1
|
Morse BA, Motovilov K, Michael Brode W, Michael Tee F, Melamed E. A review of intravenous immunoglobulin in the treatment of neuroimmune conditions, acute COVID-19 infection, and post-acute sequelae of COVID-19 Syndrome. Brain Behav Immun 2025; 123:725-738. [PMID: 39389388 DOI: 10.1016/j.bbi.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/12/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024] Open
Abstract
Intravenous immunoglobulin (IVIG) is an immunomodulatory therapy that has been studied in several neuroimmune conditions, such as Guillain-Barré Syndrome, chronic inflammatory demyelinating polyneuropathy, multifocal motor neuropathy, and multiple sclerosis. It has also been proposed as a potential treatment option for acute COVID-19 infection and post-acute sequelae of SARS-CoV-2 infection (PASC). IVIG is thought to function by providing the recipient with a pool of antibodies, which can, in turn, modulate immune responses through multiple mechanisms including neutralization of cytokines and autoantibodies, saturation of neonatal fragment crystallizable receptors, inhibition of complement activation, and regulation of T and B cell mediated inflammation. In acute COVID-19, studies have shown that early administration of IVIG and plasmapheresis in severe cases can reduce the need for mechanical ventilation, shorten ICU and hospital stays, and lower mortality. Similarly, in PASC, while research is still in early stages, IVIG has been shown to alleviate persistent symptoms in small patient cohorts. Furthermore, IVIG has shown benefits in another condition which has symptomatic overlap with PASC, myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), though studies have yielded mixed results. It is important to note that IVIG can be associated with several potential adverse effects, such as anaphylaxis, headaches, thrombosis, liver enzyme elevations and renal complications. In addition, the high cost of IVIG can be a deterrent for payers and patients. This review provides a comprehensive update on the use of IVIG in multiple neuroimmune conditions, ME/CFS, acute COVID-19, and PASC, as well as covers its history, production, pricing, and mechanisms of action. We also identify key areas of future research, including the need to optimize the use of Ig product dosing, timing, and patient selection across conditions, particularly in the context of COVID-19 and PASC.
Collapse
Affiliation(s)
- Brinkley A Morse
- Department of Neurology, Dell Medical School at the University of Texas, Austin, USA
| | - Katherine Motovilov
- Department of Neurology, Dell Medical School at the University of Texas, Austin, USA
| | - W Michael Brode
- Department of Internal Medicine, Dell Medical School at the University of Texas, Austin, USA
| | - Francis Michael Tee
- Department of Internal Medicine, Dell Medical School at the University of Texas, Austin, USA.
| | - Esther Melamed
- Department of Neurology, Dell Medical School at the University of Texas, Austin, USA.
| |
Collapse
|
2
|
Perricone C, Bartoloni E, Cafaro G, Caporali R, Gerli R. Correspondence on 'Anti-inflammatory therapy for COVID-19 infection: the case for colchicine'. Ann Rheum Dis 2023; 82:e81. [PMID: 33509794 DOI: 10.1136/annrheumdis-2021-219872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 11/04/2022]
Affiliation(s)
- Carlo Perricone
- Rheumatology Unit, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Elena Bartoloni
- Rheumatology Unit, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Giacomo Cafaro
- Rheumatology Unit, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Roberto Caporali
- Department of Clinical Sciences and Community Health, ASS G Pini, University of Milan, Milano, Italy
| | - Roberto Gerli
- Rheumatology Unit, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
3
|
Purbey PK, Roy K, Gupta S, Paul MK. Mechanistic insight into the protective and pathogenic immune-responses against SARS-CoV-2. Mol Immunol 2023; 156:111-126. [PMID: 36921486 PMCID: PMC10009586 DOI: 10.1016/j.molimm.2023.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 02/20/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
COVID-19 is a severe respiratory illness that has emerged as a devasting health problem worldwide. The disease outcome is heterogeneous, which is most likely dependent on the immunity of an individual. Asymptomatic and mildly/moderate symptomatic (non-severe) patients likely develop an effective early immune response and clear the virus. However, severe symptoms dominate due to a failure in the generation of an effective and specific early immune response against SARS-CoV-2. Moreover, a late surge in pathogenic inflammation involves dysregulated innate and adaptive immune responses leading to local and systemic tissue damage and the emergence of severe disease symptoms. In this review, we describe the potential mechanisms of protective and pathogenic immune responses in "mild/moderate" and "severe" symptomatic SARS-CoV-2 infected people, respectively, and discuss the immune components that are currently targeted for therapeutic intervention.
Collapse
Affiliation(s)
- Prabhat K Purbey
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA.
| | - Koushik Roy
- Microbiology and Immunology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Sandeep Gupta
- Department of Neurobiology, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Manash K Paul
- Department of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA; Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
4
|
Zheng K, Chen Y, Liu S, He C, Yang Y, Wu D, Wang L, Li M, Zeng X, Zhang F. Leflunomide: Traditional immunosuppressant with concurrent antiviral effects. Int J Rheum Dis 2023; 26:195-209. [PMID: 36371788 DOI: 10.1111/1756-185x.14491] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/06/2022] [Accepted: 10/24/2022] [Indexed: 11/15/2022]
Abstract
Leflunomide is a classic disease-modifying anti-rheumatic drug that is widely used to treat autoimmune diseases. Studies also show its antiviral effects in in vitro and/or in vivo experiments. Considering glucocorticoids, immunosuppressants and newly emerged antibodies commonly used in autoimmune diseases and autoinflammatory disorders bring risk of infection such as viral infection, leflunomide with combination of anti-viral and immunosuppressive features to maintain the balance between infection and anti-inflammation are attractive. Here we summarize the actions and mechanisms of leflunomide in immunoregulatory and antiviral effects.
Collapse
Affiliation(s)
- Kunyu Zheng
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Peking Union Medical College Hospital (PUMCH), Beijing, China
| | - Yiran Chen
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Peking Union Medical College Hospital (PUMCH), Beijing, China
| | - Suying Liu
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Peking Union Medical College Hospital (PUMCH), Beijing, China
| | - Chengmei He
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Peking Union Medical College Hospital (PUMCH), Beijing, China
| | - Yunjiao Yang
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Peking Union Medical College Hospital (PUMCH), Beijing, China
| | - Di Wu
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Peking Union Medical College Hospital (PUMCH), Beijing, China
| | - Li Wang
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Peking Union Medical College Hospital (PUMCH), Beijing, China
| | - Mengtao Li
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Peking Union Medical College Hospital (PUMCH), Beijing, China
| | - Xiaofeng Zeng
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Peking Union Medical College Hospital (PUMCH), Beijing, China
| | - Fengchun Zhang
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Peking Union Medical College Hospital (PUMCH), Beijing, China
| |
Collapse
|
5
|
Perricone C, Scarsi M, Brucato A, Pisano P, Pigatto E, Becattini C, Cingolani A, Tiso F, Prota R, Tomasoni LR, Cutolo M, Tardella M, Rozza D, Zerbino C, Andreoni M, Poletti V, Bartoloni E, Gerli R. Treatment with COLchicine in hospitalized patients affected by COVID-19: The COLVID-19 trial. Eur J Intern Med 2023; 107:30-36. [PMID: 36396522 PMCID: PMC9618432 DOI: 10.1016/j.ejim.2022.10.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/12/2022] [Accepted: 10/20/2022] [Indexed: 01/09/2023]
Abstract
OBJECTIVE To evaluate whether the addition of colchicine to standard of care (SOC) results in better outcomes in hospitalized patients with COVID-19. DESIGN This interventional, multicenter, randomized, phase 2 study, evaluated colchicine 1.5 mg/day added to SOC in hospitalized COVID-19 patients (COLVID-19 trial) and 227 patients were recruited. The primary outcome was the rate of critical disease in 30 days defined as need of mechanical ventilation, intensive care unit (ICU), or death. RESULTS 152 non-anti-SARS-CoV-2-vaccinated patients (colchicine vs controls: 77vs75, mean age 69.1±13.1 vs 67.9±15 years, 39% vs 33.3% females, respectively) were analyzed. There was no difference in co-primary end-points between patients treated with colchicine compared to controls (mechanical ventilation 5.2% vs 4%, ICU 1.3% vs 5.3%, death 9.1% vs 6.7%, overall 11 (14.3%) vs 10 (13.3%) patients, P=ns, respectively). Mean time to discharge was similar (colchicine vs controls 14.1±10.4 vs 14.7±8.1 days). Older age (>60 years, P=0.025), P/F<275 mmHg (P=0.005), AST>40 U/L (P<0.001), pre-existent heart (P=0.02), lung (P=0.003), upper-gastrointestinal (P=0.014), lower-gastrointestinal diseases (P=0.009) and cancer (P=0.008) were predictive of achieving the primary outcome. Diarrhoea (9.1% vs 0%, p=0.0031) and increased levels of AST at 6 days (76.9±91.8 vs 33.5±20.7 U/l, P=0.016) were more frequent in the colchicine group. CONCLUSION Colchicine did not reduce the rate and the time to the critical stage. Colchicine was relatively safe although adverse hepatic effects require caution. We confirm that older (>60 years) patients with comorbidities are characterized by worse outcome.
Collapse
Affiliation(s)
- Carlo Perricone
- Reumatologia, Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, Perugia, Italy
| | | | - Antonio Brucato
- Università degli Studi di Milano, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Paola Pisano
- Asl Cagliari, Dipartimento di Area Medica, Struttura Complessa Medicina Interna, Italy
| | - Erika Pigatto
- Ospedale Classificato Villa Salus, Mestre (VE), Italy
| | - Cecilia Becattini
- Medicina Interna, Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, Perugia, Italy
| | | | - Francesco Tiso
- Medicina d'urgenza, Ospedale Alto Vicentino - AULSS 7 Pedemontana, Santorso (VI), Italy
| | - Roberto Prota
- Azienda Ospedaliera Ordine Mauriziano, Torino, Italy
| | | | - Maurizio Cutolo
- Laboratory of Experimental Rheumatology, Division of Rheumatology, Department of Internal Medicine, University of Genova, IRCCS Polyclinic Hospital San Martino, Genoa, Italy
| | - Marika Tardella
- Ospedale Carlo Urbani - Università Politecnica delle Marche, Ancona, Italy
| | - Davide Rozza
- Centro Studi SIR, Società Italiana di Reumatologia, Milan, Italy
| | | | - Massimo Andreoni
- Malattie Infettive, Dipartimento Processi Assistenziali Integrati, Policlinico Tor Vergata, Rome, Italy
| | - Venerino Poletti
- Dipartimento Toracico, Azienda AUSL Romagna, Ospedale G.B. Morgagni, Forlì, Italy; Department of Respiratory Diseases and Allergy, Aarhus University, Aarhus, Denmark
| | - Elena Bartoloni
- Reumatologia, Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, Perugia, Italy
| | - Roberto Gerli
- Reumatologia, Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, Perugia, Italy.
| |
Collapse
|
6
|
Prasanth DSNBK, Murahari M, Chandramohan V, Guntupalli C, Atmakuri LR. Computational study for identifying promising therapeutic agents of hydroxychloroquine analogues against SARS-CoV-2. J Biomol Struct Dyn 2022; 40:11822-11836. [PMID: 34396938 DOI: 10.1080/07391102.2021.1965027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hydroxychloroquine (HCQ) and its derivatives have recently gained tremendous attention as a probable medicinal agent in the COVID-19 outbreak caused by SARS-CoV-2. An efficient agent to act directly in inhibiting the SARS-CoV-2 replication is yet to be achieved. Thus, the goal is to investigate the dynamic nature of HCQ derivatives against SARS-CoV-2 main protease and spike proteins. Molecular docking studies were also performed to understand their binding affinity in silico methods using the vital protein domains and enzymes involved in replicating and multiplying SARS-CoV-2, which were the main protease and spike protein. Molecular Dynamic simulations integrated with MM-PBSA calculations have identified In silico potential inhibitors ZINC05135012 and ZINC59378113 against the main protease with -185.171 ± 16.388, -130.759 ± 15.741 kJ/mol respectively, ZINC16638693 and ZINC59378113 against spike protein -141.425 ± 22.447, -129.149 ± 11.449 kJ/mol. Identified Hit molecules had demonstrated Drug Likeliness features, PASS values and ADMET predictions with no violations. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- D S N B K Prasanth
- Pharmacognosy Research Division, K L College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, India
| | - Manikanta Murahari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, India
| | - Vivek Chandramohan
- Department of Biotechnology, Siddaganga Institute of Technology, Tumakuru, India
| | - Chakravarthi Guntupalli
- Pharmacognosy Research Division, K L College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, India
| | - Lakshmana Rao Atmakuri
- Department of Pharmaceutical Analysis, V. V. Institute of Pharmaceutical Sciences, Gudlavalleru, India
| |
Collapse
|
7
|
Cruz-Machado AR, Barreira SC, Bandeira M, Veldhoen M, Gomes A, Serrano M, Duarte C, Rato M, Miguel Fernandes B, Garcia S, Pinheiro F, Bernardes M, Madeira N, Miguel C, Torres R, Bento Silva A, Pestana J, Almeida D, Mazeda C, Cunha Santos F, Pinto P, Sousa M, Parente H, Sequeira G, Santos MJ, Fonseca JE, Romão VC. Risk Factors for Infection, Predictors of Severe Disease, and Antibody Response to COVID-19 in Patients With Inflammatory Rheumatic Diseases in Portugal-A Multicenter, Nationwide Study. Front Med (Lausanne) 2022; 9:901817. [PMID: 35770002 PMCID: PMC9234392 DOI: 10.3389/fmed.2022.901817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/16/2022] [Indexed: 11/30/2022] Open
Abstract
Objective To identify risk factors for SARS-CoV-2 infection and for severe/critical COVID-19, and to assess the humoral response after COVID-19 in these patients. Methods Nationwide study of adult patients with inflammatory RMDs prospectively followed in the Rheumatic Diseases Portuguese Register-Reuma.pt-during the first 6 months of the pandemic. We compared patients with COVID-19 with those who did not develop the disease and patients with mild/moderate disease with those exhibiting severe/critical COVID-19. IgG antibodies against SARS-CoV-2 were measured ≥3 months after infection and results were compared with matched controls. Results 162 cases of COVID-19 were registered in a total of 6,363 appointments. Patients treated with TNF inhibitors (TNFi; OR = 0.160, 95% CI 0.099-0.260, P < 0.001) and tocilizumab (OR 0.147, 95% CI 0.053-0.408, P < 0.001) had reduced odds of infection. Further, TNFi tended to be protective of severe and critical disease. Older age, major comorbidities, and rituximab were associated with an increased risk of infection and worse prognosis. Most patients with inflammatory RMDs (86.2%) developed a robust antibody response. Seroconversion was associated with symptomatic disease (OR 13.46, 95% CI 2.21-81.85, P = 0.005) and tended to be blunted by TNFi (OR 0.17, 95% CI 0.03-1.05; P = 0.057). Conclusions TNFi and tocilizumab reduced the risk of infection by SARS-CoV-2. Treatment with TNFi also tended to reduce rates of severe disease and seroconversion. Older age, general comorbidities and rituximab were associated with increased risk for infection and worse prognosis, in line with previous reports. Most patients with RMDs developed a proper antibody response after COVID-19, particularly if they had symptomatic disease.
Collapse
Affiliation(s)
- Ana Rita Cruz-Machado
- Rheumatology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon Academic Medical Center and European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases Network (ERN-ReCONNET), Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Sofia C. Barreira
- Rheumatology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon Academic Medical Center and European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases Network (ERN-ReCONNET), Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Matilde Bandeira
- Rheumatology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon Academic Medical Center and European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases Network (ERN-ReCONNET), Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Marc Veldhoen
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Andreia Gomes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Marta Serrano
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Catarina Duarte
- Rheumatology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon Academic Medical Center and European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases Network (ERN-ReCONNET), Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Maria Rato
- Rheumatology Department, Centro Hospitalar Universitário de São João EPE, Porto, Portugal
| | - Bruno Miguel Fernandes
- Rheumatology Department, Centro Hospitalar Universitário de São João EPE, Porto, Portugal
| | - Salomé Garcia
- Rheumatology Department, Centro Hospitalar Universitário de São João EPE, Porto, Portugal
| | - Filipe Pinheiro
- Rheumatology Department, Centro Hospitalar Universitário de São João EPE, Porto, Portugal
| | - Miguel Bernardes
- Rheumatology Department, Centro Hospitalar Universitário de São João EPE, Porto, Portugal
| | - Nathalie Madeira
- Rheumatology Department, Instituto Português de Reumatologia, Lisbon, Portugal
| | - Cláudia Miguel
- Rheumatology Department, Instituto Português de Reumatologia, Lisbon, Portugal
| | - Rita Torres
- Rheumatology Department, Hospital de Egas Moniz, Centro Hospitalar Lisboa Ocidental, Lisbon, Portugal
| | - Ana Bento Silva
- Rheumatology Department, Hospital de Egas Moniz, Centro Hospitalar Lisboa Ocidental, Lisbon, Portugal
| | - Jorge Pestana
- Rheumatology Department, Hospital Garcia de Orta, Almada, Portugal
| | - Diogo Almeida
- Rheumatology Department, Hospital de Braga, Braga, Portugal
| | - Carolina Mazeda
- Rheumatology Department, Centro Hospitalar do Baixo Vouga and iBiMED, Institute for Biomedicine, University of Aveiro, Aveiro, Portugal
| | | | - Patrícia Pinto
- Rheumatology Department, Centro Hospitalar de Vila Nova de Gaia/Espinho, Vila Nova de Gaia, Portugal
| | - Marlene Sousa
- Rheumatology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Hugo Parente
- Rheumatology Department, Unidade Local de Saúde do Alto Minho, Ponte de Lima, Portugal
| | - Graça Sequeira
- Rheumatology Department, Centro Hospitalar Universitário do Algarve, Faro, Portugal
| | | | - João Eurico Fonseca
- Rheumatology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon Academic Medical Center and European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases Network (ERN-ReCONNET), Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Vasco C. Romão
- Rheumatology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon Academic Medical Center and European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases Network (ERN-ReCONNET), Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
8
|
How COVID-19 Hijacks the Cytoskeleton: Therapeutic Implications. Life (Basel) 2022; 12:life12060814. [PMID: 35743845 PMCID: PMC9225596 DOI: 10.3390/life12060814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/16/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
The SARS-CoV-2 virus invades and replicates within host cells by “hijacking” biomolecular machinery, gaining control of the microtubule cytoskeleton. After attaching to membrane receptors and entering cells, the SARS-CoV-2 virus co-opts the dynamic intra-cellular cytoskeletal network of microtubules, actin, and the microtubule-organizing center, enabling three factors that lead to clinical pathology: (1) viral load due to intra-cellular trafficking, (2) cell-to-cell spread by filopodia, and (3) immune dysfunction, ranging from hyper-inflammatory cytokine storm to ineffective or absent response. These factors all depend directly on microtubules and the microtubule-organizing center, as do cell functions such as mitosis and immune cell movement. Here we consider how the SARS-CoV-2 virus may “hijack” cytoskeletal functions by docking inside the microtubule-organizing center’s centriole “barrels”, enabling certain interactions between the virus’s positively charged spike (“S”) proteins and negatively charged C-termini of the microtubules that the centriole comprises, somewhat like fingers on a keyboard. This points to the potential benefit of therapies aimed not directly at the virus but at the microtubules and microtubule-organizing center of the host cell on which the virus depends. These therapies could range from anti-microtubule drugs to low-intensity ultrasound (megahertz mechanical vibrations) externally applied to the vagus nerve at the neck and/or to the spleen (since both are involved in mediating inflammatory response). Given that ultrasound imaging machines suitable for vagal/splenic ultrasound are available for clinical trials in every hospital, we recommend an alternative therapeutic approach for COVID-19 based on addressing and normalizing the host cell microtubules and microtubule-organizing centers co-opted by the SARS-CoV-2 virus.
Collapse
|
9
|
Iaconis D, Bordi L, Matusali G, Talarico C, Manelfi C, Cesta MC, Zippoli M, Caccuri F, Bugatti A, Zani A, Filippini F, Scorzolini L, Gobbi M, Beeg M, Piotti A, Montopoli M, Cocetta V, Bressan S, Bucci EM, Caruso A, Nicastri E, Allegretti M, Beccari AR. Characterization of raloxifene as a potential pharmacological agent against SARS-CoV-2 and its variants. Cell Death Dis 2022; 13:498. [PMID: 35614039 PMCID: PMC9130985 DOI: 10.1038/s41419-022-04961-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 12/14/2022]
Abstract
The new coronavirus SARS-CoV-2 is the causative agent of the COVID-19 pandemic, which so far has caused over 6 million deaths in 2 years, despite new vaccines and antiviral medications. Drug repurposing, an approach for the potential application of existing pharmaceutical products to new therapeutic indications, could be an effective strategy to obtain quick answers to medical emergencies. Following a virtual screening campaign on the most relevant viral proteins, we identified the drug raloxifene, a known Selective Estrogen Receptor Modulator (SERM), as a new potential agent to treat mild-to-moderate COVID-19 patients. In this paper we report a comprehensive pharmacological characterization of raloxifene in relevant in vitro models of COVID-19, specifically in Vero E6 and Calu-3 cell lines infected with SARS-CoV-2. A large panel of the most common SARS-CoV-2 variants isolated in Europe, United Kingdom, Brazil, South Africa and India was tested to demonstrate the drug's ability in contrasting the viral cytopathic effect (CPE). Literature data support a beneficial effect by raloxifene against the viral infection due to its ability to interact with viral proteins and activate protective estrogen receptor-mediated mechanisms in the host cells. Mechanistic studies here reported confirm the significant affinity of raloxifene for the Spike protein, as predicted by in silico studies, and show that the drug treatment does not directly affect Spike/ACE2 interaction or viral internalization in infected cell lines. Interestingly, raloxifene can counteract Spike-mediated ADAM17 activation in human pulmonary cells, thus providing new insights on its mechanism of action. A clinical study in mild to moderate COVID-19 patients (NCT05172050) has been recently completed. Our contribution to evaluate raloxifene results on SARS-CoV-2 variants, and the interpretation of the mechanisms of action will be key elements to better understand the trial results, and to design new clinical studies aiming to evaluate the potential development of raloxifene in this indication.
Collapse
Affiliation(s)
| | - Licia Bordi
- grid.419423.90000 0004 1760 4142National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Giulia Matusali
- grid.419423.90000 0004 1760 4142National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | | | | | | | | | - Francesca Caccuri
- grid.7637.50000000417571846Department of Molecular and Translational Medicine, Section of Microbiology and Virology, University of Brescia Medical School, Brescia, Italy
| | - Antonella Bugatti
- grid.7637.50000000417571846Department of Molecular and Translational Medicine, Section of Microbiology and Virology, University of Brescia Medical School, Brescia, Italy
| | - Alberto Zani
- grid.7637.50000000417571846Department of Molecular and Translational Medicine, Section of Microbiology and Virology, University of Brescia Medical School, Brescia, Italy
| | - Federica Filippini
- grid.7637.50000000417571846Department of Molecular and Translational Medicine, Section of Microbiology and Virology, University of Brescia Medical School, Brescia, Italy
| | - Laura Scorzolini
- grid.419423.90000 0004 1760 4142National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Marco Gobbi
- grid.4527.40000000106678902Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Marten Beeg
- grid.4527.40000000106678902Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Arianna Piotti
- grid.4527.40000000106678902Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Monica Montopoli
- grid.5608.b0000 0004 1757 3470Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, VIMM Veneto Institute Molecular Medicine, Padua, Italy
| | - Veronica Cocetta
- grid.5608.b0000 0004 1757 3470Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, VIMM Veneto Institute Molecular Medicine, Padua, Italy
| | - Silvia Bressan
- grid.5608.b0000 0004 1757 3470Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, VIMM Veneto Institute Molecular Medicine, Padua, Italy
| | - Enrico M. Bucci
- grid.264727.20000 0001 2248 3398Sbarro Health Research Organization, Biology Department CFT, Temple University, Philadelphia, PA USA
| | - Arnaldo Caruso
- grid.7637.50000000417571846Department of Molecular and Translational Medicine, Section of Microbiology and Virology, University of Brescia Medical School, Brescia, Italy
| | - Emanuele Nicastri
- grid.419423.90000 0004 1760 4142National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | | | | |
Collapse
|
10
|
A raising dawn of pentoxifylline in management of inflammatory disorders in Covid-19. Inflammopharmacology 2022; 30:799-809. [PMID: 35486310 PMCID: PMC9051499 DOI: 10.1007/s10787-022-00993-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/04/2022] [Indexed: 12/13/2022]
Abstract
The existing pandemic viral infection caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) leads to coronavirus disease 2019 (Covid-19). SARS-CoV-2 exploits angiotensin-converting enzyme 2 (ACE2) as an entry-point into affected cells and down-regulation of ACE2 by this virus triggers the release of pro-inflammatory cytokines and up-regulation of angiotensin II. These changes may lead to hypercytokinemia and the development of cytokine storm with the development of acute lung injury and acute respiratory distress syndrome. Different repurposed had been in use in the management of Covid-19, one of these agents is pentoxifylline (PTX) which has anti-inflammatory and antioxidant properties. Therefore, the objective of the present mini-review is to highlight the potential role of PTX in Covid-19 regarding its anti-inflammatory and antioxidant effects. PTX is a non-selective phosphodiesterase inhibitor that increases intracellular cyclic adenosine monophosphate which stimulates protein kinase A and inhibits leukotriene and tumor necrosis factor. PTX has antiviral, anti-inflammatory and immunomodulatory effects, thus it may attenuate SARS-CoV-2-induced hyperinflammation and related complications. As well, PTX can reduce hyper-viscosity and coagulopathy in Covid-19 through increasing red blood cell deformability and inhibition of platelet aggregations. In conclusion, PTX is a non-selective phosphodiesterase drug, that has anti-inflammatory and antioxidant effects thereby can reduce SARS-CoV-2 infection-hyperinflammation and oxidative stress. Besides, PTX improves red blood cells (RBCs) deformability and reduces blood viscosity so can mitigate Covid-19-induced hyper-viscosity and RBCs hyper-aggregation which is linked with the development of coagulopathy. Taken together, PTX seems to be an effective agent against Covid-19 severity.
Collapse
|
11
|
Kim Y, Li X, Huang Y, Kim M, Shaibani A, Sheikh K, Zhang GQ, Nguyen TP. COVID-19 Outcomes in Myasthenia Gravis Patients: Analysis From Electronic Health Records in the United States. Front Neurol 2022; 13:802559. [PMID: 35418937 PMCID: PMC8996116 DOI: 10.3389/fneur.2022.802559] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/28/2022] [Indexed: 02/03/2023] Open
Abstract
Background Myasthenia gravis (MG) is an autoimmune, neuromuscular condition and patients with MG are vulnerable due to immunosuppressant use and disease manifestations of dyspnea and dysphagia during the coronavirus disease 2019 (COVID-19) pandemic. Methods We conducted a retrospective cohort study using the Optum® de-identified COVID-19 Electronic Health Record (EHR) dataset. Primary outcomes, such as hospitalization, ventilator use, intensive care unit (ICU) admission, and death in COVID-19 patients with MG, were compared with those of COVID-19 patients without MG: the subgroups of non-MG included those with rheumatoid arthritis (RA), systemic lupus (SLE), and multiple sclerosis (MS). We further analyzed factors affecting mortality, such as age, race/ethnicity, comorbidities, and MG treatments. Results Among 421,086 individuals with COVID-19, there were 377 patients with MG, 7,362 patients with RA, 1,323 patients with SLE, 1,518 patients with MS, and 410,506 patients without MG. Patients with MG were older and had more comorbidities compared with non-MG patients and had the highest rates of hospitalization (38.5%), ICU admission (12.7%), ventilator use (3.7%), and mortality (10.6%) compared with all other groups. After adjusting for risk factors, patients with MG had increased risks for hospitalization and ICU compared with patients with non-MG and with RA but had risks similar to patients with SLE and with MS. The adjusted risk for ventilator use was similar across all groups, but the risk for mortality in patients with MG was lower compared with the SLE and MS groups. Among patients with MG, age over 75 years and dysphagia were predictors for increased COVID-19 mortality, but the recent MG treatment was not associated with COVID-19 mortality. Conclusions COVID-19 patients with MG are more likely to be admitted to the hospital and require ICU care. Older age and patients with dysphagia had an increased risk of mortality.
Collapse
Affiliation(s)
- Youngran Kim
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Xiaojin Li
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Yan Huang
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Minseon Kim
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Aziz Shaibani
- Nerve and Muscle Center of Texas, Houston, TX, United States
| | - Kazim Sheikh
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Guo-Qiang Zhang
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Thy Phuong Nguyen
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
12
|
Irani S. Immune Responses in SARS-CoV-2, SARS-CoV, and MERS-CoV Infections: A Comparative Review. Int J Prev Med 2022; 13:45. [PMID: 35529506 PMCID: PMC9069147 DOI: 10.4103/ijpvm.ijpvm_429_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/21/2021] [Indexed: 12/04/2022] Open
Abstract
Coronavirus, discovered in the 1960s, is able to infect human hosts and causes mild to serious respiratory problems. In the last two decades, the severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been recognized. It has long been demonstrated that MERS-CoV binds to dipeptidyl peptidase 4 and SARS-CoV binds to angiotensin-converting enzyme 2. A "cytokine storm" is the main pathophysiology of aforementioned viruses. Infiltration of neutrophils at the site of the infection is a risk factor for the development of acute respiratory distress syndrome and death. The new coronavirus, SARS-CoV-2, has infected more people than SARS-Cov and MERS-CoV as it can easily be transmitted from person to person. Epidemiological studies indicate that majority of individuals are asymptomatic; therefore, an effective and an efficient tool is required for rapid testing. Identification of various cytokine and inflammatory factor expression levels can help in outcome prediction. In this study we reviewed immune responses in SARS-CoV, Mers-CoV, and SARS-COV-2 infections and the role of inflammatory cells.
Collapse
Affiliation(s)
- Soussan Irani
- Dental Research Centre, Oral Pathology Department, Dental Faculty, Hamadan University of Medical Sciences, Hamadan, Iran
- Pathology Department of Faculty of Medicine, Griffith University, Gold Coast, Australia
| |
Collapse
|
13
|
Do CH, Lee DH. Synergism Between Taurine and Dexamethasone in Anti-inflammatory Response in LPS-Activated Macrophages. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1370:31-39. [DOI: 10.1007/978-3-030-93337-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
14
|
Agrawal M, Saraf S, Saraf S, Murty US, Kurundkar SB, Roy D, Joshi P, Sable D, Choudhary YK, Kesharwani P, Alexander A. In-line treatments and clinical initiatives to fight against COVID-19 outbreak. Respir Med 2022; 191:106192. [PMID: 33199136 PMCID: PMC7567661 DOI: 10.1016/j.rmed.2020.106192] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/10/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022]
Abstract
In December 2019, when the whole world is waiting for Christmas and New Year, the physicians of Wuhan, China, are astounded by clusters of patients suffering from pneumonia from unknown causes. The pathogen isolated from the respiratory epithelium of the patients is similar to previously known coronaviruses with some distinct features. The disease was initially called nCoV-2019 or SARS-nCoV-2 and later termed as COVID-19 by WHO. The infection is rapidly propagating from the day of emergence, spread throughout the globe and now became a pandemic which challenged the competencies of developed nations in terms of health care management. As per WHO report, 216 countries are affected with SARS-CoV-19 by August 5, 2020 with 18, 142, 718 confirmed cases and 691,013 deaths reports. Such huge mortality and morbidity rates are truly threatening and calls for some aggressive and effective measures to slow down the disease transmission. The scientists are constantly engaged in finding a potential solution to diagnose and treat the pandemic. Various FDA approved drugs with the previous history of antiviral potency are repurposed for COVID-19 treatment. Different drugs and vaccines are under clinical trials and some rapid and effective diagnostic tools are also under development. In this review, we have highlighted the current epidemiology through infographics, disease transmission and progression, clinical features and diagnosis and possible therapeutic approaches for COVID-19. The article mainly focused on the development and possible application of various FDA approved drugs, including chloroquine, remdesivir, favipiravir, nefamostate mesylate, penciclovir, nitazoxanide, ribavirin etc., vaccines under development and various registered clinical trials exploring different therapeutic measures for the treatment of COVID-19. This information will definitely help the researchers to understand the in-line scientific progress by various clinical agencies and regulatory bodies against COVID-19.
Collapse
Affiliation(s)
- Mukta Agrawal
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh, 490024, India
| | - Shailendra Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 492010, India
| | - Swarnlata Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 492010, India
| | - Upadhyayula Suryanarayana Murty
- National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Govt. of India, Sila Katamur (Halugurisuk), Changsari, Kamrup, 781101, Guwahati, Assam, India
| | - Sucheta Banerjee Kurundkar
- Clinical Development Services Agency (An Extramural Unit of Translational Health Science & Technology Institute, Dept of Biotechnology, Ministry of Science & Technology, Govt. of India) NCR Biotech Science Cluster, 3rd Milestone, Gurgaon- Faridabad Expressway, Faridabad, 121001, India
| | - Debjani Roy
- Clinical Development Services Agency (An Extramural Unit of Translational Health Science & Technology Institute, Dept of Biotechnology, Ministry of Science & Technology, Govt. of India) NCR Biotech Science Cluster, 3rd Milestone, Gurgaon- Faridabad Expressway, Faridabad, 121001, India
| | - Pankaj Joshi
- Kulkarni EndoSurgery Institute and Reconstructive Urology Centre, Paud Raod, Pune, 411038, India; Department of Urology, Deenanath Mangeshkar Hospital and Research Center, Erendawane, Pune, 411004, India
| | - Dhananjay Sable
- Central Drugs Standard Control Organization, Directorate General of Health Services, Ministry of Health & Family Welfare, Government of India, New Delhi, 110001, India
| | - Yogendra Kumar Choudhary
- Etica Clinpharm Pvt Ltd, CCRP-317, Ambuja City Centre, Vidhan Sabha Road, Mowa, Raipur, Chhattisgarh, 492001, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, 110062, New Delhi, India.
| | - Amit Alexander
- National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Govt. of India, Sila Katamur (Halugurisuk), Changsari, Kamrup, 781101, Guwahati, Assam, India.
| |
Collapse
|
15
|
McKinnon JE, Wang DD, Zervos M, Saval M, Marshall-Nightengale L, Kilgore P, Pabla P, Szandzik E, Maksimowicz-McKinnon K, O'Neill WW. Safety and Tolerability of Hydroxychloroquine in healthcare workers and first responders for the prevention of COVID-19: WHIP COVID-19 Study. Int J Infect Dis 2021; 116:167-173. [PMID: 34954095 PMCID: PMC8695310 DOI: 10.1016/j.ijid.2021.12.343] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 11/27/2022] Open
Abstract
Hydroxychloroquine chemoprophylaxis is safe in high-risk populations for COVID-19. No increased cardiovascular risks were observed with hydroxychloroquine chemoprophylaxis. Adverse events were similar between placebo and hydroxychloroquine treatment arms.
Background Health care workers (HCW) are among the highest risk groups for acquisition of COVID-19 because of occupational exposures. The WHIP COVID-19 Study aimed to evaluate the safety and efficacy of hydroxychloroquine (HCQ) as chemoprophylaxis for SARS-CoV-2 infection in this population. Methods HCW, first responders, and other occupationally high-risk participants were enrolled in a randomized, placebo-controlled clinical study of HCQ from April to October 2020. The trial compared daily versus weekly HCQ with placebo and with a prospective cohort on HCQ for autoimmune diseases. Participants were followed for 8 weeks. Serology or a positive polymerase chain reaction test was used to determine laboratory confirmed clinical cases. Results A total of 624 participants were randomized to placebo (n = 200), weekly HCQ (n = 201), daily HCQ (n = 197). For the primary safety end point, 279 (44.7%) participants experienced adverse event (AE) level II or lower (total AEs n = 589), similar rates in all randomized groups (P = .188) with no hospitalizations or interventions required. Only 4 laboratory confirmed COVID-19 cases occurred, with 2 in the placebo arm and one in each HCQ randomized arm. Conclusions This randomized placebo-controlled trial was able to demonstrate the safety of HCQ outpatient chemoprophylaxis in high-risk groups against COVID-19. Future studies of chemoprophylaxis for SARS-CoV-2 are needed as the epidemic continues worldwide.
Collapse
Affiliation(s)
- J E McKinnon
- Infectious Disease, Henry Ford Hospital, Detroit, Michigan.
| | - D D Wang
- Division of Cardiovascular Disease, Center for Structural Heart, Henry Ford Hospital, Detroit, Michigan
| | - M Zervos
- Infectious Disease, Henry Ford Hospital, Detroit, Michigan
| | - M Saval
- Division of Cardiovascular Disease, Center for Structural Heart, Henry Ford Hospital, Detroit, Michigan
| | - L Marshall-Nightengale
- Division of Cardiovascular Disease, Center for Structural Heart, Henry Ford Hospital, Detroit, Michigan; Public Health Sciences, Henry Ford Hospital, Detroit, Michigan
| | - P Kilgore
- Infectious Disease, Henry Ford Hospital, Detroit, Michigan
| | - P Pabla
- Pharmacy, Henry Ford Hospital, Detroit, Michigan
| | - E Szandzik
- Pharmacy, Henry Ford Hospital, Detroit, Michigan
| | | | - W W O'Neill
- Division of Cardiovascular Disease, Center for Structural Heart, Henry Ford Hospital, Detroit, Michigan
| |
Collapse
|
16
|
Kumar B, Misra A, Singh SP, Dhar YV, Rawat P, Chattopadhyay D, Barik SK, Srivastava S. In-silico efficacy of potential phytomolecules from Ayurvedic herbs as an adjuvant therapy in management of COVID-19. J Food Drug Anal 2021; 29:559-580. [PMID: 35649148 PMCID: PMC9931022 DOI: 10.38212/2224-6614.3380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 05/17/2021] [Accepted: 08/26/2021] [Indexed: 11/18/2022] Open
Abstract
The recent COVID-19 outbreak caused by SARS-CoV-2 virus has sparked a new spectrum of investigations, research and studies in multifarious directions. Efforts are being made around the world for discovery of effective vaccines/drugs against COVID-19. In this context, Ayurveda, an alternative traditional system of medicine in India may work as an adjuvant therapy in compromised patients. We selected 40 herbal leads on the basis of their traditional applications. The phytomolecules from these leads were further screened through in-silico molecular docking against two main targets of SARS-CoV-2 i.e. the spike protein (S; structural protein) and the main protease (MPRO; non-structural protein). Out of the selected 40, 12 phytomolecules were able to block or stabilize the major functional sites of the main protease and spike protein. Among these, Ginsenoside, Glycyrrhizic acid, Hespiridin and Tribulosin exhibited high binding energy with both main protease and spike protein. Etoposide showed good binding energy only with Spike protein and Teniposide had high binding energy only with main protease. The above phytocompounds showed promising binding efficiency with target proteins indicating their possible applications against SARS-CoV-2. However, these findings need to be validated through in vitro and in vivo experiments with above mentioned potential molecules as candidate drugs for the management of COVID-19. In addition, there is an opportunity for the development of formulations through different permutations and combinations of these phytomolecules to harness their synergistic potential.
Collapse
Affiliation(s)
- Bhanu Kumar
- Pharmacognosy Division, CSIR-National Botanical Research Institute, Lucknow, U.P. 226001,
India
| | - Ankita Misra
- Pharmacognosy Division, CSIR-National Botanical Research Institute, Lucknow, U.P. 226001,
India
| | - Satyendra Pratap Singh
- Pharmacognosy Division, CSIR-National Botanical Research Institute, Lucknow, U.P. 226001,
India
| | - Yogeshwar Vikram Dhar
- Bioinformatics Division, CSIR-National Botanical Research Institute, Lucknow, U.P. 226001,
India
| | - Poonam Rawat
- Pharmacognosy Division, CSIR-National Botanical Research Institute, Lucknow, U.P. 226001,
India
| | | | - Saroj Kanta Barik
- Pharmacognosy Division, CSIR-National Botanical Research Institute, Lucknow, U.P. 226001,
India
| | - Sharad Srivastava
- Pharmacognosy Division, CSIR-National Botanical Research Institute, Lucknow, U.P. 226001,
India
| |
Collapse
|
17
|
Mardi A, Meidaninikjeh S, Nikfarjam S, Majidi Zolbanin N, Jafari R. Interleukin-1 in COVID-19 Infection: Immunopathogenesis and Possible Therapeutic Perspective. Viral Immunol 2021; 34:679-688. [PMID: 34882013 DOI: 10.1089/vim.2021.0071] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The newfound coronavirus disease 2019 (COVID-19), initiated by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an international public health concern, threatening the lives of millions of people worldwide. The virus seems to have a propensity to infect older males, especially those with underlying diseases. The cytokine storm following hyperactivated immune responses due to SARS-CoV-2 infection is probably the crucial source of severe pneumonia that leads to acute lung injury, systemic inflammatory response syndrome, or acute respiratory distress syndrome, and finally multiple organ dysfunction syndromes, as well as death in many cases. Several studies revealed that interleukin (IL)-1β levels were elevated during COVID-19 infection. In addition, the IL-1 cytokine family has a pivotal role in the induction of cytokine storm due to uncontrolled immune responses in COVID-19 infection. This article reviews the role of IL-1 in inflammation and utilization of IL-1 inhibitor agents in controlling the inflammatory outcomes initiated by SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Amirhossein Mardi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepideh Meidaninikjeh
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Sepideh Nikfarjam
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Naime Majidi Zolbanin
- Experimental and Applied Pharmaceutical Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, and Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Reza Jafari
- Nephrology and Kidney Transplant Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
18
|
Cai C, Zhang X, Liu Y, Shen E, Feng Z, Guo C, Han Y, Ouyang Y, Shen H. Gut microbiota imbalance in colorectal cancer patients, the risk factor of COVID-19 mortality. Gut Pathog 2021; 13:70. [PMID: 34863291 PMCID: PMC8643189 DOI: 10.1186/s13099-021-00466-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/17/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND COVID-19 pandemic is sweeping across the world. Previous studies have shown that gut microbiota is associated with COVID-19, and operational taxonomic unit (OTU) composed of Blautia genus, Lactobacillus genus, and Ruminococcus genus of Firmicutes is correlated with the severity of COVID-19. Gut microbiota imbalance in colorectal cancer patients may lead to the variation of OTU. RESULTS Based on the GMrepo database, the gut microbiota of 1374 patients with colorectal neoplasms and 27,329 healthy people was analyzed to investigate the differences in the abundance of microbes between colorectal neoplasms patients and healthy people. Furthermore, We collected feces samples from 12 patients with colorectal cancer and 8 healthy people in Xiangya hospital for metabolomic analysis to investigate the potential mechanisms. Our study showed that the abundance of Blautia and Ruminococcus was significantly increased in colorectal neoplasms, which may increase the severity of COVID-19. The gender and age of patients may affect the severity of COVID-19 by shaping the gut microbiota, but the BMI of patients does not. CONCLUSIONS Our work draws an initial point that gut microbiota imbalance is a risk factor of COVID-19 mortality and gut microbiota may provide a new therapeutic avenue for colorectal cancer patients.
Collapse
Affiliation(s)
- Changjing Cai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Xiangyang Zhang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Yihan Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Edward Shen
- Department of Life Science, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Ziyang Feng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Cao Guo
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Ying Han
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yanhong Ouyang
- Department of Emergency, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, 19 Xiuhua Road, Haikou, 570311, Hainan, China.
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
19
|
Samsami M, Fatemi A, Jalili Khoshnoud R, Kohansal K, Hussen BM, Soghala S, Taheri M, Ghafouri-Fard S. Abnormal Transcript Levels of Cytokines Among Iranian COVID-19 Patients. J Mol Neurosci 2021; 72:27-36. [PMID: 34855144 PMCID: PMC8636578 DOI: 10.1007/s12031-021-01941-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/30/2021] [Indexed: 12/15/2022]
Abstract
The pandemic caused by severe acute respiratory syndrome coronavirus 2 and the related disorder i.e. “coronavirus disease 2019” (COVID-19) has encouraged researchers to unravel the molecular mechanism of disease severity. Several lines of evidence support the impact of “cytokine storm” in the pathogenesis of severe forms of the disorder. We aimed to assess expression levels of nine cytokine coding genes in COVID-19 patients admitted in a hospital. We collected clinical data of patients from their medical reports. Then, we assessed expression of genes using real-time PCR. Expression levels of IFN-G, IL-2, IL-4, IL-6, IL-17, TGF-B, IL-8, and IL-1B were significantly higher in COVID-19 patients compared with healthy controls and in both female and male patients compared with sex-matched controls. However, expression level of TNF-A was not different between COVID-19 patients and healthy controls. Expression of none of these cytokines was different between ICU-admitted patients and other patients except for IL-6 whose expression was lower in the former group compared with the latter (ratio of means = 0.33, P value = 4.82E-02). Then, we assessed diagnostic power of cytokine coding genes in differentiating between COVID-19 patients and controls. The area under curve (AUC) values ranged from 0.94 for IFN-G to 1.0 for IL-2 and IL-1B. After combining the transcript levels of all cytokines, AUC, sensitivity, and specificity values reached 100%, 100%, and 99%, respectively. For differentiation between ICU-admitted patients and other patients, IL-4 with AUC value of 0.68 had the best diagnostic power among cytokine coding genes. Expression of none of cytokine coding genes was correlated with the available clinical/demographic data including age, gender, ICU admission, or erythrocyte sedimentation rate (ESR)/C-reactive protein (CRP) levels. This study provides further evidence for contribution of “cytokine storm” in the pathobiology of moderate/severe forms of COVID-19.
Collapse
Affiliation(s)
- Majid Samsami
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Fatemi
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Jalili Khoshnoud
- Functional Neurosurgery Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Karim Kohansal
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Shabnam Soghala
- Department of Microbiology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Santos GC, Martins LM, Bregadiolli BA, Moreno VF, Silva‐Filho LC, Silva BHST. Heterocyclic compounds as antiviral drugs: Synthesis, structure–activity relationship and traditional applications. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | | | | | - Vitor Fernandes Moreno
- School of Sciences, Department of Chemistry São Paulo State University (UNESP) Bauru Brazil
| | | | | |
Collapse
|
21
|
Baron F, Alhajeri H, Abutiban F, Almutairi M, Alawadhi A, Aldei A, Alherz A, Ali Y, Alsayegh S, Dehrab A, Ghanem A, Hajji E, Hayat S, Saleh K, Shaikh-Alsooq R, Tarakmah H, Albasri A, Alenezi A, Alhadhood N, Alkanderi W, Almathkoori A, Almutairi N, Alturki A, Alkadi A, Behbahani H. Rheumatologic aspects of the COVID-19 pandemic: a practical resource for physicians in Kuwait and the Gulf region based on recommendations by the Kuwait Association of Rheumatology (KAR). Curr Rheumatol Rev 2021; 18:108-116. [PMID: 34620059 DOI: 10.2174/1573397117666211007091256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 05/31/2021] [Accepted: 08/10/2021] [Indexed: 11/22/2022]
Abstract
The Kuwait Association of Rheumatology members met three times in April 2020 to quickly address and support the local practitioners treating rheumatic disease in Kuwait and the Gulf region during the COVID-19 pandemic. As patients with rheumatic and musculoskeletal disease (RMD) may need modifications to their therapy during the COVID-19 pandemic, we voted online for general guidance that local practitioners needed. In this review, we have addressed the vulnerability of rheumatic patients and issues surrounding their optimum management. We base our recommendations on a synthesis of national/international guidelines and expert consensus among KAR members in the context of the Kuwaiti healthcare system caring for the patient population with RMD. The most recent reports from the World Health Organization, the Center for Disease Control, the National Institutes of Health - National Medical Library, and the COVID-19 educational website of the United Kingdom National Health Service have been incorporated. We discuss the management of RMD in various clinical scenarios: screening protocols in an infusion clinic, medication protocols for stable patients and care for suspected or confirmed COVID infection and whether they are stable, in a disease flare or newly diagnosed. Besides, we also outline the conditions for the hospital admission. This guidance is for the specialist and non-specialist readership and should be regarded as interim as the virus is relatively new and we rely on experience and necessity more than evidence collection. The guidance presented should be supplemented with recent scientific evidence wherever applicable.
Collapse
Affiliation(s)
- Baron F
- Rheumatology unit, Al-Jahra Hospital, AlJahra. Kuwait
| | - Alhajeri H
- Rheumatology unit, Mubarak Al-Kabeer Hospital, Jabriya. Kuwait
| | - Abutiban F
- Rheumatology unit, Jaber Alahmad Hospital, South Surra. Kuwait
| | - Almutairi M
- Rheumatology unit, Adan Hospital, Hadiya. Kuwait
| | - Alawadhi A
- Rheumatology unit, Al-Amiri Hospital, KuwaitCity. Kuwait
| | - Aldei A
- Rheumatology unit, Al-Amiri Hospital, KuwaitCity. Kuwait
| | - Alherz A
- Rheumatology unit, Al-Amiri Hospital, KuwaitCity. Kuwait
| | - Ali Y
- Rheumatology unit, Mubarak Al-Kabeer Hospital, Jabriya. Kuwait
| | - Alsayegh S
- Rheumatology unit, Military Hospital, Sabhan. Kuwait
| | - Dehrab A
- Rheumatology unit, Adan Hospital, Hadiya. Kuwait
| | - Ghanem A
- Rheumatology unit, Mubarak Al-Kabeer Hospital, Jabriya. Kuwait
| | - Hajji E
- Rheumatology unit, Al-Amiri Hospital, KuwaitCity. Kuwait
| | - Hayat S
- Rheumatology unit, Mubarak Al-Kabeer Hospital, Jabriya. Kuwait
| | - Saleh K
- Rheumatology unit, Al-Farwaniya Hospital, AlFarwaniya. Kuwait
| | | | - Tarakmah H
- Rheumatology unit, Mubarak Al-Kabeer Hospital, Jabriya. Kuwait
| | - Albasri A
- Rheumatology unit, Jaber Alahmad Hospital, South Surra. Kuwait
| | - Alenezi A
- Rheumatology unit, Al-Jahra Hospital, AlJahra. Kuwait
| | - Alhadhood N
- Rheumatology unit, Al-Farwaniya Hospital, AlFarwaniy. Kuwait
| | - Alkanderi W
- Rheumatology unit, Al-Farwaniya Hospital, AlFarwaniy. Kuwait
| | | | - Almutairi N
- Rheumatology unit, Al-sabah Hospital, Alsabah. Kuwait
| | - Alturki A
- Rheumatology unit, Jaber Alahmad Hospital, South Surra. Kuwait
| | - Alkadi A
- Rheumatology unit, Al-sabah Hospital, Alsabah. Kuwait
| | - Behbahani H
- Rheumatology unit, Al-Farwaniya Hospital, AlFarwaniya. Kuwait
| |
Collapse
|
22
|
Aminpour M, Cannariato M, Zucco A, Di Gregorio E, Israel S, Perioli A, Tucci D, Rossi F, Pionato S, Marino S, Deriu MA, Velpula KK, Tuszynski JA. Computational Study of Potential Galectin-3 Inhibitors in the Treatment of COVID-19. Biomedicines 2021; 9:1208. [PMID: 34572394 PMCID: PMC8466820 DOI: 10.3390/biomedicines9091208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 12/27/2022] Open
Abstract
Galectin-3 is a carbohydrate-binding protein and the most studied member of the galectin family. It regulates several functions throughout the body, among which are inflammation and post-injury remodelling. Recent studies have highlighted the similarity between Galectin-3's carbohydrate recognition domain and the so-called "galectin fold" present on the N-terminal domain of the S1 sub-unit of the SARS-CoV-2 spike protein. Sialic acids binding to the N-terminal domain of the Spike protein are known to be crucial for viral entry into humans, and the role of Galectin-3 as a mediator of lung fibrosis has long been the object of study since its levels have been found to be abnormally high in alveolar macrophages following lung injury. In this context, the discovery of a double inhibitor may both prevent viral entry and reduce post-infection pulmonary fibrosis. In this study, we use a database of 56 compounds, among which 37 have known experimental affinity with Galectin-3. We carry out virtual screening of this database with respect to Galectin-3 and Spike protein. Several ligands are found to exhibit promising binding affinity and interaction with the Spike protein's N-terminal domain as well as with Galectin-3. This finding strongly suggests that existing Galectin-3 inhibitors possess dual-binding capabilities to disrupt Spike-ACE2 interactions. Herein we identify the most promising inhibitors of Galectin-3 and Spike proteins, of which five emerge as potential dual effective inhibitors. Our preliminary results warrant further in vitro and in vivo testing of these putative inhibitors against SARS-CoV-2 with the hope of being able to halt the spread of the virus in the future.
Collapse
Affiliation(s)
- Maral Aminpour
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB T6G 1Z2, Canada;
| | - Marco Cannariato
- DIMEAS, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (M.C.); (A.Z.); (E.D.G.); (S.I.); (A.P.); (D.T.); (F.R.); (S.P.); (S.M.); (M.A.D.)
| | - Angelica Zucco
- DIMEAS, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (M.C.); (A.Z.); (E.D.G.); (S.I.); (A.P.); (D.T.); (F.R.); (S.P.); (S.M.); (M.A.D.)
| | - Elisabetta Di Gregorio
- DIMEAS, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (M.C.); (A.Z.); (E.D.G.); (S.I.); (A.P.); (D.T.); (F.R.); (S.P.); (S.M.); (M.A.D.)
| | - Simone Israel
- DIMEAS, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (M.C.); (A.Z.); (E.D.G.); (S.I.); (A.P.); (D.T.); (F.R.); (S.P.); (S.M.); (M.A.D.)
| | - Annalisa Perioli
- DIMEAS, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (M.C.); (A.Z.); (E.D.G.); (S.I.); (A.P.); (D.T.); (F.R.); (S.P.); (S.M.); (M.A.D.)
| | - Davide Tucci
- DIMEAS, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (M.C.); (A.Z.); (E.D.G.); (S.I.); (A.P.); (D.T.); (F.R.); (S.P.); (S.M.); (M.A.D.)
| | - Francesca Rossi
- DIMEAS, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (M.C.); (A.Z.); (E.D.G.); (S.I.); (A.P.); (D.T.); (F.R.); (S.P.); (S.M.); (M.A.D.)
| | - Sara Pionato
- DIMEAS, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (M.C.); (A.Z.); (E.D.G.); (S.I.); (A.P.); (D.T.); (F.R.); (S.P.); (S.M.); (M.A.D.)
| | - Silvia Marino
- DIMEAS, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (M.C.); (A.Z.); (E.D.G.); (S.I.); (A.P.); (D.T.); (F.R.); (S.P.); (S.M.); (M.A.D.)
| | - Marco A. Deriu
- DIMEAS, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (M.C.); (A.Z.); (E.D.G.); (S.I.); (A.P.); (D.T.); (F.R.); (S.P.); (S.M.); (M.A.D.)
| | - Kiran K. Velpula
- Department of Cancer Biology and Pharmacology, Pediatrics and Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA
| | - Jack A. Tuszynski
- DIMEAS, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (M.C.); (A.Z.); (E.D.G.); (S.I.); (A.P.); (D.T.); (F.R.); (S.P.); (S.M.); (M.A.D.)
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
23
|
Peptides of H. sapiens and P. falciparum that are predicted to bind strongly to HLA-A*24:02 and homologous to a SARS-CoV-2 peptide. Acta Trop 2021; 221:106013. [PMID: 34146538 PMCID: PMC8255030 DOI: 10.1016/j.actatropica.2021.106013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/27/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022]
Abstract
AIM This study is looking for a common pathogenicity between SARS-CoV-2 and Plasmodium species, in individuals with certain HLA serotypes. METHODS 1. Tblastx searches of SARS-CoV-2 are performed by limiting searches to five Plasmodium species that infect humans. 2. Aligned sequences in the respective organisms' proteomes are searched with blastp. 3. Binding predictions of the identified SARS-CoV-2 peptide to HLA supertype representatives are performed. 4. Blastp searches of predicted epitopes that bind strongly to the identified HLA allele are performed by limiting searches to H. sapiens and Plasmodium species, separately. 5. Peptides with minimum 60% identity to the predicted epitopes are found in results. 6. Peptides among those, which bind strongly to the same HLA allele, are predicted. 7. Step-4 is repeated by limiting searches to H. sapiens, followed by the remaining steps until step-7, for peptides sourced by Plasmodium species after step-6. RESULTS SARS-CoV-2 peptide with single letter amino acid code CFLGYFCTCYFGLFC has the highest identity to P. vivax. Its YFCTCYFGLF part is predicted to bind strongly to HLA-A*24:02. Peptides in the human proteome both homologous to YFCTCYFGLF and with a strong binding affinity to HLA-A*24:02 are YYCARRFGLF, YYCHCPFGVF, and YYCQQYFFLF. Such peptides in the Plasmodium species' proteomes are FFYTFYFELF, YFVACLFILF, and YFPTITFHLF. The first one belonging to P. falciparum has a homologous peptide (YFYLFSLELF) in the human proteome, which also has a strong binding affinity to the same HLA allele. CONCLUSION Immune responses to the identified-peptides with similar sequences and strong binding affinities to HLA-A*24:02 can be related to autoimmune response risk in individuals with HLA-A*24:02 serotypes, upon getting infected with SARS-CoV-2 or P. falciparum.
Collapse
|
24
|
Abiri R, Abdul-Hamid H, Sytar O, Abiri R, Bezerra de Almeida E, Sharma SK, Bulgakov VP, Arroo RRJ, Malik S. A Brief Overview of Potential Treatments for Viral Diseases Using Natural Plant Compounds: The Case of SARS-Cov. Molecules 2021; 26:molecules26133868. [PMID: 34202844 PMCID: PMC8270261 DOI: 10.3390/molecules26133868] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/12/2022] Open
Abstract
The COVID-19 pandemic, as well as the more general global increase in viral diseases, has led researchers to look to the plant kingdom as a potential source for antiviral compounds. Since ancient times, herbal medicines have been extensively applied in the treatment and prevention of various infectious diseases in different traditional systems. The purpose of this review is to highlight the potential antiviral activity of plant compounds as effective and reliable agents against viral infections, especially by viruses from the coronavirus group. Various antiviral mechanisms shown by crude plant extracts and plant-derived bioactive compounds are discussed. The understanding of the action mechanisms of complex plant extract and isolated plant-derived compounds will help pave the way towards the combat of this life-threatening disease. Further, molecular docking studies, in silico analyses of extracted compounds, and future prospects are included. The in vitro production of antiviral chemical compounds from plants using molecular pharming is also considered. Notably, hairy root cultures represent a promising and sustainable way to obtain a range of biologically active compounds that may be applied in the development of novel antiviral agents.
Collapse
Affiliation(s)
- Rambod Abiri
- Department of Forestry Science and Biodiversity, Faculty of Forestry and Environment, Universiti Putra Malaysia, Serdang 43400, Malaysia; or
| | - Hazandy Abdul-Hamid
- Department of Forestry Science and Biodiversity, Faculty of Forestry and Environment, Universiti Putra Malaysia, Serdang 43400, Malaysia; or
- Laboratory of Bioresource Management, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Malaysia
- Correspondence: (H.A.-H.); (V.P.B.); or (S.M.)
| | - Oksana Sytar
- Educational and Scientific Center “Institute of Biology and Medicine”, Department of Plant Biology, Taras Shevchenko National University of Kyiv, Volodymyrska 60, 01033 Kyiv, Ukraine;
- Department of Plant Physiology, Slovak University of Agriculture Nitra, A. Hlinku 2, 94976 Nitra, Slovakia
| | - Ramin Abiri
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah 6718773654, Iran;
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6718773654, Iran
| | - Eduardo Bezerra de Almeida
- Biological and Health Sciences Centre, Laboratory of Botanical Studies, Department of Biology, Federal University of Maranhão, São Luís 65080-805, MA, Brazil;
| | - Surender K. Sharma
- Department of Physics, Central University of Punjab, Bathinda 151401, India;
| | - Victor P. Bulgakov
- Department of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity (Institute of Biology and Soil Science), Far Eastern Branch of the Russian Academy of Sciences, 159 Stoletija Str., 690022 Vladivostok, Russia
- Correspondence: (H.A.-H.); (V.P.B.); or (S.M.)
| | - Randolph R. J. Arroo
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK;
| | - Sonia Malik
- Health Sciences Graduate Program, Biological & Health Sciences Centre, Federal University of Maranhão, São Luís 65080-805, MA, Brazil
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), University of Orléans, 1 Rue de Chartres-BP 6759, 45067 Orleans, France
- Correspondence: (H.A.-H.); (V.P.B.); or (S.M.)
| |
Collapse
|
25
|
Jakubíková M, Týblová M, Tesař A, Horáková M, Vlažná D, Ryšánková I, Nováková I, Dolečková K, Dušek P, Piťha J, Voháňka S, Bednařík J. Predictive factors for a severe course of COVID-19 infection in myasthenia gravis patients with an overall impact on myasthenic outcome status and survival. Eur J Neurol 2021; 28:3418-3425. [PMID: 34080271 PMCID: PMC8239548 DOI: 10.1111/ene.14951] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/14/2021] [Accepted: 05/26/2021] [Indexed: 12/21/2022]
Abstract
Background and purpose Myasthenia gravis (MG) patients could be a vulnerable group in the pandemic era of coronavirus 2019 (COVID‐19) mainly due to respiratory muscle weakness, older age and long‐term immunosuppressive treatment. We aimed to define factors predicting the severity of COVID‐19 in MG patients and risk of MG exacerbation during COVID‐19. Methods We evaluated clinical features and outcomes after COVID‐19 in 93 MG patients. Results Thirty‐five patients (38%) had severe pneumonia and we recorded 10 deaths (11%) due to COVID‐19. Higher forced vital capacity (FVC) values tested before COVID‐19 were shown to be protective against severe infection (95% CI 0.934–0.98) as well as good control of MG measured by the quantified myasthenia gravis score (95% CI 1.047–1.232). Long‐term chronic corticosteroid treatment worsened the course of COVID‐19 in MG patients (95% CI 1.784–111.43) and this impact was positively associated with dosage (p = 0.005). Treatment using azathioprine (95% CI 0.448–2.935), mycophenolate mofetil (95% CI 0.91–12.515) and ciclosporin (95% CI 0.029–2.212) did not influence the course of COVID‐19. MG patients treated with rituximab had a high risk of death caused by COVID‐19 (95% CI 3.216–383.971). Exacerbation of MG during infection was relatively rare (15%) and was not caused by remdesivir, convalescent plasma or favipiravir (95% CI 0.885–10.87). Conclusions As the most important predictors of severe COVID‐19 in MG patients we identified unsatisfied condition of MG with lower FVC, previous long‐term corticosteroid treatment especially in higher doses, older age, the presence of cancer, and recent rituximab treatment.
Collapse
Affiliation(s)
- Michala Jakubíková
- Department of Neurology and Center for Clinical Neuroscience, Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Michaela Týblová
- Department of Neurology and Center for Clinical Neuroscience, Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Adam Tesař
- Department of Neurology and Center for Clinical Neuroscience, Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic.,Institute of Biophysics and Informatics of the First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Magda Horáková
- Department of Neurology, ERN EURO-NMD Center, University Hospital Brno, Brno, Czech Republic.,Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Daniela Vlažná
- Department of Neurology, ERN EURO-NMD Center, University Hospital Brno, Brno, Czech Republic.,Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Department of Rehabilitation, University Hospital Brno, Brno, Czech Republic
| | - Irena Ryšánková
- Department of Neurology and Center for Clinical Neuroscience, Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Iveta Nováková
- Department of Neurology and Center for Clinical Neuroscience, Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Kristýna Dolečková
- Department of Neurology and Center for Clinical Neuroscience, Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Pavel Dušek
- Department of Neurology and Center for Clinical Neuroscience, Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Jiří Piťha
- Department of Neurology and Center for Clinical Neuroscience, Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Stanislav Voháňka
- Department of Neurology, ERN EURO-NMD Center, University Hospital Brno, Brno, Czech Republic.,Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Josef Bednařík
- Department of Neurology, ERN EURO-NMD Center, University Hospital Brno, Brno, Czech Republic.,Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
26
|
Jain A, Prajapati SK, Tripathi M, Raichur AM, Kanwar JR. Exploring the room for repurposed hydroxychloroquine to impede COVID-19: toxicities and multipronged combination approaches with pharmaceutical insights. Expert Rev Clin Pharmacol 2021; 14:715-734. [PMID: 33769888 DOI: 10.1080/17512433.2021.1909473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/24/2021] [Indexed: 12/21/2022]
Abstract
Introduction: SARS-CoV-2 has fatally affected the whole world with millions of deaths. Amidst the dilemma of a breakthrough in vaccine development, hydroxychloroquine (HCQ) was looked upon as a prospective repurposed candidate. It has confronted numerous controversies in the past few months as a chemoprophylactic and treatment option for COVID-19. Recently, it has been withdrawn by the World Health Organization for its use in an ongoing pandemic. However, its benefit/risk ratio regarding its use in COVID-19 disease remains poorly justified. An extensive literature search was done using Scopus, PubMed, Google Scholar, www.cdc.gov, www.fda.gov, and who.int.Areas covered: Toxicity vexations of HCQ; pharmaceutical perspectives on new advances in drug delivery approaches; computational modeling (PBPK and PD modeling) overtures; multipronged combination approaches for enhanced synergism with antiviral and anti-inflammatory agents; immuno-boosting effects.Expert commentary: Harnessing the multipronged pharmaceutical perspectives will optimistically help the researchers, scientists, biotech, and pharmaceutical companies to bring new horizons in the safe and efficacious utilization of HCQ alone or in combination with remdesivir and immunomodulatory molecules like bovine lactoferrin in a fight against COVID-19. Combinational therapies with free forms or nanomedicine based targeted approaches can act synergistically to boost host immunity and stop SARS-CoV-2 replication and invasion to impede the infection.
Collapse
Affiliation(s)
- Ankit Jain
- Department of Materials Engineering, Indian Institute of Science, Bangalore - Karnataka, India
| | - Shiv Kumar Prajapati
- Department of Pharmaceutical Sciences, Ram-Eesh Institute of Vocational and Technical Education, Greater Noida, Uttar Pradesh, India
| | - Madhavi Tripathi
- Department of Materials Engineering, Indian Institute of Science, Bangalore - Karnataka, India
| | - Ashok M Raichur
- Department of Materials Engineering, Indian Institute of Science, Bangalore - Karnataka, India
| | - Jagat R Kanwar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Bhopal, Madhya Pradesh, India
| |
Collapse
|
27
|
Bezzio C, Saibeni S. Severe Inflammatory Bowel Disease Flares and COVID-19: Expand the Gastroenterology-Surgery Team to Include an Infectious Disease Specialist. Gastroenterology 2021; 160:2625-2626. [PMID: 32553764 PMCID: PMC7296299 DOI: 10.1053/j.gastro.2020.05.082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/13/2020] [Indexed: 01/09/2023]
|
28
|
Nasonov EL. 2019 Coronavirus disease (COVID-19): contribution of rheumatology. TERAPEVT ARKH 2021; 93:71504. [DOI: 10.26442/00403660.2021.05.200799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 12/15/2022]
Abstract
The 2019 coronavirus disease (COVID-19) pandemic become a major challenge for humanity and a unique opportunity to get an idea of the real achievements of modern biology and medicine. In the course of the pandemic, a large number of new fundamental and medical issues have been revealed regarding the relationship between viral infection and many common chronic non-infectious diseases, among which immune-mediated rheumatic diseases (IMRD) occupy an important position. It is now well known that SARS-CoV-2 infection is accompanied by a wide range of extrapulmonary clinical and laboratory disorders, some of which are characteristic of IMRD and other autoimmune and autoinflammatory diseases in humans. The most severe consequence of alterations in regulation of the immunity in COVID-19 and IMRD is the so-called cytokine storm syndrome, which is defined as COVID-19-associated hyperinflammatory syndrome in COVID-19, and as macrophage activation syndrome in IMRD. The COVID-19-associated hyperinflammatory syndrome was used as a reason for drug repurposing and off-label use of a wide range of anti-inflammatory drugs, which have been specially developed for the treatment of IMRD over the past 20 years. Common immunopathological mechanisms and approaches to pharmacotherapy in COVID-19 and IMRD determined the unique place of rheumatology among medical specialties contributing to combat the COVID-19 pandemic. The article provides the basic provisions of the International and National Association of Rheumatologists and the Association of Rheumatologists of Russia (ARR) recommendations for management of patients with IMRD during the COVID-19 pandemic.
Collapse
|
29
|
Effect of Hydroxychloroquine on QTc in Patients Diagnosed with COVID-19: A Systematic Review and Meta-Analysis. J Cardiovasc Dev Dis 2021; 8:jcdd8050055. [PMID: 34068104 PMCID: PMC8152730 DOI: 10.3390/jcdd8050055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/25/2021] [Accepted: 05/08/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Hydroxychloroquine or chloroquine with or without the concomitant use of azithromycin have been widely used to treat patients with SARS-CoV-2 infection, based on early in vitro studies, despite their potential to prolong the QTc interval of patients. OBJECTIVE This is a systematic review and metanalysis designed to assess the effect of hydroxychloroquine with or without the addition of azithromycin on the QTc of hospitalized patients with COVID-19. MATERIALS AND METHODS PubMed, Scopus, Cochrane and MedRxiv databases were reviewed. A random effect model meta-analysis was used, and I-square was used to assess the heterogeneity. The prespecified endpoints were ΔQTc, QTc prolongation > 500 ms and ΔQTc > 60 ms. RESULTS A total of 18 studies and 7179 patients met the inclusion criteria and were included in this systematic review and meta-analysis. The use of hydroxychloroquine with or without the addition of azithromycin was associated with increased QTc when used as part of the management of patients with SARS-CoV-2 infection. The combination therapy with hydroxychloroquine plus azithromycin was also associated with statistically significant increases in QTc. Moreover, the use of hydroxychloroquine alone, azithromycin alone, or the combination of the two was associated with increased numbers of patients that developed QTc prolongation > 500 ms. CONCLUSION This systematic review and metanalysis revealed that the use of hydroxychloroquine alone or in conjunction with azithromycin was linked to an increase in the QTc interval of hospitalized patients with SARS-CoV-2 infection that received these agents.
Collapse
|
30
|
Pomponio G, Ferrarini A, Bonifazi M, Moretti M, Salvi A, Giacometti A, Tavio M, Titolo G, Morbidoni L, Frausini G, Onesta M, Amico D, Rocchi MLB, Menzo S, Zuccatosta L, Mei F, Menditto V, Svegliati S, Donati A, D'Errico MM, Pavani M, Gabrielli A. Tocilizumab in COVID-19 interstitial pneumonia. J Intern Med 2021; 289:738-746. [PMID: 33511686 PMCID: PMC8013903 DOI: 10.1111/joim.13231] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/25/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Published reports on tocilizumab in COVID-19 pneumonitis show conflicting results due to weak designs or heterogeneity in critical methodological issues. METHODS This open-label trial, structured according to Simon's optimal design, aims to identify factors predicting which patients could benefit from anti-IL6 strategies and to enhance the design of unequivocal and reliable future randomized trials. A total of 46 patients with COVID-19 pneumonia needing of oxygen therapy to maintain SO2 > 93% and with recent worsening of lung function received a single infusion of tocilizumab. Clinical and biological markers were measured to test their predictive values. Primary end point was early and sustained clinical response. RESULTS Twenty-one patients fulfilled pre-defined response criteria. Lower levels of IL-6 at 24 h after tocilizumab infusion (P = 0.049) and higher baseline values of PaO2/FiO2 (P = 0.008) predicted a favourable response. CONCLUSIONS Objective clinical response rate overcame the pre-defined threshold of 30%. Efficacy of tocilizumab to improve respiratory function in patients selected according to our inclusion criteria warrants investigations in randomized trials.
Collapse
Affiliation(s)
- G Pomponio
- From the, Clinica Medica, Ospedali Riuniti di Ancona, Ancona, Italy
| | - A Ferrarini
- From the, Clinica Medica, Ospedali Riuniti di Ancona, Ancona, Italy
| | - M Bonifazi
- Pneumologia, Ospedali Riuniti di Ancona, Ancona, Italy
| | - M Moretti
- SOD Medicina di Laboratorio Ospedali Riuniti di Ancona, Ancona, Italy
| | - A Salvi
- Medicina Interna e Sub Intensiva, Ospedali Riuniti di Ancona, Ancona, Italy
| | - A Giacometti
- Clinica di Malattie Infettive, Ospedali Riuniti di Ancona, Ancona, Italy
| | - M Tavio
- Malattie Infettive, Ospedali Riuniti di Ancona, Ancona, Italy
| | - G Titolo
- Medicina di Urgenza, Ospedali Riuniti Marche Nord, Pesaro/Fano, Italy
| | - L Morbidoni
- Medicina Interna, Ospedale di Senigallia, Senigallia, Italy
| | - G Frausini
- Medicina Interna, Ospedali Riuniti Marche Nord, Pesaro/Fano, Italy
| | - M Onesta
- Medicina Interna, Ospedale di Fabriano, Fabriano, Italy
| | - D Amico
- Pneumologia, Ospedali Riuniti Marche Nord, Pesaro/Fano, Italy
| | - M L B Rocchi
- Statistica Medica, Dipartimento di Scienze Biomolecolari, Università di Urbino, Urbino, Italy
| | - S Menzo
- Virologia, Ospedali Riuniti di Ancona, Ancona, Italy
| | - L Zuccatosta
- Pneumologia, Ospedali Riuniti di Ancona, Ancona, Italy
| | - F Mei
- Pneumologia, Ospedali Riuniti di Ancona, Ancona, Italy
| | - V Menditto
- Medicina Interna e Sub Intensiva, Ospedali Riuniti di Ancona, Ancona, Italy
| | - S Svegliati
- Clinica Medica, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - A Donati
- Clinica di Rianimazione, Ospedali Riuniti di Ancona, Ancona, Italy
| | - M M D'Errico
- Dip. Scienze biomediche e sanità pubblica, Università Politecnica delle Marche, Ancona, Italy
| | - M Pavani
- Laboratorio di Patologia Sperimentale, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - A Gabrielli
- From the, Clinica Medica, Ospedali Riuniti di Ancona, Ancona, Italy.,Clinica Medica, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
31
|
Réa-Neto Á, Bernardelli RS, Câmara BMD, Reese FB, Queiroga MVO, Oliveira MC. An open-label randomized controlled trial evaluating the efficacy of chloroquine/hydroxychloroquine in severe COVID-19 patients. Sci Rep 2021; 11:9023. [PMID: 33907251 PMCID: PMC8079411 DOI: 10.1038/s41598-021-88509-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/13/2021] [Indexed: 12/15/2022] Open
Abstract
Despite several studies designed to evaluate the efficacy of chloroquine and hydroxychloroquine in the treatment of coronavirus disease 2019 (COVID-19), there is still doubt about the effects of these drugs, especially in patients with severe forms of the disease. This randomized, open-label, controlled, phase III trial assessed the efficacy of chloroquine or hydroxychloroquine for five days in combination with standard care compared to standard care alone in patients hospitalized with severe COVID-19. Chloroquine 450 mg BID on day 1 and 450 mg once daily from days 2 to 5 or hydroxychloroquine 400 mg BID on day 1 and 400 mg once daily from days 2 to 5 were administered in the intervention group. Patients were enrolled from April 16 to August 06, 2020, in 6 hospitals in southern Brazil. The primary outcome was the clinical status measured on day 14 after randomization with a 9-point ordinal scale. The main secondary outcomes were all-cause mortality; invasive mechanical ventilation use; the incidence of acute renal dysfunction in 28 days; and the clinical status of patients on days 5, 7, 10 and 28. All patients with a positive RT-PCR result for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were analyzed (modified intention to treat (mITT) population). Arrythmias and cardiovascular complications were assessed as safety outcomes. A total of 105 patients were enrolled and followed for 28 days. The trial was stopped before reaching the planned sample size due to harmful effects. Patients in the intervention group had a worse clinical outcome on the 14th day (odds ratio (OR) 2.45 [1.17 to 4.93], p = 0.016) and on the 28th day (OR 2.47 [1.15 to 5.30], p = 0.020). Moreover, the intervention group had higher incidences of invasive mechanical ventilation use (risk ratio (RR) 2.15 [1.05 to 4.40], p = 0.030) and severe renal dysfunction (KDIGO stage 3) (RR 2.24 [1.01 to 4.99], p = 0.042) until the 28th day of follow-up. No significant arrythmia was noted. In patients with severe COVID-19, the use of chloroquine/hydroxychloroquine added to standard treatment resulted in a significant worsening of clinical status, an increased risk of renal dysfunction and an increased need for invasive mechanical ventilation.Trial Registration: ClinicalTrials.gov, NCT04420247. Registered 09 June 2020-Retrospectively registered, https://www.clinicaltrials.gov/ct2/show/study/NCT04420247 .
Collapse
Affiliation(s)
- Álvaro Réa-Neto
- Federal University of Paraná (UFPR); CEPETI, Center for Study and Research in Intensive Care Medicine, Rua Monte Castelo, 366, Curitiba, CEP, 82590-300, Brazil.
| | | | | | - Fernanda Baeumle Reese
- CEPETI, Center for Study and Research in Intensive Care Medicine, Rua Monte Castelo, 366, Curitiba, CEP: 82590-300, Brazil
| | | | - Mirella Cristine Oliveira
- CEPETI, Center for Study and Research in Intensive Care Medicine, Rua Monte Castelo, 366, Curitiba, CEP: 82590-300, Brazil
| |
Collapse
|
32
|
Abstract
The current COVID-19 pandemic has challenged health systems and communities globally. As such, several countries have embarked on national COVID-19 vaccination programmes in order to curb spread of the disease. However, at present, there isn't yet enough dosages to enable vaccination of the general population. Different vaccine prioritization strategies are thus being implemented in different communities in order to permit for a systematic vaccination of individuals. Here, on behalf of the World Heart Federation, we emphasize the need for individuals with Cardiovascular disease to be prioritized in national vaccine prioritization programmes as these are high risk individuals.
Collapse
|
33
|
Nasonov EL. Coronavirus disease 2019 (COVID-19) and autoimmunity. RHEUMATOLOGY SCIENCE AND PRACTICE 2021. [DOI: 10.47360/1995-4484-2021-5-30] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The coronavirus 2019 pandemic (coronavirus disease, COVID-19), etiologically related to the SARS-CoV-2 virus (severe acute respiratory syndrome coronavirus-2), has once again reawakened healthcare professionals’ interest towards new clinical and conceptual issues of human immunology and immunopathology. An unprecedented number of clinical trials and fundamental studies of epidemiology, virology, immunology and molecular biology, of the COVID-19 clinical course polymorphism and pharmacotherapy have been conducted within one year since the outbreak of 2019 pandemic, bringing together scientists of almost all biological and physicians of almost all medical specialties. Their joint efforts have resulted in elaboration of several types of vaccines against SARS-CoV-2 infection and, in general, fashioning of more rational approaches to patient management. Also important for COVID-19 management were all clinical trials of biologics and “targeted” anti-inflammatory drugs modulating intracellular cytokine signaling, which have been specifically developed for treatment immune-mediated inflammatory rheumatic disease (IMIRDs) over the past 20 years. It became obvious after a comprehensive analysis of the entire spectrum of clinical manifestations and immunopathological disorders in COVID-19 is accompanied by a wide range of extrapulmonary clinical and laboratory disorders, some of which are characteristic of IMIRDs and other autoimmune and auto-in-flammatory human diseases. All these phenomena substantiated the practice of anti-inflammatory drugs repurposing with off-label use of specific antirheumatic agents for treatment of COVID-19. This paper discusses potential use of glucocorticoids, biologics, JAK inhibitors, etc., blocking the effects of pro-inflammatory cytokines for treatment of COVID-19.
Collapse
Affiliation(s)
- E. L. Nasonov
- V.A. Nasonova Research Institute of Rheumatology; I.M. Sechenov First Moscow State Medical University of the Ministry of Health Care of Russian Federation (Sechenov University)
| |
Collapse
|
34
|
Bezzio C, Manes G, Bini F, Pellegrini L, Saibeni S. Infliximab for severe ulcerative colitis and subsequent SARS-CoV-2 pneumonia: a stone for two birds. Gut 2021; 70:623-624. [PMID: 32554621 DOI: 10.1136/gutjnl-2020-321760] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/01/2020] [Accepted: 06/04/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Cristina Bezzio
- Gastroenterology Unit, ASST Rhodense, Garbagnate Milanese, Italy
| | - Gianpiero Manes
- Gastroenterology Unit, ASST Rhodense, Garbagnate Milanese, Italy
| | - Francesco Bini
- Pneumology Unit, ASST Rhodense, Garbagnate Milanese, Italy
| | | | - Simone Saibeni
- Gastroenterology Unit, ASST Rhodense, Garbagnate Milanese, Italy
| |
Collapse
|
35
|
Huang JH, Chiang BL. Regulatory T cells induced by B cells suppress NLRP3 inflammasome activation and alleviate monosodium urate-induced gouty inflammation. iScience 2021; 24:102103. [PMID: 33615201 PMCID: PMC7881254 DOI: 10.1016/j.isci.2021.102103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/25/2020] [Accepted: 01/21/2021] [Indexed: 01/22/2023] Open
Abstract
Regulatory T cells induced by B cells (Treg-of-B cells), a distinct Foxp3- Treg cell subset, have established the roles in the suppression of inflammatory conditions, including asthma and intestinal inflammation. However, little is known about the regulatory effects of Treg-of-B cells on innate immunity. Herein, we examined whether Treg-of-B cells could regulate macrophage function and prevent NLRP3-associated diseases, particularly inflammatory gouty arthritis. Treg-of-B cells, but not thymus-derived Treg or effector T cells, inhibited inflammasome-mediated IL-1β secretion, caspase-1 activation, and NLRP3 production by LPS/ATP stimulation in a cell contact-dependent manner. In addition, Treg-of-B cells inhibited monosodium urate-induced NLRP3 inflammasome activation in vitro via NF-κB signaling. Treg-of-B cells ameliorated gouty inflammation in a mouse air pouch model by reducing neutrophil and leukocyte influx and cytokine and chemokine production. Our results demonstrated that Treg-of-B cells exerted regulatory effects on innate immunity by suppressing NLRP3 inflammasome activation and feasible for future therapeutic applications.
Collapse
Affiliation(s)
- Jing-Hui Huang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Bor-Luen Chiang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan.,Department of Pediatrics, National Taiwan University Hospital, Taipei 10041, Taiwan.,Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| |
Collapse
|
36
|
Rauf A, Ishtiaq M, Siddiqui MK. Topological Study of Hydroxychloroquine Conjugated Molecular Structure Used for Novel Coronavirus (COVID-19) Treatment. Polycycl Aromat Compd 2021. [PMCID: PMC7852296 DOI: 10.1080/10406638.2021.1873807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The novel coronavirus disease 2019 (Covid-19) is a mutating and recombining pandemic that potentially spreading through an infected person in droplet-generated forms that have affected more than 200 countries and endanger the entire globe. There is no clear strategy for the care of COVID-19 cases. Moreover, experts across the globe are working actively to develop medicinal or anti-virus drugs. On the basis of recent clinical findings and recommendations, the study examined a variety of new medications that have shown antiviral activity against SARS-CoV-2, among other drugs, antimalarial medications Chloroquine (CQ) and Hydroxychloroquine (HCQ) have gained significant publicity to have promising effects against SARS-CoV-2. Linking a bioactive substance to a biocompatible polymer typically provides various concerns, such as improved drug solubilization, improved modification, precise restriction, and controlled discharge. An enormous number of medical analyses have confirmed that the characteristics of medical drugs have a nearby connection with their atomic structure. Medication properties can be acquired by considering the atomic structure of relating drugs. The calculation of the topological index of a medication structure empowers researchers to have a superior comprehension of the physical science and bio-organic attributes of drugs. Ev-degree and ve-degree based topological indices are two novel degrees based indices as of late defined in graph theory. Ev-degree and ve-degree based topological indices have been defined as corresponding to their relating partners. In this paper, we have computed topological indices based on ev-degree and ve-degree for the Hydroxyethyl Starch and Hydroxychloroquine (HCQ-HEC) bioconjugate molecular structure.
Collapse
Affiliation(s)
- Abdul Rauf
- Department of Computer Science and Engineering, Air University Multan Campus, Multan, Pakistan
| | - Muhammad Ishtiaq
- Department of Computer Science and Engineering, Air University Multan Campus, Multan, Pakistan
| | | |
Collapse
|
37
|
Alamri A, Fisk D, Upreti D, Kung SKP. A Missing Link: Engagements of Dendritic Cells in the Pathogenesis of SARS-CoV-2 Infections. Int J Mol Sci 2021; 22:1118. [PMID: 33498725 PMCID: PMC7865603 DOI: 10.3390/ijms22031118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 12/13/2022] Open
Abstract
Dendritic cells (DC) connect the innate and adaptive arms of the immune system and carry out numerous roles that are significant in the context of viral disease. Their functions include the control of inflammatory responses, the promotion of tolerance, cross-presentation, immune cell recruitment and the production of antiviral cytokines. Based primarily on the available literature that characterizes the behaviour of many DC subsets during Severe acute respiratory syndrome (SARS) and coronavirus disease 2019 (COVID-19), we speculated possible mechanisms through which DC could contribute to COVID-19 immune responses, such as dissemination of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to lymph nodes, mounting dysfunctional inteferon responses and T cell immunity in patients. We highlighted gaps of knowledge in our understanding of DC in COVID-19 pathogenesis and discussed current pre-clinical development of therapies for COVID-19.
Collapse
Affiliation(s)
- Abdulaziz Alamri
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E OT5, Canada; (A.A.); (D.F.)
| | - Derek Fisk
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E OT5, Canada; (A.A.); (D.F.)
| | - Deepak Upreti
- Surgery, Faculty of Health Sciences, McMaster University, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada;
| | - Sam K. P. Kung
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E OT5, Canada; (A.A.); (D.F.)
| |
Collapse
|
38
|
Kovalchuk A, Wang B, Li D, Rodriguez-Juarez R, Ilnytskyy S, Kovalchuk I, Kovalchuk O. Fighting the storm: could novel anti-TNFα and anti-IL-6 C. sativa cultivars tame cytokine storm in COVID-19? Aging (Albany NY) 2021; 13:1571-1590. [PMID: 33465050 PMCID: PMC7880317 DOI: 10.18632/aging.202500] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022]
Abstract
The main aspects of severe COVID-19 disease pathogenesis include hyper-induction of proinflammatory cytokines, also known as 'cytokine storm', that precedes acute respiratory distress syndrome (ARDS) and often leads to death. COVID-19 patients often suffer from lung fibrosis, a serious and untreatable condition. There remains no effective treatment for these complications. Out of all cytokines, TNFα and IL-6 play crucial roles in cytokine storm pathogenesis and are likely responsible for the escalation in disease severity. These cytokines also partake in the molecular pathogenesis of fibrosis. Therefore, new approaches are urgently needed, that can efficiently and swiftly downregulate TNFα, IL-6, and the inflammatory cytokine cascade, in order to curb inflammation and prevent fibrosis, and lead to disease remission. Cannabis sativa has been proposed to modulate gene expression and inflammation and is under investigation for several potential therapeutic applications against autoinflammatory diseases and cancer. Here, we hypothesized that the extracts of novel C. sativa cultivars may be used to downregulate the expression of pro-inflammatory cytokines and pathways involved in inflammation and fibrosis. Initially, to analyze the anti-inflammatory effects of novel C. sativa cultivars, we used a well-established full thickness human 3D skin artificial EpiDermFTTM tissue model, whereby tissues were exposed to UV to induce inflammation and then treated with extracts of seven new cannabis cultivars. We noted that out of seven studied extracts of novel C. sativa cultivars, three (#4, #8 and #14) were the most effective, causing profound and concerted down-regulation of COX2, TNFα, IL-6, CCL2, and other cytokines and pathways related to inflammation and fibrosis. These data were further confirmed in the WI-38 lung fibroblast cell line model. Most importantly, one of the tested extracts had no effect at all, and one exerted effect that may be deleterious, signifying that careful cannabis cultivar selection must be based on thorough pre-clinical studies. The observed pronounced inhibition of TNFα and IL-6 is the most important finding, because these molecules are currently considered to be the main targets in COVID-19 cytokine storm and ARDS pathogenesis. Novel anti-TNFα and anti-IL-6 cannabis extracts can be useful additions to the current anti-inflammatory regimens to treat COVID-19, as well as various rheumatological diseases and conditions, and 'inflammaging' - the inflammatory underpinning of aging and frailty.
Collapse
Affiliation(s)
- Anna Kovalchuk
- Pathway Research Inc., Lethbridge, AB T1K7X8, Canada
- University of Calgary, Cumming School of Medicine, Calgary, AB T2N 1N4, Canada
| | - Bo Wang
- Pathway Research Inc., Lethbridge, AB T1K7X8, Canada
- University of Lethbridge, Lethbridge, AB T1K3M4, Canada
| | - Dongping Li
- Pathway Research Inc., Lethbridge, AB T1K7X8, Canada
- University of Lethbridge, Lethbridge, AB T1K3M4, Canada
| | - Rocio Rodriguez-Juarez
- Pathway Research Inc., Lethbridge, AB T1K7X8, Canada
- University of Lethbridge, Lethbridge, AB T1K3M4, Canada
| | - Slava Ilnytskyy
- Pathway Research Inc., Lethbridge, AB T1K7X8, Canada
- University of Lethbridge, Lethbridge, AB T1K3M4, Canada
| | - Igor Kovalchuk
- Pathway Research Inc., Lethbridge, AB T1K7X8, Canada
- University of Lethbridge, Lethbridge, AB T1K3M4, Canada
| | - Olga Kovalchuk
- Pathway Research Inc., Lethbridge, AB T1K7X8, Canada
- University of Lethbridge, Lethbridge, AB T1K3M4, Canada
| |
Collapse
|
39
|
Akintayo RO, Akpabio AA, Kalla AA, Dey D, Migowa AN, Olaosebikan H, Bahiri R, El Miedany Y, Hadef D, Hamdi W, Oyoo O, Slimani S, Yerima A, Taha Y, Adebajo AO, Adelowo OO, Tikly M, Ghozlani I, Ben Abdelghani K, Fouad NA, Mosad D, El Mikkawy D, Abu-Zaid MH, Abdel-Magied RA. The impact of COVID-19 on rheumatology practice across Africa. Rheumatology (Oxford) 2021; 60:392-398. [PMID: 33020845 PMCID: PMC7665741 DOI: 10.1093/rheumatology/keaa600] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/18/2020] [Indexed: 01/16/2023] Open
Abstract
OBJECTIVES To identify the changes in rheumatology service delivery across the five regions of Africa from the impact of the COVID-19 pandemic. METHODS The COVID-19 African Rheumatology Study Group created an online survey consisting of 40 questions relating to the current practices and experiences of rheumatologists across Africa. The CHERRIES checklist for reporting results of internet e-surveys was adhered to. RESULTS A total of 554 completed responses were received from 20 countries, which include six in Northern Africa, six in West Africa, four in Southern Africa, three in East Africa and one in Central Africa. Consultant grade rheumatologists constituted 436 (78.7%) of respondents with a mean of 14.5 ± 10.3 years of experience. A total of 77 (13.9%) rheumatologists avoided starting a new biologic. Face-to-face clinics with the use of some personal protective equipment continued to be held in only 293 (52.9%) rheumatologists' practices. Teleconsultation modalities found usage as follows: telephone in 335 (60.5%), WhatsApp in 241 (43.5%), emails in 90 (16.3%) and video calls in 53 (9.6%). Physical examinations were mostly reduced in 295 (53.3%) or done with personal protective equipment in 128 (23.1%) practices. Only 316 (57.0%) reported that the national rheumatology society in their country had produced any recommendation around COVID-19 while only 73 (13.2%) confirmed the availability of a national rheumatology COVID-19 registry in their country. CONCLUSION COVID-19 has shifted daily rheumatology practices across Africa to more virtual consultations and regional disparities are more apparent in the availability of local protocols and registries.
Collapse
Affiliation(s)
- Richard O Akintayo
- Rheumatology Department, Dumfries and Galloway Royal Infirmary, Dumfries, UK
| | - Akpabio A Akpabio
- Internal Medicine Department, University of Uyo Teaching Hospital, Uyo, Nigeria
| | - Asgar A Kalla
- Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Dzifa Dey
- Department of Medicine and Therapeutics, Korle Bu Teaching Hospital, Accra, Ghana
| | - Angela N Migowa
- Department of Paediatrics and Child Health, Aga Khan University, East Africa, Kenya
| | - Hakeem Olaosebikan
- Department of Medicine, Lagos State University Teaching Hospital, Lagos, Nigeria
| | - Rachid Bahiri
- Department of rheumatology, El Ayachi Hospital Medical University, Rabat, Morocco
| | | | - Djohra Hadef
- Department of Paediatrics, Batna 2 University, Batna, Algeria
| | - Wafa Hamdi
- Kassab Institute of Orthopedics, Tunis El Manar University, Tunis, Tunisia
| | - Omondi Oyoo
- Department of Clinical Medicine and Therapeutics, University of Nairobi, Nairobi, Kenya
| | - Samy Slimani
- Rheumatology, Atlas Clinic of Rheumatology, Batna, Algeria
| | - Abubakar Yerima
- Department of Medicine, University of Maiduguri Teaching Hospital, Maiduguri, Nigeria
| | - Yassmin Taha
- Paediatrics Department, Ahmed Gasim Children's Hospital, Khartoum, Sudan
| | - Adewale O Adebajo
- Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, UK
| | - Olufemi O Adelowo
- Department of Medicine, Lagos State University Teaching Hospital, Lagos, Nigeria
| | - Mohammed Tikly
- Department of Medicine, University of the Witwatersrand, Johannesburg, South Africa
| | | | | | - Nermeen A Fouad
- Rheumatology and Rehabilitation, Fayoum University, Fayoum, Egypt
| | - Doaa Mosad
- Paediatrics Department, Mansoura University, Mansoura, Egypt
| | - Dalia El Mikkawy
- Rheumatology and Rehabilitation, Ain Shams University, Cairo, Egypt
| | | | | |
Collapse
|
40
|
Borah P, Deb PK, Deka S, Venugopala KN, Singh V, Mailavaram RP, Kalia K, Tekade RK. Current Scenario and Future Prospect in the Management of COVID-19. Curr Med Chem 2021; 28:284-307. [PMID: 32900341 DOI: 10.2174/0929867327666200908113642] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 01/08/2023]
Abstract
The COVID-19 pandemic continues to wreak havoc worldwide due to the lack of risk assessment, rapid spreading ability, and propensity to precipitate severe disease in comorbid conditions. In an attempt to fulfill the demand for prophylactic and treatment measures to intercept the ongoing outbreak, the drug development process is facing several obstacles and renaissance in clinical trials, including vaccines, antivirals, immunomodulators, plasma therapy, and traditional medicines. This review outlines the overview of SARS-CoV-2 infection, significant recent findings, and ongoing clinical trials concerning current and future therapeutic interventions for the management of advancing pandemic of the century.
Collapse
Affiliation(s)
- Pobitra Borah
- Pratiksha Institute of Pharmaceutical Sciences, Chandrapur Road, Panikhaiti, Guwahati-781026, Assam, India
| | - Pran Kishore Deb
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, PO Box 1, Amman 19392, Jordan
| | - Satyendra Deka
- Pratiksha Institute of Pharmaceutical Sciences, Chandrapur Road, Panikhaiti, Guwahati-781026, Assam, India
| | - Katharigatta N Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Vinayak Singh
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch, 7701, South Africa
| | - Raghu Prasad Mailavaram
- Department of Pharmaceutical Chemistry, Shri Vishnu College of Pharmacy, Vishnupur, Bhimavaram - 534 202, West Godavari Dist., Andhra Pradesh, India
| | - Kiran Kalia
- National Institute of Pharmaceutical Education and Research- Ahmedabad (NIPER-A), Opposite Air Force Station Palaj, Gandhinagar-382355, Gujarat, India
| | - Rakesh Kumar Tekade
- National Institute of Pharmaceutical Education and Research- Ahmedabad (NIPER-A), Opposite Air Force Station Palaj, Gandhinagar-382355, Gujarat, India
| |
Collapse
|
41
|
Perricone C, Triggianese P, Bursi R, Cafaro G, Bartoloni E, Chimenti MS, Gerli R, Perricone R. Intravenous Immunoglobulins at the Crossroad of Autoimmunity and Viral Infections. Microorganisms 2021; 9:121. [PMID: 33430200 PMCID: PMC7825648 DOI: 10.3390/microorganisms9010121] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/24/2020] [Accepted: 01/05/2021] [Indexed: 02/06/2023] Open
Abstract
Intravenous immunoglobulins (IVIG) are blood preparations pooled from the plasma of donors that have been first employed as replacement therapy in immunodeficiency. IVIG interact at multiple levels with the different components of the immune system and exert their activity against infections. Passive immunotherapy includes convalescent plasma from subjects who have recovered from infection, hyperimmune globulin formulations with a high titer of neutralizing antibodies, and monoclonal antibodies (mAbs). IVIG are used for the prevention and treatment of several infections, especially in immunocompromised patients, or in case of a poorly responsive immune system. The evolution of IVIG from a source of passive immunity to a powerful immunomodulatory/anti-inflammatory agent results in extensive applications in autoimmune diseases. IVIG composition depends on the antibodies of the donor population and the alterations of protein structure due to the processing of plasma. The anti-viral and anti-inflammatory activity of IVIG has led us to think that they may represent a useful therapeutic tool even in COVID-19. The human origin of IVIG carries specific criticalities including risks of blood products, supply, and elevated costs. IVIG can be useful in critically ill patients, as well as early empirical treatment. To date, the need for further well-designed studies stating protocols and the efficacy/tolerability profile of IVIG and convalescent plasma in selected situations are awaited.
Collapse
Affiliation(s)
- Carlo Perricone
- Rheumatology, Department of Medicine, University of Perugia, 06129 Perugia, Italy; (C.P.); (R.B.); (G.C.); (E.B.); (R.G.)
| | - Paola Triggianese
- Rheumatology, Allergology and Clinical Immunology, Department of “Medicina dei Sistemi”, University of Rome, 00133 Rome, Italy; (M.S.C.); (R.P.)
| | - Roberto Bursi
- Rheumatology, Department of Medicine, University of Perugia, 06129 Perugia, Italy; (C.P.); (R.B.); (G.C.); (E.B.); (R.G.)
| | - Giacomo Cafaro
- Rheumatology, Department of Medicine, University of Perugia, 06129 Perugia, Italy; (C.P.); (R.B.); (G.C.); (E.B.); (R.G.)
| | - Elena Bartoloni
- Rheumatology, Department of Medicine, University of Perugia, 06129 Perugia, Italy; (C.P.); (R.B.); (G.C.); (E.B.); (R.G.)
| | - Maria Sole Chimenti
- Rheumatology, Allergology and Clinical Immunology, Department of “Medicina dei Sistemi”, University of Rome, 00133 Rome, Italy; (M.S.C.); (R.P.)
| | - Roberto Gerli
- Rheumatology, Department of Medicine, University of Perugia, 06129 Perugia, Italy; (C.P.); (R.B.); (G.C.); (E.B.); (R.G.)
| | - Roberto Perricone
- Rheumatology, Allergology and Clinical Immunology, Department of “Medicina dei Sistemi”, University of Rome, 00133 Rome, Italy; (M.S.C.); (R.P.)
| |
Collapse
|
42
|
Yarmohammadi A, Yarmohammadi M, Fakhri S, Khan H. Targeting pivotal inflammatory pathways in COVID-19: A mechanistic review. Eur J Pharmacol 2021; 890:173620. [PMID: 33038418 PMCID: PMC7539138 DOI: 10.1016/j.ejphar.2020.173620] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/15/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022]
Abstract
As an emerging global health crisis, coronavirus disease 2019 (COVID-19) has been labeled a worldwide pandemic. Growing evidence is revealing further pathophysiological mechanisms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Amongst these dysregulated pathways inflammation seems to play a more critical role toward COVID-19 complications. In the present study, precise inflammatory pathways triggered by SARS-CoV-2, along with potential therapeutic candidates have been discussed. Prevailing evidence has indicated a close correlation of inflammatory cascades with severity, pathological progression, and organ damages in COVID-19 patients. From the mechanistic point of view, interleukin-6, interleukin-1β receptor, interferon-gamma, tumor necrosis factor-alpha receptor, toll-like receptor, receptor tyrosine kinases, growth factor receptor, Janus kinase/signal transducers and transcription pathway, mammalian target of rapamycin, cytokine storm and macrophage activation have shown to play critical roles in COVID-19 complications. So, there is an urgent need to provide novel mechanistic-based anti-inflammatory agents. This review highlights inflammatory signaling pathways of SARS-CoV-2. Several therapeutic targets and treatment strategies have also been provided in an attempt to tackle COVID-19 complications.
Collapse
Affiliation(s)
- Akram Yarmohammadi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran
| | - Mostafa Yarmohammadi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| |
Collapse
|
43
|
Bhandari R, Khanna G, Kuhad A. Pharmacological insight into potential therapeutic agents for the deadly Covid-19 pandemic. Eur J Pharmacol 2021; 890:173643. [PMID: 33065092 PMCID: PMC7550915 DOI: 10.1016/j.ejphar.2020.173643] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/03/2020] [Accepted: 10/08/2020] [Indexed: 12/15/2022]
Abstract
Coronaviruses are pleomorphic, enveloped, or spherical viruses, which have a size ranging from 80 to 120 nm. These viruses act on receptors that cause the triggering of fusion. Coronaviruses were first described after cultivation from patients with common colds by Tyrell and Bynoe in 1966. There are various subtypes of coronavirus, 7 out of these can cause infection in human beings. The Alpha subtype is responsible for mild infection showing symptoms or infection without any prevailing symptoms. On the other hand, the beta subtype is responsible for very serious diseases leading to fatality. The lineage of this novel SARS-CoV-2 falls under the beta lineage of the beta coronavirus which has been observed to have a relation to the MERS and SARS coronavirus. In the Huanan market selling seafood, the transition of this novel virus in humans from animals has occurred. It has the potential to be the cause of widespread fatality amongst the people of the globe. On August 16, 2020, the World Health Organisation had reported 2,1294,845 cases which are confirmed to date out of which 413,372 deaths have occurred. Currently, no targeted antiviral vaccines or drugs to fight against COVID-19 infection have been approved for use in humans. This pandemic is fast emerging and drug repurposing is the only ray of hope which can ensure quick availability. Vaccine development is progressing each day with various platforms such as DNA, Live Attenuated Virus, Non-Replicating Viral Vector, Protein Subunit, and RNA, being utilized for the development. COVID-19 attacks the immune system of the host & this can result in a cytokine storm. As a result, various herbal agents both acting as antivirals and immunomodulatory can also be used. Convalescent Plasma Therapy and Mesenchymal Stem Cell therapy are also being explored as a plausible therapeutic. There remains a considerable unmet need for therapeutics to be addressed. The development and availability of accessible and efficient therapy are essential for the treatment of patients. This review discusses the epidemiology, pathogenesis, the tale of origin, and transmission of COVID-19 or Sars-Cov2 virus and gives evidence of potential therapeutic agents that can be explored to cast away this pandemic.
Collapse
Affiliation(s)
- Ranjana Bhandari
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, 160 014, India
| | - Garima Khanna
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, 160 014, India
| | - Anurag Kuhad
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, 160 014, India.
| |
Collapse
|
44
|
Coroneo MT. The eye as the discrete but defensible portal of coronavirus infection. Ocul Surf 2021; 19:176-182. [PMID: 32446866 PMCID: PMC7241406 DOI: 10.1016/j.jtos.2020.05.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/16/2020] [Accepted: 05/19/2020] [Indexed: 12/23/2022]
Abstract
Oculo-centric factors may provide a key to understanding invasion success by SARS-CoV-2, a highly contagious, potentially lethal, virus with ocular tropism. Respiratory infection transmission via the eye and lacrimal-nasal pathway elucidated during the 1918 influenza pandemic, remains to be explored in this crisis. The eye and its adnexae represent a large surface area directly exposed to airborne viral particles and hand contact. The virus may bind to corneal and conjunctival angiotensin converting enzyme 2 (ACE2) receptors and potentially to the lipophilic periocular skin and superficial tear film with downstream carriage into the nasopharynx and subsequent access to the lungs and gut. Adenoviruses and influenza viruses share this ocular tropism and despite differing ocular and systemic manifestations and disease patterns, common lessons, particularly in management, emerge. Slit lamp usage places ophthalmologists at particular risk of exposure to high viral loads (and poor prognosis) and as for adenoviral epidemics, this may be a setting for disease transmission. Local, rather than systemic treatments blocking virus binding in this pathway (advocated for adenovirus) are worth considering. This pathway is accessible with eye drops or aerosols containing drugs which appear efficacious via systemic administration. A combination such as hydroxychloroquine, azithromycin and zinc, all of which have previously been used topically in the eye and which work at least in part by blocking ACE2 receptors, may offer a safe, cost-effective and resource-sparing intervention.
Collapse
Affiliation(s)
- Minas Theodore Coroneo
- Department of Ophthalmology, Prince of Wales Hospital/University of New South Wales, Sydney, Australia; Ophthalmic Surgeons, 2 St Pauls St, Randwick, NSW, 2031, Australia.
| |
Collapse
|
45
|
Infante M, Ricordi C, Alejandro R, Caprio M, Fabbri A. Hydroxychloroquine in the COVID-19 pandemic era: in pursuit of a rational use for prophylaxis of SARS-CoV-2 infection. Expert Rev Anti Infect Ther 2021; 19:5-16. [PMID: 32693652 PMCID: PMC7441799 DOI: 10.1080/14787210.2020.1799785] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/20/2020] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Over the last few months, coronavirus disease 2019 (COVID-19) pandemic caused by the novel coronavirus SARS-CoV-2 has posed a serious threat to public health on a global scale. Given the current lack of an effective vaccine, several drugs have been repurposed for treatment and prophylaxis of COVID-19 in an attempt to find an effective cure. AREAS COVERED The antimalarial drug hydroxychloroquine (HCQ) initially garnered widespread attention following the publication of preliminary results showing that this drug exerts an anti-SARS-CoV-2 activity in vitro. EXPERT OPINION To date, clinical evidence suggests lack of benefit from HCQ use for the treatment of hospitalized patients with COVID-19. In such patients, HCQ also appears to be associated with an increased risk of QT interval prolongation and potentially lethal ventricular arrhythmias. Therefore, FDA has recently revoked the Emergency Use Authorization (EUA) for emergency use of HCQ and chloroquine to treat COVID-19. Conversely, whether HCQ use may represent an effective prophylactic strategy against COVID-19 is a separate question that still remains to be answered. In addition, relevant aspects regarding the potential risks and benefits of HCQ need to be clarified, in pursuit of a rational use of this drug in the COVID-19 pandemic era.
Collapse
Affiliation(s)
- Marco Infante
- Division of Endocrinology, CTO Andrea Alesini Hospital, ASL Roma 2, Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
- UniCamillus, Saint Camillus International University of Health Sciences, Rome, Italy
- Diabetes Research Institute Federation (DRIF), Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Rome, Italy
- Diabetes Research Institute (DRI), University of Miami Miller School of Medicine, Miami, FL, USA
| | - Camillo Ricordi
- Diabetes Research Institute (DRI), University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rodolfo Alejandro
- Diabetes Research Institute (DRI), University of Miami Miller School of Medicine, Miami, FL, USA
| | - Massimiliano Caprio
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Rome, Italy
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy
| | - Andrea Fabbri
- Division of Endocrinology, CTO Andrea Alesini Hospital, ASL Roma 2, Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
- Diabetes Research Institute Federation (DRIF), Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
46
|
Bolarin JA, Oluwatoyosi MA, Orege JI, Ayeni EA, Ibrahim YA, Adeyemi SB, Tiamiyu BB, Gbadegesin LA, Akinyemi TO, Odoh CK, Umeobi HI, Adeoye ABE. Therapeutic drugs for SARS-CoV-2 treatment: Current state and perspective. Int Immunopharmacol 2021; 90:107228. [PMID: 33302035 PMCID: PMC7691844 DOI: 10.1016/j.intimp.2020.107228] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 12/19/2022]
Abstract
The disease caused by viral pneumonia called severe acute respiratory syndrome coronavirus type-2 (SARS-CoV-2) declared by the World Health Organization is a global pandemic that the world has witnessed since the last Ebola epidemic, SARS and MERS viruses. Many chemical compounds with antiviral activity are currently undergoing clinical investigation in order to find treatments for SARS-CoV-2 infected patients. On-going drug-drug interaction examinations on new, existing, and repurposed antiviral drugs are yet to provide adequate safety, toxicological, and effective monitoring protocols. This review presents an overview of direct and indirect antiviral drugs, antibiotics, and immune-stimulants used in the management of SARS-CoV-2. It also seeks to outline the recent development of drugs with anti-coronavirus effects; their mono and combination therapy in managing the disease vis-à-vis their biological sources and chemistry. Co-administration of these drugs and their interactions were discussed to provide significant insight into how adequate monitoring of patients towards effective health management could be achieved.
Collapse
Affiliation(s)
- Joshua Adedeji Bolarin
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mercy Adaramodu Oluwatoyosi
- Institute of Botany, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Joshua Iseoluwa Orege
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Emmanuel Ayodeji Ayeni
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu PMB 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yusuf Ajibola Ibrahim
- School of Chemical Sciences, Chinese Academy of Science, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Bashir Bolaji Tiamiyu
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanre Anthony Gbadegesin
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Toluwanimi Oluwadara Akinyemi
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuks Kenneth Odoh
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Happiness Ijeoma Umeobi
- Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Adenike Bernice-Eloise Adeoye
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
47
|
Sikander M, Malik S, Rodriguez A, Yallapu MM, Narula AS, Satapathy SK, Dhevan V, Chauhan SC, Jaggi M. Role of Nutraceuticals in COVID-19 Mediated Liver Dysfunction. Molecules 2020; 25:5905. [PMID: 33322162 PMCID: PMC7764432 DOI: 10.3390/molecules25245905] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/05/2020] [Accepted: 12/09/2020] [Indexed: 01/08/2023] Open
Abstract
COVID-19 is known as one of the deadliest pandemics of the century. The rapid spread of this deadly virus at incredible speed has stunned the planet and poses a challenge to global scientific and medical communities. Patients with COVID-19 are at an increased risk of co-morbidities associated with liver dysfunction and injury. Moreover, hepatotoxicity induced by antiviral therapy is gaining importance and is an area of great concern. Currently, alternatives therapies are being sought to mitigate hepatic damage, and there has been growing interest in the research on bioactive phytochemical agents (nutraceuticals) due to their versatility in health benefits reported in various epidemiological studies. Therefore, this review provides information and summarizes the juncture of antiviral, immunomodulatory, and hepatoprotective nutraceuticals that can be useful during the management of COVID-19.
Collapse
Affiliation(s)
- Mohammed Sikander
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (M.S.); (S.M.); (A.R.); (M.M.Y.); (S.C.C.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Shabnam Malik
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (M.S.); (S.M.); (A.R.); (M.M.Y.); (S.C.C.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Anyssa Rodriguez
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (M.S.); (S.M.); (A.R.); (M.M.Y.); (S.C.C.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Murali M. Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (M.S.); (S.M.); (A.R.); (M.M.Y.); (S.C.C.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Acharan S. Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA;
| | - Sanjaya K. Satapathy
- Division of Hepatology, Department of Internal Medicine, Sandra Atlas Bass Center for Liver Diseases and Transplantation, Barbara and Zucker School of Medicine, Northwell Health, Manhasset, NY 11030, USA;
| | - Vijian Dhevan
- Department of Surgery, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA;
| | - Subhash C. Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (M.S.); (S.M.); (A.R.); (M.M.Y.); (S.C.C.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Meena Jaggi
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (M.S.); (S.M.); (A.R.); (M.M.Y.); (S.C.C.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| |
Collapse
|
48
|
Hasan MJ, Rabbani R, Anam AM, Huq SMR. Additional baricitinib loading dose improves clinical outcome in COVID-19. Open Med (Wars) 2020; 16:41-46. [PMID: 33364433 PMCID: PMC7729634 DOI: 10.1515/med-2021-0010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 01/15/2023] Open
Abstract
Pneumonia associated with coronavirus disease 2019 (COVID-19) has been accounted for high mortality rate in severe COVID-19 worldwide, and additional serious scarcity of standard and effective anti-inflammatory drug in COVID-19 pneumonia management is a big challenge. Baricitinib, a Janus kinase (JAK) inhibitor, is a promising drug in COVID-19 pneumonia. This study aims to compare the clinical outcome of moderate-to-severe COVID-19 pneumonia treated with baricitinib with or without a loading dose. This prospective case-control study enrolled 37 adult patients where 17 patients (control) received baricitinib at 4 mg oral daily dose and 20 patients (case) received an additional single 8 mg oral loading dose. The median day to gain blood oxygen saturation level ≥95% (in room air) and return in normal breathing function were lower in case group than the control group. The requirement of intensive care unit and mechanical ventilation support was higher in the control group than in the case group [29.4% (N = 17)/10% (N = 20), P < 0.05; 11.8% (N = 17)/5% (N = 20), P > 0.05), respectively]. Thus, an additional loading dose of baricitinib revealed better clinical outcome of patients with COVID-19 pneumonia.
Collapse
Affiliation(s)
- Md Jahidul Hasan
- Clinical Pharmacy Services, Department of Pharmacy, Square Hospitals Ltd, 18/F Bir Uttam Qazi Nuruzzaman Sarak, West Panthapath, Dhaka-1205, Bangladesh
| | - Raihan Rabbani
- Department of Medical Services, Internal Medicine and ICU, Square Hospitals Ltd, 18/F Bir Uttam Qazi Nuruzzaman Sarak, West Panthapath, Dhaka-1205, Bangladesh
| | - Ahmad Mursel Anam
- Department of Medical Services, High Dependency Unit (HDU), Square Hospitals Ltd, 18/F Bir Uttam Qazi Nuruzzaman Sarak, West Panthapath, Dhaka-1205, Bangladesh
| | - Shihan Mahmud Redwanul Huq
- Department of Medical Services, Internal Medicine and ICU, Square Hospitals Ltd, 18/F Bir Uttam Qazi Nuruzzaman Sarak, West Panthapath, Dhaka-1205, Bangladesh
| |
Collapse
|
49
|
Naasani I. COMPARE Analysis, a Bioinformatic Approach to Accelerate Drug Repurposing against Covid-19 and Other Emerging Epidemics. SLAS DISCOVERY 2020; 26:345-351. [PMID: 33267713 PMCID: PMC8940772 DOI: 10.1177/2472555220975672] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A novel bioinformatic approach for drug repurposing against emerging viral epidemics like Covid-19 is described. It exploits the COMPARE algorithm, a public program from the National Cancer Institute (NCI) to sort drugs according to their patterns of growth inhibitory profiles from a diverse panel of human cancer cell lines. The data repository of the NCI includes the growth inhibitory patterns of more than 55,000 molecules. When candidate drug molecules with ostensible anti-SARS-CoV-2 activities were used as seeds (e.g., hydroxychloroquine, ritonavir, and dexamethasone) in COMPARE, the analysis uncovered several molecules with fingerprints similar to the seeded drugs. Interestingly, despite the fact that the uncovered drugs were from various pharmacological classes (antiarrhythmic, nucleosides, antipsychotic, alkaloids, antibiotics, and vitamins), they were all reportedly known from published literature to exert antiviral activities via different modes, confirming that COMPARE analysis is efficient for predicting antiviral activities of drugs from various pharmacological classes. Noticeably, several of the uncovered drugs can be readily tested, like didanosine, methotrexate, vitamin A, nicotinamide, valproic acid, uridine, and flucloxacillin. Unlike pure in silico methods, this approach is biologically more relevant and able to pharmacologically correlate compounds regardless of their chemical structures. This is an untapped resource, reliable and readily exploitable for drug repurposing against current and future viral outbreaks.
Collapse
Affiliation(s)
- Imad Naasani
- Nanoco Life Sciences, Nanoco Technologies, Ltd., Manchester, UK
| |
Collapse
|
50
|
Zizzo G, Cohen PL. Imperfect storm: is interleukin-33 the Achilles heel of COVID-19? THE LANCET. RHEUMATOLOGY 2020; 2:e779-e790. [PMID: 33073244 PMCID: PMC7546716 DOI: 10.1016/s2665-9913(20)30340-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The unique cytokine signature of COVID-19 might provide clues to disease mechanisms and possible future therapies. Here, we propose a pathogenic model in which the alarmin cytokine, interleukin (IL)-33, is a key player in driving all stages of COVID-19 disease (ie, asymptomatic, mild-moderate, severe-critical, and chronic-fibrotic). In susceptible individuals, IL-33 release by damaged lower respiratory cells might induce dysregulated GATA-binding factor 3-expressing regulatory T cells, thereby breaking immune tolerance and eliciting severe acute respiratory syndrome coronavirus 2-induced autoinflammatory lung disease. Such disease might be initially sustained by IL-33-differentiated type-2 innate lymphoid cells and locally expanded γδ T cells. In severe COVID-19 cases, the IL-33-ST2 axis might act to expand the number of pathogenic granulocyte-macrophage colony-stimulating factor-expressing T cells, dampen antiviral interferon responses, elicit hyperinflammation, and favour thromboses. In patients who survive severe COVID-19, IL-33 might drive pulmonary fibrosis by inducing myofibroblasts and epithelial-mesenchymal transition. We discuss the therapeutic implications of these hypothetical pathways, including use of therapies that target IL-33 (eg, anti-ST2), T helper 17-like γδ T cells, immune cell homing, and cytokine balance.
Collapse
Affiliation(s)
- Gaetano Zizzo
- Temple Autoimmunity Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Unit of Rheumatology, Department of Internal Medicine, ASST Ovest Milanese, Milan, Italy
| | - Philip L Cohen
- Temple Autoimmunity Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Section of Rheumatology, Department of Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|