plays a crucial role in tumor immune regulation in the tumor immune microenvironment (TIME). Specifically, MYC promotes the expression of immunosuppressive factors and inhibits the expression of immune activation regulators. Undoubtedly, a therapeutic strategy that targets MYC can initiate a new era of cancer treatment. In this review, we summarize the essential role of the MYC signaling pathway in tumor immunity and the development status of MYC-related therapies, including therapeutic strategies targeting MYC and combined MYC-based immunotherapy. These studies have reported extraordinary insights into the translational application of MYC in cancer treatment and are conducive to the emergence of more effective immunotherapies for cancer.
Collapse
Affiliation(s)
- Jiajin Li
- Department of Pediatrics, Second Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Tingyu Dong
- Department of Pediatrics, Second Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Zhen Wu
- Department of Clinical Medicine, First Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Dacheng Zhu
- Department of Clinical Medicine, First Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Hao Gu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
34
|
Zhu Y, Yu Q, Su G, Shao N, Feng J, Xiang L, Zhou C, Yang P. Interferon-α2a induces CD4+ T cell apoptosis and suppresses Th1/Th17 responses via upregulating IRF1-mediated PDL1 expression in dendritic cells from Behcet's uveitis. Clin Immunol 2023; 250:109303. [PMID: 36997038 DOI: 10.1016/j.clim.2023.109303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023]
Abstract
Recombinant interferon-α2a (IFNα2a) has been widely used in the treatment of Behcet's uveitis (BU). However, the mechanism underlying its effects remains poorly understood. In this study, we investigated its effect on dendritic cells (DCs) and CD4+ T cells, which are essential for the development of BU. Our results showed that the expression of PDL1 and IRF1 was significantly decreased in DCs from active BU patients, and IFNα2a could significantly upregulate PDL1 expression in an IRF1-dependent manner. IFNα2a-treated DCs induced CD4+ T cells apoptosis and inhibited the Th1/Th17 immune response in association with reduced secretion of IFN-γ and IL-17. We also found that IFNα2a promoted Th1 cell differentiation and IL-10 secretion by CD4+ T cells. Finally, a comparison of patients before and after IFNα2a therapy revealed that the frequencies of Th1/Th17 cells significantly decreased in association with remission of uveitis after IFNα2a therapy. Collectively, these results show that IFNα2a could exert its effects by modulating the function of DCs and CD4+ T cells in BU.
Collapse
|
35
|
Hu J, Ding Y, Liu W, Liu S. When AHR signaling pathways meet viral infections. Cell Commun Signal 2023; 21:42. [PMID: 36829212 PMCID: PMC9951170 DOI: 10.1186/s12964-023-01058-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 01/27/2023] [Indexed: 02/26/2023] Open
Abstract
Aryl hydrocarbon receptor (AHR) is a ligand-dependent transcriptional factor widely expressed among immune, epithelial, endothelial and stromal cells in barrier tissues. It can be activated by small molecules provided by pollutants, microorganisms, food, and metabolism. It has been demonstrated that AHR plays an important role in modulating the response to many microbial pathogens, and the abnormal expression of AHR signaling pathways may disrupt endocrine, cause immunotoxicity, and even lead to the occurrence of cancer. Most humans are infected with at least one known human cancer virus. While the initial infection with these viruses does not cause major disease, the metabolic activity of infected cells changes, thus affecting the activation of oncogenic signaling pathways. In the past few years, lots of studies have shown that viral infections can affect disease progression by regulating the transmission of multiple signaling pathways. This review aims to discuss the potential effects of virus infections on AHR signaling pathways so that we may find a new strategy to minimize the adverse effects of the AHR pathway on diseases. Video Abstract.
Collapse
Affiliation(s)
- Jieke Hu
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Qingdao, 266555, China.,Department of Pathogenic Biology, Qingdao University Medical College, 308 Ningxia Road, Qingdao, 266071, China
| | - Yuan Ding
- Department of Special Examination, Qingdao Women & Children Hospital, Qingdao, 266035, China
| | - Wen Liu
- Department of Pathogenic Biology, Qingdao University Medical College, 308 Ningxia Road, Qingdao, 266071, China.
| | - Shuzhen Liu
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Qingdao, 266555, China.
| |
Collapse
|
36
|
Wang B, Chen C, Liu X, Zhou S, Xu T, Wu M. The effect of combining PD-1 agonist and low-dose Interleukin-2 on treating systemic lupus erythematosus. Front Immunol 2023; 14:1111005. [PMID: 36969198 PMCID: PMC10030866 DOI: 10.3389/fimmu.2023.1111005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease involving multiple organs. It is often called "immortal cancer" due to the difficulties in disease treatment. As the cornerstone of immune regulation, the programmed cell death protein 1 (PD-1) has been extensively studied in the context of chronic inflammation due to its ability of regulating immune response and immunosuppression. Recently, more and more studies on rheumatic immune related complications have also focused on PD-1 and proposed that the use of PD-1 agonist could inhibit the activation of lymphocytes and alleviate SLE disease activity. In this review, we summarized the role of PD-1 in SLE, implicating its potential application as a biomarker to predict SLE disease activity; we also proposed that the combination of PD-1 agonist and low-dose IL-2 may have better therapeutic efficacy, shining light on a new direction for developing specific treatment approaches.
Collapse
Affiliation(s)
- Bing Wang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Can Chen
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Xia Liu
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Shuang Zhou
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Ting Xu
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- *Correspondence: Ting Xu, ; Min Wu,
| | - Min Wu
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- *Correspondence: Ting Xu, ; Min Wu,
| |
Collapse
|
37
|
Akhmetova DA, Kozlov VV, Gulyaeva LF. New Insight into the Role of AhR in Lung Carcinogenesis. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1219-1225. [PMID: 36509717 DOI: 10.1134/s0006297922110013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Lung cancer (LC), one of the most common malignant neoplasms, is the leading cause of high cancer mortality worldwide. Smoking is a risk factor for almost all histological types of LC. Benzo[a]pyrene (BaP), one of the main constituents of tobacco smoke, can cause cancer. It has been established that its toxic effects can develop in the following ways: genotoxic (formation of adducts with DNA) and non-genotoxic or epigenetic. The latter is less known, although it is known that BaP activates aryl hydrocarbon receptor (AhR), which regulate transcription of many target genes, including microRNAs, which can lead to initiation and enhancement of the malignant cell transformation. Recent studies are evaluating the role of AhR in the regulation of immune checkpoints, as cigarette smoke and BaP induce the AhR-regulated expression of PD-L1 (CD274) in lung epithelial cells in vitro and in vivo. In addition, kynurenine (a metabolite of tryptophan) has been found to stimulate the PD-1 (CD279) expression in cytotoxic T cells by activating AhR. Recent studies confirm great importance of AhR expressed in malignant cells for suppression of antitumor immunity. All this makes us rethink the role of AhR in lung carcinogenesis and investigate the mechanisms of its activation by exogenous and endogenous ligands. This review highlights the current understanding of the functional features of AhR and its role in the LC pathogenesis.
Collapse
Affiliation(s)
- Dinara A Akhmetova
- Novosibirsk National Research State University, Novosibirsk, 630090, Russia.
| | - Vadim V Kozlov
- Research Institute of Molecular Biology and Biophysics, Federal Research Center for Fundamental and Translational Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630117, Russia.,Department of Thoracic Oncology #3, Novosibirsk Regional Clinical Oncology Center, Novosibirsk, 630108, Russia
| | - Ludmila F Gulyaeva
- Novosibirsk National Research State University, Novosibirsk, 630090, Russia.,Research Institute of Molecular Biology and Biophysics, Federal Research Center for Fundamental and Translational Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630117, Russia
| |
Collapse
|
38
|
Liu Y, Huo Y, Ma C, Lv Z. Relationship between standardized uptake value on 18F-FDG PET and PD-L1 expression in clear cell renal cell carcinoma. Front Oncol 2022; 12:1012561. [PMID: 36267974 PMCID: PMC9577457 DOI: 10.3389/fonc.2022.1012561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
PurposePartial clear cell renal cell carcinoma (CCRCC) may be sensitive to immune checkpoint inhibitor treatment targeting the programmed cell death 1 (PD-1)/programmed cell death 1 ligand 1 (PD-L1) pathway. Assessing the levels of PD-L1 using non-invasive imaging is useful to select immunotherapy-sensitive patients. Currently, whether PD-L1 levels in CCRCC correlate with 18F fluorodeoxyglucose (18F-FDG) uptake is unknown. This study aimed to assess whether 18F-FDG-positron emission tomography (PET) imaging could be used to infer PD-L1 levels in CCRCC.MethodsImmunohistochemistry (IHC) was used to assess PD-L1 levels in samples of tumors obtained retrospectively from a cohort of 58 patients with CCRCC who also received 18F-FDG PET/CT imaging. The IHC scores for PD-L1 were compared with the 18F-FDG maximum standardized uptake value (SUVmax), and the mean standardized uptake value (SUVmean) value, with the clinical characteristics of CCRCC, and with the IHC scores of enzymes related to glucose metabolism (glucose transporter type 1 (GLUT1), hexokinase 2 (HK2), lactate dehydrogenase A (LDHA)), and Von Hippel-Lindau tumor suppressor (VHL).ResultsIncreased renal venous invasion, lymph node metastasis, tumor size, SUVmean, and SUVmax correlated significantly with higher PD-L1 levels (P < 0.05). The IHC scores of VHL and LDHA correlated positively with those of PD-L1 (P = 0.035, P = 0.011, respectively). Significant correlations between PD-L1 levels and SUVmean and lymph node metastasis were observed upon multivariate analysis. SUVmean combined with lymph node metastasis predicted that 20.59% of the low probability group would express PD-L1, 29.41% of the medium probability group would express PD-L1, and 71.43% of the high probability group would express PD-L1.ConclusionThe status of lymph node metastasis, SUVmax, and SUVmean of the primary lesion correlated with PD-L1 levels in CCRCC. A combination of lymph node metastasis status and SUVmean could be utilized to predict PD-L1 levels, thus allowing monitoring of a tumor’s immunotherapy response.
Collapse
Affiliation(s)
| | | | - Chao Ma
- *Correspondence: Zhongwei Lv, ; Chao Ma,
| | | |
Collapse
|
39
|
Wu J, Pang T, Lin Z, Zhao M, Jin H. The key player in the pathogenesis of environmental influence of systemic lupus erythematosus: Aryl hydrocarbon receptor. Front Immunol 2022; 13:965941. [PMID: 36110860 PMCID: PMC9468923 DOI: 10.3389/fimmu.2022.965941] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/01/2022] [Indexed: 11/28/2022] Open
Abstract
The aryl hydrocarbon receptor was previously known as an environmental receptor that modulates the cellular response to external environmental changes. In essence, the aryl hydrocarbon receptor is a cytoplasmic receptor and transcription factor that is activated by binding to the corresponding ligands, and they transmit relevant information by binding to DNA, thereby activating the transcription of various genes. Therefore, we can understand the development of certain diseases and discover new therapeutic targets by studying the regulation and function of AhR. Several autoimmune diseases, including systemic lupus erythematosus (SLE), have been connected to AhR in previous studies. SLE is a classic autoimmune disease characterized by multi-organ damage and disruption of immune tolerance. We discuss here the homeostatic regulation of AhR and its ligands among various types of immune cells, pathophysiological roles, in addition to the roles of various related cytokines and signaling pathways in the occurrence and development of SLE.
Collapse
|
40
|
Harley ITW, Allison K, Scofield RH. Polygenic autoimmune disease risk alleles impacting B cell tolerance act in concert across shared molecular networks in mouse and in humans. Front Immunol 2022; 13:953439. [PMID: 36090990 PMCID: PMC9450536 DOI: 10.3389/fimmu.2022.953439] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022] Open
Abstract
Most B cells produced in the bone marrow have some level of autoreactivity. Despite efforts of central tolerance to eliminate these cells, many escape to periphery, where in healthy individuals, they are rendered functionally non-responsive to restimulation through their antigen receptor via a process termed anergy. Broad repertoire autoreactivity may reflect the chances of generating autoreactivity by stochastic use of germline immunoglobulin gene segments or active mechanisms may select autoreactive cells during egress to the naïve peripheral B cell pool. Likewise, it is unclear why in some individuals autoreactive B cell clones become activated and drive pathophysiologic changes in autoimmune diseases. Both of these remain central questions in the study of the immune system(s). In most individuals, autoimmune diseases arise from complex interplay of genetic risk factors and environmental influences. Advances in genome sequencing and increased statistical power from large autoimmune disease cohorts has led to identification of more than 200 autoimmune disease risk loci. It has been observed that autoantibodies are detectable in the serum years to decades prior to the diagnosis of autoimmune disease. Thus, current models hold that genetic defects in the pathways that control autoreactive B cell tolerance set genetic liability thresholds across multiple autoimmune diseases. Despite the fact these seminal concepts were developed in animal (especially murine) models of autoimmune disease, some perceive a disconnect between human risk alleles and those identified in murine models of autoimmune disease. Here, we synthesize the current state of the art in our understanding of human risk alleles in two prototypical autoimmune diseases - systemic lupus erythematosus (SLE) and type 1 diabetes (T1D) along with spontaneous murine disease models. We compare these risk networks to those reported in murine models of these diseases, focusing on pathways relevant to anergy and central tolerance. We highlight some differences between murine and human environmental and genetic factors that may impact autoimmune disease development and expression and may, in turn, explain some of this discrepancy. Finally, we show that there is substantial overlap between the molecular networks that define these disease states across species. Our synthesis and analysis of the current state of the field are consistent with the idea that the same molecular networks are perturbed in murine and human autoimmune disease. Based on these analyses, we anticipate that murine autoimmune disease models will continue to yield novel insights into how best to diagnose, prognose, prevent and treat human autoimmune diseases.
Collapse
Affiliation(s)
- Isaac T. W. Harley
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative (HI3), Department of Immunology, University of Colorado School of Medicine, Aurora, CO, United States
- Rheumatology Section, Medicine Service, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, United States
| | - Kristen Allison
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative (HI3), Department of Immunology, University of Colorado School of Medicine, Aurora, CO, United States
| | - R. Hal Scofield
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Medical/Research Service, US Department of Veterans Affairs Medical Center, Oklahoma City, OK, United States
| |
Collapse
|
41
|
From vaccines to nanovaccines: A promising strategy to revolutionize rheumatoid arthritis treatment. J Control Release 2022; 350:107-121. [PMID: 35977582 DOI: 10.1016/j.jconrel.2022.08.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 10/15/2022]
Abstract
Rheumatoid arthritis (RA) is a joint-related autoimmune disease that is difficult to cure. Most therapeutics act to alleviate the symptoms but not correct the causes of RA. Novel strategies that specifically target the causes are highly needed for RA management. Currently, early interruption of RA is increasingly suggested but the corresponding therapeutics are not available. Vaccines that have shown great success to combat infection, cancer, degenerative diseases, autoimmune diseases, etc. are ideal candidates for a new generation of anti-RA therapeutics to correct the causes and prevent RA or interrupt RA in early phases. Anti-RA vaccines can be divided into two major categories. One is to induce neutralizing antibodies and the other is to induce antigen-specific immune tolerance. The vaccines are inherently linked to nanotechnology because they usually need a biomacromolecule or carrier to provoke sufficient immune responses. In the past decade, designed nanocarriers such as nanoparticles, liposomes, nanoemulsion, etc., have been applied to optimize the vaccines for autoimmune disease treatment. Nanotechnology endows vaccines with a higher biostability, tunable in vivo behavior, better targeting, co-delivery with stimulatory agents, regulatory effects on immune responses, etc. In this review, unmet medical needs for RA treatment and anti-RA vaccinology are first introduced. The development of anti-RA therapies from vaccines to nanovaccines are then reviewed and perspectives on how nanotechnology promotes vaccine development and advancement are finally provided. In addition, challenges for anti-RA vaccine development are summarized and advantages of nanovaccines are analyzed. In conclusion, nanovaccines will be a promising strategy to revolutionize the treatment of RA by correcting the causes in an early phase of RA.
Collapse
|
42
|
Immune Checkpoint Inhibitors’ Associated Renal Toxicity: A Series of 12 Cases. J Clin Med 2022; 11:jcm11164786. [PMID: 36013025 PMCID: PMC9409791 DOI: 10.3390/jcm11164786] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/11/2022] [Accepted: 08/14/2022] [Indexed: 11/16/2022] Open
Abstract
We present a series of twelve patients, bearing a wide range of solid malignancies, who received either PD-L1 or a combination of PD-L1 and CTLA-4 inhibitors. Following immunotherapy administration, they exhibited the clinical signs indicative of renal toxicity, including increased serum creatinine levels, proteinuria, nephrotic syndrome and/or hematuria. All patients underwent renal biopsy. Results: All cases demonstrated some degree of interstitial inflammation and tubular injury, while in five patients, glomerular alterations consistent with a specific glomerulopathy were also observed: secondary “lupus-like” membranous glomerulopathy in two cases and membranoproliferative glomerulonephritis, IgA glomerulonephritis and secondary AA amyloidosis in each of the remaining three patients. The two patients with “lupus-like” nephritis and the one with amyloidosis experienced nephrotic syndrome, while their creatinine was within normal range. In the remaining nine cases, deterioration of renal function was the main manifestation. Conclusion: Our findings harmonize with bibliographical data that identify tubulointerstitial nephritis as the most frequent histological lesion related to ICIs administration. The preferential involvement of tubulointerstitial tissue could be associated with the reported higher expression levels of PD-L1 on tubular epithelial cells, compared to glomeruli. On the other hand, glomerular involvement is probably a consequence of a systemic immune system reconstruction, induced by immune-checkpoints inhibition.
Collapse
|
43
|
Gerasimova EV, Tabakov DV, Gerasimova DA, Popkova TV. Activation Markers on B and T Cells and Immune Checkpoints in Autoimmune Rheumatic Diseases. Int J Mol Sci 2022; 23:ijms23158656. [PMID: 35955790 PMCID: PMC9368764 DOI: 10.3390/ijms23158656] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/27/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
In addition to identifying the major B- and T-cell subpopulations involved in autoimmune rheumatic diseases (ARDs), in recent years special attention has been paid to studying the expression of their activation markers and immune checkpoints (ICPs). The activation markers on B and T cells are a consequence of the immune response, and these molecules are considered as sensitive specific markers of ARD activity and as promising targets for immunotherapy. ICPs regulate the activation of the immune response by preventing the initiation of autoimmune processes, and they modulate it by reducing immune cell-induced organ and tissue damage. The article considers the possible correlation of ICPs with the activity of ARDs, the efficacy of specific ARD treatments, and the prospects for the use of activation molecules and activation/blocking ICPs for the treatment of ARDs.
Collapse
Affiliation(s)
- Elena V. Gerasimova
- Department of Systemic Rheumatic Diseases, V.A. Nasonova Research Institute of Rheumatology, Kashirskoe Shosse, 115522 Moscow, Russia
- Correspondence: ; Tel.: +7-905-538-0399
| | - Dmitry V. Tabakov
- Department of Systemic Rheumatic Diseases, V.A. Nasonova Research Institute of Rheumatology, Kashirskoe Shosse, 115522 Moscow, Russia
| | - Daria A. Gerasimova
- Department of Organization and Economy of Pharmacy, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2, Trubetskaya St., 119526 Moscow, Russia
| | - Tatiana V. Popkova
- Department of Systemic Rheumatic Diseases, V.A. Nasonova Research Institute of Rheumatology, Kashirskoe Shosse, 115522 Moscow, Russia
| |
Collapse
|
44
|
Király Z, Szepesi Á, Sebestyén A, Kuroli E, Rencz F, Tóth B, Bokor L, Szakonyi J, Medvecz M, Hidvégi B. Immunohistochemical Study of the PD-1/PD-L1 Pathway in Cutaneous Lupus Erythematosus. Pathol Oncol Res 2022; 28:1610521. [PMID: 35979531 PMCID: PMC9377145 DOI: 10.3389/pore.2022.1610521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/10/2022] [Indexed: 11/19/2022]
Abstract
The pathomechanism of various autoimmune diseases is known to be associated with the altered function of programmed cell death 1/programmed cell death ligand 1 (PD-1/PD-L1) axis. We aimed to investigate the role of this pathway and inflammatory cell markers in subtypes of cutaneous lupus erythematosus (CLE): discoid lupus erythematosus (DLE), subacute CLE (SCLE) and toxic epidermal necrolysis (TEN)-like lupus, a hyperacute form of acute CLE (ACLE). Ten skin biopsy samples from 9 patients were analyzed with immunohistochemistry regarding the following markers: CD3, CD4, CD8, Granzyme B, CD123, CD163, PD-1, PD-L1. Our group consisted of 4 SCLE (2 idiopathic (I-SCLE) and 2 PD-1 inhibitor-induced (DI-SCLE)), 4 DLE and 1 TEN-like lupus cases. From the latter patient two consecutive biopsies were obtained 1 week apart. Marker expression patterns were compared through descriptive analysis. Higher median keratinocyte (KC) PD-L1 expression was observed in the SCLE group compared to the DLE group (65% and 5%, respectively). Medians of dermal CD4, Granzyme B (GB), PD-1 positive cell numbers and GB+/CD8+ ratio were higher in the DLE group than in the SCLE group. The I-SCLE and DI-SCLE cases showed many similarities, however KC PD-L1 expression and dermal GB positive cell number was higher in the former. The consecutive samples of the TEN-like lupus patient showed an increase by time within the number of infiltrating GB+ cytotoxic T-cells and KC PD-L1 expression (from 22 to 43 and 30%–70%, respectively). Alterations of the PD-1/PD-L1 axis seems to play a role in the pathogenesis of CLE.
Collapse
Affiliation(s)
- Zsófia Király
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
- *Correspondence: Zsófia Király,
| | - Ágota Szepesi
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Anna Sebestyén
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Enikő Kuroli
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Fanni Rencz
- Department of Health Economics, Corvinus University of Budapest, Budapest, Hungary
| | - Béla Tóth
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Laura Bokor
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - József Szakonyi
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Márta Medvecz
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Bernadett Hidvégi
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
45
|
Programmed Cell Death Protein-1 Upregulation in Response to SARS-CoV-2 in Juvenile Idiopathic Arthritis: A Case-Control Study. J Clin Med 2022; 11:jcm11144060. [PMID: 35887824 PMCID: PMC9319559 DOI: 10.3390/jcm11144060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023] Open
Abstract
Currently, data regarding the impact of COVID-19 disease (caused by SARS-CoV-2) on patients with childhood rheumatic diseases are significantly limited. To assess the possible connection, we measured levels of IgA and IgG anti-SARS-CoV-2 antibodies in children with juvenile idiopathic arthritis (JIA) and a control group during the pandemic, prior to the introduction of anti-COVID-19 vaccination. We assessed levels of PD-1 suppressive molecule and inflammatory markers in patients and correlated those results with serological response to SARS-CoV-2. In JIA patients, the activity of the disease was assessed using the Juvenile Arthritis Disease Activity Score 71 (JADAS 71) scale. The study consisted of 96 children, 65 diagnosed with JIA, treated with antirheumatic drugs, and 31 healthy volunteers. In patients with JIA, significantly higher levels of SARS-CoV-2 antibodies in the IgA and IgG were demonstrated compared to the control group. We also found significantly higher serum PD-1 levels in JIA patients and control volunteers who were seropositive for SARS-CoV-2 IgA or IgG antibodies compared to those who were seronegative. The humoral immune response to SARS-CoV-2 infection is associated with the persistent upregulation of PD-1 expression in both JIA patients and healthy children. The clinical significance of the detected disorder requires further careful observation.
Collapse
|
46
|
Greisen SR, Aspari M, Deleuran B. Co-Inhibitory Molecules – Their Role in Health and Autoimmunity; Highlighted by Immune Related Adverse Events. Front Immunol 2022; 13:883733. [PMID: 35784333 PMCID: PMC9243421 DOI: 10.3389/fimmu.2022.883733] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/10/2022] [Indexed: 12/18/2022] Open
Abstract
Immune checkpoint receptors are key players in regulating the immune response. They are responsible for both generating an immune response sufficient to kill invading pathogens, balancing the same response, and protecting against tissue destruction or the development of autoimmune events. The central role of the co-inhibitory receptors also referred to as inhibitory immune checkpoints, including PD-1 and CTLA-4 has become especially evident with the cancer treatments targeting these receptors. Blocking these pathways enhances the immune activity, resulting in both an increased chance of cancer clearance, at the same time induction of immune-related adverse events (irAE). Some of these irAE progress into actual autoimmune diseases with autoantibodies and symptoms, undistinguished from the naturally occurring diseases. This review will take advantage of the lessons learned from immune checkpoint blockade and relate this knowledge to our understanding of the same pathways in naturally occurring autoimmune diseases, mainly focusing on rheumatic diseases.
Collapse
Affiliation(s)
- Stinne R. Greisen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
- *Correspondence: Stinne R. Greisen,
| | - Maithri Aspari
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Bent Deleuran
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
47
|
Liu Y, Tao X, Tao J. Strategies of Targeting Inflammasome in the Treatment of Systemic Lupus Erythematosus. Front Immunol 2022; 13:894847. [PMID: 35664004 PMCID: PMC9157639 DOI: 10.3389/fimmu.2022.894847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by multiple organ dysfunction resulting from the production of multiple autoantibodies and adaptive immune system abnormalities involving T and B lymphocytes. In recent years, inflammasomes have been recognized as an important component of innate immunity and have attracted increasing attention because of their pathogenic role in SLE. In short, inflammasomes regulate the abnormal differentiation of immune cells, modulate pathogenic autoantibodies, and participate in organ damage. However, due to the clinical heterogeneity of SLE, the pathogenic roles of inflammasomes are variable, and thus, the efficacy of inflammasome-targeting therapies is uncertain. To provide a foundation for the development of such therapeutic strategies, in this paper, we review the role of different inflammasomes in the pathogenesis of SLE and their correlation with clinical phenotypes and propose some corresponding treatment strategies.
Collapse
Affiliation(s)
- Yaling Liu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xinyu Tao
- Department of Clinical Medicine "5 + 3" Integration, The First Clinical College, Anhui Medical University, Hefei, China
| | - Jinhui Tao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
48
|
Lee JM, Chen MH, Chou KY, Chao Y, Chen MH, Tsai CY. Novel immunoprofiling method for diagnosing SLE and evaluating therapeutic response. Lupus Sci Med 2022; 9:9/1/e000693. [PMID: 35738802 PMCID: PMC9226994 DOI: 10.1136/lupus-2022-000693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/11/2022] [Indexed: 11/23/2022]
Abstract
Objective Diagnosis of SLE is based on clinical manifestations but is heterogeneous in early onset. Hence, we aimed to evaluate the feature of the immunoprofiling in patients with SLE and apply it to develop an immune signature algorithm for supporting SLE diagnosis. Methods We enrolled 13 newly diagnosed patients with SLE and 9 healthy controls (HCs) followed by analysing their immunoprofilings within their peripheral blood mononuclear cells (PBMCs) through flow cytometry. The immunoprofiling from the patients with SLE and HCs were ranked and formed an immune signature score. Besides, we enrolled four patients with SLE and monitored the changes in their immunoprofilings after immunosuppressant treatment. Results Among 93 immune cell subsets, 29 differed significantly between patients with SLE and HCs, and lower dendritic and natural killer cell percentages and a higher CD8+ T-cell percentage were identified in patients with SLE. In an investigation of immune-tolerant-related cell subsets, higher concentrations of CD8+ regulatory natural killer T cells, programmed cell death 1 (PD-1)+ T cells, and lower concentrations of programmed cell death ligand 1 (PD-L1)+ PBMCs were observed in the SLE group. The immune signature score from patients with SLE was significantly different from that from the HCs. After treatment, the disease activity of the four patients were tended to stable and percentages of PD-L1+ monocytes, PD-1+ CD4 T and CD8 T cells in patients with SLE exhibited positively and negatively correlation with the SLEDAI-2K (Systemic Lupus Erythematosus Disease Activity Index 2000) score, which might associate with the remission of SLE. Conclusions The comparison of immunprofiling between patients with SLE and HCs exhibited a distinct pattern. This difference and its application to immune signature algorithm shed light on the studies of SLE pathogenesis and immune-based diagnostic tool development in the future.
Collapse
Affiliation(s)
- Jan-Mou Lee
- Department of Advanced Research, FullHope Biomedical Co Ltd, New Taipei City, Taiwan
| | - Ming-Huang Chen
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
| | - Kai-Yuan Chou
- Department of Advanced Research, FullHope Biomedical Co Ltd, New Taipei City, Taiwan
| | - Yee Chao
- Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Han Chen
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan .,Division of Allergy-Immunology-Rheumatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chang-Youh Tsai
- Division of Allergy-Immunology-Rheumatology, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
49
|
Parks CG, Costenbader KH, Long S, Hofmann JN, Beane FLE, Sandler DP. Pesticide use and risk of systemic autoimmune diseases in the Agricultural Health Study. ENVIRONMENTAL RESEARCH 2022; 209:112862. [PMID: 35123967 PMCID: PMC9205340 DOI: 10.1016/j.envres.2022.112862] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/23/2021] [Accepted: 01/27/2022] [Indexed: 06/03/2023]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) risk has been associated with pesticide use, but evidence on specific pesticides or other agricultural exposures is lacking. We investigated history of pesticide use and risk of SLE and a related disease, Sjögren's syndrome (SS), in the Agricultural Health Study. METHODS The study sample (N = 54,419, 52% male, enrolled in 1993-1997) included licensed pesticide applicators from North Carolina and Iowa and spouses who completed any of the follow-up questionnaires (1999-2003, 2005-2010, 2013-2015). Self-reported cases were confirmed by medical records or medication use (total: 107 incident SLE or SS, 79% female). We examined ever use of 31 pesticides and farm tasks and exposures reported at enrollment in association with SLE/SS, using Cox regression to estimate hazard ratios (HR) and 95% confidence intervals (CI), with age as the timescale and adjusting for gender, state, and correlated pesticides. RESULTS In older participants (>62 years), SLE/SS was associated with ever use of the herbicide metribuzin (HR 5.33; 95%CI 2.19, 12.96) and applying pesticides 20+ days per year (2.97; 1.20, 7.33). Inverse associations were seen for petroleum oil/distillates (0.39; 0.18, 0.87) and the insecticide carbaryl (0.56; 0.36, 0.87). SLE/SS was inversely associated with having a childhood farm residence (0.59; 0.39, 0.91), but was not associated with other farm tasks/exposures (except welding, HR 2.65; 95%CI 0.96, 7.35). CONCLUSIONS These findings suggest that some agricultural pesticides may be associated with higher or lower risk of SLE/SS. However, the overall risk associated with farming appears complex, involving other factors and childhood exposures.
Collapse
Affiliation(s)
- C G Parks
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA.
| | - K H Costenbader
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - S Long
- Westat, Rockville, MD, USA
| | - J N Hofmann
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Freeman L E Beane
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - D P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| |
Collapse
|
50
|
Curran CS, Kopp JB. Aryl Hydrocarbon Receptor Mechanisms Affecting Chronic Kidney Disease. Front Pharmacol 2022; 13:782199. [PMID: 35237156 PMCID: PMC8882872 DOI: 10.3389/fphar.2022.782199] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/14/2022] [Indexed: 12/25/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a basic helix-loop-helix transcription factor that binds diverse endogenous and xenobiotic ligands, which regulate AHR stability, transcriptional activity, and cell signaling. AHR activity is strongly implicated throughout the course of chronic kidney disease (CKD). Many diverse organic molecules bind and activate AHR and these ligands are reported to either promote glomerular and tubular damage or protect against kidney injury. AHR crosstalk with estrogen, peroxisome proliferator-activated receptor-γ, and NF-κB pathways may contribute to the diversity of AHR responses during the various forms and stages of CKD. The roles of AHR in kidney fibrosis, metabolism and the renin angiotensin system are described to offer insight into CKD pathogenesis and therapies.
Collapse
Affiliation(s)
- Colleen S. Curran
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, MD, United States
| | - Jeffrey B. Kopp
- Kidney Disease Section, NIDDK, NIH, Bethesda, MD, United States
| |
Collapse
|